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TOTALLY DISCONNECTED JULIA SET FOR DIFFERENT

CLASSES OF MEROMORPHIC FUNCTIONS

P. DOMÍNGUEZ, A. HERNÁNDEZ, AND G. SIENRA

In Memory of I. N. Baker

Abstract. We study a class of functions A given by Epstein in Towers of fi-
nite type complex analytic maps, ProQuest LLC, Ann Arbor, MI, 1993, called
finite-type maps. We extend a result related with the Julia set given by Baker,
Domı́nguez in Some connectedness properties of Julia sets, Complex Variable
Theory Appl. 41 (2000), 371–389, and Baker, Domı́nguez, and Herring in Dy-
namics of functions meromorphic outside a small set, Ergodic Theory Dynam.
Systems 21 (2001), 647–672, to functions in class A.

1. Introduction

Let X,Y be compact Riemann surfaces (complex 1-manifolds) and let Df be an
arbitrary non-empty open subset of X. We define

Hol(X,Y ) = {f : Df → Y | f is analytic},

Hol(X,X) = Hol(X).

In [14,15] Epstein defines and studies a class of functions called finite-type maps;
we will denote this class by A and the definition is as follows.

Definition 1.1. f is in class A (finite-type maps) if f ∈ Hol(X) with the following
properties:

(a) f is nowhere constant (not constant on any component of Df ⊂ X).
(b) There are no isolated removable singularities, so every isolated singularity is

essential.
(c) The set of singular values of f is finite.

The set of singular values of f ∈ Hol(X,Y ) is SV (f) = C(f) ∪ A(f), where
C(f) is the set of critical values and A(f) is the set of asymptotic values.

The closure of the post-singular set of f ∈ Hol(X,Y ) is denoted by PSV (f),
where the post-singular set is the smallest forward invariant set containing SV (f).

For functions in class A the identity map on X is IX : X → X and the iterate
fn+1 = f ◦ · · · ◦ f , n ≥ 1, has domain of definition Dfn+1 = f−1(Dfn) ∩Dfn , for
n ≥ 1, where f0 = IX .

We denote the set D∞ as the interior of
⋂∞

n=1 Dfn which is the domain of the
iterates.
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Definition 1.2. Given f ∈ Hol(X), f nowhere constant, z ∈ X is said to be
normal if z ∈ X \ D∞ or if it has a neighbourhood U such that U ⊂ D∞ and
{fn|U} is a normal family.

The Fatou set FX(f) for functions in class A is the set of normal points. The
complement is called the Julia set JX(f). We will denote by F (z) = FX(f) and by
J(f) = JX(f).

In [14, 15] Epstein gives the following definition for functions f ∈ Hol(T,X),
where f is nowhere constant (not constant on any component of Df ).

Definition 1.3. An analytic map on a Riemann surface X is typical if D∞ is
hyperbolic, exceptional otherwise.

Examples of exceptional maps are the rational maps, entire maps and self-
analytic maps of C \ {0}.

Remark 1.4. In [14] Epstein proves that for functions in class A we have
(a) every periodic component of the Fatou set is a super-attracting domain,

attracting domain, parabolic domain, Siegel disc, or Herman ring.
(b) The boundary of any Siegel disc or Herman ring lies in PSV (f).
(c) A fixed attracting or parabolic basin contains a singular value of f .

There are classes of meromorphic functions which belong to the class A for which
the set of singular values is finite. Before we give these classes of functions we recall
the following classes of meromorphic functions.

E = {f : C → C | f is transcendental entire}.
M = {f : C → Ĉ | f is transcendental meromorphic and it
has at least one pole which is not omitted}.
K = {f : Ĉ\B→Ĉ | B is a compact countable set and f is meromorphic}.

The set B is formed by the essential singularities of f , where f is non-constant; we
assume B to have at least two elements and we allow f to have poles.

M = {f : Ĉ \E = Ec → Ĉ | E is a compact totally disconnected set and f

is meromorphic in Ec with C(f,Df , z0) = Ĉ for all z0 ∈ E}.
The set E is formed by the essential singularities of f . If E = ∅ we make the further

assumption that f is neither constant nor univalent in Ĉ.
We recall that if f is a function in class E , M, K or M, the sequence formed by

its iterates is denoted by f0 := Id, fn := f ◦ fn−1, n ∈ N. The Fatou set F (f) is

defined by the set of points z ∈ C (z ∈ Ĉ \B for functions in class K and z ∈ Ĉ \E
for functions in class M) such that the sequence (fn)n∈N is well defined and normal
in some neighborhood of z. The Julia set J(f) is the complement of F (f).

The classes of functions above were introduced and studied by Fatou [17] and
Baker [1] for class E , by Baker, Yi Niàn and Kotus [2–5] for class M, by Bolsch
[8–10] for class K and by Herring [16] for class M.

Following the idea of Erëmenko and Lyubich [12] we give the following definition.

Definition 1.5. A function f in either E , M, K or M belongs to the class Sf if the
set of singular values of f is finite (for functions in class M we add the condition
that the linear measure of E is zero). We denote SE , SM, SK and SM for the
different classes of functions E , M, K and M, respectively.
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Examples of functions in classes E ∩ SE and M ∩ SM are the families fλ(z) =
λ sin z and fλ(z) = λ tan z, respectively.

An example for functions in class K ∩ SK is the family fλ(z) = λe
1

z2−1 − λe−1,
where ±1 are the essential singularities of fλ, 0 is a fixed point of f , and the set of
singular values is finite.

Observe that functions in E ∩ SE , M∩ SM, K ∩ SK and M ∩ SM belong to the
class A, since these functions have a finite set of singular values.

In Section 2 we mention some examples of meromorphic functions for which the
set of singular values is finite and the Julia set is totally disconnected. In particular
for these examples there are no Devaney hairs; see [19] for a definition.

In Section 3 we prove Theorem A which generalize a result given by Baker,
Domı́nguez and Herring in [7].

Theorem A. Let f be in class A, where f is typical, and suppose that there is an
attracting fixed point whose Fatou component H contains all the singular values of
f . Then J(f) is totally disconnected.

As a corollary we have the same result for functions in classes M ∩ SM and
K ∩ SK.

Remark 1.6. If f is typical and the Julia set is totally disconnected, then the Fatou
set is just one completely invariant component.

2. Some examples of functions with totally disconnected Julia set

For functions in class E the Julia set cannot be totally disconnected, but for
functions in classes M and K it is possible to have examples where the Julia set
can be totally disconnected.

Example 1. In [2] it was proved that there are functions in class M for which
J(f) ⊂ R for such f and we have: (i) J(f) = R or J(f) is a Cantor subset of R.

The family fλ(z) = λ tan z is in class M ∩ SM and for 0 < λ < 1 the family
has two Picard exceptional values ±λi, which are in the Fatou set, and has a
single attracting fixed point in z = 0. The Julia set J(fλ) is a Cantor set and
J(fλ) ⊂ R∪ {∞}; see [18]. The Fatou set consists of only one completely invariant
component U , which is multiply connected; the asymptotic values ±λi are in U .

Example 2. The family fλ,μ(z) = tan(λ tan(μz)) is in class K∩SK. When |λμ| < 1

the point z = 0 is an attracting fixed point, since |f ′

λ,μ(0)| = |λμ|. The asymptotic

values of fλ,μ(z) are ±λi and ± tan(λi). The family fλ,μ(z) has totally disconnected
Julia set for λ, μ small constants.

3. Proof of Theorem A

We recall that a function f , in either E , M, K or M, belongs to the class Sf

if the set of singular values of f is finite. We denote SE , SM, SK and SK for the
different classes of functions E , M, K and M, respectively.

It is known that for functions in classes E ∩ SE and M∩ SM there are neither
wandering domains nor Baker domains; see [11, 13] and [5].

For functions in class M ∩ SM there are neither wandering domains nor Baker
domains [7]. Since the proofs remain valid for functions in class K ∩ SK we do not
prove them. For functions in class A the following theorem was given by Epstein
in [14].
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Theorem 3.1. If f ∈ A, then it has no Baker domains nor wandering domains.

For functions in class E ∩ SE we must recall that: ∞ is an exceptional value
which is in the Julia set and it is a singular value of f . Thus functions in class
E ∩ SE do not satisfy the conditions of Theorem A, since f is exceptional. Indeed
Theorem A cannot be true for functions in class E ∩ SE by the arguments that we
explain at the end of (ii) in the proof.

We follow and verfy that the proof given in [7] for functions in class M ∩ SM

works with some changes for functions in class A, where f is typical.

Proof of Theorem A. Let us assume that f ∈ A and that zero is an attracting fixed
point of f which belongs to the componentH of F (f). We denote by {a1, a2, . . . , ap}
the set of singular values of f ; this set is finite and {a1, a2, . . . , ap} ⊂ H. Thus
f(H) ⊂ H.

(i) First we will show that the component H is completely invariant and it is the
only one.

Take z in H such that z1 = f(z) is different from aj , 1 ≤ j ≤ p, and denote
by g the branch of f−1 such that g(z1) = z. If h is an arbitrary branch of f−1,
defined and hence analytic in a neighborhood of z1, there is some closed path γ

in Ω = Ĉ \ {a1, . . . , ap} starting and ending at z1, such that along γ the branch

g continues analytically to h. The path γ is homotopic in Ω to a path γ
′
which

start and ends at z1 and γ
′ ⊂ H. Continuation of g along γ

′
yields h but the

continuation maps γ
′
into F (f), and hence remains in H. Thus H is completely

invariant.
By Theorem 3.1 there are neither Baker domains nor wandering components in

F (f). Observe that the orbit of each aj lies in H and has only zero as a limit point.
It follows from Remark 1.4 that the only periodic component is H. This is the only
component of F (f) since any component H1 ⊂ F (f) must map into H by some fn.
Recall that H is completely invariant.

(ii) Using the Riemann map Φ : D(0, ρ) → W , where D(0, ρ) ⊂ D(0, 1) is a disc
with 0 < ρ < 1 and W ⊂ H is a domain which contains {a1, a2, . . . , ap, 0}, we shall

show that W
c
has a finite set of components Ai, 1 ≤ i ≤ N , where each of them is

simply connected and bounded.
Let Φ be the Riemann map from the unit disc D to H such that Φ(0) = 0,

and let Ψ be the local inverse of Φ which is analytic in a neighborhood of zero
with Ψ(0) = 0. Observe that G = ΨfΦ is analytic in a neighborhood of zero with

G(0) = 0 and G
′
(0) = f

′
(0). Analytic continuation of G is possible throughout D.

Then G is analytic in D with G : D → D.
Choose ρ such that 0 < ρ < 1 and the circumference C(0, ρ) contains none of

the countable set of points Φ−1(aj), 1 ≤ j ≤ p, while the disc D(0, ρ) contains at
least one of Φ−1(aj) for every 1 ≤ j ≤ p.

The map Φ : D(0, ρ) → W , where {a1, . . . , ap, 0} ⊂ W , satisfies f(W ) ⊂ W and
the boundary ∂W of W is a subset of Γ : Φ(C(0, ρ)). The curve Γ crosses itself
only at points Φ(z), where z ∈ C(0, ρ) is such that Tz ∈ C(0, ρ) for some element
T of the covering group which is different from the identity.

Claim. There are at most finitely many points where the curve Γ crosses itself.
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If this is not the case, there are sequences zn ∈ C(0, ρ), z
′

n ∈ C(0, ρ) and Tn �= Id

in the covering group such that zn → α, z
′

n = Tn(zn) → β. There is a neighborhood
Δ = D(α, η) such that TΔ ∩Δ = ∅ for every covering transformation other than

the identity. Let Δ
′
= D(α, η

2 ) and take n so large that zn, zn+1 ∈ Δ
′
and

|z′

n − z
′

n+1| < ε, where ε is a number such that 0 < 4ε < (1− p)η. Since T−1
n+1 maps

z
′

n+1 to zn+1 and D(z
′

n+1, 1− ρ) into the disc D(zn+1, 2), we have from Schwarz’s

Lemma that T
′

n+1z
′

n is in Δ, which implies that T−1
n+1Tn = Id. Thus for large n all

Tn are the same, say T . But then T fixes both circles C(0, ρ) and C(0, 1) which is
possible only if T (0) = 0, or if T = Id (since T is a covering transformation) which
contradicts our assumption about Tn. Thus Γ is an analytic curve with at most a
finite set of self-intersections; thus the claim is proved.

Observe that this fact creates loops in Γ and each loop must surround at least
a pole or an essential singularity, different from ∞. If there are no loops in Γ, the
function is transcendental entire, and H is simply connected. In our case the set of
self-intersections is not empty.

We have proved that W
c
has a finite set of components Ai, 1 ≤ i ≤ N , each of

which must be simply connected and bounded by a part of Γ. Thus f−1 : W c → W c

and for any n the branches of f−n are all analytic in each Ai and map Ai to disjoints
domains Ai(n). Since Γ ⊂ F (f), each component of J(f) lies in the interior of some
Ai(n), for each n.

(iii) Finally, we shall prove that all components of the Julia set are singletons.
Assume that some component μ of J(f) contains more than one point. Now

fn(μ) is in the interior of some Ai(n) and we may choose a sequence n(k) such that
n(k) → ∞ as k → ∞ and each i(n(k)) is the same, A1 (say). Thus μ belongs to
a component Ak = some A1(n(k)) of f−n(k)(A1). The sequence of branches gk of

f−n(k), such that gk(A1) = Ak, is normal in A1. Without loss of generality we may
assume that gk is locally uniformly convergent in A1 with limit function h.

The set J1 = J(f) ∩ A1 is a compact subset of A1. Thus if h is constant, we
must have diam gk(J1) → 0 as k → ∞ which implies that diam μ = 0, against our
assumption. Hence h is a non-constant function univalent in A1.

Now we take a Jordan curve γ̃ in A1 whose interior, denoted by I(γ̃), contains J1.
Thus h(J1) is a compact subset of h(I(γ̃)) which is bounded by h(γ̃). For sufficiently
large k, gk(γ̃) approximates h(γ̃) closely and there is an open set U such that for
all large k we have μ ∈ gk(J1) ⊂ U ⊂ gk(I(γ̃)). Thus fn(k)(U) ⊂ I(γ̃) ⊂ A1.
In particular, all fn(k) and hence all fn are analytic in U . Furthermore, for any
n there is a greater n(k) so that n(k) = n + j for some j > 0. Then fn(U) ⊂
f−jfn(k)(U) ⊂ f−j(A1), which is a set disjoint from W . It follows that U ⊂ F (f)
which contradicts the fact that μ ⊂ U . We have proved that all components of
J(f) are singletons for f ∈ A.

Corollary 3.2. Let f be in either class M ∩ SM or class K ∩ SK and suppose
that there is an attracting fixed point whose Fatou component H contains all the
singular values of f . Then J(f) is totally disconnected.

Examples of Theorem A. Examples 1 and 2 in Section 2 are examples of Theo-
rem A.

Example 3. Take fλ = λR(ez), where R(z) = p(z)/q(z) and p(z), q(z) are poli-
nomials of degree exactly n without common zeros and such that (a) all the zeros
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of p(z) and q(z) are simples, (b) q(0) �= 0, and (c) p(1) = 0. Observe that ∞ is an
essential singularity of fλ. The set of singular values of fλ is finite; thus fλ belongs
to the class M∩ SM. If the constant λ is suffiently small, Theorem A applies and
fλ has a totally disconnected Julia set.

Example 4. The family fλ,c,μ(z) = λe
1

z2−c −μe−c is in class K∩SK. The essential
singularities are ±

√
c. When λ = μ the super attracting fixed point is z = 0 whose

Fatou component contains the set of singular values which is finite. By Theorem
A the Julia set is totally disconnected.
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[17] P. Fatou, Sur l’itération des fonctions transcendantes Entières (French), Acta Math. 47
(1926), no. 4, 337–370, DOI 10.1007/BF02559517. MR1555220

http://www.ams.org/mathscinet-getitem?mr=0107015
http://www.ams.org/mathscinet-getitem?mr=0107015
http://www.ams.org/mathscinet-getitem?mr=1116639
http://www.ams.org/mathscinet-getitem?mr=1116639
http://www.ams.org/mathscinet-getitem?mr=1083445
http://www.ams.org/mathscinet-getitem?mr=1083445
http://www.ams.org/mathscinet-getitem?mr=1145612
http://www.ams.org/mathscinet-getitem?mr=1145612
http://www.ams.org/mathscinet-getitem?mr=1189754
http://www.ams.org/mathscinet-getitem?mr=1189754
http://www.ams.org/mathscinet-getitem?mr=1785150
http://www.ams.org/mathscinet-getitem?mr=1785150
http://www.ams.org/mathscinet-getitem?mr=1836425
http://www.ams.org/mathscinet-getitem?mr=1836425
http://www.ams.org/mathscinet-getitem?mr=1423240
http://www.ams.org/mathscinet-getitem?mr=1423240
http://www.ams.org/mathscinet-getitem?mr=1703869
http://www.ams.org/mathscinet-getitem?mr=1703869
http://www.ams.org/mathscinet-getitem?mr=769199
http://www.ams.org/mathscinet-getitem?mr=769199
http://www.ams.org/mathscinet-getitem?mr=1015124
http://www.ams.org/mathscinet-getitem?mr=1015124
http://www.ams.org/mathscinet-getitem?mr=1196102
http://www.ams.org/mathscinet-getitem?mr=1196102
http://www.ams.org/mathscinet-getitem?mr=2690048
http://www.ams.org/mathscinet-getitem?mr=1555220


TOTALLY DISCONNECTED JULIA SET FOR DIFFERENT CLASSES 7

[18] L. Keen and J. Kotus, Dynamics of the family λ tan z, Conform. Geom. Dyn. 1 (1997), 28–57
(electronic), DOI 10.1090/S1088-4173-97-00017-9. MR1463839 (98h:58159)

[19] L. Rempe, P. J. Rippon, and G. M. Stallard, Are Devaney hairs fast escaping?, J. Differ-
ence Equ. Appl. 16 (2010), no. 5-6, 739–762, DOI 10.1080/10236190903282824. MR2675603
(2011i:37061)
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