CANONICAL THURSTON OBSTRUCTIONS FOR SUB-HYPERBOLIC SEMI-RATIONAL BRANCHED COVERINGS

TAO CHEN AND YUNPING JIANG

Abstract

We prove that the canonical Thurston obstruction for a sub-hyperbolic semi-rational branched covering exists if the branched covering is not CLH-equivalent to a rational map.

1. Introduction

Let S^{2} be the two-sphere. We use $\widehat{\mathbb{C}}$ to denote the Riemann sphere which is S^{2} equipped with the standard complex structure. All maps in this paper are orientation-preserving.

Let $f: S^{2} \rightarrow S^{2}$ be a branched covering of degree $d \geq 2$. Let

$$
C_{f}=\left\{x \in S^{2} \mid \operatorname{deg}_{x} f \geq 2\right\}
$$

denote the set of the critical points of f and

$$
P_{f}=\overline{\bigcup_{k \geq 1} f^{k}\left(C_{f}\right)}
$$

denote the post-critical set of f.
We say f is critically finite if $\sharp P_{f}$ is finite. We say f is geometrically finite if $\sharp P_{f}$ is infinite but the accumulation set P_{f}^{\prime} of P_{f} is a finite set.

Definition 1. Suppose $f, g: S^{2} \rightarrow S^{2}$ are two branched coverings of degree $d \geq 2$. They are said to be combinatorially equivalent if there exists a pair of homeomorphisms $\phi, \varphi: S^{2} \rightarrow S^{2}$ such that
(a) ϕ is isotopic to φ rel P_{f} and
(b) $\phi \circ f=g \circ \varphi$.

Note that in (a) of Definition 1, the statement that ϕ is isotopic to φ rel P_{f} means that there is a continuous map $H(x, t): S^{2} \times[0,1] \rightarrow S^{2}$ such that
(1) for each $t \in[0,1], H_{t}(x)=H(x, t): S^{2} \rightarrow S^{2}$ is a homeomorphism;
(2) $H_{0}=\phi$ and $H_{1}=\varphi$;
(3) for any point $y \in P_{f}$ and any $t \in[0,1], H_{t}(y)=\phi(y)=\varphi(y)$.

[^0]Suppose $f: S^{2} \rightarrow S^{2}$ is critically finite. Then there is an orbifold structure on S^{2} associated to f as follows. Define the signature $\nu_{f}: S^{2} \rightarrow \mathbb{Z}_{+} \cup\{\infty\}$ as that $\nu_{f}(x)$ is the least common multiple of local degrees $\operatorname{deg}_{y} f^{n}$ over $y \in f^{-n}(x)$ for all $n \geq 1$. The orbifold associated to f is $\Omega_{f}=\left(S^{2}, \nu_{f}\right)$. The Euler characteristic of Ω_{f}, by definition, is

$$
\chi\left(\Omega_{f}\right)=2-\Sigma_{x \in S^{2}}\left(1-\frac{1}{\nu_{f}(x)}\right) .
$$

It is known that $\chi\left(\Omega_{f}\right) \leq 0$ (see Proposition 9.1(i) in $\overline{\mathrm{DH}}$). Moreover, the orbifold Ω_{f} is called hyperbolic if $\chi\left(\Omega_{f}\right)<0$ and parabolic if $\chi\left(\Omega_{f}\right)=0$.

Theorem A (see [Th, DH]). Suppose f is a critically finite branched covering with a hyperbolic orbifold Ω_{f}. Then f is combinatorially equivalent to a rational map R if and only if f has no Thurston obstructions. Moreover, the rational map R is unique up to conjugations by automorphisms of the Riemann sphere.

The reader can refer to $\S 2$ for the definition of a Thurston obstruction. If a critically finite branched covering f is not equivalent to a rational map, then there must exist Thurston obstructions. The canonical Thurston obstruction is the most interesting one among all Thurston obstructions. The reader can refer to $\S 2$ for the term non-peripheral and $\S 4$ for the definition of $l(\gamma, x)$.

Theorem B (see Pi). Suppose f is a critically finite branched covering with a hyperbolic orbifold Ω_{f}, and let Γ_{c} denote the set of all homotopy class of nonperipheral curves γ in $S^{2} \backslash P_{f}$ such that $l\left(\gamma, x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Then
(1) Γ_{c} is empty, and f is combinatorially equivalent to a rational map;
(2) otherwise, Γ_{c} is a Thurston obstruction and hence is a canonically defined Thurston obstruction to the existence of a rational map.

The non-existence of Thurston's obstruction condition is essentially true for any rational map.

Theorem C (see $\overline{\mathrm{Mc}}$). Suppose $R: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ is a rational map. Let Γ be a multicurve on $\hat{\mathbb{C}}-P_{R}$. It can be a Thurston obstruction only in the following cases:
(1) R is critically finite with $\# P_{R}=4$ and the orbifold $\Omega_{R}=\left(S^{2},(2,2,2,2)\right)$ is parabolic. Moreover, R is a double covered by an integral torus endomorphism (it is a special case of a Lattés map).
(2) P_{R} is an infinite set and Γ includes the essential curves in a finite system of annuli permuted by R. These annuli lie in Siegel disks or Herman rings for R and each annulus is a connected component of $\widehat{\mathbb{C}}-P_{R}$.

The reader can refer to [Mi] for a definition of a Lattés map and for definitions of a Siegel disk and a Herman ring.

For a geometrically finite branched covering f, the situation is much more complicated. It was first studied in a manuscript CJS, which was divided into two parts CJS1 and CJS2. The first part was eventually completed and published in [CJ] as follows.

Theorem D (see [CJ]). There is a geometrically finite branched covering such that it has no Thurston obstruction and it is not combinatorially equivalent to any rational map.

Due to this theorem, a semi-rational branched covering and a sub-hyperbolic semi-rational branched covering are introduced in (CJ among the space of all geometrically finite branched coverings.
Definition 2. Suppose $f: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ is a geometrically finite branched covering of degree $d \geq 2$. We say f is semi-rational if
(1) f is holomorphic in a neighborhood of P_{f}^{\prime};
(2) each cycle $\left\langle p_{0}, \cdots, p_{k-1}\right\rangle$ of period $k \geq 1$ in P_{f}^{\prime} is either attractive, that is, $0<\left|\left(f^{k}\right)^{\prime}\left(p_{0}\right)\right|<1$, or super-attractive, that is, $\left(f^{k}\right)^{\prime}\left(p_{0}\right)=0$, or parabolic, that is, $\left|\left(f^{k}\right)^{\prime}\left(p_{0}\right)\right|=1$ and $\left(\left(f^{k}\right)^{\prime}\left(p_{0}\right)\right)^{q}=1$ for some integer $q \geq 1$; and
(3) each attracting petal associated with a parabolic cycle in P_{f}^{\prime} contains a point in the post-critical set P_{f}.
Furthermore, if all cycles in P_{f}^{\prime} are either attractive or super-attractive, we call f a sub-hyperbolic semi-rational branched covering.

Clearly, every geometrically finite rational map is a semi-rational branched covering. Furthermore, we have the following theorem.

Theorem \mathbf{E} (see CJ]). A semi-rational branched covering f is always combinatorially equivalent to a sub-hyperbolic semi-rational branched covering g.

Thus, to study the combinatorial classification in the space of all semi-rational geometrically finite branched coverings, it is enough to study all sub-hyperbolic semi-rational branched coverings. Therefore, the CLH (combinatorially and locally holomorphically) equivalence was introduced in [CJ] in the space of all subhyperbolic semi-rational branched coverings.

Definition 3. Suppose f and g are two sub-hyperbolic semi-rational branched coverings. We say that they are CLH-equivalent if there exists a pair of homeomorphisms $\phi, \varphi: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ such that:
(1) ϕ is isotopic to φ rel P_{f};
(2) $\phi \circ f=g \circ \varphi$, and
(3) $\phi\left|U_{f}=\varphi\right| U_{f}$ is holomorphic on some open set $U_{f} \supset P_{f}^{\prime}$.

We have then completed the second part of the study.
Theorem F (see [CJS2] [JZ]). Suppose f is a sub-hyperbolic semi-rational branched covering. Then f is CLH-equivalent to a rational map R if and only if f has no Thurston obstructions. In this case, the rational map R is unique up to conjugations by automorphisms of the Riemann sphere.

Thus, the study of canonical Thurston obstructions for sub-hyperbolic semirational branched coverings becomes our final goal, to have a complete understanding of combinatorial structures for geometrically finite branched coverings. In this paper we will complete our final goal.

For the critically finite case, the Teichmüller space of the Riemann sphere minus several points was considered in DH. They proved a crucial technical result that a sequence $\left\{x_{n}\right\}$ in the Teichmüller space converges if and only if its projection is a precompact set in the moduli space. The Mumford compactness theorem applies. But neither of them applies for the geometrically finite case. Therefore, we turn

[^1]to study the bounded geometry property (refer to Jii), which makes our approach different from the method applied in DH. Roughly speaking, our main result in this paper is that if a sub-hyperbolic semi-rational branched covering f is not CLHequivalent to any rational map, then there exists a canonical Thurston obstruction. To have a more precise statement of our main result, let us first give an idea of a proof of Theorem \boldsymbol{F} by using bounded geometry as follows.

Suppose f is a sub-hyperbolic semi-rational branched covering. Let $P_{f}^{\prime}=\left\{a_{i}\right\}$ be the set of accumulation points of P_{f}. Then every a_{i} is periodic. There exists a collection of a finite number of open disks

$$
\begin{equation*}
\Lambda=\left\{D_{i}\right\} \tag{1}
\end{equation*}
$$

centered at $\left\{a_{i}\right\}$ and a collection of a finite number of annuli $\left\{A_{i}\right\}$ (we call them the shielding rings) such that:
(i) $\overline{A_{i}} \cap P_{f}=\emptyset$;
(ii) $A_{i} \cap D_{i}=\emptyset$, but one component of ∂A_{i} is the boundary of D_{i};
(iii) $\left(\overline{D_{i} \cup A_{i}}\right) \cap\left(\overline{D_{j} \cup A_{j}}\right)=\emptyset$ for $i \neq j$;
(iv) f is holomorphic on $\overline{D_{i}} \cup A_{i}$, and
(v) every $f\left(\overline{D_{i}} \cup A_{i}\right)$ is contained in D_{i+1} for $1 \leq i \leq k-1$ and $f\left(\overline{D_{k}} \cup A_{k}\right)$ is contained in D_{1} where k is the period of a_{i}.
Denote $D=\bigcup_{i} D_{i}$ and

$$
\begin{equation*}
P_{1}=P_{f} \backslash D \tag{2}
\end{equation*}
$$

Since a_{i} are accumulation points of P_{f}, it follows that $\sharp P_{1}$ is finite. Without loss of generality, we assume that 0,1 , and ∞ belong to P_{1}. Define

$$
\begin{equation*}
Q=P_{1} \cup \bar{D} \text { and } X=\partial Q=P_{1} \cup \partial D \tag{3}
\end{equation*}
$$

We associate with f the Teichmüller space $T_{f}=T(\widehat{\mathbb{C}} \backslash Q, X)$ which is the Teichmüller space of the Riemann surface $\widehat{\mathbb{C}} \backslash Q$ whose boundary is X. Note that T_{f} is also the Teichmüller space $T_{0}(Q)$ which is the space of all Q-equivalent classes of all Beltrami coefficients μ on $\widehat{\mathbb{C}}$ such that $\mu \mid Q=0$. (Two Beltrami coefficients μ and ν are Q-equivalent if the normalized quasiconformal maps w^{μ} and w^{ν} are isotopic rel Q.) The space T_{f} is a complex manifold. The Teichmüller metric and the Kobayashi metric on T_{f} are also equal (refer to, for example, [EM, GJW, JMW]).

The map f induces a holomorphic map σ_{f} from T_{f} into itself and σ_{f} weakly contracts the Teichmüller metric. An equivalent statement of Theorem F is that σ_{f} has a unique fixed point if and only if f has no Thurston obstruction.

Every point x in T_{f} determines a complex structure on $\widehat{\mathbb{C}} \backslash Q$ up to homotopy. Then ($\widehat{\mathbb{C}} \backslash Q, x)$ is a Riemann surface R_{x}. We embed R_{x} into the Riemann sphere $\widehat{\mathbb{C}}$ by a quasiconformal map $\phi_{x}: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ fixing $0,1, \infty$. Then $\widehat{\mathbb{C}} \backslash \phi_{x}(Q)$ is a representative of R_{x}. The reader can refer to $\S 4$.

Let $d(\cdot, \cdot)$ mean the spherical distance on $\widehat{\mathbb{C}}$. We define a subspace $\mathcal{T}_{f, b}$ of T_{f} for each $b>0$ as follows.

Definition 4. Let $b>0$ be a constant. Let $\mathcal{T}_{f, b}$ be the subspace of $x=[\mu] \in \mathcal{T}_{f}$ satisfying the following conditions:
(1) for all $z_{i} \neq z_{i^{\prime}} \in P_{1}, d\left(\phi_{\mu}\left(z_{i}\right), \phi_{\mu}\left(z_{i^{\prime}}\right)\right) \geq b$;
(2) for all $z_{j} \in P_{1}$ and all $D_{i} \in \Lambda, d\left(\phi_{\mu}\left(z_{j}\right), \phi_{\mu}\left(D_{i}\right)\right) \geq b$;
(3) for all $D_{i} \neq D_{i^{\prime}} \in \Lambda, d\left(\phi_{\mu}\left(D_{i}\right), \phi_{\mu}\left(D_{i^{\prime}}\right)\right) \geq b$;
(4) every $D_{i} \in \Lambda, \phi_{\mu}\left(D_{i}\right)$ contains a round disk of radius b centered at $\phi_{\mu}\left(c_{i}\right)$. We call $\mathcal{T}_{f, b}$ the subspace having the bounded geometry property determined by b.

Take an arbitrary $x_{0} \in T_{f}$ and let $x_{n}=\sigma_{f}^{n}(x)$. If f has no Thurston obstructions, we can prove that $\left\{x_{n}\right\}_{n=0}^{\infty} \subset \mathcal{T}_{f, b}$ for some $b>0$. This implies that the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges in T_{f}. Thus σ_{f} has a unique fixed point, and f is CLH-equivalent to a unique sub-hyperbolic rational map.

For a non-peripheral curve γ in $\widehat{\mathbb{C}} \backslash Q$, let $l(\gamma, x)$ denote the hyperbolic length of the unique geodesic in R_{x} which is homotopic to γ in $\widehat{\mathbb{C}} \backslash Q$. If $\left\{x_{n}\right\} \subset \mathcal{T}_{f, b}$ for some $b>0$, then there is a $\delta>0$ such that $l\left(\gamma, x_{n}\right) \geq \delta$ for any non-peripheral curve γ in $\widehat{\mathbb{C}} \backslash Q$ and any $n \geq 0$. Therefore, if f is not CLH-equivalent to a sub-hyperbolic rational map, then there is a sequence of non-peripheral curves γ_{n} in $\widehat{\mathbb{C}} \backslash Q$ such that $l\left(\gamma_{n}, x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Question. Suppose f is not CLH-equivalent to a rational map. Does there exist a non-peripheral curve γ, such that for any $x_{0} \in T_{f}$ and $x_{n}=\sigma_{f}^{n}\left(x_{0}\right), n>0$, $l\left(\gamma, x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$?

We give an affirmative answer to this question. The positive answer to this question shows how x_{n} tends to the boundary of T_{f}. More precisely, we will prove a stronger result as follows.
Theorem 1 (Main Theorem). Suppose f is a sub-hyperbolic semi-rational branched covering. Let Γ_{c} denote the set of all homotopy classes of non-peripheral curves γ in $\widehat{\mathbb{C}} \backslash Q$ such that $l\left(\gamma, x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ for any initial $x_{0} \in T_{f}=T_{0}(Q)$. Then we have that either
(a) $\Gamma_{c}=\emptyset$, then f is CLH-equivalent to a sub-hyperbolic rational map, or
(b) $\Gamma_{c} \neq \emptyset$ is a Thurston obstruction for f and f is not CLH-equivalent to a rational map. In this case, we call Γ_{c} the canonical Thurston obstruction for f.
The paper is organized as follows. In $\S 2$, we define Thurston obstructions for subhyperbolic semi-rational branched coverings. In $\S 3$, we review non-negative matrices and study some properties for irreducible non-negative matrices. In $\S 4$, we study the Teichmüller space associated with a sub-hyperbolic semi-rational branched covering and short geodesics. For any Thurston obstruction Γ, we can decompose it into Γ_{0} and Γ_{∞} (see Definition 7). We estimate the upper bound for Γ_{∞} in $\S 5$ and the lower bound for Γ_{0} in $\S 6$. Finally, we prove Theorem \square in $\S 7$.

2. Thurston obstructions

Suppose f is a sub-hyperbolic semi-rational branched covering. Let Q be the set as we defined in (3). Then

$$
f: \widehat{\mathbb{C}} \backslash f^{-1}(Q) \longrightarrow \widehat{\mathbb{C}} \backslash Q
$$

is a covering map of finite degree. If γ is a simple closed curve in $\widehat{\mathbb{C}} \backslash Q$, then all the components of $f^{-1}(\gamma)$ are simple closed curves in $\widehat{\mathbb{C}} \backslash f^{-1}(Q)$, which is a subset of $\widehat{\mathbb{C}} \backslash Q$. Thus all the components of $f^{-1}(\gamma)$ are simple closed curves in $\widehat{\mathbb{C}} \backslash Q$.

A simple closed curve γ is said to be non-peripheral if each component of $\widehat{\mathbb{C}} \backslash \gamma$ contains at least two points of Q. A multi-curve

$$
\begin{equation*}
\Gamma=\left\{\gamma_{1}, \cdots, \gamma_{n}\right\} \tag{4}
\end{equation*}
$$

is a set of finitely many pairwise disjoint, non-homotopic, and non-peripheral curves in $\widehat{\mathbb{C}} \backslash Q$. For each multi-curve Γ in (4), let

$$
\mathbb{R}^{\Gamma}=\left\langle\gamma_{1}, \cdots, \gamma_{n}\right\rangle
$$

be the real vector space of dimension n with a basis Γ. We define a linear transformation

$$
f_{\Gamma}: \mathbb{R}^{\Gamma} \rightarrow \mathbb{R}^{\Gamma}
$$

as follows: For each $\gamma_{j} \in \Gamma$, let $\gamma_{i, j, \alpha}$ denote the components of $f^{-1}\left(\gamma_{j}\right)$ homotopic to γ_{i} in $\widehat{\mathbb{C}} \backslash Q$ and $d_{i, j, \alpha}$ be the degree of $\left.f\right|_{\gamma_{i, j, \alpha}}: \gamma_{i, j, \alpha} \rightarrow \gamma_{j}$. Define

$$
f_{\Gamma}\left(\gamma_{j}\right)=\Sigma_{i}\left(\Sigma_{\alpha} \frac{1}{d_{i, j, \alpha}}\right) \gamma_{i}
$$

Let A_{Γ} be the corresponding matrix, that is

$$
f_{\Gamma} \mathbf{v}=A_{\Gamma} \mathbf{v}, \quad \mathbf{v} \in \mathbb{R}^{\Gamma}
$$

Since the matrix A_{Γ} is non-negative, by the Perron-Frobenius Theorem, there exists a maximal non-negative eigenvalue $\lambda\left(A_{\Gamma}\right)$ which is the spectral radius of A_{Γ}.

A multi-curve Γ is said to be f-stable if for any $\gamma \in \Gamma$, every non-peripheral component of $f^{-1}(\gamma)$ is homotopic to an element of Γ rel Q.

Definition 5. A stable multi-curve Γ is called a Thurston obstruction for f if $\lambda\left(A_{\Gamma}\right) \geq 1$.

Remark 1. The definition of a Thurston obstruction for the critically finite case is similar by replacing Q by P_{f}.

3. Non-NEGATIVE MATRICES

Since a Thurston obstruction is determined by a non-negative matrix, we give a brief review of some results in the matrix theory about non-negative matrices. We use Ga as a reference.

A non-negative $n \times n$ matrix A is called irreducible, if no permutation of the indices places the matrix in a block lower-triangular form. More precisely, there is no permutation matrix P, which is a matrix consisting of 0 and 1 such that each row or each column contains one and only one 1 , such that

$$
P A P^{-1}=\left(\begin{array}{cc}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right)
$$

where A_{11} and A_{22} are square matrices. An equivalent definition of irreducibility is that for any $1 \leq i, j \leq n$, there exists a $0 \leq q=q(i, j) \leq n$ such that the $i j$-th entry of A^{q} is positive.

For the n-dimensional vector space \mathcal{V}, we will use the norm

$$
\begin{equation*}
\|\mathbf{v}\|=\max _{1 \leq i \leq n}\left|v_{i}\right|, \quad \mathbf{v}=\left(v_{1}, \cdots, v_{n}\right) \in \mathcal{V} \tag{5}
\end{equation*}
$$

in the rest of this paper. For any linear map $L: \mathcal{V} \rightarrow \mathcal{V}$, let A be the corresponding matrix for L; define

$$
\|A\|=\sup _{\|\mathbf{v}\|=1}\|A \mathbf{v}\|
$$

The spectral radius $\lambda(A)$ of A can be calculated as

$$
\lambda(A)=\lim _{n \rightarrow \infty} \sqrt[n]{\left\|A^{n}\right\|} \geq 0
$$

If A is a non-negative, the Perron-Frobenius Theorem implies that $\lambda(A)$ is an eigenvalue of A. Thus it is a maximal eigenvalue of A. If A is irreducible, $\lambda(A)$ is a simple, positive, maximal eigenvalue with a positive eigenvector $\mathbf{v}=\left(v_{1}, \cdots, v_{n}\right)$, i.e., $v_{i}>0$ for all $1 \leq i \leq n$. However, there may exist another eigenvalue $\mu \neq \lambda(A)$ but $|\mu|=\lambda(A)$. For example, consider

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

It is an irreducible matrix. The spectral radius is 1 which is a simple, positive, maximal eigenvalue with an eigenvector $\mathbf{v}_{1}=(1,1)$. However, -1 is also an eigenvalue with an eigenvector $\mathbf{v}=(1,-1)$. But if A is positive, that is, every entry is a positive number, the Perron-Frobenius theorem states that $\lambda(A)$ is a unique, simple, positive, maximal eigenvalue with a positive eigenvector $\mathbf{v}=\left(v_{1}, \cdots, v_{n}\right)$, i.e., $v_{i}>0$ for all $1 \leq i \leq n$. Here the term "unique" means that all other eigenvalues μ of A satisfy that

$$
|\mu|<\lambda(A)
$$

Definition 6. We say that a multi-curve Γ is irreducible if the corresponding matrix A_{Γ} of the linear map $f_{\Gamma}: \mathbb{R}^{\Gamma} \rightarrow \mathbb{R}^{\Gamma}$ is irreducible.

For any non-negative matrix A, we can rearrange the order of the basis such that

$$
A=\left(\begin{array}{cccc}
A_{11} & 0 & \cdots & 0 \tag{6}\\
A_{21} & A_{22} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
A_{s 1} & A_{s 2} & \cdots & A_{s s}
\end{array}\right)
$$

and all the blocks $A_{j j}$ on the diagonal are either irreducible or 0 matrices. It is not hard to calculate that

$$
\lambda(A)=\max _{j} \lambda\left(A_{j j}\right)
$$

Now we consider $A=A_{\Gamma}$ as the corresponding matrix of the linear map f_{Γ} : $\mathbb{R}^{\Gamma} \rightarrow \mathbb{R}^{\Gamma}$ for an f-stable multi-curve $\Gamma=\left\{\gamma_{1}, \cdots, \gamma_{n}\right\}$. We assume that A is in the form of (6). Then we can use Γ_{j} to denote the subset of curves in Γ corresponding to the j-th block in A. That is, $A_{j j}=A_{\Gamma_{j}}$. It is clear that

$$
\Gamma=\bigcup_{j} \Gamma_{j} .
$$

We call $\left\{\Gamma_{j}\right\}$ an irreducible decomposition of Γ. The reader should note that Γ_{j} may not be f-stable.

Denote

$$
\Gamma_{O b}=\bigcup_{j} \Gamma_{j},
$$

where the union runs over all j such that $\lambda\left(A_{j j}\right) \geq 1$. We have the following definition to relate every element in Γ to $\Gamma_{O b}$ if it is not empty.

Definition 7. Suppose Γ is an f-stable multi-curve. For every $\gamma \in \Gamma$, if there exists a $\gamma_{o b} \in \Gamma_{O b}$ and an integer $k \geq 0$ such that γ is homotopic to a component $f^{-k}\left(\gamma_{o b}\right)$, then we define the depth of γ with respect to Γ to be the least such integer k. Otherwise, we define the depth as ∞. The set of all elements in Γ with finite depth is denoted by Γ_{0}. The set of all elements with infinite depth is denoted by Γ_{∞}.

Then

$$
\Gamma=\Gamma_{0} \cup \Gamma_{\infty}
$$

It is clear that if Γ is a Thurston obstruction, then Γ_{0} is non-empty. Moreover, we have the following lemma.

Lemma 1. If Γ is a Thurston obstruction, then Γ_{0} is also a Thurston obstruction. In particular, under a permutation of the basis, we can write

$$
A_{\Gamma}=\left(\begin{array}{cc}
A_{\Gamma_{\infty}} & 0 \tag{7}\\
\star & A_{\Gamma_{0}}
\end{array}\right)
$$

where $\lambda\left(A_{\Gamma_{\infty}}\right)<1$ and $\lambda\left(A_{\Gamma}\right)=\lambda\left(A_{\Gamma_{0}}\right) \geq 1$.
Proof. First, for every curve $\gamma \in \Gamma_{0}$, there exists an integer $k \geq 0$ and an element $\gamma_{o b} \in \Gamma_{O b}$ such that γ is homotopic to a component of $f^{-k}\left(\gamma_{o b}\right)$. It follows that any non-peripheral component $\widetilde{\gamma}$ of $f^{-1}(\gamma)$ is homotopic to a component of $f^{-(k+1)}\left(\gamma_{o b}\right)$. Since Γ is f-stable, then there exists an element $\gamma_{i} \in \Gamma$ which is homotopic to $\widetilde{\gamma}$. Therefore, any non-peripheral component of $f^{-1}(\gamma)$ is homotopic to an element $\gamma_{i} \in \Gamma$ whose depth is at most $k+1$. This implies that $\gamma \in \Gamma_{0}$. Thus Γ_{0} is f-stable.

Let us write $\Gamma_{\infty}=\left\{\gamma_{1}, \cdots, \gamma_{s}\right\}$. Then $\Gamma_{0}=\left\{\gamma_{s+1}, \cdots, \gamma_{n}\right\}$. Since Γ_{0} is f-stable, A_{Γ} must be of the form (7). Furthermore, since $\Gamma_{O b} \subset \Gamma_{0}$, we have that

$$
\lambda\left(A_{\Gamma_{\infty}}\right)<1 \text { and } \lambda\left(A_{\Gamma_{0}}\right)=\lambda\left(A_{\Gamma}\right) \geq 1 .
$$

Now we study the associated matrix A for a sub-hyperbolic semi-rational branched covering f. For each disk D_{i} in Λ, we take a point b_{i} on the boundary ∂D_{i}. Set

$$
\begin{equation*}
E=P_{1} \cup \bigcup_{i}\left\{a_{i}, b_{i}\right\} \tag{8}
\end{equation*}
$$

Let $p=\sharp E$. It is obvious that every multi-curve Γ in $\widehat{\mathbb{C}} \backslash Q$ is a multi-curve in $\widehat{\mathbb{C}} \backslash E$. It follows that there are only a finite number of possible matrices for all linear transformations f_{Γ} (refer to [DH, Lemma 1.2]).
(There are infinitely many possible multi-curves Γ.) Therefore, we have the following proposition.

Proposition 1. There is a number $0<\beta \leq 1$ depending only on the degree d of f and the cardinality p of E such that for any irreducible multi-curve Γ in $\widehat{\mathbb{C}} \backslash Q$ (not necessarily f-stable) with $\lambda\left(A_{\Gamma}\right) \geq 1$, let \mathbf{v} be the unique positive eigenvector of A_{Γ} corresponding to $\lambda\left(A_{\Gamma}\right) \geq 1$ with $\|\mathbf{v}\|=1$. Then, the smallest coordinate of \mathbf{v} is bounded below by β.

Proof. Since there are only finitely many possible matrices for all irreducible multicurves, there are finitely many simple, positive, maximal eigenvalues. Thus there are finitely many positive eigenvectors \mathbf{v} with $\|\mathbf{v}\|=1$. This gives the proposition.

Proposition 2. There exists a positive integer m such that for any non-empty f-stable multi-curve Γ, if it is a Thurston obstruction,

$$
\left\|A_{\Gamma_{\infty}}^{m}\right\|<1 / 2
$$

Proof. Since there are only finitely many matrices A_{Γ} corresponding to all Γ, there are only finitely many $A_{\Gamma_{\infty}}$. For each $A_{\Gamma_{\infty}}, \lambda\left(A_{\Gamma_{\infty}}\right)<1$. Thus we have an integer $m>0$ such that

$$
\left\|A_{\Gamma_{\infty}}^{m}\right\|<1 / 2
$$

Every multi-curve Γ can contain at most $p-3$ curves, so we have the following proposition.

Proposition 3. There is a positive integer M depending on p such that for any f-stable multi-curve Γ in $\widehat{\mathbb{C}} \backslash Q$, the depth of every $\gamma \in \Gamma_{0}$ is less than or equal to M.

4. Teichmüller space and short geodesics.

Suppose f is a sub-hyperbolic semi-rational branched covering. Recall Q and P_{1} defined in (2) and (3) and the assumption that $0,1, \infty \in P_{1}$. Let $\mathcal{M}(\mathbb{C})$ be the unit ball of the space $L^{\infty}(\mathbb{C})$. That is, it is the set of all measurable functions μ on \mathbb{C} such that essential supremum norm $\|\mu\|_{\infty}<1$. Each element $\mu \in \mathcal{M}(\mathbb{C})$ is called a Beltrami coefficient since the measurable Riemann mapping theorem AB says that the Beltrami equation

$$
\phi_{\bar{z}}=\mu \phi_{z}
$$

has a unique quasiconformal self-map ϕ^{μ} of $\widehat{\mathbb{C}}$ fixing 0,1 , and ∞ as a solution, which depends on $\mu \in \mathcal{M}(\mathbb{C})$ holomorphically. The map ϕ^{μ} is called the normalized solution.

Definition 8. The Teichmüller space T_{f} is the equivalence class [μ] for $\mu \in \mathcal{M}(\mathbb{C})$ satisfying that $\mu \mid Q=0$ a.e., where μ_{1} and μ_{2} are equivalent if and only if $\phi^{\mu_{1}}$ is isotopic to $\phi^{\mu_{2}}$ rel Q. Furthermore, we can define the Teichmüller distance between two points $x=[\mu]$ and $y=[\nu]$ in T_{f} as

$$
\mathrm{d}_{T}(x, y)=\frac{1}{2} \min _{\tilde{\mu} \in[\mu], \widetilde{\nu} \in[\nu]} \log K\left[\phi^{\widetilde{\mu}} \circ\left(\phi^{\widetilde{\nu}}\right)^{-1}\right],
$$

where $K[\phi]$ is the maximal dilation of the quasiconformal map ϕ.
From [Li] (or refer to [JZ]), we knew that T_{f} is the Teichmüller space $T(\widehat{\mathbb{C}} \backslash Q$) of Riemann surface $\widehat{\mathbb{C}} \backslash Q$ with boundary ∂Q. It is a complex manifold and the projective map

$$
\Phi: \mathcal{M}(\mathbb{C}) \rightarrow T_{f}
$$

is a holomorphic split submersion.
Define the self-map σ_{f} of the Teichmüller T_{f} by

$$
\sigma_{f}([\mu])=\left[f^{*}(\mu)\right] .
$$

In formula,

$$
\left(f^{*} \mu\right)(z)=\frac{\mu_{f}(z)+\mu(f(z)) \theta(z)}{1+\overline{\mu_{f}(z)} \mu(f(z)) \theta(z)},
$$

where $\theta(z)=\overline{f_{z}} / f_{z}$ and $\mu_{f}(z)=f_{\bar{z}} / f_{z}$, is the pull-back of μ by f. Since

$$
\sigma_{f}=\Phi \circ f^{*} \circ \Phi^{-1},
$$

where Φ^{-1} means a local holomorphic section of Φ. Thus

$$
\sigma_{f}: T_{f} \rightarrow T_{f}
$$

is a holomorphic map. Since the Teichmüller metric d_{T} coincides with the Kobayashi metric on the complex manifold T_{f} and σ_{f} is holomorphic, we have that

$$
\mathrm{d}_{T}\left(\sigma_{f}(x), \sigma_{f}(y)\right) \leq \mathrm{d}_{T}(x, y), \quad \forall x, y \in T_{f}
$$

From [JZ, we also know that

$$
\begin{equation*}
\mathrm{d}_{T}\left(\sigma_{f}(x), \sigma_{f}(y)\right)<\mathrm{d}_{T}(x, y), \quad \forall x, y \in T_{f} \tag{9}
\end{equation*}
$$

We need more definitions and lemmas from JZ] as follows.
Let Z be a subset of Q with $\sharp(Z) \geq 4$. Let $x=[\mu] \in T_{f}$ and let $\gamma \in \widehat{\mathbb{C}} \backslash Z$ be a simple closed and non-peripheral curve. We use $l_{Z}(\gamma, x)$ to denote the hyperbolic length of the unique simple closed geodesic which is homotopic to $\phi^{\mu}(\gamma)$ in the hyperbolic Riemann surface $\widehat{\mathbb{C}} \backslash \phi^{\mu}(Z)$. We say γ is a (μ, Z)-simple closed geodesic if $\phi^{\mu}(\gamma)$ is a simple closed geodesic in $\widehat{\mathbb{C}} \backslash \phi^{\mu}(Z)$.
Remark 2. From the definition of the Teichmüller space T_{f}, we know that the definition of $l_{Z}(\gamma, x)$ is independent of the choice of μ in x.

For $x_{0} \in T_{f}$, let $x_{n}=\sigma_{f}^{n}\left(x_{0}\right), n=1, \cdots$, be a sequence in T_{f}. Recall our definition of E in (8).

Lemma 2. If there is a real number $a>0$ such that there is a point $x_{0} \in T_{f}$ and every $\left(x_{n}, E\right)$-simple closed geodesic $\gamma \subset \widehat{\mathbb{C}} \backslash Q$ has hyperbolic length greater than or equal to a, then the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ is convergent in T_{f} and the limiting point is the fixed point of σ_{f} in T_{f}.

Remark 3. This lemma implies that if there exists an $x_{0} \in T_{f}$ such that the length of the shortest geodesic on all the x_{n} has a uniform lower bound, then f has no Thurston obstructions.

Lemma 3. There exists an $\eta>0$ such that for any point $x=[\mu] \in T_{f}$ with $\mu(z)=0$ on $\bigcup_{i} A_{i}$ and for any (x, E)-simple geodesic $\gamma \subset \widehat{\mathbb{C}} \backslash E$ with $l_{E}(\gamma, x)<\eta$, we have $\gamma \subset \widehat{\mathbb{C}} \backslash Q$. Moreover, for any $\epsilon>0$, there exists a $\delta>0$ such that

$$
l_{E}(\gamma, x)>(1-\epsilon) l_{Q}(\gamma, x)
$$

whenever $l_{E}(\gamma, x)<\delta$.
Remark 4. The above lemma implies that for any $x=[\mu] \in T_{f}$ with $\mu(z)=0$ for all $z \in \bigcup_{i} A_{i}$, sufficiently short geodesics in $\widehat{\mathbb{C}} \backslash \phi^{\mu}(E)$ are homotopic to the sufficiently short geodesics in $\widehat{\mathbb{C}} \backslash \phi^{\mu}(Q)$. More precisely, we can find a constant $\delta_{0}>0$ such that

$$
\frac{1}{e} l_{Q}(\gamma, x)<l_{E}(\gamma, x)<l_{Q}(\gamma, x) \quad \text { whenever } l_{E}(\gamma, x)<\delta_{0}
$$

Suppose $x=[\mu] \in T_{f}$ and $Z \subset Q$. Define

$$
w_{Z}(\gamma, x)=-\log l_{Z}(\gamma, x)
$$

Consider the set

$$
L_{Z, x}=\left\{w_{Z}(\gamma, x)\right\},
$$

where γ ranges over all the non-peripheral simple closed curves in $\widehat{\mathbb{C}} \backslash Q$. Define

$$
w_{Z}(x)=\sup \left\{w_{Z}(\gamma, x)\right\}
$$

and

$$
w_{Z}(\Gamma, x)=\max _{\gamma \in \Gamma} w_{Z}(\gamma, x)
$$

The following lemma is a general result for hyperbolic Riemann surfaces (refer to [DH, JZ]). We just state it in our case.
Lemma 4. Let $Z \subset Q$ be a finite subset with $\sharp Z \geq 4$ and let $\gamma \subset \widehat{\mathbb{C}} \backslash Q$ be a non-peripheral simple closed curve. Then the function

$$
x \mapsto w_{Z}(\gamma, x): T_{f} \rightarrow \mathbb{R}
$$

is Lipschitz with Lipschitz constant 2.
Let

$$
A=\max \left\{-\log \log (2 \sqrt{2}+3),-\log \delta_{0}\right\}
$$

where δ_{0} is the number in Remark 4. Note that $\log (2 \sqrt{2}+3)$ is the magic number in the theory of hyperbolic Riemann surfaces such that for any hyperbolic Riemann surface S, any two simple closed geodesics γ and γ^{\prime} in S are disjoint whenever the hyperbolic lengths of γ and γ^{\prime} are less than $\log (2 \sqrt{2}+3)$. This implies that for any point $x \in T_{f}$, there are at most $p-3$ curves γ with $l_{E}(\gamma, x) \leq \log (2 \sqrt{2}+3)$.

For any $J>0$, let (a, b) be the lowest interval in $\mathbb{R} \backslash L_{E, x}$ such that $a \geq A$ and $b-a=J$. For any $x=[\nu] \in T_{f}$, define

$$
\Gamma_{J, x}=\left\{\gamma \mid \gamma \text { is a simple closed geodesic on } R_{x} \text { and } w_{E}(\gamma, x) \geq b\right\} .
$$

Then $\Gamma_{J, x}$ is a multi-curve consisting of the geodesics which are sufficiently short on $\widehat{\mathbb{C}} \backslash \phi^{\mu}(E)$. This is equivalent saying that they are all the simple closed curves in $\widehat{\mathbb{C}} \backslash \phi^{\mu}(Q)$ which are homotopic to sufficiently short simply closed geodesics on $\widehat{\mathbb{C}} \backslash \phi^{\mu}(Q)$. There are at most $p-3$ elements in $\Gamma_{J, x}$ for any x and they are pairwise disjoint.

For any $x \in T_{f}$, let $D=d_{T}\left(x, \sigma_{f}(x)\right)$.
Lemma 5. If $J \geq \log d+2 D+1$ and $\Gamma_{J, x} \neq \emptyset$, then $\Gamma_{J, x}$ is an f-stable multi-curve.
See Lemma 7.3 in JZ.

5. Upper bound for Γ_{∞}

We still keep the notation in the previous sections. Suppose $x_{0} \in T_{f}$ and $x_{n}=$ $\sigma_{f}^{n}\left(x_{0}\right)$ for all $n \geq 1$. Then we have a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ in T_{f}.

For all $n>0$ and all $z \in \bigcup_{i} A_{i}$, we have that $\mu_{n}(z)=0$, where $\left[\mu_{n}\right]=x_{n}$, since $f\left(\bigcup_{i} A_{i}\right) \subset \bigcup_{i} D_{i}$ as we constructed $\left\{A_{i}\right\}$ as the shielding rings.

Recall the definition of $E=P_{1} \cup \bigcup_{i}\left\{a_{i}, b_{i}\right\}$ in (8) and m in Proposition 2. Let

$$
P_{2}=E \cup f^{m}(E) \cup \bigcup_{1 \leq j \leq m} f^{j}\left(\Omega_{f}\right) \subset Q
$$

The following lemma is also from JZ.
Lemma 6. There exists an $\epsilon_{0}>0$, such that for any $x=[\mu] \in T_{f}$ with $\mu(z)=0$ for all $z \in \cup_{i} A_{i}$, and for any (μ, P_{2})-simple closed geodesic γ^{\prime}, if $l_{P_{2}}\left(\gamma^{\prime}, x\right)<\epsilon_{0}$, then there is a (μ, E)-simple closed geodesic γ such that γ^{\prime} is homotopic to γ in $\widehat{\mathbb{C}} \backslash P_{2}$.

The following lemma is also a general result in the theory of hyperbolic Riemann surfaces and the reader can find a proof in [DH.

Lemma 7. Let X be a hyperbolic Riemann surface, $P \subset X$ is a finite subset, and $\sharp P<p$. Let $X^{\prime}=X \backslash P$ and $L<\log (3+2 \sqrt{2})$. Let γ be a simple closed geodesic on X, and let $\gamma_{1}^{\prime}, \cdots, \gamma_{k}^{\prime}$ be all the geodesics on X^{\prime} homotopic to γ in X whose hyperbolic length on X^{\prime} is less than L. Set $l=l_{X}(\gamma)$ and $l_{i}^{\prime}=l_{X^{\prime}}\left(\gamma_{i}^{\prime}\right)$. Then:
(1) $k \leq p+1$;
(2) for all $i, l_{i}^{\prime} \geq l$;
(3) $\frac{1}{l}-\frac{1}{\pi}-\frac{(p+1)}{L}<\sum_{i=1}^{k} \frac{1}{l_{i}^{\prime}}<\frac{1}{l}+\frac{(p+1)}{\pi}$.

The next proposition is essential for our proof.
Proposition 4. Let m be the constant in Proposition 2. Let $x_{0} \in T_{f}$ and $x_{n}=$ $\sigma_{f}^{n}\left(x_{0}\right)$ for $n>0$. There exists a constant $C(J)>0$ depending on $p, d, \epsilon_{0}, D=$ $d_{T}\left(x_{0}, x_{1}\right)$ and $J \geq m(\log d+2 D+1)$ such that if $w_{E}\left(x_{0}\right)>C(J)$, then $\Gamma=\Gamma_{J, x_{0}} \neq$ \emptyset is a stable multi-curve. Moreover, if $\Gamma_{\infty} \neq \emptyset$, then

$$
w_{E}\left(\Gamma_{\infty}, x_{m}\right) \leq w_{E}\left(\Gamma_{\infty}, x_{0}\right)
$$

Proof. If $w_{E}\left(x_{0}\right) \geq A+(p-3) J$, then $\Gamma_{J, x_{0}}$ is non-empty, since $R_{x_{0}}$ has at most ($p-3$) simple closed geodesics with hyperbolic length less than e^{-A} (they are not homotopic to each other). From Lemma [5, $\Gamma=\Gamma_{J, x_{0}}$ is also f-stable.

Suppose $\Gamma_{\infty} \neq \emptyset$ and A_{Γ} is in the form of (7). From Proposition $2\left\|A_{\Gamma_{\infty}}^{m}\right\|<1 / 2$.
For each $\gamma_{j} \in \Gamma_{J, x_{0}}$, let $\gamma_{i, j, \alpha}$ be any component of $f^{-m}\left(\gamma_{j}\right)$ homotopic to γ_{i} in $\widehat{\mathbb{C}} \backslash Q$. Then $\gamma_{i, j, \alpha}$ is also homotopic to γ_{i} in $\widehat{\mathbb{C}} \backslash E$. Let $g=\phi^{\mu} \circ f^{m} \circ\left(\phi^{\nu}\right)^{-1}$, where $[\mu]=x_{0}$ and $[\nu]=x_{m}$. Then g is a rational map and

$$
g: \widehat{\mathbb{C}} \backslash \phi^{\nu}\left(f^{-m}\left(P_{2}\right)\right) \rightarrow \widehat{\mathbb{C}} \backslash \phi^{\mu}\left(P_{2}\right)
$$

is a holomorphic covering map. Therefore

$$
l_{f-m\left(P_{2}\right)}\left(\gamma_{i, j, \alpha}, x_{m}\right)=d_{i, j, \alpha} l_{P_{2}}\left(\gamma_{j}, x_{0}\right),
$$

where $d_{i, j, \alpha}$ is the degree of $f^{m}: \gamma_{i, j, \alpha} \rightarrow \gamma_{j}$. We get

$$
\sum_{\alpha} \frac{1}{l_{f-m}\left(P_{2}\right)\left(\gamma_{i, j, \alpha}, x_{m}\right)}=\left(\sum_{\alpha} \frac{1}{d_{i, j, \alpha}}\right) \frac{1}{l_{P_{2}}\left(\gamma_{j}, x_{0}\right)}=b_{i j} \frac{1}{l_{P_{2}}\left(\gamma_{j}, x_{0}\right)}
$$

where $b_{i j}$ is the $i j$-entry of A_{Γ}^{m}.
Since $E \subset P_{2}$, the inclusion

$$
\iota: \widehat{\mathbb{C}} \backslash P_{2} \hookrightarrow \widehat{\mathbb{C}} \backslash E
$$

decreases the hyperbolic distances. So we have that $l_{P_{2}}\left(\gamma_{j}, x_{0}\right)>l_{E}\left(\gamma_{j}, x_{0}\right)$ for any γ_{j}. It follows that

$$
\sum_{\alpha} \frac{1}{l_{f^{-m}\left(P_{2}\right)}\left(\gamma_{i, j, \alpha}, x_{m}\right)}<b_{i j} \frac{1}{l_{E}\left(\gamma_{j}, x_{0}\right)}
$$

From the definitions of P_{2} and E, we know that $E \subset f^{-m}\left(P_{2}\right)$. Let $C=$ $C(d, m, p)=\sharp\left(f^{-m}\left(P_{2}\right) \backslash E\right)$, where $p=\sharp E$.

We claim that for any $\left(\nu, f^{-m}\left(P_{2}\right)\right)$-simple closed geodesic γ which is homotopic to γ_{i} in $\widehat{\mathbb{C}} \backslash E$, either γ is homotopic to some $\gamma_{i, j, \alpha}$ in $\widehat{\mathbb{C}} \backslash f^{-m}\left(P_{2}\right)$ or

$$
l_{f-m\left(P_{2}\right)}\left(\gamma, x_{m}\right)>\min \left\{e^{-(A+P J)}, \epsilon_{0}\right\}
$$

where ϵ_{0} is the constant in Lemma 6,
We prove the claim. In fact, if γ is not homotopic in $\widehat{\mathbb{C}} \backslash f^{-m}\left(P_{2}\right)$ to some $\gamma_{i, j, \alpha}$, then $f^{m}(\gamma)$ is a (μ, P_{2})-simple closed geodesic which is not homotopic to any γ_{j} in
$\widehat{\mathbb{C}} \backslash P_{2}$. Then there are two cases: either (1) $f^{m}(\gamma)$ is homotopic in $\widehat{\mathbb{C}} \backslash P_{2}$ to some (μ, E)-simple closed geodesic ξ which does not belong to $\Gamma_{J, x_{0}}$, then we have

$$
l_{P_{2}}\left(f^{m}(\gamma), x_{0}\right)>l_{E}\left(f^{m}(\gamma), x_{0}\right)=l_{E}\left(\xi, x_{0}\right)>e^{-a}>e^{-(A+P J)}
$$

or (2) $f^{m}(\gamma)$ is not homotopic in $\widehat{\mathbb{C}} \backslash P_{2}$ to any (μ, E)-simple closed geodesic, then by Lemma 6, we have

$$
l_{P_{2}}\left(f^{m}(\gamma), x_{0}\right)>\epsilon_{0}
$$

Thus we have

$$
l_{f^{-m}\left(P_{2}\right)}\left(\gamma, x_{m}\right) \geq l_{P_{2}}\left(f^{m}(\gamma), x_{0}\right)>\min \left\{e^{-(A+P J)}, \epsilon_{0}\right\} .
$$

This proves the claim.
From the left hand of the inequality given by (3) in Lemma 7 for each $\gamma_{i} \in \Gamma$, we have
$\frac{1}{l_{E}\left(\gamma_{i}, x_{m}\right)}-\frac{1}{\pi}-\frac{C+1}{\min \left\{e^{-(A+P J)}, \epsilon_{0}\right\}} \leq \sum_{j, \alpha} \frac{1}{l_{f-m}\left(P_{2}\right)\left(\gamma_{i, j, \alpha}, x_{m}\right)} \leq \sum_{j} b_{i j} \frac{1}{l_{E}\left(\gamma_{j}, x_{0}\right)}$.
Suppose $\Gamma_{\infty}=\left\{\gamma_{1}, \cdots, \gamma_{s}\right\} \subset \Gamma$. Then for each $\gamma_{i} \in \Gamma_{\infty}$, from the form (7) of A_{Γ},

$$
\frac{1}{l_{E}\left(\gamma_{i}, x_{m}\right)} \leq \sum_{j=1}^{s} b_{i j} \frac{1}{l_{E}\left(\gamma_{j}, x_{0}\right)}+\frac{1}{\pi}+\frac{C+1}{\min \left\{e^{-(A+P J)}, \epsilon_{0}\right\}}
$$

Let

$$
\mathbf{v}_{1}=\left(\begin{array}{c}
\frac{1}{l_{E}\left(\gamma_{1}, x_{m}\right)} \\
\vdots \\
\frac{1}{l_{E}\left(\gamma_{s}, x_{m}\right)}
\end{array}\right) \quad \text { and } \mathbf{v}=\left(\begin{array}{c}
\frac{1}{l_{E}\left(\gamma_{1}, x_{0}\right)} \\
\vdots \\
\frac{1}{l_{E}\left(\gamma_{s}, x_{0}\right)}
\end{array}\right) .
$$

Since $\left\|A_{\infty}^{m}\right\|<1 / 2$,

$$
\left\|\mathbf{v}_{1}\right\|<\frac{1}{2}\|\mathbf{v}\|+\frac{1}{\pi}+\frac{C+1}{\min \left\{e^{-(A+P J)}, \epsilon_{0}\right\}}
$$

Define

$$
C(J)=\max \left\{2\left(\frac{1}{\pi}+\frac{C+1}{\min \left\{e^{-(A+P J)}, \epsilon_{0}\right\}}\right), A+(p-3) J\right\} .
$$

If $w_{E}\left(\Gamma_{\infty}, x_{0}\right) \geq C(J)$, then we have

$$
w_{E}\left(\Gamma_{\infty}, x_{m}\right)<w_{E}\left(\Gamma_{\infty}, x_{0}\right) .
$$

Lemma 8. Let $J \geq m(\log d+2 D+1)$. Suppose $w_{E}\left(x_{0}\right)<C(J)$ and suppose $\Gamma=\Gamma_{J, x_{k}} \neq \emptyset$ for some $k \geq 0$. Let $E(J)=C(J)+2 m D$. If $\Gamma_{\infty} \neq \emptyset$, then for all n,

$$
w_{E}\left(\Gamma_{\infty}, x_{n}\right)<E(J) .
$$

Moreover, if $w_{E}\left(\gamma, x_{k}\right) \geq E(J)$, then $\gamma \in \Gamma_{0}$.
Proof. We prove the first inequality by contradiction. Suppose there is an $n>0$ such that $w_{E}\left(\Gamma_{\infty}, x_{n}\right) \geq C(J)+2 m D$. Suppose n_{0} is the first integer having this property. Then we have $w_{E}\left(\Gamma_{\infty}, x_{n_{0}-m}\right) \geq C(J)$. Then by Proposition 4 and the fact that n_{0} is the first integer such that $w_{E}\left(\Gamma_{\infty}, x_{n_{0}}\right) \geq C(J)+2 m D$, we have

$$
w_{E}\left(\Gamma_{\infty}, x_{n_{0}}\right) \leq w_{E}\left(\Gamma_{\infty}, x_{n_{0}-m}\right)<C(J)+2 m D .
$$

This is a contradiction.

If $w_{E}\left(\gamma, x_{k}\right) \geq E(J)>C(J) \geq A+(p-3) J$, then $\gamma \in \Gamma_{J, x_{k}}=\Gamma$ since there are at most $p-3$ simple closed curves in $R_{x_{k}}$ such that $w_{E}\left(\gamma, x_{k}\right)>A$. But $\gamma \notin \Gamma_{\infty}$ because of the first conclusion and the assumption. Therefore, $\gamma \in \Gamma_{0}$.

6. LOWER BOUND FOR Γ_{0}

In order to get the lower bound for Γ_{0}, we need the following definition.
Definition 9. Let κ be a real number. A sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ of real numbers is called κ-quasi-nondecreasing if for all $n_{1}<n_{2}$ we have $a_{n_{2}}-a_{n_{1}} \geq \kappa$. A sequence is called quasi-nondecreasing if it is κ-quasi-nondecreasing for some κ.

It is easy to check that the following two properties are true.
Property 1. Suppose $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ are two sequences. If $\left\{a_{n}\right\}_{n=0}^{\infty}$ is κ-quasi-nondecreasing and if $\left|a_{n}-b_{n}\right|<r$ for all n, then $\left\{b_{n}\right\}$ is $(\kappa-2 r)$-quasinondecreasing.

Property 2. Suppose $\left\{a_{n}\right\}$ is quasi-nondecreasing and unbounded. Then $a_{n} \rightarrow$ $+\infty$ as $n \rightarrow+\infty$.

Recall that any $x=[\mu] \in T_{f}$ represents a complex structure on $\widehat{\mathbb{C}} \backslash Q$, which makes $\widehat{\mathbb{C}} \backslash Q$ a hyperbolic Riemann surface R_{x}. For any simple closed geodesic γ on R_{x}, let $A(\gamma, x)$ be the Riemann surface, conformally isomorphic to an annulus, obtained by taking the unit disk \mathbb{D} modulo a \mathbb{Z}-subgroup of the fundamental group of R_{x} generated by γ. It is a covering space of R_{x}. The core curve of $A(\gamma, x)$ is a geodesic of length $l_{Q}(\gamma, x)$ and

$$
\begin{equation*}
\bmod (A(\gamma, x))=\frac{\pi}{l_{Q}(\gamma, x)} \tag{10}
\end{equation*}
$$

where $\bmod (A)$ means the modulus of an annulus A.
If γ is a simple closed geodesic of hyperbolic length l on the Riemann surface R_{x}, then there is an embedding annulus $a(\gamma, x)$ of modulus $m(l)$ which is continuous and decreasing and satisfies

$$
\frac{\pi}{l}-1<m(l)<\frac{\pi}{l} .
$$

Thus for all $x \in T_{f}$, we have

$$
\begin{equation*}
\bmod (A(\gamma, x))-1<\bmod (a(\gamma, x))<\bmod (A(\gamma, x)) \tag{11}
\end{equation*}
$$

We need the following technical lemma.
Lemma 9. If $t \geq 1$, then $\log (t+1)-1<\log t$.
Proof. For $t \geq 1$,

$$
\log (t+1)-\log t=\log \left(\frac{t+1}{t}\right) \leq \log 2<1 .
$$

If $w_{Q}(\gamma, x) \geq \log \frac{2}{\pi}=-0.451582705 \cdots$, then we have $\bmod (A(\gamma, x))-1 \geq 1$. By taking logarithms on all terms of inequality (11) and by applying Lemma 9 and equation (10), we have

$$
\log \pi-1+w_{Q}(\gamma, x)<\log \bmod (a(\gamma, x))<\log \pi+w_{Q}(\gamma, x)
$$

It follows that, if $w_{Q}(\gamma, x) \geq \log \frac{2}{\pi}$, then

$$
\begin{equation*}
\left|\log \bmod (a(\gamma, x))-w_{Q}(\gamma, x)\right|<\log \pi . \tag{12}
\end{equation*}
$$

Given a multi-curve Γ, we denote vectors of $\operatorname{moduli}(\bmod (A(\gamma, x)))$ and $(\bmod (a(\gamma, x)))$ by $\bmod (A(\Gamma, x))$ and $\bmod (a(\Gamma, x))$ respectively. Define

$$
\underline{\bmod }(A(\Gamma, x))=\min _{\gamma \in \Gamma}\{\bmod (A(\gamma, x))\}
$$

and

$$
\underline{\bmod }(a(\Gamma, x))=\min _{\gamma \in \Gamma}\{\bmod (a(\gamma, x))\} .
$$

Lemma 10. Let β be the constant in Proposition 1. Let Γ be an irreducible multicurve. Suppose the leading eigenvalue of the matrix A_{Γ} is greater than or equal to 1. Then for any $x_{0} \in T_{f}$ and $x_{n}=\sigma_{f}^{n}\left(x_{0}\right), n>0$,
(1) $\underline{\bmod }\left(A\left(\Gamma, x_{n}\right)\right) \geq \beta \underline{\bmod }\left(a\left(\Gamma, x_{0}\right)\right)$ and
(2) $\underline{\bmod }\left(a\left(\Gamma, x_{n}\right)\right) \geq \beta \underline{\bmod }\left(a\left(\Gamma, x_{0}\right)\right)-1$.

Proof. Since for any $n, f^{n}: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ is a branched covering, we can similarly define the linear map $f_{\Gamma}^{n}: \mathbb{R}^{\Gamma} \rightarrow \mathbb{R}^{\Gamma}$. Let B be the corresponding matrix for the linear map f_{Γ}^{n} with the basis Γ. It is easy to see that $B \geq A_{\Gamma}^{n}$.

Let \mathbf{v} be the unique positive eigenvector of A_{Γ} with $\|\mathbf{v}\|=\mathbf{1}$. Let $\mathbf{1}$ denote the vector whose coordinates are all equal to 1 . Then

$$
\bmod \left(a\left(\Gamma, x_{0}\right)\right) \geq \underline{\bmod }\left(a\left(\Gamma, x_{0}\right) \mathbf{1} \geq \underline{\bmod }\left(a\left(\Gamma, x_{0}\right)\right) \mathbf{v} .\right.
$$

For any $n \geq 1$, let $\gamma_{i, j, \alpha}^{n}$ be the components of $f^{-n}\left(\gamma_{j}\right)$ homotopic to γ_{i}, and $a_{i, j, \alpha}^{n}$ be the components of $f^{-n}\left(a\left(\gamma_{j}, x_{0}\right)\right)$ homotopic to γ_{i}. Then

$$
\bmod \left(a_{i, j, \alpha}^{n}\right)=\bmod \left(a\left(\gamma_{j}, x_{0}\right)\right) / d_{i, j, \alpha}^{n},
$$

where $d_{i, j, \alpha}^{n}=\left.\operatorname{deg} f^{n}\right|_{\gamma_{i, j, \alpha}}$. Since $a_{i, j, \alpha}^{n}$ are disjoint annuli homotopic to the curve γ_{i}, we have

$$
\sum_{\alpha, j} \bmod \left(a_{i, j, \alpha}^{n}\right) \leq \bmod \left(A\left(\gamma_{i}, x_{n}\right)\right)
$$

(One can obtain this inequality by lifting them to the covering space $A\left(\gamma_{i}, x_{n}\right)$ of $R_{x_{n}}$ and then by using Grötzsch's inequality.) Consequently we get

$$
\begin{aligned}
\bmod \left(A\left(\Gamma, x_{n}\right)\right) & \geq \bmod \left(a\left(\Gamma, x_{n}\right)\right) \geq B \bmod \left(a\left(\Gamma, x_{0}\right)\right) \\
& \geq A_{\Gamma}^{n} \bmod \left(a\left(\Gamma, x_{0}\right)\right) \geq A_{\Gamma}^{n} \underline{\bmod }\left(a\left(\Gamma, x_{0}\right)\right) \mathbf{v} \\
& \geq \underline{\bmod }\left(a\left(\Gamma, x_{0}\right)\right) \mathbf{v} \geq \beta \underline{\bmod }\left(a\left(\Gamma, x_{0}\right)\right) \mathbf{1} .
\end{aligned}
$$

Hence for all $\gamma \in \Gamma$, we have $\bmod \left(A\left(\gamma, x_{n}\right)\right) \geq \beta \underline{\bmod }\left(a\left(\Gamma, x_{0}\right)\right)$. The second conclusion follows the first one and inequality (11).

Lemma 11. If $a, b>0, \beta>0$, and $e^{a} \geq \beta e^{b}-1$, then $a-b \geq \log \beta-1$.
Proof. If $\beta \exp b-1 \geq 1$, then by Lemma 9 we have

$$
\log (\beta \exp b-1) \geq \log \left(\beta e^{b}\right)-1 \geq \log \beta+b-1
$$

Hence by the assumption, we have $a-b \geq \log \beta-1$.
If $\beta \exp b-1<1$, then $b<\log 2-\log \beta$. Since $a>0$,

$$
a-b>0-b=-b>\log \beta-\log 2>\log \beta-1 .
$$

For any $x \in T_{f}$ and any multi-curve Γ, define

$$
\underline{w}(\Gamma, x)=\min _{\gamma \in \Gamma} w_{Q}(\gamma, x) .
$$

Lemma 12. Suppose Γ is an irreducible multi-curve and suppose the leading eigenvalue of the matrix A_{Γ} is greater than or equal to 1 . For any $x_{0} \in T_{f}$, if $\underline{w}\left(\Gamma, x_{0}\right) \geq$ $\log (3 / \beta)+\log \pi$, then the sequence $\left\{\underline{w}\left(\Gamma, x_{n}\right)\right\}_{n=0}^{\infty}$, where $x_{n}=\sigma_{f}^{n}\left(x_{0}\right)$, is $(\log \beta-$ $1-2 \log \pi)$-quasi-nondecreasing.

Proof. For $\underline{w}\left(\Gamma, x_{0}\right) \geq \log (3 / \beta)+\log \pi>\log \frac{2}{\pi}$, by inequality (12), we have

$$
\log \underline{\bmod }\left(a\left(\Gamma, x_{0}\right)\right) \geq \log \left(\frac{3}{\beta}\right) .
$$

That is, $\underline{\bmod }\left(a\left(\Gamma, x_{0}\right)\right) \geq 3 / \beta$. So $\beta \underline{\bmod }\left(a\left(\Gamma, x_{0}\right)\right)-1 \geq 2$. By Lemma 10, we have that for all $n \geq 0$,

$$
\begin{equation*}
\underline{\bmod }\left(a\left(\Gamma, x_{n}\right)\right) \geq 2 \tag{13}
\end{equation*}
$$

Now consider the sequence $y_{n}=\log \underline{\bmod }\left(a\left(\Gamma, x_{n}\right)\right)$. Choose arbitrarily $n_{2}>n_{1} \geq 0$, and let $a=y_{n_{2}}, b=y_{n_{1}}$ and $n=n_{2}-n_{1}$. By Lemma 10 we have $e^{a} \geq \beta e^{b}-1$. Applying Lemma 11, we have $a-b \geq \log \beta-1$, so the sequence $\left\{y_{n}\right\}$ is a $(\log \beta-1)$ -quasi-nondecreasing.

By inequalities (11) and (13), we have $\underline{\bmod }(A(\Gamma, x)) \geq 2$. This implies that $\log \pi+\underline{w}\left(\Gamma, x_{n}\right) \geq \log 2$. That is, $\underline{w}\left(\Gamma, x_{n}\right) \geq \log (2 / \pi)$. Since $\bmod \left(a\left(\gamma, x_{n}\right)\right)$ is continuous and decreasing with $l_{Q}\left(\gamma, x_{n}\right)$, we obtain

$$
\underline{\bmod }\left(a\left(\Gamma, x_{n}\right)\right)=\bmod \left(a\left(\gamma, x_{n}\right)\right) \quad \text { and } \quad \underline{w}\left(\Gamma, x_{n}\right)=w_{Q}\left(\gamma, x_{n}\right)
$$

at the same $\gamma \in \Gamma$. This further implies that

$$
\left|y_{n}-\underline{w}\left(\Gamma, x_{n}\right)\right|<\log \pi .
$$

From Property [1 we finally have that $\underline{w}\left(\Gamma, x_{n}\right)$ is $(\log \beta-1-2 \log \pi)$-quasi-nondecreasing.

Lemma 13. Let $k \geq 1$ be an integer. For any $x_{0} \in T_{f}$, let $x_{n}=\sigma_{f}^{n}\left(x_{0}\right)$ for $n>0$. Let $D=d_{T}\left(x_{0}, x_{1}\right)$. If γ_{1}, γ_{2} are non-peripheral curves in $\widehat{\mathbb{C}} \backslash Q$ such that some component of $f^{-k}\left(\gamma_{1}\right)$ is homotopic to γ_{2}, then

$$
w_{Q}\left(\gamma_{2}, x_{0}\right) \geq w_{Q}\left(\gamma_{1}, x_{0}\right)-k(\log d+2 D)
$$

Proof. Let $Y=f^{-k}\left(R_{x_{0}}\right)$. Then $Y \subset R_{x_{k}}$ is a Riemann surface and $f^{k}: Y \rightarrow R_{x_{0}}$ is a holomorphic covering map of degree d^{k}. Then

$$
l_{Y}\left(\gamma_{2}\right) \leq d^{k} l_{Q}\left(\gamma_{1}, x_{0}\right)
$$

Since the inclusion map $\iota: Y \hookrightarrow R_{x_{k}}$ decreases the hyperbolic lengths,

$$
l_{Q}\left(\gamma_{2}, x_{k}\right) \leq d^{k} l_{Q}\left(\gamma_{1}, x_{0}\right)
$$

It follows that

$$
w_{Q}\left(\gamma_{2}, x_{k}\right)>w_{Q}\left(\gamma_{1}, x_{0}\right)-k \log d
$$

Since σ_{f} decreases the Teichmüller distance d_{T},

$$
d_{T}\left(x_{i}, x_{i+1}\right) \leq d_{T}\left(x_{0}, x_{1}\right)=D
$$

The map $\gamma \mapsto w_{Q}(\gamma, x)$ for any $x \in T_{f}$ is a Lipschitz function with Lipschitz constant 2 (see Lemma (4), so we have that

$$
w_{Q}\left(\gamma_{2}, x_{0}\right) \geq w_{Q}\left(\gamma_{2}, x_{k}\right)-2 k D \geq w_{Q}\left(\gamma_{1}, x_{0}\right)-k(2 D+\log d) .
$$

Lemma 14. Suppose Γ is an irreducible multi-curve. Then for all $\gamma_{i}, \gamma_{j} \in \Gamma$ and all $x \in T_{f}$,

$$
\left|w_{Q}\left(\gamma_{i}, x\right)-w_{Q}\left(\gamma_{j}, x\right)\right| \leq(p-3)(\log d+2 D)
$$

Proof. Since Γ is irreducible, there is an integer $q \leq \sharp \Gamma \leq p-3$ such that γ_{i} is homotopic to a preimage of $f^{-q}\left(\gamma_{j}\right)$. By Lemma 13, we see that $w_{Q}\left(\gamma_{i}, x\right) \geq$ $w_{Q}\left(\gamma_{j}, x\right)-(p-3)(\log d+2 D)$. By exchanging i and j, we complete the proof.

Proposition 5. Suppose Γ is an f-stable multi-curve satisfying $\Gamma=\Gamma_{0}$. Let $x_{0} \in$ T_{f} and $x_{n}=\sigma_{f}^{n}\left(x_{0}\right), n>0$. Let $D=d_{T}\left(x_{0}, x_{1}\right)$. Suppose $\min _{\gamma} w_{Q}\left(\gamma, x_{0}\right) \geq$ $\log (3 / \beta)+\log \pi$, where β is the number in Proposition 1 . Write $\Gamma=\Gamma^{\prime} \sqcup \Gamma^{\prime \prime}$, where $\Gamma^{\prime}=\Gamma_{O b}$ is the union of the irreducible component Γ_{j} of Γ for which $\lambda\left(A_{\Gamma_{j}}\right) \geq 1$. Then
(1) for all $\gamma \in \Gamma^{\prime},\left\{w_{Q}\left(\gamma, x_{n}\right)\right\}_{n \geq 0}$ is κ-quasi-nondecreasing, where $\kappa=\log \beta-$ $1-2 \log \pi-2(p-3)(\log d+2 D)$;
(2) for all $\gamma \in \Gamma^{\prime \prime}$ and all $n \geq 0$,

$$
w_{Q}\left(\gamma, x_{n}\right) \geq \min _{\gamma^{\prime} \in \Gamma^{\prime}}\left\{w_{Q}\left(\gamma^{\prime}, x_{n}\right)\right\}-M(\log d+2 D),
$$

where M is the constant in Proposition 3.,
(3) Suppose $\min _{\gamma \in \Gamma} w_{Q}\left(\gamma, x_{0}\right) \geq J_{A}-1$, where

$$
J_{A}=\max \{\log (3 / \beta)+\log \pi, A\}+\kappa+M(\log d+2 D)+1
$$

Then for all $\gamma \in \Gamma$ and for all $n \geq 0$, we have

$$
w_{Q}\left(\gamma, x_{n}\right) \geq A
$$

Proof. Let Γ_{j} be an irreducible component of Γ for which $\lambda\left(\Gamma_{j}\right) \geq 1$. By the assumption that $\underline{w}\left(\Gamma, x_{0}\right) \geq \log (3 / \beta)+\log \pi$, we have $\left\{\underline{w}\left(\Gamma_{j}, x_{n}\right)\right\}$ is $\log \beta-1-$ $2 \log \pi$-quasi-nondecreasing.

Since Γ_{j} is an irreducible multi-curve, by Lemma 13 and Property 11 we have for each $\gamma \in \Gamma_{j}$, the sequence $\left\{w_{Q}\left(\gamma, x_{k}\right)\right\}_{k=0}^{\infty}$ is a $\kappa=\log \beta-1-2 \log \pi-$ $2(p-3)(\log d+2 D)$-quasi-nondecreasing. This completes (1).

By Lemma 12 and (1), we have for all $\gamma \in \Gamma^{\prime \prime}$ and all $n \geq 0$,

$$
w_{Q}\left(\gamma, x_{n}\right) \geq \min _{\gamma^{\prime} \in \Gamma^{\prime}}\left\{w_{Q}\left(\gamma^{\prime}, x_{n}\right)\right\}-M(\log d+2 D)
$$

This is (2).
(3) follows from (1) and (2) immediately.

Proposition 6. Suppose Γ is an f-stable multi-curve satisfying $\Gamma=\Gamma_{0}$. Let $x_{0} \in$ T_{f} and $x_{n}=\sigma_{f}^{n}(x), n>0$, and $D=d_{T}\left(x_{0}, x_{1}\right)$. Suppose $\min _{\gamma \in \Gamma} w_{E}\left(\gamma, x_{0}\right) \geq J_{A}$. Write $\Gamma=\Gamma^{\prime} \sqcup \Gamma^{\prime \prime}$, where $\Gamma^{\prime}=\Gamma_{O b}$ is the union of the irreducible component Γ_{j} of Γ for which $\lambda\left(A_{\Gamma_{j}}\right) \geq 1$. Then:
(1) For all $\gamma \in \Gamma, w_{E}\left(\gamma, x_{n}\right) \geq A$ for any $n \geq 0$.
(2) For all $\gamma \in \Gamma^{\prime},\left\{w_{E}\left(\gamma, x_{n}\right)\right\}_{n \geq 0}$ is $(\kappa-2)$-quasi-nondecreasing.
(3) For all $\gamma \in \Gamma^{\prime \prime}$ and all $n \geq 0$,

$$
w_{E}\left(\gamma, x_{n}\right) \geq \min _{\gamma^{\prime} \in \Gamma^{\prime}}\left\{w_{E}\left(\gamma^{\prime}, x_{n}\right)\right\}-2-M(\log d+2 D) .
$$

Proof. From Lemma 3, we have, for any $x \in T_{f}$,

$$
w_{Q}(\gamma, x) \leq w_{E}(\gamma, x) \leq w_{Q}(\gamma, x)+1
$$

if $w_{E}(\gamma, x) \geq A$. If $\min _{\gamma} w_{E}\left(\gamma, x_{0}\right) \geq J_{A}$, then $\min _{\gamma} w_{Q}\left(\gamma, x_{0}\right) \geq J_{A}-1$; then, by Proposition5, for any $n \geq 0$ and $\gamma \in \Gamma, w_{Q}\left(\gamma, x_{n}\right) \geq A$. Consequently, $w_{E}\left(\gamma, x_{n}\right) \geq$ A. We get (1).

From (1), we have $\left|w_{E}\left(\gamma, x_{n}\right)-w_{Q}\left(\gamma, x_{n}\right)\right|<1$ for all $n \geq 0$. Then by Property 1 and Proposition 5 we have (2) and (3).

7. Proof of Theorem 1

Choose any $x_{0} \in T_{f}$, we can find a $J \geq J_{A}$ such that $w_{E}\left(x_{0}\right)<C(J)$. Without loss of generality, we assume that $J=J_{A}$. Since $C(J)$ is an increasing function of J, we have $w_{E}\left(x_{0}\right)<C(J)$ for all $J \geq J_{A}$. Let $x_{n}=\sigma_{f}^{n}\left(x_{0}\right), n>0$, and $D=d_{T}\left(x_{0}, x_{1}\right)$.

Suppose that f is not equivalent to a rational map. By Lemma 2 the sequence $\left\{w_{E}\left(x_{n}\right)\right\}_{n \geq 0}$ is unbounded. Thus there exists γ_{k} and $x_{n_{k}}$ with $w_{E}\left(\gamma_{k}, x_{n_{k}}\right) \rightarrow \infty$, as $k \rightarrow \infty$.

Fix $J>J_{0}=J_{A}+|A|$. Then $w_{E}\left(\gamma_{k}, x_{n_{k}}\right)>E(J)=C(J)+2 m D$ for some k. So by Lemma图 the set of the finite depth curves in $\Gamma_{J, x_{n_{k}}}$, denoted by $\Gamma_{J, x_{n_{k}}, 0}$, is nonempty.

Moreover, if for some $n_{0}, \gamma \in \Gamma_{J, n_{0}, 0}$, then $w_{E}\left(\gamma, x_{n_{0}}\right)>a+J \geq J_{A}$, which implies $w_{E}\left(\gamma, x_{n}\right) \geq A$ for all $n \geq n_{0}$ by Proposition 6. This implies that $\Gamma_{J}=$ $\bigcup_{n} \Gamma_{J, x_{n}, 0}$ and $\mathcal{G}=\bigcup_{J \geq J_{0}} \Gamma_{J}$ are multi-curves, since $\gamma \in \Gamma_{J}$ satisfies $w_{E}\left(\gamma, x_{n}\right) \geq A$ for all n sufficiently large.

Since $w_{E}\left(\gamma_{k}, x_{n_{k}}\right) \rightarrow \infty$, as $k \rightarrow \infty$, given any fixed $J \geq J_{0}, w_{E}\left(\gamma_{k}, x_{n_{k}}\right) \geq E(J)$ for infinitely many k. Hence $\gamma_{k} \in \Gamma_{J} \subset \mathcal{G}$ infinitely often. Since \mathcal{G} is finite, for some $\gamma \in \mathcal{G}$, we have $\gamma_{k}=\gamma$ for infinitely many k. Hence the set

$$
\Gamma_{u}=\left\{\gamma \mid\left\{w_{E}\left(\gamma, x_{n}\right)\right\}_{n \geq 0} \text { is unbounded }\right\}
$$

is nonempty.
Proposition 7. $\Gamma_{u}=\bigcap_{J \geq J_{0}} \Gamma_{J}$.
Proof. The inclusion $\bigcap_{J>J_{0}} \Gamma_{J} \subset \Gamma_{u}$ is clear. To see the other inclusion, let $\gamma \in \Gamma_{u}$. Given J, there exists some n such that $w\left(\gamma, x_{n}\right)>E(J)$. By Lemma 8 , $\gamma \in \Gamma_{J, x_{n}, 0}$. Thus $\bigcap_{J>J_{0}} \Gamma_{J} \supset \Gamma_{u}$. This proves the proposition.

Proposition 8. $\Gamma_{u}=\Gamma_{J_{c}}$ for some $J_{c} \geq J_{A}$.
Proof. We prove it by contradiction. Since $\Gamma_{u}=\bigcap_{J \geq J_{0}} \Gamma_{J}$, for all $J \geq J_{0}$, if $\Gamma_{u} \neq \Gamma_{J}$, then there exists a curve γ_{J} such that $\gamma_{J} \in \Gamma_{J} \subset \mathcal{G}$ but $\gamma_{J} \notin \Gamma_{u}$. Since \mathcal{G} is finite, this implies that there is some $\gamma \in \mathcal{G}$ such that $\gamma=\gamma_{J} \in \Gamma_{J}$ for infinitely many J, while also $\gamma \notin \Gamma_{u}$. This is a contradiction, since $\gamma \in \Gamma_{J}$ for infinitely many J implies that the sequence $\left\{w_{E}\left(\gamma, x_{n}\right)\right\}$ is unbounded. The contradiction proves the proposition.

Now consider $\Gamma_{u}=\Gamma_{J_{c}}=\bigcup_{n} \Gamma_{J_{c}, x_{n}, 0}$.
For each k such that $\Gamma=\Gamma_{J_{c}, x_{k}, 0}$ is nonempty, applying Proposition 6, we know that if $\gamma^{\prime} \in \Gamma^{\prime}$, then the sequence $\left\{w_{E}\left(\gamma^{\prime}, x_{n}\right)\right\}_{n \geq 0}$ is both unbounded and quasinondecreasing, so $w_{E}\left(\gamma^{\prime}, x_{n}\right) \rightarrow \infty$, as $n \rightarrow \infty$. (3) of Proposition 6 implies that $w_{E}\left(\gamma, x_{n}\right) \rightarrow \infty$, as $n \rightarrow \infty$, for all $\gamma \in \Gamma^{\prime \prime}$. Hence

$$
\Gamma_{u}=\left\{\gamma \mid w_{E}\left(\gamma, x_{n}\right) \rightarrow \infty \text { as } n \rightarrow \infty\right\} .
$$

Proposition 9. $\Gamma_{u}=\Gamma_{J_{c}, x_{n_{c}}, 0}$ for some $n=n_{c}$.
Proof. Since $\Gamma_{u}=\bigcup_{n} \Gamma_{J_{c}, x_{n}, 0}$, the inclusion $\Gamma_{J_{c}, x_{n}, 0} \subset \Gamma_{u} \subset \mathcal{G}$ holds for all n.
Since there are finitely many elements in \mathcal{G}, there exists an n_{c} such that for all $\gamma \in \Gamma_{u}$,

$$
w_{E}\left(\gamma, x_{n_{c}}\right)>E\left(J_{c}\right)
$$

By Lemma 8, we have $\gamma \in \Gamma_{J_{c}, x_{n_{c}}, 0}$. Thus $\Gamma_{u}=\Gamma_{J_{c}, n_{c}, 0}$.
From Proposition 9, Γ_{u} is a Thurston obstruction. Furthermore, Γ_{u} depends only on f and is independent of the initial point x_{0}, since for any γ, the map $x \mapsto w_{E}(\gamma, x)$ is a Lipschitz map with Lipschitz constant 2 (see Lemma 4) and since σ_{f} decreases the Teichmüller distance d_{T}.

Finally, since

$$
w_{Q}(\gamma, x) \leq w_{E}(\gamma, x) \leq 1+w_{Q}(\gamma, x)
$$

if $w_{E}(\gamma, x) \geq A$ (refer to Remark (4), we have that

$$
\begin{aligned}
\Gamma_{c} & =\left\{\gamma \mid w_{Q}\left(\gamma, x_{n}\right) \rightarrow \infty \text { as } n \rightarrow \infty\right\} \\
& =\left\{\gamma \mid w_{E}\left(\gamma, x_{n}\right) \rightarrow \infty \text { as } n \rightarrow \infty\right\}=\Gamma_{u}
\end{aligned}
$$

Therefore, Γ_{c} is a Thurston obstruction. This completes the proof of Theorem 1

Acknowledgement

The authors would like to thank Professors Zhe Wang, Xiaojun Huang, and Yunchun Hu for many endless hours of listening to our talks and for helping to check arguments and providing extremely useful comments. The authors would like to thank Professors Sudeb Mitra and Linda Keen for reading our initial version of this paper and for providing useful suggestions and comments.

References

[AB] Lars Ahlfors and Lipman Bers, Riemann's mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385-404. MR0115006 (22 \#5813)
[CJS] G. Cui, Y. Jiang and D. Sullivan, On geometrically finite branched covering maps, Manuscript, 1994.
[CJS1] G. Cui, Y. Jiang and D. Sullivan, On geometrically finite branched covering maps-I. Locally combinatorial attracting, Complex Dynamics and Related Topics, New Studies in Advanced Mathematics, 2004, The International Press, 1-14. MR2504307(2011c:37092)
[CJS2] G. Cui, Y. Jiang and D. Sullivan, On geometrically finite branched covering maps-II. Realization of rational maps, Complex Dynamics and Related Topics, New Studies in Advanced Mathematics, 2004, The International Press, 15-29. MR2504308 (2011c:37093)
[CJ] Guizhen Cui and Yunping Jiang, Geometrically finite and semi-rational branched coverings of the two-sphere, Trans. Amer. Math. Soc. 363 (2011), no. 5, 2701-2714, DOI 10.1090/S0002-9947-2010-05211-0. MR2763733 (2012e:37090)
[CT] Guizhen Cui and Lei Tan, A characterization of hyperbolic rational maps, Invent. Math. 183 (2011), no. 3, 451-516, DOI 10.1007/s00222-010-0281-8. MR2772086 (2012c:37088)
[DH] Adrien Douady and John H. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math. 171 (1993), no. 2, 263-297, DOI 10.1007/BF02392534. MR1251582 (94j:58143)
[EM] Clifford J. Earle and Sudeb Mitra, Variation of moduli under holomorphic motions, In the tradition of Ahlfors and Bers (Stony Brook, NY, 1998), Contemp. Math., vol. 256, Amer. Math. Soc., Providence, RI, 2000, pp. 39-67, DOI 10.1090/conm/256/03996. MR1759669 (2001f:30031)
[GJW] Frederick P. Gardiner, Yunping Jiang, and Zhe Wang, Holomorphic motions and related topics, Geometry of Riemann surfaces, London Math. Soc. Lecture Note Ser., vol. 368, Cambridge Univ. Press, Cambridge, 2010, pp. 156-193. MR2665009 (2011j:37087)
[Ga] F. R. Gantmacher, Theory of matrices. Chelsea, 1959. MR1657129|(99f:15001)
[Ji] Y. Jiang, A framework towards understanding the characterization of holomorphic maps, to appear in Frontiers in Complex Dynamics, Princeton, 2013.
[JMW] Yunping Jiang, Sudeb Mitra, and Zhe Wang, Liftings of holomorphic maps into Teichmüller spaces, Kodai Math. J. 32 (2009), no. 3, 547-563, DOI 10.2996/kmj/ 1257948895. MR2582017(2010m:32015)
[Li] Gregory Stephen Lieb, Holomorphic motions and Teichmuller space, ProQuest LLC, Ann Arbor, MI, 1989. Thesis (Ph.D.)-Cornell University. MR2638376
[Mc] Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365 (96b:58097)
[Mi] John Milnor, Dynamics in one complex variable, Friedr. Vieweg \& Sohn, Braunschweig, 1999. Introductory lectures. MR1721240 (2002i:37057)
[Pi] Kevin M. Pilgrim, Canonical Thurston obstructions, Adv. Math. 158 (2001), no. 2, 154168, DOI 10.1006/aima.2000.1971. MR1822682|(2001m:57004)
[Th] W. Thurston, The combinatorics of iterated rational maps. Preprint Princeton University, Princeton, N.J. 1983.
[JZ] Gaofei Zhang and Yunping Jiang, Combinatorial characterization of sub-hyperbolic rational maps, Adv. Math. 221 (2009), no. 6, 1990-2018, DOI 10.1016/j.aim.2009.03.009. MR2522834 (2010h:37095)

Department of Mathematics, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016

E-mail address: chentaofdh@gmail.com
Department of Mathematics, Queens College of CUNY, 65-30 Kissena Blvd, Flushing, NY 11367 and Department of Mathematics, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016

E-mail address: yunping.jiang@qc.cuny.edu

[^0]: Received by the editors March 19, 2012.
 2010 Mathematics Subject Classification. Primary 37F30, 37F20, 37F10, 30F30.
 The second author is partially supported by the collaboration grant (\#199837) from the Simons Foundation, the CUNY collaborative incentive research grant (\#1861), and awards from PSCCUNY. This research is also partially supported by the collaboration grant (\#11171121) from the NSF of China and a collaboration grant from the Academy of Mathematics and Systems Science and the Morningside Center of Mathematics at the Chinese Academy of Sciences.

[^1]: ${ }^{1}$ This paper was rewritten by Cui and Tan recently CT .

