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CONFORMAL FRACTALS FOR NORMAL SUBGROUPS

OF FREE GROUPS

JOHANNES JAERISCH

Abstract. We investigate subsets of a multifractal decomposition of the limit
set of a conformal graph directed Markov system which is constructed from the
Cayley graph of the free group Fd with at least two generators. The subsets
we consider are parametrised by a normal subgroup N of Fd and mimic the
radial limit set of a Kleinian group. Our main results show that, regarding
the Hausdorff dimension of these sets, various results for Kleinian groups can
be generalised. Namely, under certain natural symmetry assumptions on the
multifractal decomposition, we prove that, for a subset parametrised by N , the
Hausdorff dimension is maximal if and only if Fd/N is amenable and that the
dimension is greater than half of the maximal value. We also give a criterion
for amenability via the divergence of the Poincaré series of N . Our results are
applied to the Lyapunov spectrum for normal subgroups of Kleinian groups of
Schottky type.

1. Introduction and statement of results

In this paper we investigate the Hausdorff dimension of a class of conformal fractals
associated with normal subgroups of free groups. Our main results show that these
fractals share many interesting properties with the radial (or conical) limit set of
a Kleinian group. To define the sets we consider, let Fd denote the free group
generated by I :=

{
g1, g

−1
1 , . . . , gd, g

−1
d

}
with d ≥ 2. The set of infinite reduced

paths starting from the identity in the Cayley graph of Fd with respect to I is given
by Σ :=

{
τ = (τi) ∈ IN : τi �= τ−1

i+1

}
. Let Φ be a conformal graph directed Markov

system associated with Fd = 〈g1, . . . , gd〉 with coding map πΦ : Σ → R
D, D ≥ 1

(see Definition 3.8). Such a system Φ consists of a set of contracting conformal
maps on R

D and each limit point πΦ (τ ) of Φ is obtained by successively applying
these maps according to the infinite path τ ∈ Σ. We will define subsets of the limit
set πΦ (Σ) as follows. For a normal subgroup N of Fd, the symbolic radial limit set
Λr (N) of N consists of those paths in Σ, for which the projection to the quotient
graph Fd/N visits some vertex infinitely often, that is,

Λr (N) := {τ ∈ Σ : ∃h ∈ Fd, such that τ1 · · · · · τn∈hN for infinitely many n∈N} .
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We will investigate the sets πΦ (Λr (N)) and πΦ (Λr (N) ∩ F (α,Φ, ψ)) in Theorems
1.1 and 1.2, where the multifractal level sets F (α,Φ, ψ) are for α ∈ R given by

F (α,Φ, ψ) :=

{
τ ∈ Σ : lim

n→∞

∑n−1
i=0 ψ

(
σi (τ )

)∑n−1
i=0 ζ (σi (τ ))

= α

}
,

the potential ψ : Σ → R is Hölder continuous, ζ : Σ → R is the geometric potential
of Φ and σ : Σ → Σ refers to the left shift map. For the definition of the symbolic
uniformly radial limit set Λur (N) we refer to Definition 3.8. We refer to Sections 2
and 3 for an introduction to symbolic thermodynamic formalism and graph directed
Markov systems.

To state our first main result, we have to make further definitions. For each n ∈ N,
the set of admissible words of length n is given by

Σn :=
{
ω ∈ In : ωi �= ω−1

i+1, 1 ≤ i ≤ n− 1
}
.

For ω ∈ Σn and a function f : Σ → R we define

Sωf := sup
τ∈[ω]

n−1∑
i=0

f
(
σi (τ )

)
, where [ω] := {τ ∈ Σ : τ1 = ω1, . . . , τn = ωn} .

For convenience, we denote by ∅ the unique word of length zero and we set S∅f :=
0. We let Σ∗ :=

⋃
n∈N

Σn and we identify Σ∗ ∪ {∅} with Fd. Let N denote a
non-trivial normal subgroup of Fd. The Poincaré series of (N,Φ) and the exponent
of convergence of (N,Φ) are for u ∈ R given by

PN (u,Φ) :=
∑
ω∈N

euSωζ and δN := inf {u ∈ R : PN (u,Φ) < ∞} .

More generally, for a Hölder continuous potential ψ : Σ → R, we introduce the free
energy function of (N,Φ, ψ) which is for β ∈ R given by

tN : R → R, tN (β) := inf

{
u ∈ R :

∑
ω∈N

eβSωψ+uSωζ < ∞
}
.

Let us also set δ := δFd
and t := tFd

. For β ∈ R, we say that (N,Φ, ψ) is of diver-
gence type in β if

∑
ω∈N eβSωψ+tN (β)Sωζ = ∞. We say that (N,Φ) is of divergence

type if (N,Φ, 0) is of divergence type in 0, that is, PN (δN ,Φ) = ∞.

We need the following notions of symmetry (cf. Definition 4.1). For each n ∈ N

and ω ∈ Σn we set |ω| := n and ω−1 :=
(
ω−1
n , . . . , ω−1

1

)
. We say that (N,Φ, ψ)

is asymptotically symmetric, if for all β, u ∈ R there exist n0 ∈ N and sequences

(cn) ∈ (R+)
N
and (Nn) ∈ N

N with limn (cn)
1/n

= 1 and limn n
−1Nn = 0, such that

for each g ∈ Fd and for all n ≥ n0,∑
ω∈Ng:|ω|=n

eβSωψ+uSωζ ≤ cn
∑

ω∈Ng−1:n−Nn≤|ω|≤n+Nn

eβSωψ+uSωζ .

If (cn) can be chosen to be bounded, for all β, u ∈ R, then (N,Φ, ψ) is called
symmetric.

For β ∈ R, we say that (N,Φ, ψ) is symmetric on average in β if

sup
g∈Fd

lim sup
n→∞

∑n
k=1

∑
ω∈Ng:|ω|=kp e

βSωψ+tN (β)Sωζ∑n
k=1

∑
ω∈Ng−1:|ω|=kp e

βSωψ+tN (β)Sωζ
< ∞,
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where p := gcd {n ∈ N : ∃ω ∈ Σn ∩N such that ωnω1 �= id} and gcd refers to the
greatest common divisor.

We say that (N,Φ) is (asymptotically) symmetric if (N,Φ, 0) is (asymptotically)
symmetric, and (N,Φ) is symmetric on average if (N,Φ, 0) is symmetric on average
in 0.

Theorem 1.1. Let Φ denote a conformal graph directed Markov system associated
with Fd, d ≥ 2. Then the following holds for each non-trivial normal subgroup N
of Fd.

(1) We have

dimH (πΦ (Λur (N))) = dimH (πΦ (Λr (N))) = δN > 0.

(2) If Fd/N is non-amenable, then

dimH (πΦ (Λr (N))) < dimH (πΦ (Λr (Fd))) .

(3) Suppose that (N,Φ) is asymptotically symmetric.
(a) If Fd/N is amenable, then

dimH (πΦ (Λr (N))) = dimH (πΦ (Λr (Fd))) .

(b) We have

dimH (πΦ (Λr (N))) ≥ dimH (πΦ (Λr (Fd)))
/
2,

and strict inequality holds if (N,Φ) is symmetric.
(4) Suppose that (N,Φ) is of divergence type.

(a) Then Fd/N is amenable.
(b) We have dimH (πΦ (Λr (N))) = dimH (πΦ (Λr (Fd))) if and only if

(N,Φ) is symmetric on average.

Our next goal is to investigate the set πΦ (Λr (N) ∩ F (α,Φ, ψ)). To this end, let us
define

α− := inf {α ∈ R : F (α,Φ, ψ) �= ∅} and α+ := sup {α ∈ R : F (α,Φ, ψ) �= ∅} .

By Hölder’s inequality we see that the free energy function tN : R → R of (N,Φ, ψ)
is convex. For β ∈ R, we denote by ∂tN (β) the subdifferential of tN at β ([Roc70,
Section 23]), and we set ∂tN (A) :=

⋃
β∈A ∂tN (β), for A ⊂ R. Let Int(A) denote

the interior of a set A ⊂ R. We will always assume that α− < α+, which is
equivalent to the assumption that, for each (a1, a2) ∈ R

2 \ {0}, the unique Gibbs
measures associated with a1ζ and a2ψ are distinct ([Rue78, PW97]). Then it is
well known that t is a real-analytic and strictly convex function which satisfies
−∂t (R) = (α−, α+). Moreover, we have that F (α,Φ, ψ) = ∅ if and only if α /∈
[α−, α+] ([Sch99]). Note that, if α− and α+ coincide, then F (α−,Φ, ψ) = Σ and
the analysis given in Theorem 1.1 applies.

To state our next main result, we define the convex conjugate of tN ([Roc70, Section
12]) given by

t∗N : R → R ∪ {∞} , t∗N (α) := sup
β∈R

{βα− tN (β)} , α ∈ R.



34 JOHANNES JAERISCH

Theorem 1.2. Let Φ denote a conformal graph directed Markov system associated
with Fd, d ≥ 2. Let ψ : Σ → R be Hölder continuous. Suppose that α− < α+. Then
the following holds for each non-trivial normal subgroup N of Fd.

(1) For each α ∈ − Int (∂tN (R)) ⊂ (α−, α+) we have

dimH (πΦ (Λur (N) ∩ F (α,Φ, ψ))) = dimH (πΦ (Λr (N) ∩ F (α,Φ, ψ))) = −t∗N (−α) > 0.

If (N,Φ, ψ) is asymptotically symmetric, then − Int (∂tN (R)) = (α−, α+).
(2) If Fd/N is non-amenable, then for each α ∈ (α−, α+),

dimH (πΦ (Λr (N) ∩ F (α,Φ, ψ))) < dimH (πΦ (F (α,Φ, ψ))) .

(3) Suppose that (N,Φ, ψ) is asymptotically symmetric and let α ∈ (α−, α+).
(a) If Fd/N is amenable, then

dimH (πΦ (Λr (N) ∩ F (α,Φ, ψ))) = dimH (πΦ (F (α,Φ, ψ))) .

(b) We have

dimH (πΦ (Λr (N) ∩ F (α,Φ, ψ))) ≥ dimH (πΦ (F (α,Φ, ψ)))
/
2

and strict inequality holds if (N,Φ, ψ) is symmetric.
(4) Let β ∈ R and suppose that (N,Φ, ψ) is of divergence type in β.

(a) Then Fd/N is amenable.
(b) If α∈ −∂t(β) and

dimH (πΦ (Λr (N) ∩ F (α,Φ, ψ)))=dimH (πΦ (F (α,Φ, ψ))) ,

then (N,Φ, ψ) is symmetric on average in β.
(c) If α ∈ − (∂tN (β) ∩ Int (∂tN (R))) and (N,Φ, ψ) is symmetric on aver-

age in β, then

dimH (πΦ (Λr (N) ∩ F (α,Φ, ψ))) = dimH (πΦ (F (α,Φ, ψ))) .

Remark 1.3. If N is finitely generated, then (N,Φ) is of divergence type by Lemma
3.14. Hence, Fd/N is amenable by Theorem 1.1 (4a). In fact, it is well known
that, if N is a finitely generated normal subgroup of Fd, then Fd/N is finite. In
particular, we then have that Λur (N) = Λr (Fd) = πΦ (Σ).

Remark 1.4. It is also worth noting that the proof of (1) in Theorems 1.1 and 1.2

makes use of a certain induced graph directed Markov system Φ̃ (Definition 3.9).

This system Φ̃ is regular ([MU03, Section 4, page 78]) if and only if (N,Φ) is of
divergence type by Lemma 3.14. In particular, we have by Theorem 1.1 (4a) that,

if Fd/N is non-amenable, then Φ̃ is irregular.

Before we proceed to discuss applications to Kleinian groups, let us briefly point
out a relation to the cogrowth of group presentations 〈g1, . . . , gd|r1, r2, . . . 〉 on d ≥ 2
generators ([Gri80], [Coh82]). If the geometric potential of Φ is constant, then it
is easy to see that the cogrowth η of 〈g1, . . . , gd|r1, r2, . . . 〉 is given by δN/δ, where
N is the normal subgroup generated by r1, r2, . . . . Since every constant potential
is symmetric with respect to N , the criterion for δN = δ in Theorem 1.1 (2) and
(3a) is the well-known cogrowth criterion η = 1 for amenability of Fd/N , and the
lower bound in Theorem 1.2 (3b) corresponds to the lower bound η > 1/2 for the
cogrowth ([Gri80], [Coh82]).
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1.1. Related results for Kleinian groups. Let us now state the analogous res-
ults for Kleinian groups, which have motivated our results. We first recall some
basic notations for Kleinian groups. For references on limit sets of Kleinian groups
and the associated hyperbolic manifolds, we refer the reader to [Bea95, Mas88,
Nic89,MT98,Str06].

For a Kleinian group Γ acting on the Poincaré disc model D :=
{
z ∈ R

n+1 : ‖z‖ < 1
}

of hyperbolic (n+ 1)-space, n ∈ N, the Poincaré series is, for each s ∈ R, given by
P (Γ, s) :=

∑
γ∈Γ e

−sd(0,γ(0)), where d denotes the hyperbolic metric on D. The

exponent of convergence of Γ is given by δ (Γ) := inf {s ≥ 0 : P (Γ, s) < ∞}. It is
well known by a theorem of Bishop and Jones ([BJ97]) that the exponent of con-
vergence of a non-elementary Kleinian group Γ is equal to the Hausdorff dimension
of the (uniformly) radial limit set of Γ, that is,

(1.1) δ (Γ) = dimH (Lur (Γ)) = dimH (Lr (Γ)) .

Passing from a non-elementary Kleinian group Γ to a normal subgroup N of Γ gives
rise to a normal covering of the associated hyperbolic manifolds. Brooks proved in
[Bro85] that if Γ is convex cocompact and δ (Γ) > n/2, then

(1.2) δ (Γ) = δ (N) if and only if Γ/N is amenable.

A recent result of Stadlbauer ([Sta13]) shows that the amenability dichotomy in
(1.2) holds for all essentially free Kleinian groups Γ with arbitrary exponent of
convergence.

A complementary result is due to Falk and Stratmann ([FS04, Theorem 2]) which
states that for each non-trivial normal subgroup N of a non-elementary Kleinian
group Γ, we have that

(1.3) δ (N) ≥ δ (Γ) /2.

Roblin ([Rob05]) proved that strict inequality in (1.3) holds if the Kleinian group
Γ is of divergence type, that is, P (Γ, δ (Γ)) = ∞. Another proof of this result was
independently obtained by Bonfert-Taylor, Matsuzaki and Taylor ([BTMT12]), if
Γ is convex cocompact. A related result by Matsuzaki and Yabuki in [MY09] states
that

(1.4) if P (N, δ (N)) = ∞, then δ (Γ) = δ (N) .

In [Jae13], the author used this result of Matsuzaki and Yabuki to give a short new
proof of the strict inequality in (1.3) if Γ is of divergence type.

Remark. A related result is due to Rees ([Ree81a,Ree81b]) which shows the follow-
ing for a non-trivial normal subgroup N of a convex cocompact geometrically finite
Fuchsian groups Γ such that Γ/N � Z

d for some d ∈ N: The critical exponents
δ (N) and δ (Γ) coincide. Moreover, we have that N is of divergence type if and
only if d ≤ 2.

We first observe that Theorem 1.1 (1) gives the analog statement to (1.1). Moreover,
the results given in Theorem 1.1 (2) and (3a) extend the amenability dichotomy in
(1.2). The lower bound in Theorem 1.1 (3b) corresponds to (1.3) and strict inequal-
ity holds because the finitely generated group Fd is of divergence type by Lemma
3.14. Theorem 1.1 (4a) and (4b) shed new light on (1.4). Finally, the results of
Theorem 1.2 show that similar results hold if the radial limit set is intersected with



36 JOHANNES JAERISCH

the level set of a multifractal decomposition with respect to a Hölder continuous
potential.

Let us also remark that the symmetry assumptions imposed on the graph directed
Markov system Φ in Theorems 1.1 and 1.2 mimic the property that d(0, g(0)) =
d(0, g−1(0)) for every isometry g with respect to the hyperbolic metric d. This
relation will be further illustrated in the following subsection.

1.1.1. Application to normal subgroups of Kleinian groups of Schottky type. Let
us briefly describe a class of Kleinian groups, to which our results are directly
applicable. Let Γ = 〈γ1, . . . , γd〉 denote a Kleinian group of Schottky type with
d ≥ 2. Then Γ is a free group generated by hyperbolic transformations γ1, . . . , γd
([Jae14a, Definition 5.2]). Let N denote a non-trivial normal subgroup of Γ. It
is shown in [Jae14a, Proposition 5.6] that there exists a conformal graph directed
Markov system ΦΓ associated with Γ = 〈γ1, . . . , γd〉, such that for each non-trivial
normal subgroup N of Γ,

(1.5) Lr (N) = πΦΓ
(Λr (N)) and Lur (N) = πΦΓ

(Λur (N)) .

The limit set L(Γ) is equal to the limit set of ΦΓ and a symbolic representation is
given by Σ :=

{
τ ∈ IN : τi �= τ−1

i+1

}
where I :=

{
γ1, γ

−1
1 , . . . , γd, γ

−1
d

}
. The geomet-

ric potential ζ : Σ → R
− of ΦΓ has the property that there exists C > 0 such that

for all ω ∈ Fd,

(1.6) C−1eSωζ ≤ e−d(0,ω(0)) ≤ CeSωζ .

We refer to (see [Ser81]) for details. Let tN : R → R denote the free energy function
of (N,ΦΓ,−1). Observe that by (1.6) we have for each β ∈ R,

tN (β) = inf
{
u ∈ R :

∑
ω∈N

e−β|ω|−ud(0,ω(0)) < ∞
}
.

We now consider the (inverse) Lyapunov spectrum of L(Γ) and its restriction to
Lr (N). More precisely, we define for each α ∈ R the level sets

L (α) :=
{
τ ∈ L (Γ) : lim

n→∞

n

d (0, τ1 . . . τn (0))
= α

}
and LN (α) := L (α) ∩ Lr (N) .

Set α− := min {α ∈ R : L (α) �= ∅} and α+ := max {α ∈ R : L (α) �= ∅}. As a
corollary of Theorem 1.2, we obtain the following for the Lyapunov spectrum.

Corollary 1.5. Let Γ denote a Kleinian group of Schottky type and let N denote
a non-trivial normal subgroup of Γ. Then for each α ∈ (α−, α+) we have that

(1.7)
dimH (L (α))

2
< dimH (LN (α)) ≤ dimH (L (α)) .

The second inequality in (1.7) is an equality if and only if Γ/N is amenable.
Moreover, if there exists β ∈ R such that

∑
ω∈N e−β|ω|−tN (β)d(0,ω(0)) = ∞, then

Γ/N is amenable.

Proof. Recall that by (1.5), we have Lr (N) = πΦΓ
(Λr (N)). Furthermore, we

observe that by (1.6) we have L (α) = πΦΓ
(F (α,ΦΓ,−1)) where 1 : Σ → {1}.

Since πΦΓ
is one-to-one we have that LN (α) = πΦΓ

(F (α,ΦΓ,−1) ∩ Λr (N)). Using
that d(0, ω(0)) = d(0, ω−1(0)) for each ω ∈ Fd, we have C−1eSωζ ≤ CeSω−1ζ by
(1.6). Thus, we have that (N,ΦΓ,−1) is symmetric. The corollary now follows
from Theorem 1.2. �
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1.2. Plan of the paper. The results stated in Theorems 1.1 and 1.2 are de-
duced from general results of the thermodynamic formalism for group-extended
Markov systems developed by Stadlbauer ([Sta13]) and by the author ([Jae11,Jae12,
Jae14b], see also [Jae14a]). These results are given in Section 4. The general results
stated in Proposition 4.8, which are used to derive (3b) of Theorems 1.1 and 1.2,
are new in the context of group-extended Markov systems. To obtain the strict
inequality in (3b) of Theorems 1.1 and 1.2 and the results involving the divergence
of the Poincaré series of the normal subgroup, we make use of a characterisation of
recurrent potentials from [Jae12].

In Proposition 3.13 we develop a multifractal formalism for the multifractal decom-
position of the radial limit set parametrised by a normal subgroup. We make use
of an induced graph directed Markov system (Definition 3.9) which is generated by
infinitely many maps if the normal subgroup is of infinite index. A similar argu-
ment as in [KMS12] allows us to relate the limit set of the induced graph directed
Markov system to the level sets F (α,Φ, ψ) (see Proposition 3.13). We then use the
methods from [JK11] to establish the multifractal formalism.

For a graph directed Markov system Φ consisting of similarities, the results stated in
Theorem 1.1 (1), (2), (3a) and (3b) are contained in [Jae14a]. In the present paper,
we have generalised the results essentially in two ways: First, Theorem 1.1 applies
to arbitrary conformal graph directed Markov systems, and second, Theorem 1.2
allows us to investigate intersections of the radial limit set parametrised by a normal
subgroup with level sets of a multifractal decomposition with respect to a Hölder
continuous potential. Moreover, the result stated in Theorem 1.1 (4b) is new even
if Φ consists of similarities.

The outline of this paper is as follows. In Section 2, we collect the necessary prelim-
inaries on the symbolic thermodynamic formalism for Markov shifts. In Section 3,
we give the definition of conformal graph directed Markov systems associated with
free groups and their radial limit sets, and we develop a multifractal formalism in
this context. In Section 4 we give results on amenability and recurrence for group-
extended Markov systems, from which we deduce our main results in Section 5.

2. Thermodynamic formalism for Markov shifts

Throughout, the state space of the thermodynamic formalism will be a Markov
shift Σ given by

Σ :=
{
τ := (τ1, τ2, . . .) ∈ IN : a (τi, τi+1) = 1 for all i ∈ N

}
,

where I denotes a finite or countable alphabet, the matrix A = (a(i, j)) ∈ {0, 1}I×I

is the incidence matrix and the left shift map σ : Σ → Σ is given by σ (τ1, τ2, . . . ) :=
(τ2, τ3, . . . ), for each τ ∈ Σ. We denote by

Σn := {ω ∈ In : a (ωi, ωi+1) = 1, 1 ≤ i ≤ n− 1}
the set of A-admissible words of length n ∈ N. The set of A-admissible words of
arbitrary length is given by Σ∗ :=

⋃
n∈N

Σn. We define the word length function
|·| : Σ∗ ∪ Σ → N ∪ {∞}, where for ω ∈ Σ∗ we set |ω| to be the unique n ∈ N such
that ω ∈ Σn and for ω ∈ Σ we set |ω| := ∞. For each ω ∈ Σ∗ ∪ Σ and n ∈ N with
1 ≤ n ≤ |ω|, we define ω|n := (ω1, . . . , ωn). For τ, τ

′ ∈ Σ, we let τ ∧ τ ′ := τ|l, where
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l := sup
{
n ∈ N : τ|n = τ ′|n

}
. For n ∈ N0 and ω ∈ Σn, the cylinder set [ω] is given

by [ω] :=
{
τ ∈ Σ : τ|n = ω

}
.

If Σ is the Markov shift with alphabet I whose incidence matrix consists entirely
of 1s, then we have that Σ = IN and Σn = In, for all n ∈ N. Then we set I∗ := Σ∗.
For ω, ω′ ∈ I∗ we denote by ωω′ ∈ I∗ the concatenation of ω and ω′, which is
defined by ωω′ :=

(
ω1, . . . , ω|ω|, ω

′
1, . . . , ω

′
|ω′|

)
for ω, ω′ ∈ I∗. Note that I∗ forms

a semigroup with respect to the concatenation operation. The semigroup I∗ is
the free semigroup generated by I and satisfies the universal property that, for
each semigroup S and for every map u : I → S, there exists a unique semigroup
homomorphism û : I∗ → S such that û (i) = u (i), for all i ∈ I.

We equip IN with the product topology of the discrete topology on I. The Markov
shift Σ ⊂ IN is equipped with the subspace topology. A countable basis of this
topology on Σ is given by the cylinder sets {[ω] : ω ∈ Σ∗}. We will make use of the
following metrics generating the product topology on Σ. For α > 0 fixed, we define
the metric dα : Σ× Σ → R on Σ given by

dα (τ, τ ′) := e−α|τ∧τ ′|, for all τ, τ ′ ∈ Σ.

For a function ϕ : Σ → R and n ∈ N0 we use the notation Snϕ : Σ → R to denote
the ergodic sum of ϕ with respect to σ, in other words, Snϕ :=

∑n−1
i=0 ϕ ◦ σi.

We say that a function ϕ : Σ → R is α-Hölder continuous, for some α > 0, if

Vα (ϕ) := sup
n≥1

{Vα,n (ϕ)} < ∞,

where for each n ∈ N we let

Vα,n (ϕ) := sup

{
|ϕ (τ )− ϕ (τ ′)|

dα (τ, τ ′)
: τ, τ ′ ∈ Σ, |τ ∧ τ ′| ≥ n

}
.

The function ϕ is Hölder continuous if there exists α > 0 such that ϕ is α-Hölder
continuous.

The following fact is well known.

Fact 2.1 ([MU03, Lemma 2.3.1]). If ϕ : Σ → R is Hölder continuous, then there
exists a constant Cϕ > 0 such that, for all ω ∈ Σ∗ and τ, τ ′ ∈ [ω], we have∣∣S|ω|ϕ (τ )− S|ω|ϕ (τ ′)

∣∣ ≤ Cϕ.

We will make use of the following notion of pressure introduced in [JKL14, Defini-
tion 1.1].

Definition 2.2 (Induced topological pressure). For ϕ,Δ : Σ → R with Δ ≥ 0, and
C ⊂ Σ∗ we define for η > 0 the Δ-induced pressure of ϕ (with respect to C) by

PΔ (ϕ, C) := lim sup
T→∞

1

T
log

∑
ω∈C

T−η<SωΔ≤T

eSωϕ,

which takes values in R ∪ {±∞}. In here, we set Sωϕ := supτ∈[ω] S|ω|ϕ (τ ).

Remark. It was shown in [JKL14, Theorem 2.4] that the definition of PΔ (ϕ, C) is
in fact independent of the choice of η > 0. For this reason we do not refer to η > 0
in the definition of the induced pressure.
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Notation. If Δ and/or C is left out in the notation of induced pressure, then we
tacitly assume that Δ = 1 and/or C = Σ∗. That is, P (ϕ) := P1 (ϕ,Σ

∗).

We will make use of the following mixing properties for a Markov shift Σ with
alphabet I.

• Σ is irreducible if, for all i, j ∈ I, there exists ω ∈ Σ∗ such that iωj ∈ Σ∗.
• Σ is topologically mixing if, for all i, j ∈ I, there exists n0 ∈ N with the
property that, for all n ≥ n0, there exists ω ∈ Σn such that iωj ∈ Σ∗.

• Σ is finitely irreducible if there exists a finite set F ⊂ Σ∗ with the property
that, for all i, j ∈ I, there exists ω ∈ F such that iωj ∈ Σ∗.

• Σ is finitely primitive if there exists l ∈ N and a finite set F ⊂ Σl with the
property that, for all i, j ∈ I, there exists ω ∈ F such that iωj ∈ Σ∗.

Remark. Note that Σ is finitely primitive if and only if Σ is topologically mixing
and if Σ satisfies the big images and preimages property (see [Sar03]).

The following fact is taken from [JKL14, Section 2]. (The characterisation of in-
duced pressure via the exponent of convergence of the Poincaré series is proved in
[JKL14, Theorem 2.4 and Remark 2.7], for the other properties, see [JKL14, Co-
rollary 2.10 and Remark 2.11].)

Fact 2.3. Let Σ be finitely irreducible, C ⊂ Σ∗ and let ϕ,Δ : Σ → R with Δ ≥ c > 0
for some c > 0. Then we have

PΔ (ϕ, C) = inf {u ∈ R : P (ϕ− uΔ, C) ≤ 0} = inf

{
u ∈ R :

∑
ω∈C

eSω(ϕ−uΔ) < ∞
}
.

If additionally card (I) < ∞, then u �→ P (ϕ− uΔ, C) defines a strictly decreasing,
continuous map on R with values in R. Moreover, we have that PΔ (ϕ, C) is the
unique u ∈ R such that P (ϕ− uΔ, C) = 0.

The following notion of a Gibbs measure is fundamental for the thermodynamic
formalism (cf. [Rue69], [Bow75]).

Definition 2.4 (Gibbs measure). Let ϕ : Σ → R be continuous. We say that a
Borel probability measure μ is a Gibbs measure for ϕ if there exists a constant
Cμ > 0 such that

(2.1) C−1
μ ≤ μ ([ω])

eS|ω|ϕ(τ)−|ω|P(ϕ)
≤ Cμ, for all ω ∈ Σ∗ and τ ∈ [ω] .

The following theorem is proved in [MU03, Section 2].

Theorem 2.5 (Existence of Gibbs measures). Let Σ be finitely irreducible and let
ϕ : Σ → R be Hölder continuous with P (ϕ) < ∞. Then there exists a unique
σ-invariant Gibbs measure for ϕ.

3. Graph directed Markov systems associated with free groups

In this section we first recall the definition of a conformal graph directed Markov
system (GDMS) introduced by Mauldin and Urbański ([MU03]). Then we give
the definition of a GDMS associated with a free group and the radial limit set
([Jae14a]).
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3.1. Preliminaries.

Definition 3.1 (Graph directed Markov system, [MU03]). A graph directed Markov
system (GDMS) Φ =

(
V, (Xv)v∈V , E, i, t, (φe)e∈E , A

)
consists of a finite vertex set

V , a family of non-empty compact metric spaces (Xv)v∈V , a countable edge set
E, maps i, t : E → V , a family of injective contractions φe : Xt(e) → Xi(e) with
Lipschitz constants bounded by some 0 < s < 1, and an edge incidence matrix

A ∈ {0, 1}E×E
, which has the property that a (e, f) = 1 implies t (e) = i (f), for all

e, f ∈ E. The coding map of Φ is given by

πΦ : ΣΦ →
⊕
v∈V

Xv, such that
⋂
n∈N

φτ|n

(
Xt(τn)

)
= {πΦ (τ )} , for each τ ∈ ΣΦ,

where
⊕

v∈V Xv denotes the disjoint union of the sets Xv and ΣΦ denotes the
Markov shift with alphabet set E and incidence matrix A. The limit set of Φ is
defined by J (Φ) := πΦ (ΣΦ). Further, we set

J∗ (Φ) :=
⋃

F⊂E, card(F )<∞
πΦ

(
ΣΦ ∩ FN

)
.

Definition 3.2 (Conformal GDMS, [MU03]). The GDMS Φ =
(
V, (Xv)v∈V , E, i, t,

(φe)e∈E , A
)
is called conformal if the following conditions are satisfied.

(a) For v ∈ V , the phase space Xv is a compact connected subset of the Eu-
clidean space

(
R

D, ‖ · ‖
)
, for some D ≥ 1, such that Xv is equal to the

closure of its interior, that is, Xv = Int(Xv).
(b) (Open set condition (OSC)). For all a, b ∈ E with a �= b, we have that

φa

(
Int(Xt(a))

)
∩ φb

(
Int(Xt(b))

)
= ∅.

(c) For each vertex v ∈ V there exists an open connected set Wv ⊃ Xv such
that the map φe extends to a C1 conformal diffeomorphism of Wv into
Wi(e), for every e ∈ E with t (e) = v.

(d) (Cone property). There exist l > 0 and 0 < γ < π/2 such that, for each
v ∈ V and x ∈ Xv ⊂ R

D there exists an open cone Con(x, γ, l) ⊂ Int(Xv)
with vertex x, central angle of measure γ and altitude l.

(e) There are two constants L ≥ 1 and α > 0 such that for each e ∈ E and
x, y ∈ Xt(e) we have

||φ′
e(y)| − |φ′

e(x)|| ≤ L inf
u∈Wt(e)

|φ′
e (u)| ‖y − x‖α,

where | · | refers to the operator norm of a bounded linear operator on(
R

D, ‖ · ‖
)
.

Lemma 3.3 ([MU03, Lemma 4.2.2]). If Φ is a conformal GDMS, then for all
ω ∈ Σ∗

Φ and for all x, y ∈ Wt(ω), we have

(3.1) |log |φ′
ω(x)| − log |φ′

ω(y)|| ≤
L

1− s
‖x− y‖α.

Definition 3.4. For a GDMS Φ satisfying (a) and (c) of Definition 3.2, the geo-
metric potential ζ : ΣΦ → R

− of Φ is given by

ζ (τ ) := log
∣∣φ′

τ1 (πΦ (σ (τ )))
∣∣ , for all τ ∈ ΣΦ.

The following fact follows from [MU03, Proposition 4.2.7, Lemma 3.1.3] and
Lemma 3.3.
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Fact 3.5. Suppose that a GDMS Φ satisfies (a) and (c) of Definition 3.2 and
that the inequality (3.1) in Lemma 3.3 holds. Then the geometric potential ζ of
Φ is Hölder continuous. In particular, ζ is Hölder continuous if Φ is a conformal
GDMS.

The following result is taken from [MU03, Theorem 4.2.13], where finitely primit-
ivity can be replaced by finitely irreducibility (see also [RU08, Theorem 3.7]). The
last equality in Theorem 3.6 follows from Fact 2.3 with ϕ := 0 and Δ := −ζ, since
the geometric potential ζ of Φ satisfies ζ ≤ log (s) < 0, where s denotes the uniform
bound for the Lipschitz constants of the generators of Φ (see Definition 3.1).

Theorem 3.6 (Generalised Bowen’s formula). Let Φ be a conformal GDMS with
a finitely irreducible incidence matrix A and geometric potential ζ : ΣΦ → R

−. We
then have that

dimH (J (Φ)) = dimH (J∗ (Φ)) = inf {u ∈ R : P (uζ) ≤ 0} = inf
{
u∈R :

∑
ω∈Σ∗

Φ

euSωζ < ∞
}
.

Remark 3.7. The generalised Bowen’s formula also holds if the GDMS Φ satisfies
(a)–(d) of Definition 3.2 and the inequality (3.1) stated in Lemma 3.3. To prove this,
we distinguish two cases. In the case D ≥ 2, it follows from [MU03, Proposition
4.2.1] that, if Φ satisfies (a) and (c) of Definition 3.2, then Φ automatically satisfies
(e) with α = 1. If D = 1, then a closer inspection of the proof of [MU03, Theorem
4.2.13] shows that Definition 3.2 (e) is in fact only used to deduce (3.1) of Lemma
3.3 (cf. [MU96, Lemma 2.2]).

3.2. Radial limit sets. Graph directed Markov systems associated with free
groups and their radial limit sets have been introduced in [Jae14a, Definition 2.10].

Definition 3.8 (GDMS associated with a free group, (uniformly) radial limit set).
We denote by Fd = 〈g1, . . . , gd〉 the free group on d ≥ 2 generators. Let

I :=
{
g1, g

−1
1 , . . . , gd, g

−1
d

}
and Σ :=

{
τ ∈ IN : τi �= τ−1

i+1

}
.

Let N be a non-trivial normal subgroup of Fd. The symbolic radial limit set of N
and the symbolic uniformly radial limit set of N (with respect to Fd = 〈g1, . . . , gd〉)
are given by

Λr (N) := {τ ∈ Σ : ∃h∈Fd, such that τ1 · · · · · τn∈hN for infinitely many n ∈ N}

and

Λur (N) := {τ ∈ Σ : ∃H ⊂ Fd finite, such that τ1 · · · · · τn ∈ HN for all n ∈ N} .
A GDMS Φ =

(
V, (Xv)v∈V , E, i, t, (φe)e∈E , A

)
is associated with Fd = 〈g1, . . . , gd〉,

d ≥ 2, if V =
{
g1, g

−1
1 , . . . , gd, g

−1
d

}
, E =

{
(v, w) ∈ V 2 : v �= w−1

}
, i, t : E → V

are given by i (v, w) = v and t (v, w) = w and the incidence matrix A ∈ {0, 1}E×E

satisfies a (e, f) = 1 if and only if t (e) = i (f), for all e, f ∈ E. We will tacitly
apply the canonical bijection between the spaces

ΣΦ =
{
((v1, v2) , (v2, v3) , . . . )∈(V × V )

N
: vi �= v−1

i+1

}
and

Σ =
{
(v1, v2, . . . )∈V N : vi �= v−1

i+1

}
.

We call πΦ (Λr (N)) and πΦ (Λur (N)) the radial limit set of N with respect to Φ
and the uniformly radial limit set of N with respect to Φ.
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3.3. The induced GDMS. In order to investigate the radial limit set of a normal
subgroup N of Fd with respect to a GDMS Φ associated with Fd, we introduce an
induced GDMS Φ̃ whose edge set consists of first return loops in the Cayley graph
of Fd/N .

Definition 3.9. Let Φ =
(
V, (Xv)v∈V , E, i, t, (φe)e∈E , A

)
denote a conformal

GDMS associated with Fd, d ≥ 2, and let N denote a non-trivial normal subgroup
of Fd. The N-induced GDMS of Φ is given by

Φ̃ :=

(
V, (Xv)v∈V , Ẽ, ĩ, t̃,

(
φ̃ω

)
ω∈Ẽ

, Ã

)
,

where the edge set Ẽ is given by

Ẽ :=
{
ω∈Σ∗

Φ : i (ω1) · · · · · i
(
ω|ω|

)
∈N and i (ω1) · · · · · i (ωk) /∈N for 1 ≤ k < |ω|

}
,

and the maps ĩ, t̃ : Ẽ → V are given by ĩ (ω) := i (ω1) and t̃ (ω) := t
(
ω|ω|

)
, for

each ω ∈ Ẽ. Further, the incidence matrix Ã ∈ {0, 1}Ẽ×Ẽ
is given by ã (ω, ω′) :=

a
(
ω|ω|, ω

′
1

)
and the contractions

(
φ̃ω

)
ω∈Ẽ

are defined by φ̃ω := φω1
◦ · · · ◦ φω|ω| ,

for each ω ∈ Ẽ.

Notation 3.10. For the N -induced GDMS Φ̃, there are canonical embeddings Σ∗
Φ̃
↪→

Σ∗
Φ and ΣΦ̃ ↪→ ΣΦ, which we will both denote by ι. It will always be clear which

map is in use.

Definition 3.11. For a function f : ΣΦ → R, the induced version f̃ : ΣΦ̃ → R is

given by f̃ (τ̃ ) := S|ι(τ̃1)|f(ι (τ )), for each τ̃ = (τ̃1, τ̃2, . . . ) ∈ ΣΦ̃.

The proof of the following lemma is straightforward and therefore omitted.

Lemma 3.12. Let Φ denote a conformal GDMS associated with Fd, d ≥ 2. Let N
denote a non-trivial normal subgroup of Fd, and let Φ̃ denote the N-induced GDMS
of Φ. Then we have the following.

(1) The incidence matrix Ã of Φ̃ is finitely irreducible.

(2) For the coding maps πΦ̃ : ΣΦ̃ → J
(
Φ̃
)

and πΦ : ΣΦ → J (Φ), we have

πΦ̃ (τ̃) = πΦ (ι (τ̃ )) for each τ̃ ∈ ΣΦ̃.

(3) The geometric potential ζ̃ : ΣΦ̃ → R of Φ̃ is the induced version of the
geometric potential ζ : ΣΦ → R of Φ.

(4) Let f : ΣΦ → R be Hölder continuous. Then the induced version f̃ :
ΣΦ̃ → R is Hölder continuous and there exists a constant Cf > 0 such that

Sι(ω̃)f − Cf ≤ Sω̃ f̃ ≤ Sι(ω̃)f , for all ω̃ ∈ Σ∗
Φ̃
.

The next proposition provides a version of Bowen’s formula for the Hausdorff di-
mension of the radial limit set of a normal subgroup N of Fd with respect to a
conformal GDMS Φ associated with Fd. This extends [Jae11, Proposition 6.2.8]
and [Jae14a, Proposition 1.3]. Moreover, we establish a multifractal formalism in
this context.

Proposition 3.13. Let Φ denote a conformal GDMS associated with Fd, d ≥ 2,
and let N denote a non-trivial normal subgroup of Fd. Let ψ : ΣΦ → R be Hölder
continuous and let tN denote the free energy function of (N,Φ, ψ). Then we have
the following.
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(1) dimH (πΦ (Λur (N))) = dimH (πΦ (Λr (N))) = δN .
(2) dimH (πΦ (Λr (N) ∩ F (α,Φ, ψ))) ≤ max {−t∗N (−α) , 0}, for each α ∈ R.
(3) dimH (πΦ (Λur (N) ∩ F (α,Φ, ψ))) = dimH (πΦ (Λr (N) ∩ F (α,Φ, ψ))) =

−t∗N (−α) > 0, for each α ∈ − Int (∂tN (R)).

Proof. Let Φ̃ denote the N -induced GDMS of Φ. First, we relate the limit set
of Φ̃ to the radial limit set of N with respect to Φ. Using Lemma 3.12 (2), it is
straightforward to verify that
(3.2)

J∗
(
Φ̃
)
⊂ πΦ (Λur (N)) ⊂ πΦ (Λr (N)) ⊂ J

(
Φ̃
)
∪

⋃
η∈Σ∗

Φ,τ̃∈ΣΦ̃:ηι(τ̃)∈ΣΦ

φη (πΦ̃ (τ̃)) .

Note that the right-hand side of (3.2) is a countable union of Lipschitz continuous

images of J
(
Φ̃
)
. Since Lipschitz continuous maps do not increase Hausdorff di-

mension and since Hausdorff dimension is stable under countable unions, we obtain
that
(3.3)

dimH

(
J∗

(
Φ̃
))

≤ dimH (πΦ (Λur (N))) ≤ dimH (πΦ (Λr (N))) ≤ dimH

(
J
(
Φ̃
))

.

The GDMS Φ̃ satisfies the conditions (a)–(d) in Definition 3.2. Further, since{
φ̃ω̃ : ω̃ ∈ Σ∗

Φ̃

}
is a subfamily of

{
φω : ω ∈ Σ∗

Φ

}
, it follows that Φ̃ satisfies (3.1)

of Lemma 3.3. Moreover, by Lemma 3.12 (1), the incidence matrix of Φ̃ is finitely
irreducible. Hence, by Remark 3.7, the generalised Bowen’s formula in Theorem
3.6 and (3.3) give that
(3.4)

dimH (πΦ (Λur (N))) = dimH (πΦ (Λr (N))) = inf

{
β ∈ R :

∑
ω̃∈Σ∗

Φ̃

eβSω̃ ζ̃ < ∞
}
.

For each ω̃∈Σ∗
Φ̃
there is n∈N such that ι (ω̃)∈Σn

Φ. Write ι (ω̃)=((v1, w1) , (v2, w2) ,

. . . , (vn, wn)). By mapping each element ((v1, w1) , (v2, w2) , . . . , (vn, wn)) to
(v1v2 . . . vn), we obtain a (2d− 1)-to-one map from Σ∗

Φ̃
onto N \ {id}. Hence,

by Lemma 3.12 (4), we see that

(3.5) inf
{
β ∈ R :

∑
ω̃∈Σ∗

Φ̃

eβSω̃ ζ̃ < ∞
}
= inf

{
β ∈ R :

∑
ω∈N\{id}

eβSωζ < ∞
}
= δN .

Combining (3.4) and (3.5) finishes the proof of (1).

For the remaining part of the proof, we define for each α ∈ R the symbolic level
sets

F̃∗ (α) :=
{
τ̃ = (τ̃1, τ̃2, . . . ) ∈ ΣΦ̃ : lim

k→∞

S(τ̃1,...,τ̃k)ψ̃

S(τ̃1,...,τ̃k)ζ̃
= α and sup

i∈N

{|ι (τ̃i) |} < ∞
}

and

F̃ (α) :=
{
τ̃ = (τ̃1, τ̃2, . . . ) ∈ ΣΦ̃ : lim

k→∞

S(τ̃1,...,τ̃k)ψ̃

S(τ̃1,...,τ̃k)ζ̃
= α

}
.
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Furthermore, we define t̃ : R → R ∪ {∞} which is for each β ∈ R given by

t̃ (β) := inf
{
u ∈ R : P

(
βψ̃ + uζ̃

)
≤ 0

}
.

By Fact 2.3 we have that for each β ∈ R,

t̃ (β) = inf
{
u ∈ R :

∑
ω̃∈Σ∗

Φ̃

eβSω̃ψ̃+uSω̃ ζ̃ < ∞
}
.

Following the proof of (3.5), we see that, for each β ∈ R, we have

(3.6) t̃ (β) = tN (β) .

To prove the upper bound for the Hausdorff dimension in (2), first observe that, sim-
ilarly as in (3.2), the set πΦ (Λr (N) ∩ F (α,Φ, ψ)) is contained in a countable union

of Lipschitz continuous images of πΦ̃

(
F̃ (α)

)
. Then by a standard covering argu-

ment (see e.g. [JK11, Theorem 1.2]) we have dimH

(
F̃ (α)

)
≤ max

{
−t̃∗ (−α) , 0

}
,

which, in light of (3.6), finishes the proof of (2).

To prove (3), we first verify that for each α ∈ R,

(3.7) ι
(
F̃∗ (α)

)
⊂ Λur (N) ∩ F (α,Φ, ψ) .

Clearly, we have that ι
(
F̃∗ (α)

)
⊂ Λur (N), so it remains to show that ι

(
F̃∗ (α)

)
⊂

F (α,Φ, ψ). The proof follows [KMS12, Proposition 4.3]. Let τ̃ ∈ F̃∗ (α) be given
and set τ := ι (τ̃ ). Then there exists l ∈ N such that |ι (τ̃i)| ≤ l, for each i ∈ N. For
each n > l, let

k (n) := max
{
k ∈ N :

k∑
i=1

ι (|τ̃i|) ≤ n
}
.

Then there exists r (n) ≤ l such that n =
∑k(n)

i=1 |ι (τ̃i)| + r (n). For f ∈ {ζ, ψ} we
set

Mf := max {Sωf : ω ∈ Σr, 1 ≤ r ≤ l} and mf := min {Sωf : ω ∈ Σr, 1 ≤ r ≤ l} .
Since ζ and ψ are Hölder continuous, we have by Lemma 3.12 (4) and Fact 2.1 that

S(τ̃1,...,τ̃k(n))f̃ +mf − 2Cf ≤ S(τ1,...,τn)f ≤ S(τ̃1,...,τ̃k(n))f̃ +Mf + Cf ,

which then gives

S(τ̃1·····τ̃k(n))ψ̃ +mψ − 2Cψ

S(τ̃1·····τ̃k(n))ζ̃ +Mζ + Cζ

≤
S(τ1,...,τn)ψ

S(τ1,...,τn)ζ
≤

S(τ̃1·····τ̃k(n))ψ̃ +Mψ + Cψ

S(τ̃1·····τ̃k(n))ζ̃ +mζ − 2Cζ

.

Since τ̃ ∈ F̃∗ (α) and
∣∣S(τ̃1·····τ̃k(n))ζ̃

∣∣ → ∞, as n → ∞, it follows that τ ∈
F (α,Φ, ψ). The proof of (3.7) is complete. By Lemma 3.12 (2) we conclude that

πΦ̃

(
F̃∗ (α)

)
⊂ πΦ (Λur (N) ∩ F (α,Φ, ψ)). Combining with the upper bound in (2)

and (3.6), the proof will be completed, if we have shown that

dimH

(
πΦ̃

(
F̃∗ (α)

))
= −t̃∗ (−α) > 0, for each α ∈ − Int(∂t̃ (R) .

A straightforward modification of [JK11, Proof of Theorem 1.2] shows that

dimH

(
πΦ̃

(
F̃∗ (α)

))
= dimH

(
πΦ̃

(
F̃ (α)

))
= −t̃∗ (−α)
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for each α ∈ − Int(∂t̃ (R). The crucial step of this modification is to show that the
function t̃ satisfies the exhaustion principle, that is, t̃ (β) = supn∈N t̃n (β), where t̃n
is for each n ∈ N and β ∈ R given by

t̃n (β) := inf
{
u ∈ R :

∑
k∈N

∑
(ω̃1,...,ω̃k)∈Σk

Φ̃
:|ι(ω̃i)|≤n,1≤i≤k

eβSω̃ψ̃+uSω̃ ζ̃ < ∞
}
.

This exhaustion principle can be verified similarly as in [JK11, Example 1.6, The-
orem 1.7] by using that ΣΦ̃ is finitely irreducible (cf. [MU03, Theorem 2.1.5]).

Finally, to prove that −t̃∗ (−α) > 0, we observe that −t̃∗ (−α) ≥ −t̃∗n (−α) > 0
for all n sufficiently large, which follows from the well-known facts that −t̃∗n is a
non-negative, strictly concave and real-analytic function on ∂t̃n (R) ([PW97]) and
that α ∈ − Int(∂t̃n (R) ([Roc70, Theorem 24.5]), for n sufficiently large. The proof
is complete. �

Recall that the GDMS Φ̃ is called regular ([MU03, Section 4, p.78]) if there exists

u ∈ R such that P
(
uζ̃

)
= 0.

Lemma 3.14. Let Φ denote a conformal GDMS associated with Fd, d ≥ 2, and
let N denote a non-trivial normal subgroup of Fd. Let ψ : ΣΦ → R be Hölder
continuous and let β ∈ R. Then (N,Φ, ψ) is of divergence type in β if and only if

there exists u ∈ R such that P
(
βψ̃ + uζ̃

)
= 0. Moreover, if N is finitely generated,

then (N,Φ, ψ) is of divergence type in β.

Proof. Suppose that (N,Φ, ψ) is of divergence type in β. Then we have P
(
βψ̃ +

tN (β) ζ̃
)
≥ 0. Further, by Fact 2.3, we have that tN (β) = inf

{
u ∈ R : P

(
βψ̃ +

uζ̃
)
≤ 0

}
, because ΣΦ̃ is finitely irreducible by Lemma 3.12 (1). Using again that

ΣΦ̃ is finitely irreducible, it follows from [MU03, Theorem 2.1.5] that the map

u �→ P
(
βψ̃ + uζ̃

)
∈ R ∪ {∞} is the monotone limit of a sequence of continuous

functions. Consequently, the map u �→ P
(
βψ̃+uζ̃

)
is lower semi-continuous, which

then implies that P
(
βψ̃ + tN (β) ζ̃

)
≤ 0. Hence, we have P

(
βψ̃ + tN (β) ζ̃

)
= 0.

To prove the converse, suppose that P
(
βψ̃ + tN (β) ζ̃

)
= 0. Since ΣΦ̃ is finitely

irreducible, there exists a Gibbs measure μ for the potential βψ̃+tN (β) ζ̃ supported
on ΣΦ̃ by Theorem 2.5. Hence, we have that

∑
n∈N

∑
ω̃∈Σn

Φ̃

μ ([ω̃]) = ∞. Since

P
(
βψ̃ + tN (β) ζ̃

)
= 0, it follows from the Gibbs property of μ (2.1) that (N,Φ, ψ)

is of divergence type in β.

To finish the proof, suppose that N is finitely generated. Then the edge set of Φ̃ is
finite, and hence, Φ̃ is regular. In particular, we have that (N,Φ, ψ) is of divergence
type in β. The proof is complete. �

4. Group-extended Markov systems

Throughout this section, let I denote a finite or countable alphabet and let I∗

denote the free semigroup generated by I. Let G denote a countable group G and
let Ψ : I∗ → G denote a semigroup homomorphism. The skew product dynamical
system σ �Ψ : Σ×G → Σ×G, which is given by

(σ �Ψ) (τ, g) := (σ (τ ) , gΨ(τ1)) , for all (τ, g) ∈ Σ×G,
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is called a group-extended Markov system (see also [Jae14a, Section 4]). Note that
(Σ×G, σ �Ψ) is conjugated to the Markov shift with state space{

((τj , gj)) ∈ (I ×G)N : (τj) ∈ Σ, ∀i ∈ N giΨ(τi) = gi+1

}
.

Let π1 : Σ×G → Σ denote the canonical projection.

We will make use of the following notions of symmetry for group-extended Markov
systems.

Definition 4.1. Let (Σ×G, σ �Ψ) denote an irreducible group-extended Markov
system. We say that ϕ is asymptotically symmetric with respect to Ψ ([Jae14a,

Definition 3.14]) if there exist n0 ∈ N and sequences (cn) ∈ (R+)
N
and (Nn) ∈ N

N

with limn (cn)
1/n = 1 and limn n

−1Nn = 0, such that for each g ∈ G and for all
n ≥ n0, ∑

ω∈Σn∩Ψ−1(g)

eSωϕ ≤ cn
∑

ω∈Σ∗∩Ψ−1(g−1):n−Nn≤|ω|≤n+Nn

eSωϕ.

If (cn) can be chosen to be bounded, then ϕ is called symmetric with respect to Ψ.
Moreover, ϕ is symmetric on average with respect to Ψ ([Jae12, Definition 1.4]) if

sup
g∈G

lim sup
n→∞

∑n
k=1 e

−kpP(ϕ,Ψ−1(id)∩Σ∗)∑
ω∈Σkp∩Ψ−1(g) e

Sωϕ∑n
k=1 e

−kpP(ϕ,Ψ−1(id)∩Σ∗)
∑

ω∈Σkp∩Ψ−1(g−1) e
Sωϕ

< ∞,

where p := gcd
{
n ∈ N : ∃ω ∈ Σn ∩Ψ−1 (id) such that ωnω1 ∈ Σ2

}
.

Remark 4.2. Throughout this section, we make use of the induced pressure
P
(
ϕ,Ψ−1 (id) ∩ Σ∗) (see Definition 2.2), where Σ is finitely primitive, (Σ×G, σ�Ψ)

is an irreducible group-extended Markov system and ϕ : Σ → R is Hölder continu-
ous. A straightforward generalisation of the proof of [Jae11, Remark 5.1.6] shows
that P

(
ϕ,Ψ−1 (id) ∩ Σ∗) coincides with the Gurevič pressure of ϕ◦π1 with respect

to (Σ×G, σ �Ψ) (see [Sar99]).

4.1. Amenability. Let us first recall the definition of the important property of
groups which was introduced by von Neumann [Neu29] under the German name
messbar. By Day ([Day49]), groups with this property were renamed amenable
groups.

Definition 4.3. A discrete group G is amenable if there exists a finitely additive
probability measure ν on the power set of G, such that ν (A) = ν (g (A)), for all
g ∈ G and A ⊂ G.

The following result is taken from [Jae14b, Corollary 1.6]. (See also [Jae11, Theorem
5.3.11] and [Jae14a, Corollary 4.22 and Remark 4.23], where the case of a finite
alphabet was considered.) Stadlbauer proved a similar result for weakly symmetric
potentials ([Sta13, Theorem 4.1]).

Theorem 4.4 ([Jae14b, Corollary 1.6]). Let Σ be finitely primitive and let (Σ×G,
σ �Ψ) be an irreducible group-extended Markov system. Suppose that ϕ : Σ → R

is Hölder continuous with P (ϕ) < ∞ and that ϕ is asymptotically symmetric with
respect to Ψ. If G is amenable, then P

(
ϕ,Ψ−1 (id) ∩ Σ∗) = P (ϕ).

The next theorem provides a converse of the previous theorem and is due to
Stadlbauer.
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Theorem 4.5 ([Sta13, Theorem 5.4]). Let Σ be finitely primitive and let (Σ×G,
σ �Ψ) be an irreducible group-extended Markov system. Let ϕ : Σ → R be Hölder
continuous. If P

(
ϕ,Ψ−1 (id) ∩ Σ∗) = P (ϕ) < ∞, then G is amenable.

4.2. Recurrence and lower bounds for pressure. Let Σ be finitely primitive
and let (Σ×G, σ �Ψ) denote an irreducible group-extended Markov system. Let
ϕ : Σ → R be Hölder continuous with P

(
ϕ,Ψ−1 (id) ∩ Σ∗) < ∞ . The potential

ϕ ◦ π1 : Σ×G → R is called recurrent if∑
n∈N

e−nP(ϕ,Ψ−1(id)∩Σ∗)
∑

ω∈Σn∩Ψ−1(id)

eSωϕ = ∞.

Remark. It follows from Remark 4.2 that this definition of a recurrent potential
coincides with Sarig’s definition of a recurrent potential ([Sar01, Definition 1]).

In order to give lower bounds on P
(
ϕ,Ψ−1 (id) ∩ Σ∗), we need the following theo-

rem.

Theorem 4.6 ([Jae12, Corollary 1.2, Remark 1.6]). Let Σ be finitely primitive and
let (Σ×G, σ �Ψ) be an irreducible group-extended Markov system. Let ϕ : Σ → R

be Hölder continuous with P
(
ϕ,Ψ−1 (id) ∩ Σ∗) < ∞. If ϕ ◦π1 is recurrent, then G

is amenable.

For a recurrent potential, we can characterise when P
(
ϕ,Ψ−1 (id) ∩ Σ∗) and P (ϕ)

coincide.

Proposition 4.7 ([Jae12, Proposition 1.5, Remark 1.6]). Let Σ be finitely primitive
and let (Σ×G, σ �Ψ) be an irreducible group-extended Markov system. Let ϕ :
Σ → R be Hölder continuous with P

(
ϕ,Ψ−1 (id) ∩ Σ∗) < ∞. If ϕ ◦π1 is recurrent,

then we have that P
(
ϕ,Ψ−1 (id) ∩ Σ∗) = P (ϕ) if and only if ϕ is symmetric on

average with respect to Ψ.

Remark. By combining Theorem 4.6, Theorem 4.4 and Proposition 4.7, we see that,
if ϕ ◦ π1 is recurrent and if ϕ is asymptotically symmetric with respect to Ψ, then
ϕ is symmetric on average with respect to Ψ.

The next result gives a lower bound on P
(
ϕ,Ψ−1 (id) ∩ Σ∗). A similar result to

the first assertion is given in the author’s thesis ([Jae11, Theorem 5.3.11]). The
second assertion makes use of Theorem 4.6 and is inspired by [Jae14a, Lemma 5.1],
where a locally constant potential ϕ is considered.

Proposition 4.8. Let Σ be finitely primitive and let (Σ×G, σ �Ψ) be an ir-
reducible group-extended Markov system. For each Hölder continuous potential
ϕ : Σ → R the following holds.

(1) If ϕ is asymptotically symmetric with respect to Ψ, then

2P
(
ϕ,Ψ−1 (id) ∩ Σ∗) ≥ P (2ϕ) .

(2) If ϕ is symmetric with respect to Ψ and P (2ϕ) < ∞, then we have that

2P
(
ϕ,Ψ−1 (id) ∩ Σ∗) = P (2ϕ) if and only if 2P (ϕ) = P (2ϕ) .
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Proof. We first prove (1). Since Σ is finitely primitive and (Σ×G, σ �Ψ) is irredu-
cible, there exists a finite set B ⊂ Ψ−1 (id)∩Σ∗ such that, for all ω1, ω2 ∈ Σ∗ there
is γ (ω1, ω2) ∈ B with ω1γ (ω1, ω2)ω2 ∈ Σ∗. Define the map Γ : Σ∗×Σ∗ → Σ∗ given
by Γ (ω1, ω2) := ω1γ (ω1, ω2)ω2, where γ (ω1, ω2) ∈ B. Note that the restriction of
Γ to Σn × Σ∗ (resp. Σ∗ × Σn) is at most card (B)-to-one, for each n ∈ N. Setting
CB := min {Sγϕ : γ ∈ B} > −∞ and using the bounded distortion property of ϕ
with constant Cϕ > 0 (see Fact 2.1), we have that Sω1

ϕ + Sω2
ϕ − 3Cϕ + CB ≤

SΓ(ω1,ω2)ϕ, for all ω1, ω2 ∈ Σ∗. Consequently, setting l := max {|γ| : γ ∈ B}, we
obtain for every sequence (Nn) ∈ N

N and n ∈ N,

card (B) e3Cϕ−CB

∑
ω∈Σ∗∩Ψ−1(id):2n−Nn≤|ω|≤2n+Nn+l

eSωϕ

≥
∑
g∈G

( ∑
ω1∈Σn∩Ψ−1(g)

eSω1
ϕ
)( ∑

ω2∈Σ∗∩Ψ−1(g−1):n−Nn≤|ω2|≤n+Nn

eSω2
ϕ
)
.

Using that ϕ is asymptotically symmetric with respect to Ψ with n0 ∈ N and
sequences (cn) ∈ R

N and (Nn) ∈ N
N as in Definition 4.1, it follows from the previous

inequality that for all n ≥ n0,

card (B) e3Cϕ−CBcn
∑

ω∈Σ∗∩Ψ−1(id):2n−Nn≤|ω|≤2n+Nn+l

eSωϕ

≥
∑
g∈G

( ∑
ω1∈Σn∩Ψ−1(g)

eSω1
ϕ
)( ∑

ω2∈Σn∩Ψ−1(g)

eSω2
ϕ
)

(4.1)

≥
∑
g∈G

( ∑
ω1∈Σn∩Ψ−1(g)

e2Sω1
ϕ
)
=

∑
ω∈Σn

e2Sωϕ.

Using that limn(cn)
1/n = 1 it follows from (4.1) that

lim sup
n→∞

1

n
log

∑
ω∈Σ∗∩Ψ−1(id):2n−Nn≤|ω|≤2n+Nn+l

eSωϕ

≥ lim sup
n→∞

1

n
log

∑
ω∈Σn

e2Sωϕ = P (2ϕ) .

Finally, using that limn n
−1Nn = 0, one verifies that

2P
(
ϕ,Ψ−1 {id} ∩ Σ∗) ≥ lim sup

n→∞

1

n
log

∑
ω∈Σ∗∩Ψ−1(id):2n−Nn≤|ω|≤2n+Nn+l

eSωϕ,

which finishes the proof of (1).

We now turn to the proof of (2). First, note that by passing to the potential
ϕ − P (2ϕ) /2, we may assume without loss of generality that P (2ϕ) = 0. It
remains to show that P

(
ϕ,Ψ−1 (id) ∩ Σ∗) = 0 if and only if P (ϕ) = 0. Since

P
(
ϕ,Ψ−1 (id) ∩ Σ∗) ≥ P (2ϕ) /2 = 0 by (1), we deduce that P (ϕ) = 0 im-

plies P
(
ϕ,Ψ−1 (id) ∩ Σ∗) = 0. Now, for the opposite implication, suppose that

P
(
ϕ,Ψ−1 (id) ∩ Σ∗) = 0. Since Σ is finitely primitive and P (2ϕ) = 0 there exists

a unique σ-invariant Gibbs measure μ for 2ϕ by Theorem 2.5. By (2.1) there exists
a constant Cμ > 0 such that for all n ∈ N we have∑

ω∈Σn

e2Sωϕ ≥ C−1
μ

∑
ω∈Σn

μ ([ω]) = C−1
μ > 0.
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Since ϕ is symmetric with respect to Ψ and by (4.1), there exists n0 ∈ N and C > 0,
such that for all n ≥ n0 ∈ N,

(4.2)
∑

ω∈Σ∗∩Ψ−1(id):2n−Nn≤|ω|≤2n+Nn+l

eSωϕ ≥ C
∑
ω∈Σn

e2Sωϕ ≥ CC−1
μ > 0.

Since limn n
−1Nn = 0, there exists a sequence (nk) ∈ N

N tending to infinity, such
that the sets

{
2nk −Nnk

, . . . , 2nk +Nnk
+ l

}
k∈N

are pairwise disjoint. Hence, by

(4.2), we have that ∑
n∈N

∑
ω∈Σn∩Ψ−1(id)

eSωϕ = ∞.

Since P
(
ϕ,Ψ−1 (id) ∩ Σ∗) = 0, we have thus shown that ϕ ◦ π1 is a recurrent.

Hence, Theorem 4.6 gives that G is amenable. Finally, it follows from Theorem 4.4
that 0 = P

(
ϕ,Ψ−1 (id) ∩ Σ∗) = P (ϕ), which finishes the proof of (2). �

Corollary 4.9. Let Σ be finitely primitive and let (Σ×G, σ �Ψ) be an irreducible
group-extended Markov system. Let ϕ : Σ → R be Hölder continuous with P (2ϕ) <
∞ and suppose that ϕ is symmetric with respect to Ψ. If G is non-amenable, then
2P

(
ϕ,Ψ−1 (id) ∩ Σ∗) > P (2ϕ).

Proof. Suppose for a contradiction that the claim is false. Then, by Proposition
4.8 (1) and (2), we have 2P

(
ϕ,Ψ−1 (id) ∩ Σ∗) = P (2ϕ) = 2P (ϕ). By Theorem

4.5 we conclude that G is amenable, which is a contradiction. �

5. Proof of the main results

For a conformal GDMS Φ associated with Fd = 〈g1, . . . , gd〉, d ≥ 2, set I :={
g1, g

−1
1 , . . . , gd, g

−1
d

}
and Σ :=

{
τ ∈ IN : ∀i ∈ N τi �= τ−1

i+1

}
. One immediately

verifies that the Markov shift Σ is finitely primitive. For a non-trivial normal
subgroup N of Fd, let ΨN : I∗ → Fd/N denote the canonical semigroup homo-
morphism given by ΨN (g) := Ng, for each g ∈ I. Using that d ≥ 2 and that N is a
non-trivial normal subgroup of Fd, we see that the group-extended Markov system
σ�ΨN : Σ×(Fd/N) → Σ×(Fd/N) is irreducible. We consider N \{id} as a subset
of Σ∗. To apply the results of Section 4, we will frequently make use of the fact
that

N \ {id} = Ψ−1
N (id) ∩ Σ∗.

The geometric potential ζ of Φ is Hölder continuous by Fact 3.5. Since the Lipschitz
constants of Φ are bounded away from one, we have that supτ∈Σ ζ (τ ) < 0. Since
card (I) < ∞ we have the following by Fact 2.3.

Fact 5.1. Let ψ : Σ → R be Hölder continuous and let tN : R → R denote
the free energy function of (N,Φ, ψ). For each β ∈ R, we have that tN (β) =
P−ζ (βψ,N \ {id}), the function u �→ P (βψ + uζ,N \ {id}) is strictly decreasing
with values in R and P (βψ + tN (β) ζ,N \ {id}) = 0.

Lemma 5.2. We have δN > 0.

Proof. Since 0 : Σ → {0} is asymptotically symmetric with respect to ΨN , we have

2P (0, N \ {id}) ≥ P (0) = log (2d− 1) > 0

by Proposition 4.8 (1). Hence, we have δN = tN (0) > 0 by Fact 5.1. �
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We will repeatedly make use of the following fact about the convex conjugate of a
convex function. For the proof we refer to [Roc70, Theorem 23.5].

Fact 5.3. Let f : R → R be a convex function and let f∗ : R → R ∪ {∞} denote
the convex conjugate of f .

(1) Let β ∈ R. If α ∈ ∂f (β), then f∗ (α) = αβ − f (β).

(2) ∂f (R) ⊂{x ∈ R : f∗ (x) < ∞} ⊂ ∂f (R).

The following results about the free energy function are crucial to derive Theorems
1.1 and 1.2.

Proposition 5.4. Let Φ denote a conformal GDMS associated with Fd, d ≥ 2,
and let N denote a non-trivial normal subgroup of Fd. Let ψ : Σ → R be Hölder
continuous and let tN : R → R and t : R → R denote the free energy functions of
(N,Φ, ψ) and (Fd,Φ, ψ) respectively. Then we have the following.

(1) (a) We have tN (β) ≤ t (β) and −t∗N (−α) ≤ −t∗ (−α) for all β, α ∈ R.
(b) If tN (β) = t (β) for some β ∈ R, then Fd/N is amenable.
(c) If −t∗N (−α) = −t∗ (−α) for some α ∈ −∂t (R), then Fd/N is amen-

able.
(d) Int (∂tN (R)) ⊂ Int (∂t (R)).

(2) Suppose that (N,Φ, ψ) is asymptotically symmetric.
(a) If Fd/N is amenable, then tN (β) = t (β) and −t∗N (−α) = −t∗ (−α)

for all β, α ∈ R.
(b) We have 2tN (β) ≥ t (2β) and −t∗N (−α) ≥ −t∗ (−α) /2 for all β, α ∈

R.
(c) If (N,Φ, ψ) is symmetric and Fd/N is non-amenable, then we have

2tN (β) > t (2β) and −t∗N (−α) > −t∗ (−α) /2, for every β ∈ R and
α ∈ −∂tN (R).

(d) Int (∂tN (R)) = Int (∂t (R)).
(3) Let β ∈ R and suppose that (N,Φ, ψ) is of divergence type in β.

(a) Then Fd/N is amenable.
(b) tN (β) = t (β) if and only if (N,Φ, ψ) is symmetric on average in β.
(c) If α ∈ −∂t(β) and −t∗N (−α) = −t∗ (−α), then (N,Φ, ψ) is symmetric

on average in β.
(d) If (N,Φ, ψ) is symmetric on average in β, then −t∗N (−α) = −t∗ (−α)

for each α ∈ −∂tN (β).

Proof. The first assertion in (1a) follows from Fact 5.1, since we have

P (βψ + t (β) ζ,N \ {id}) ≤ P (βψ + t (β) ζ) = 0, for β ∈ R.

By the definition of the convex conjugate, we then have for α ∈ R,

−t∗N (−α) = inf
β∈R

{tN (β) + βα} ≤ inf
β∈R

{t (β) + βα} = −t∗ (−α) ,

which proves the second assertion in (1a). To prove (1b), suppose that tN (β) = t (β)
for some β ∈ R. Then by Fact 5.1 we have that P (βψ + tN (β) ζ,N \ {id}) =
P (βψ + t (β) ζ) = 0. Applying Theorem 4.5 to the Hölder continuous potential
βψ+tN (β) ζ : Σ → R and the group-extended Markov system (Σ×(Fd/N), σ �ΨN )
gives that Fd/N is amenable. For the proof of (1c), let α ∈ −∂t (β) for some β ∈ R.
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By Fact 5.3 (1), the first inequality in (1a) and the definition of the convex conjug-
ate, we have

−t∗ (−α) = t(β) + βα ≥ tN (β) + βα ≥ −t∗N (−α) .

Consequently, if −t∗N (−α) = −t∗ (−α), then we have tN (β) = t(β) and amenability
of Fd/N follows from (1b). To prove (1d), let α ∈ Int (∂tN (R)). By Fact 5.3 (2)
we have t∗N (α) < ∞. By (1a) we have t∗ (α) ≤ t∗N (α) < ∞. By Fact 5.3 (2) again,

we conclude that α ∈ ∂t (R). Since α is an interior point of ∂tN (R), we have thus
shown that Int (∂tN (R)) ⊂ Int (∂t (R)).

Now suppose that (N,Φ, ψ) is asymptotically symmetric, that is, βψ+uζ is asymp-
totically symmetric with respect to ΨN , for all β, u ∈ R. To prove (2a), suppose
that Fd/N is amenable. By applying Theorem 4.4 to the Hölder continuous po-
tential βψ+ t (β) ζ and the group-extended Markov system (Σ× (Fd/N), σ �ΨN ),
we obtain by Fact 5.1 that P (βψ + t (β) ζ,N \ {id}) = P (βψ + t (β) ζ) = 0 for
β ∈ R. Consequently, we have tN (β) = t (β) for all β ∈ R by Fact 5.1 and
thus, −t∗N (−α) = −t∗ (−α) for all α ∈ R. To prove (2b) let β ∈ R. Applying
Proposition 4.8 (1) to the asymptotically symmetric Hölder continuous potential
βψ + (t (2β) /2) ζ gives that

(5.1) 2P (βψ + (t (2β) /2) ζ,N \ {id}) ≥ P (2βψ + t (2β) ζ) = 0.

Hence, we have tN (β) ≥ t (2β) /2 by Fact 5.1 and we obtain for α ∈ R,

−t∗N (−α) = inf
β∈R

{tN (β) + βα} ≥ inf
β∈R

{t (2β) + 2βα}
/
2 = −t∗ (−α) /2,

which finishes the proof of (2b). To prove (2c) suppose that (N,Φ, ψ) is symmetric
and that Fd/N is non-amenable. Then the inequality in (5.1) is strict by Corollary
4.9. Hence, tN (β) > t (2β) /2 for every β ∈ R. Moreover, if α ∈ −∂tN (β) for some
β ∈ R, then by using Fact 5.3 (1) we deduce that

−t∗N (−α) = tN (β) + βα > (t (2β) + 2βα)
/
2 ≥ −t∗ (−α) /2.

To prove (2d), it suffices to show that ∂t (R) ⊂ ∂tN (R). Then Int (∂tN (R)) =
Int (∂t (R)) follows by combining with (1d). Let α ∈ −∂t (β) for some β ∈ R. Then
by (2b) and Fact 5.3 (1) we have

−t∗N (−α) ≥ −t∗ (−α)
/
2 = (t(β) + βα)

/
2 > −∞,

which shows that α ∈ −∂tN (R) by Fact 5.3 (2).

To prove (3) let β ∈ R and suppose that (N,Φ, ψ) is of divergence type in β, that is,
(βψ + tN (β) ζ)◦π1 is recurrent with respect to σ�ΨN . Then amenability of Fd/N
follows from Theorem 4.6, which proves (3a). To prove (3b), first observe that
(N,Φ, ψ) is symmetric on average in β if and only if βψ + t (β) ζ is symmetric on
average with respect to ΨN . Now, the equivalence in (3b) follows from Proposition
4.7 and Fact 5.1. To prove (3c), suppose that −t∗N (−α) = −t∗ (−α) for α ∈ −∂t(β).
As in the proof of (1c) we deduce that tN (β) = t(β), which then implies that
(N,Φ, ψ) is symmetric on average in β by (3b). In order to prove (3d), suppose
that (N,Φ, ψ) is symmetric on average in β and let α ∈ −∂tN (β). By (3b) we then
have tN (β) = t(β). Hence, we obtain by Fact 5.3 (1) that

−t∗N (−α) = tN (β) + βα = t (β) + βα ≥ −t∗ (−α) .

Combining with (1a) finishes the proof of (3d) and completes the proof of the
proposition. �
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We are now in the position to prove the main theorems.

Proof of Theorem 1.1 . The first assertion follows from Proposition 3.13 (1) and
Lemma 5.2. To apply Proposition 5.4 in what follows, recall that δN = tN (0) and
δ = t (0), where tN : R → R and t : R → R denote the free energy functions
of (N,Φ, 0) and (Fd,Φ, 0) respectively. To prove (2), suppose that Fd/N is non-
amenable. By (1a) and (1b) of Proposition 5.4, we have δN < δ. Combining with
(1), finishes the proof of (2).

For the proof of (3), suppose that (N,Φ, 0) is asymptotically symmetric. If Fd/N
is amenable, then we have δN = δ by Proposition 5.4 (2a). Now suppose that
Fd/N is non-amenable. Using Proposition 5.4 (2b) we obtain that δN ≥ δ/2, and
if (N,Φ, 0) is symmetric, then we have δN > δ/2 by Proposition 5.4 (2c). In light
of (1) the proof of (3) is complete.

To prove (4), suppose that (N,Φ) is of divergence type, that is, (N,Φ, 0) is of
divergence type in 0. Then the assertion in (4a) follows from Proposition 5.4 (3a)
and the assertion in (4b) follows from Proposition 5.4 (3b) for β = 0. The proof is
complete. �

Proof of Theorem 1.2 . The first assertion in (1) follows from Proposition 5.4 (1d)
and Proposition 3.13 (3). The second assertion in (1) follows from Proposition 5.4
(2d). To prove (2), suppose that Fd/N is non-amenable and let α ∈ (α−, α+). Since
we have (α−, α+) = − Int (∂t (R)), it follows from (1a) and (1c) of Proposition 5.4
that we have −t∗N (−α) < −t∗ (−α). Further, by Proposition 3.13 (3), we have
dimH (πΦ (F (α,Φ, ψ))) = −t∗ (−α) > 0. Consequently, we obtain by Proposition
3.13 (2) that

dimH (πΦ (Λr (N) ∩ F (α,Φ, ψ))) ≤ max {−t∗N (−α) , 0} < −t∗ (−α)

= dimH (πΦ (F (α,Φ, ψ))) ,

which gives the desired inequality in (2).

Now suppose that (N,Φ, ψ) is asymptotically symmetric and let α ∈ (α−, α+).
By Proposition 5.4 (2d), we have Int (∂tN (R)) = Int (∂t (R)). Hence, we have
dimH (πΦ (Λr (N) ∩ F (α,Φ, ψ))) = −t∗N (−α) and dimH (πΦ (F (α,Φ, ψ)))
= −t∗ (−α) by Proposition 3.13 (3). The assertion in (3a) is then a consequence
of Proposition 5.4 (2a). The lower bound in (3b) is deduced from Proposition 5.4
(2b). Finally, if (N,Φ, ψ) is symmetric, then the strict inequality in (3b) follows
from Proposition 5.4 (2c).

Let us now turn to the proof of (4). Let β ∈ R and suppose that (N,Φ, ψ) is of
divergence type in β. The assertion in (4a) is proved in Proposition 5.4 (3a). To
prove (4b), let α ∈ −∂t(β) and suppose that dimH (πΦ (Λr (N) ∩ F (α,Φ, ψ))) =
dimH (πΦ (F (α,Φ, ψ))). By Proposition 3.13 (2) and (3) we then have that

0 < −t∗ (−α) = dimH (πΦ (F (α,Φ, ψ))) = dimH (πΦ (Λr (N) ∩ F (α,Φ, ψ)))

≤ max {−t∗N (−α) , 0} .
Hence, we have −t∗N (−α) = −t∗ (−α) and Proposition 5.4 (3c) gives that (N,Φ, ψ)
is symmetric on average in β. Finally, to prove (4c), let

α ∈ − (∂tN (β) ∩ Int (∂tN (R))) .
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Suppose that (N,Φ, ψ) is symmetric on average in β. Then we have −t∗N (−α) =
−t∗ (−α) by Proposition 5.4 (3d). Since −t∗ (−α) = dimH (πΦ (F (α,Φ, ψ))) and
−t∗N (−α) = dimH (πΦ (Λr (N) ∩ F (α,Φ, ψ))) by Proposition 3.13 (3) and Propos-
ition 5.4 (1d), the proof is complete. �
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[JKL14] Johannes Jaerisch, Marc Kesseböhmer, and Sanaz Lamei, Induced topological pressure
for countable state Markov shifts, Stoch. Dyn. 14 (2014), no. 2, (to appear) doi:
10.1142/S0219493713500160.
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[MU96] R. Daniel Mauldin and Mariusz Urbański, Dimensions and measures in infinite iter-

ated function systems, Proc. London Math. Soc. (3) 73 (1996), no. 1, 105–154, DOI
10.1112/plms/s3-73.1.105. MR1387085 (97c:28020)
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