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INTRINSIC CIRCLE DOMAINS

EDWARD CRANE

Abstract. Using quasiconformal mappings, we prove that any Riemann sur-
face of finite connectivity and finite genus is conformally equivalent to an
intrinsic circle domain Ω in a compact Riemann surface S. This means that
each connected component B of S \ Ω is either a point or a closed geometric
disc with respect to the complete constant curvature conformal metric of the
Riemann surface (Ω ∪ B). Moreover, the pair (Ω, S) is unique up to confor-
mal isomorphisms. We give a generalization to countably infinite connectivity.
Finally, we show how one can compute numerical approximations to intrinsic
circle domains using circle packings and conformal welding.

1. Introduction

Let Ω be a finitely connected domain in the Riemann sphere Ĉ. A classical
theorem of Koebe states that Ω is conformally equivalent to the complement of
a finite set of pairwise disjoint closed discs and points. Such a domain is called
a finitely connected circle domain. Koebe’s theorem was extended by He and
Schramm [5] to apply to domains with countably many complementary components.
Schramm later gave a different proof of this result using transboundary extremal
length [8].

Theorem A ([5, Theorem 0.1]). Let Ω be a domain in Ĉ such that boundary ∂Ω
has at most countably many components. Then Ω is conformally homeomorphic to

a circle domain Ω∗ in Ĉ. Moreover, Ω∗ is unique up to Möbius transformations and
every conformal automorphism of Ω∗ is the restriction of a Möbius transformation.

If Ω is a domain in Ĉ that has at least three complementary components, or at
least one complementary component that is not a puncture, then we say that Ω is
hyperbolic. The reason is that there is then an unbranched analytic covering map
from the unit disc D onto Ω, which can be used to transfer the Poincaré metric on
D to a complete conformal metric of constant curvature −1 on Ω, which is called
the hyperbolic metric.

Every ring domain is conformally equivalent to a round annulus, a punctured

disc, or the punctured plane. For a round annulus Ĉ\(B1∪B2), each complementary
component Bi is a spherical disc, i.e., a closed ball in the spherical metric. Observe
that Bi is also a closed ball with respect to the hyperbolic metric belonging to the
domain Ω ∪ Bi, which is a larger spherical disc. In this paper we generalize this
property to obtain a new canonical form for multiply connected domains.
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Theorem 1. Let Ω be a finitely connected domain in the Riemann sphere Ĉ with
complementary components K1, . . . ,Kn. Suppose that each domain Ω∪Ki is hyper-

bolic. Then Ω is conformally equivalent to a domain Ω∗ in Ĉ with complementary
components L1, . . . , Ln such that for each i = 1, . . . , n, Ω ∪ Li is hyperbolic and
either Li is a puncture or Li is a closed disc with respect to the hyperbolic metric
of Ω ∪ Li. Moreover, Ω∗ is unique up to Möbius transformations.

We call the canonical domains given by this theorem intrinsic circle domains.

Theorem 1 has a generalization to positive genus ambient surfaces in place of Ĉ,
which we will now explain. In any Riemann surface S, a closed geometric disc will
mean a closed ball of some positive radius with respect to the appropriate complete
conformal metric of constant curvature on S, (i.e., hyperbolic, Euclidean or spheri-
cal), with the extra condition that it must be homeomorphic to the closed unit disc.
Equivalently, the radius of the ball must be strictly less than the injectivity radius
of the metric at the center of the disc. A circle domain Ω∗ in S is a connected open
subset of S for which each complementary component is either a point or a closed
geometric disc in S. Via the uniformization theorem, He and Schramm extended
Theorem A to this setting, as follows.

Theorem B ([5, Theorem 0.2]). Let Ω be an open Riemann surface with finite
genus and at most countably many ends. Then there is a closed Riemann surface R∗

such that Ω is conformally homeomorphic to a circle domain Ω∗ in R∗. Moreover,
the pair (R∗,Ω∗) is unique up to conformal homeomorphisms.

Likewise, we can extend Theorem 1 to deal with the case of arbitrary finite genus.
For the moment we also restrict ourselves to finite connectivity; we will relax this
condition in §5.

Theorem 2. Let Ω be a Riemann surface of finite genus and finite connectivity.
Then there is a conformal embedding ϕ of Ω into a compact Riemann surface S of
the same genus as Ω so that S \ϕ(Ω) is the union of disjoint closed, connected and
simply connected sets L1, . . . , Ln, and for each i ∈ {1, . . . , n}, Li is either a single
point or a closed geometric disc with respect to the Riemann surface ϕ(Ω) ∪ Li.
Moreover, the pair (S, ϕ) is unique up to conformal homeomorphisms.

The condition that Ω and S have the same genus means that S has the minimal
possible genus among all compact Riemann surfaces into which Ω may be embedded.
We will refer to the domain ϕ(Ω) as an intrinsic circle domain in S. Note that
Theorem 2 includes Theorem 1 as the special case of genus 0, so this terminology
is consistent; we shall only give a proof of Theorem 2.

There are some simple special cases. For example, there is precisely one case in
which the appropriate geometry of ϕ(Ω) ∪ Li is spherical; this occurs when Ω is
simply connected, in which case the statement reduces to the Riemann mapping
theorem. The doubly connected genus 0 cases occur when Ω is conformally equiv-
alent to the punctured plane C

∗, the punctured disc D
∗, or a round annulus. Note

that in the case of the punctured disc, the appropriate geometry for ϕ(Ω) ∪ Li is
Euclidean for one complementary component and hyperbolic for the other. An-
other case in which more than one type of geometry must be considered occurs
when Ω is a simply connected domain with two points removed; then the resulting
canonical domain is either a triply-punctured sphere or it is C∗ \K, where K is the
image under the exponential map of a closed disc of radius less than π. If Ω is a
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Riemann surface of genus 1 with one end, then Ω∗ is the complement of a point or
of a Euclidean disc in C/Λ, where Λ is a lattice in C. In all other cases the natural
geometry of ϕ(Ω) ∪ Li is hyperbolic for every complementary component Li.

Our definition of intrinsic circle domains was motivated by an observation about
extremal cases in the Grötzsch or Pólya-Chebotarev problem, which asks for the
minimizer of the logarithmic capacity among compact connected sets containing
a given finite set of points in C. This problem often appears in the course of
studying other extremal problems in geometric function theory. For example, there
are recent applications to the Bloch-Landau constant [2] and to Smale’s mean value
conjecture [3]. It is a classical result of Lavrentiev and Goluzin that the extremal
continuum E is unique and is the union of finitely many analytic arcs Ai, which are
trajectories of a certain rational quadratic differential (see for example [4]). It is
not hard to show that each arc Ai is a geodesic arc in the hyperbolic metric of the

domain (Ĉ \ E) ∪ Ai. A similar condition arises for local minima of the condenser
capacity for domains separating one finite set of points from another. In [1,6,9] it is
observed that the extremal continuum E enjoys harmonic symmetry. This means
that for any subarc I of E, the harmonic measure of the complementary domain

Ĉ\E with respect to the point ∞ assigns equal masses to each side of I. Note that
both the geodesic arc condition and the harmonic symmetry condition have the
property that they may be verified by checking each arc Ai separately. To check

Ai, we need to know only the conformal class of the pair (Ĉ \ E,Ai). Our notion
of intrinsic circle domains arose by analogy with this property.

We now outline the rest of the paper. Section 2 gives a simple qualitative distor-
tion bound for quasiconformal extensions of conformal maps between ring domains,
which we later use several times. Section 3 gives the proof of uniqueness in Theo-
rem 2, and section 4 gives the existence proof. In section 5, we extend Theorem 2
to include some cases with countably infinitely many complementary components,
subject to a geometric constraint. Section 6 deals with a mixed condition, in which
some boundary components are required to be circles in the spherical metric while
the others are required to be intrinsic circles in the sense of Theorem 1. In section 7
we discuss the use of circle packings for the numerical approximation of intrinsic
circle domains, and illustrate with some examples.

2. A geometric lemma

Lemma 3. Suppose A1 and A2 are ring domains in C whose inner boundaries
are circles C1 and C2 respectively. Suppose there is a conformal homeomorphism
F : A1 → A2 under which C1 corresponds to C2. Then the induced homeomorphism
F : C1 → C2 has a K-quasiconformal extension between the interior discs of C1

and C2, where the constant K depends only on the conformal modulus of A1.

Proof. Lemma 3 is a consequence of [5, Thm 1.4], but it can also be proved simply
as follows. After applying similarities, we may assume that C1 and C2 are both the
unit circle ∂D. Let m be the conformal modulus of A1. Apply Schwarz reflection
across ∂D to extend F to a conformal homeomorphism F̃ between ring domains
Ã1 and Ã2. If m = ∞, then F̃ is a conformal homeomorphism from the punctured
plane to itself, so is in fact a similarity, and its restriction to ∂D is an isometry.
Otherwise, the doubled ring domains Ãi are hyperbolic, F̃ is a hyperbolic isometry,
and the hyperbolic length of ∂D in each domain depends only on m. We claim that
the density of the hyperbolic metric of Ã1 on ∂D is bounded above and below in
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terms of m. Indeed, the hyperbolic length of ∂D is a function of m, so we get such
a bound by applying the Koebe distortion theorem to a single-valued lift of log F̃
to the universal cover of Ã1.

It follows that F : ∂D → ∂D is bi-Lipschitz, with constants that depend only on
m. Therefore the radial interpolation of the boundary correspondence provides a
quasiconformal extension with dilatation bounded in terms of the modulus of A1.

�

3. Uniqueness

Suppose that Ω and Ω′ are two intrinsic circle domains in closed Riemann surfaces
S and S′ respectively. Let f : Ω → Ω′ be a conformal homeomorphism. We have
to show that f is the restriction of a conformal isomorphism f̃ : S → S′.

First, suppose that Ω is simply connected or doubly connected. If Ω is simply
connected or is doubly connected with infinite conformal modulus, then S is the
Riemann sphere and Ω is a circle domain. Ω′ has the same connectivity as Ω since
they are homeomorphic, so Ω′ is also a circle domain in the Riemann sphere S.
The uniqueness part of Koebe’s theorem then shows that f is the restriction of a
Möbius map. Otherwise, Ω is a ring domain of finite modulus, as is Ω′. Then S
and S′ are both of genus 0 and we have to show that f extends to a Möbius map.
Consider a complementary component B1 of Ω, and let B′

1 be the corresponding
complementary component of Ω′. Let π : D → Ω∪B1 and π′ : D → Ω′ ∪B′

i be any
Riemann maps. Then by hypothesis π−1(B1) and π′−1(B′

1) are closed hyperbolic
discs in D, which are bounded by Euclidean circles. Thus π−1(Ω) and π′−1(Ω′)
are round annuli. Any conformal homeomorphism between round annuli is the
restriction of a Möbius map, so we can extend π′−1 ◦f ◦π to a Möbius map g. Now
define f1 = π′ ◦g ◦π−1. Then f1 : Ω∪B1 → Ω′∪B′

1 is a conformal homeomorphism
extending f . Similarly, f extends to a conformal homeomorphism f2 : Ω ∪ B2 →
Ω∪B′

2. Gluing f1 and f2 together we obtain a conformal homeomorphism from the
Riemann sphere to itself which extends f . This must be a Möbius map. Since Ω is
conformally equivalent to some round annulus, which is an intrinsic circle domain,
this in fact shows that Ω is a round annulus.

Now suppose that Ω is at least triply connected. Consider any complementary
component Bi of Ω, and let B′

i be the corresponding complementary component of
Ω′. This makes sense since the homeomorphism f induces a bijection between the
ends of Ω and the ends of Ω′; for an intrinsic circle domain each end corresponds
to precisely one complementary component since the complementary components
are all contractible.

Since Ω and Ω′ are at least triply connected, Ω ∪Bi and Ω′ ∪B′
i are not simply

connected. Therefore we must consider their universal covers, U and U ′ respectively,
in order to understand their hyperbolic metrics. Let π : U → Ω ∪ Bi and π′ :
U ′ → Ω′ ∪ B′

i be unbranched analytic covering maps, with deck transformation
groups Γi and Γ′

i respectively. Since Bi and B′
i are contractible subsets of Ω ∪ Bi

and Ω′ ∪ B′
i respectively, the homeomorphism f induces a homotopy equivalence

Ω∪Bi → Ω′ ∪B′
i, which in turn induces an isomorphism ρi : Γi → Γ′

i. Then f lifts
to a conformal homeomorphism

f̂i : U \ π−1 (Bi) → U ′ \ π′−1 (B′
i) .
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Note that f̂i is (Γi,Γ
′
i)-equivariant: for any element γ ∈ Γi we have

ρi(γ) ◦ f̂i = f̂i ◦ γ .
The connected components of π−1 (Bi) and of π′−1 (B′

i) are disjoint closed discs

because Ω and Ω′ are intrinsic circle domains. Therefore f̂i is a conformal homeo-
morphism between circle domains. Hence by the uniqueness part of Theorem B it
is the restriction of a Möbius map Mi. We find that Mi takes U onto U ′ since each
of the two circle domains has only one non-isolated boundary component. In par-
ticular, U = U ′. Moreover, the map Mi : U → U ′ is also (Γi,Γ

′
i)-equivariant, since

ρi(γ)◦Mi◦γ−1 : U → U ′ is a Möbius map extending f̂i and is therefore equal to Mi.

It follows that Mi descends to a conformal homeomorphism f̃i : Ω ∪ Bi → Ω′ ∪ B′
i

that extends f .
Gluing the extensions f̃i together for i = 1, . . . , n, we obtain the desired con-

formal homeomorphism f̃ : S → S′ extending f . This completes the proof of
uniqueness.

4. Existence

The first step is to apply Theorem B to map Ω via a conformal homeomorphism
onto a circle domain Ω∗ in some compact Riemann surface R.

Our goal is to construct a quasiconformal homeomorphism f of R onto another
Riemann surface S so that f is conformal on Ω∗ and the image f(Ω∗) is an intrinsic
circle domain in S. In fact, we will construct a Beltrami coefficient μ on R with
‖μ‖∞ < 1; then by the measurable Riemann mapping theorem we will obtain a
Riemann surface S and a quasiconformal homeomorphism f : R → S such that
μ(z)fz = fz a.e. on R. By construction, μ will be identically zero on Ω∗, so that f
is conformal there.

Consider any connected component B of R \ Ω∗ that is not a single point. Our
aim is to construct μ on R so that f(B) will be a closed geometric disc with respect
to the Riemann surface f(Ω∗ ∪ B). Since this is a condition on the conformal
structure of f(Ω∗ ∪B), it depends only on the restriction of μ to Ω∗ ∪B, which by
construction will be non-zero only on B. This is a key point, for it means that we
can correct the conformal structure on each complementary component separately
and the corrections will not interfere with each other. This is in contrast to the
proof of Koebe’s theorem by iterated Riemann mapping, where each complementary
component has to be corrected infinitely many times and the required mapping is
obtained in the limit. By hypothesis Ω∗ has only finitely many complementary
components in R, so to ensure that ‖μ‖∞ < 1 it will suffice that ‖μ‖B < 1 for each
complementary component B.

Let π : U → Ω∗ ∪ B be an unbranched analytic covering map, where U is one

of D, C, or Ĉ. We rule out the case U = Ĉ, since in this case Ω∗ is an open disc

in Ĉ, so it is already an intrinsic circle domain. Let Γ be the deck transformation
group of π, i.e., the (infinite) group of conformal automorphisms γ : U → U such
that π ◦ γ = π. The preimage π−1(B) has infinitely many connected components,
each of which is a topological closed disc, bounded by an analytic Jordan curve.

Apply Theorem A to the domain π−1 (Ω∗) = U \ π−1(B). This provides a

conformal mapping h : π−1(Ω∗) → V ⊂ Ĉ, where V is a circle domain. Each

component of π−1(B) corresponds under h to a component of Ĉ\V that is a closed
disc, not a singleton, since it is isolated and cannot be separated from the other
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Figure 1. Domains, maps and group actions in the existence
proof, illustrating the case where R is hyperbolic.

components by a ring domain of arbitrarily large modulus contained in π−1 (Ω∗).
The remaining end of π−1 (Ω∗) may correspond to either a point or a disc in the
complement of V ; this component is distinguished because it is not isolated. Let V
be the union of V and all of its isolated complementary components.

For any non-trivial element γ ∈ Γ, the map h ◦ γ is also a conformal mapping
of π−1 (Ω∗) onto the circle domain V , so by the uniqueness part of Theorem A we
have h◦γ = γ′ ◦h for a unique Möbius map γ′, which restricts to an automorphism
of V with no fixed points since γ has no fixed points in U . The map that sends
γ to γ′ is therefore an injective homomorphism Γ → Γ′, where Γ′ is a subgroup of
Aut(V). Since Γ′ acts simply transitively on the components of h(π−1(B)) and has
no fixed points in V , it acts freely on V . Since Aut(V ) acts properly discontinuously
on V , and each compact subset of V intersects only finitely many components of
h(π−1(B)), we also conclude that Γ′ acts properly discontinuously on V .
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Let C be a connected component of U \π−1 (Ω∗), and let C ′ be the corresponding
component of V \ V , so that C ′ is bounded by a circle ∂C ′. Let πR : W → R be

an analytic universal covering of R, so that π−1
R (Ω∗) is a circle domain. Let B̃ be

a connected component of π−1
R (B), bounded by a circle ∂B̃.

We will examine the behavior of the maps h, π and πR in the neighborhood of
the curves ∂C and ∂B̃. For the present proof the aim is merely to show that h
may be extended continuously to a quasiconformal homeomorphism h′ : U → V
that is equivariant with respect to Γ and Γ′. In fact, we will work slightly harder,
using Lemma 3 to show that the quasiconformal dilatation of this extension can be
made to depend only on a conformal invariant of Ω. This will be useful in the next
section.

Let α be the simple closed geodesic in the hyperbolic metric of Ω∗ that separates
B from all the other components of R \ Ω∗. Let E be the ring domain bounded
between α and B. It has modulus mod(E) = π2/2�(α), where �(α) is the length of
α in the hyperbolic metric of Ω∗; note that this length is a conformal invariant of
Ω.

The restriction of πR to this circle domain is an unbranched analytic covering
of Ω∗ and is therefore an isometry from the hyperbolic metric of π−1

R (Ω∗) to the

hyperbolic metric of Ω∗. Thus the connected components of π−1
R (α) are simple

closed geodesics in the hyperbolic metric of π−1
R (Ω∗) and are therefore disjoint,

each separating a connected component of π−1
R (B) from all of the other components

of W \ π−1
R (Ω∗). It follows that πR maps each connected component of π−1

R (E)

bijectively onto E. One of these is a ring domain Ẽ surrounding B̃.
Likewise, the restriction of π ◦ h−1 to V is an unbranched analytic covering of

Ω∗, so π ◦ h−1 maps each connected component of h ◦ π−1(E) bijectively onto E.
One of these connected components is a ring domain E′ surrounding C ′.

Consider the branch of π−1
R ◦π◦h−1 that maps E′ to Ẽ. It is a homeomorphism of

ring domains taking the inner boundary circle ∂C ′ onto the inner boundary circle
∂B̃. Lemma 3 gives an extension to a quasiconformal homeomorphism Q from
E′ ∪ C ′ to Ẽ ∪ B̃.

Now Q−1 ◦ π−1
R gives us a quasiconformal homeomorphism g : B → C ′ that

continuously extends the boundary correspondence induced by of h ◦ π−1. We
define μ|B to be the Beltrami coefficient gz/gz.

When we solve the Beltrami equation to obtain f : R → S, the covering map
π′ : V → (S \ f (Ω∗))∪f(B) such that f ◦π = π′ ◦h will be an unbranched analytic
covering, mapping the disc C ′ onto f(B), as required.

5. The case of countably infinite connectivity

It is natural to ask whether the notion of intrinsic circle domains can be extended
to domains of countably infinite connectivity.

5.1. All ends isolated. First, we deal with the case of a domain Ω such that
every end of R is isolated, i.e., has a neighborhood that meets no other end. If Ω
is embedded in a compact ambient Riemann surface, then this implies that Ω has
only finitely many ends and finite genus, and we already understand this case.

For a more interesting example, let R be a Z-cover of a compact genus 2 Riemann
surface, so that R has infinite genus and two ends. Then let Ω be a domain obtained
by removing countably many disjoint closed topological discs with no accumulation
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point from R. We could hope to modify the structure of R on a neighborhood
of each disc in order to make the complementary components be intrinsic discs.
However, there is no way to fix the two ends of R so that they are represented by
intrinsic discs, for the resulting ambient Riemann surface would be compact and
therefore have only finite genus.

Suppose that Ω is infinitely connected or has infinite genus. We call an end of
Ω fixable if it has a neighborhood that is a ring domain.

Lemma 4. For any Riemann surface Ω, there is a conformal embedding of Ω into
another Riemann surface R such that every connected component of R \ Ω is an
intrinsic disc and no end of R is fixable.

Proof. We can find disjoint open neighborhoods of all the fixable ends, for example,
by cutting along closed geodesics or horocycles around each end.

In the existence proof for Theorem 2 we only used a local surgery to modify the
ambient Riemann surface in a neighborhood of each complementary component.
The initial step of passing to a circle domain was technically convenient (and will
be needed later), but was not really necessary. All we really needed to know was
that for each individual end E, we can embed Ω in a Riemann surface RE such
that RE \ Ω is a geometric disc in RE . This is true for any fixable end E, since
it has a neighborhood that is a ring domain and therefore it has a neighborhood
UE conformally equivalent to a round annulus A = {z ∈ C | a < |z| < 1}, for
some 0 ≤ a < 1. Then we can glue the open unit disc to Ω, identifying A with
UE , to obtain a Riemann surface R′

E in which Ω is embedded so that the end E
corresponds to a connected component K of R′

E \Ω. Then we can apply Theorem A
to the preimage of Ω in the universal cover of R′

E , to find out how to modify the
conformal structure on K to obtain an embedding of Ω in a new Riemann surface
RE so that the end E corresponds to a connected component of RE \ Ω that is an
intrinsic disc.

To construct R we glue together all the Riemann surfaces RE corresponding to
fixable ends E by identifying the embedded copies of Ω. The resulting R is locally
a Riemann surface, is connected, and is second countable because Ω can only have
countably many fixable ends. �

5.2. Non-isolated ends. We now return to the case of a subdomain Ω of a com-
pact Riemann surface, but assume that Ω is countably infinitely connected. It must
now be the case that some complementary components are not isolated. There is a
potential topological obstruction associated with complementary components that
are not isolated: they cannot be represented by intrinsic discs of finite radius. We
might attempt to salvage something by allowing complementary components to be
horodiscs with respect to the hyperbolic metric, but this would not help in the

case of a circle domain Ω ⊂ Ĉ in which some circular complementary component
B has precisely two points on its boundary that are accumulation points of other
complementary circles.

Therefore in the countably infinitely connected case, we define an intrinsic circle
domain Ω to be a subdomain of a compact Riemann surface R such that any com-
plementary component that is not isolated is a singleton and every non-singleton
complementary component L is a closed geometric disc with respect to Ω∪L. This
definition is intended to be analogous to the definition of a circle domain in the
countably connected case.



INTRINSIC CIRCLE DOMAINS 73

In order to obtain a positive theorem, we can place a simple conformal geometric
constraint on the domain. We will say that a countably connected domain Ω in a
compact Riemann surface R is uniformly separated if there exists ε > 0 such that
each connected component of R \Ω either is a single point or is separated from all
the remaining complementary components by a ring domain of modulus at least ε
embedded in R \ Ω.
Lemma 5. Suppose Ω is a countably-connected uniformly separated domain in a
compact Riemann surface R. Let ϕ be any conformal embedding of Ω into a compact
Riemann surface R′ of the same genus as R. Then the non-singleton complementary
components of R′ correspond to the non-singleton complementary components of R,
so ϕ(Ω) is uniformly separated in R′.

To explain the significance of this, we first note that a complementary compo-
nent B is isolated if and only if Ω contains a ring domain with B as one of its com-
plementary components; this is a topological condition on Ω, so the corresponding
complementary component in ϕ(Ω) is also not isolated. If Ω is uniformly separated,
then the connected components of R \ Ω that are not singletons must be isolated.
However, the remaining complementary components need not be punctures; some
or all of them could be accumulation points of sequences of other complementary
components. For a general open Riemann surface Ω of countable connectivity and
finite genus, it is possible for an end of Ω to be represented in one conformal embed-
ding by a complementary component that is a non-isolated singleton, yet in some
other conformal embedding to be represented by a non-singleton.

We can construct an example of this cavitation behavior1 as follows. Consider
a subdomain D of C \D obtained by removing countably many complex conjugate
pairs of circular arcs, where one arc of the nth pair is

An =
{(

1 + 2−n
)
eit : θn < t < π − θn

}
, θn ↘ 0 .

The domain

Dn = C \

⎛
⎝D ∪

n⋃
j=1

(
Aj ∪Aj

)⎞⎠
is conformally equivalent via a conformal map that fixes z = 2 to a slit domain Sn,
which may be obtained from C\{0} by removing finitely many pairs of intervals In,
In contained in the imaginary axis, arranged symmetrically about 0, together with
an interval (−δni, δni). See Figure 2 for a schematic illustration. One can show
that if the angles θn are chosen to decrease to 0 sufficiently fast, then the domains
Sn converge in the Carathéodory topology to a limit domain S in which 0 is a
non-isolated singleton complementary component, but every other complementary
component is an isolated interval of the imaginary axis. Then D is conformally
equivalent to S and we have an example of cavitation: the singleton complementary
component {0} of S corresponds to the complementary component D of D.

The idea is that by making θn small we can ensure that the extremal length of
the family of curves in D joining An to An is as small as we like. This means we
can make the gap between the intervals In and In as short as we like in comparison
to the length of In. In fact, to ensure that the end represented in D by the unit
circle is represented in S by a singleton, it suffices to take θn = 2−n.

1The term cavitation refers in fluid dynamics to the sudden formation of a bubble as a dissolved
gas comes out of solution around a nucleation site.
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Figure 2. Two conformally equivalent countably connected domains.

We will now prove Lemma 5, which says that uniform separation prevents cavi-
tation.

Proof. Suppose each non-singleton connected component Bi of R \ Ω is separated
from the remaining complementary components by a ring domain Ai ⊆ Ω of mod-
ulus ε. Then the core curve γi of the ring domain Ai has length 2π2/ε with respect
to the hyperbolic metric of Ai. By the Schwarz-Pick lemma, the length of γi with
respect to the hyperbolic metric of Ω is also at most 2π2/ε. Consider the simple
closed geodesic gi (with respect to the hyperbolic metric of Ω) that lies in the free
homotopy class of γi. Since gi is a length minimizer in its free homotopy class, it is
no longer than γi in the hyperbolic metric of Ω. It follows that the ring domain Ei

bounded between gi and Bi has modulus at least ε/4. Our reason for passing from
the ring domains Ai to the ring domains Ei is that the closures of the Ei in R are
pairwise disjoint, which was not necessarily true of the Ai, and moreover, the Ei

are intrinsically-defined subdomains of Ω.
We now cut Ω along each gi to leave a domain U = Ω \

⋃
Ei. We claim that

for any conformal embedding ϕ of Ω into a compact Riemann surface R′ of the
same genus as R, there exists a quasiconformal homeomorphism Q : R → R′ such
that ϕ|U = Q|U . To prove this, consider a component Di = Bi ∪ Ei of R \ U . It
corresponds to a component D′

i = B′
i∪ϕ(Ei) of R

′ \ϕ(U), where B′
i is a component

of R′ \ϕ(Ω). We claim that there is a K-quasiconformal homeomorphism Di → D′
i

whose restriction to the curve gi agrees with ϕ. Here K depends only on ε. To see
this, let ψ : Di → D and χ : D′

i → D be Riemann mappings, and note that ∂Di and
∂D′

i are analytic Jordan curves. Apply Lemma 3 to the conformal homeomorphism

χ ◦ ϕ ◦ ψ−1 : ψ (Ei) → χ (E′
i)
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and apply a Schwarz reflection to obtain a K-quasiconformal homeomorphism h :
D → D whose boundary correspondence agrees with that of χ ◦ ϕ ◦ ψ−1, where K
depends only on ε. Now

χ−1 ◦ h ◦ ψ : Di → D′
i

is a K-quasiconformal homeomorphism agreeing with ϕ on the boundary, as re-
quired.

Gluing together ϕ and the K-quasiconformal extensions to the components Di,
we obtain a K-quasiconformal homeomorphism

H : Ω ∪
⋃

Bi → ϕ(Ω) ∪
⋃

B′
i .

Since Ω is countably connected, the complement X = R \ (Ω ∪
⋃
Bi) is a count-

able union of singletons, and therefore is a removable set for the solution of the
Beltrami equation. Thus H extends to a homeomorphism R → R′, and hence the
complementary components of R′ that are not among the Bi are singletons. �
Theorem 6. Suppose Ω is a domain in a compact Riemann surface R such that
Ω has countably infinite connectivity, has the same genus as R, and is uniformly
separated. Then there is a conformal embedding ϕ of Ω in a compact Riemann
surface S so that ϕ(Ω) is an intrinsic circle domain in S. The pair (S, ϕ) is unique
up to conformal isomorphism.

Proof. The existence proof is similar to that of Theorem 2. Lemma 5 shows that
when we apply Theorem B, the resulting countably connected circle domain Ω∗ ⊂ R
satisfies the hypotheses of Theorem 6, in addition to having the property that
its non-singleton complementary components are geometric discs. Then we note
that by Lemma 3 the quasiconformal distortion of the extension C → B can be
bounded in terms of ε. Then the resulting Beltrami coefficient μ has ‖μ‖∞ < 1,
so we may still apply the measurable Riemann mapping theorem to obtain the
desired conformal structure on S. Then Lemma 5 ensures that the non-isolated
complementary components of f(Ω∗) are singletons, so that f(Ω∗) is an intrinsic
circle domain.

The uniqueness proof goes through as before, but with one additional step. Be-
cause of the separation hypothesis there is no difficulty in extending a conformal
homeomorphism f : Ω → Ω′ between two countably-connected intrinsic circle do-
mains across each non-singleton complementary component. We thus obtain a
conformal homeomorphism between domains whose complements consist of count-
ably many points, which in turn extends to a conformal homeomorphism f̃ : S → S′

between the ambient Riemann surfaces. �
It is likely that the condition of uniform separation can be weakened by making

use of results on existence and uniqueness of solutions to the Beltrami equation in
the case where the Beltrami coefficient has norm 1 but the measure of the set on
which the distortion is large is controlled.

6. Mixtures of intrinsic and extrinsic circles

Now we present a generalization of Theorems 2 and 6 in which the conditions
on the complementary components of Ω in S are mixed. That is, some components
are punctures or geometric discs in the natural geometry of the ambient compact
Riemann surface S, while each of the others is an intrinsic disc, i.e., a geometric
disc with respect to its own union with Ω.
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Theorem 7. Let Ω be an open Riemann surface with finite genus and at most
countably many ends. Let Ki, i ∈ I be some of the ends of Ω, none of them
punctures, where the index set I may be either finite or countably infinite. Suppose
that for some ε > 0 and for each i ∈ I there is a ring domain Ai contained in Ω,
with modulus at least ε, that separates the end Ki from the other ends of Ω. Then
Ω is conformally equivalent to a domain ϕ(Ω) in a compact Riemann surface S,
with complementary components Li corresponding to Ki, such that ϕ(Ω) ∪

⋃
i∈I Li

is a circle domain in S and for each i ∈ I, Li is either a singleton or a closed
geometric disc with respect to the domain ϕ(Ω) ∪ Li. Such a pair (S, ϕ) is unique
up to conformal isomorphism.

Proof. We begin by replacing Ω by a conformally equivalent circle domain Ω∗ in
a compact Riemann surface R, as in Theorem B. Apply the construction of sec-
tion 4 to each of the components Ki, i ∈ I, to obtain a Beltrami differential μ(z)dzdz
supported on

⋃
Ki. In the case where I is infinite, the separation condition guar-

antees that ‖μ‖∞ < 1, as it did for Theorem 6. Solving the Beltrami equation
μ(z)fz = fz on R gives a new compact Riemann surface S′ with a homeomorphism
f : R → R′, conformal away from the preimages of the Ki, such that f(Ki) is a
closed hyperbolic disc with respect to the hyperbolic metric of f(U) ∪ f(Ki). The
domain f (U ∪

⋃
Ki) is countably connected so by Theorem B there is a conformal

homeomorphism g : f (U ∪
⋃
Ki) → Ω∗, where Ω∗ is a circle domain in a com-

pact Riemann surface S. The image Ω = g(f(U)) is the required domain, and
Li = g(f(Ki)). Indeed, g is conformal on U ∪ f(Ki), so it is an isometry from the
hyperbolic metric of U ∪ f(Ki) to the hyperbolic metric of Ω ∪ Li.

To prove uniqueness, suppose that f : Ω → Ω′ is a conformal homeomorphism
between two domains Ω ⊂ S and Ω′ ⊂ S′, each satisfying the conditions of the
theorem. Let the complementary components of Ω′ be L′

i, i ∈ I. Apply the
argument of §3 to extend f to a conformal homeomorphism of countably connected
circle domains f : Ω∪

⋃
Li → Ω′∪

⋃
L′
i. This must be the restriction of a conformal

map from S to S′ by the final part of He and Schramm’s Theorem B. �

7. Numerical approximation using circle packings

The rest of this paper concerns the practical numerical approximation of finitely-
connected intrinsic circle domains in the sphere. The idea is roughly to follow the
steps of the existence proof, performing each step numerically.

First, we need a way to approximate circle domains having Fuchsian symmetry.
This already presents us with a choice of methods, as there are several numerical
methods for computing circle domains. Finitely connected circle domains can be
approximated using iterated Riemann mapping, the individual steps of which can
be carried out using a number of different methods for computational conformal
mapping. However, we must deal with an infinitely connected circle domain, so
it seems at first sight that we must make decisions about which complementary
components to ignore at any particular stage of the approximation. We will see
that this truncation can in fact be avoided.

Second, if we follow the existence proof directly, it seems that we need to compute
a quasiconformal extension numerically, find its dilatation and then solve a Beltrami
equation on a larger domain. In practice, these steps can be combined into a single
conformal welding step.
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A final practical difficulty may arise in converting the output of each step into
the input for the next step, especially when the steps require different types of grid.

Fortunately, circle packing is a numerical approximation method that offers so-
lutions to all of these challenges. Although circle packing is not often used for
high-precision conformal mapping problems on account of its relatively slow con-
vergence, it is particularly well suited to the approximation of circle domains, es-
pecially those with Fuchsian symmetry. It is also a practical tool for numerical
conformal welding. We were able to carry out all of the steps of an approximation
procedure for computing intrinsic circle domains using the CirclePack software
[11] written by Ken Stephenson et al. For an introduction to circle packing and its
use as a computational tool, we refer the reader to Stephenson’s monograph [10].

7.1. Overview of circle packing. Let T be a finite graph embedded in the plane.
A circle packing of T in the plane is a collection P of circular discs Cv with disjoint
interiors, one corresponding to each vertex v of T , such that whenever vertices v
and w are adjacent in T the discs Cv and Cw are tangent. We call T the nerve
of P. We may also circle pack in the sphere, using discs in the spherical metric,
or in the hyperbolic plane, using hyperbolic circles and possibly also horocircles on
the boundary. The carrier of P is the geometric complex formed by connecting
the centers of neighboring circles by geodesic segments. According to the Koebe-
Andreev-Thurston theorem, when T is any triangulation of the sphere, there exists
a circle packing of T , and it is unique up to Möbius maps and reflection. In this
case, the carrier of P is the entire sphere. Since we want to use circle packings to
approximate conformal structures, we remove the reflection ambiguity by imposing
a fixed orientation.

There is a beautiful algorithm due to Bill Thurston for computing a circle packing
from a given nerve. It works by removing one vertex and packing the remaining
triangulation into the unit disc. This is achieved by computing the hyperbolic
packing label for the packing; this is the function which assigns a hyperbolic radius
to each vertex of the triangulation in such a way that the boundary circles are
given infinite radius so that they correspond to horocircles, are internally tangent
to the unit circle, and all interior circles have finite hyperbolic radius. There is
a unique packing label that results in an angle sum of 2π at each interior vertex.
Thurston’s algorithm approximates the correct label as the limit of a pointwise
increasing sequence of labels. Once the correct packing label is known, the circles
of the given radii can be laid out in the hyperbolic plane iteratively so that each
satisfies the appropriate tangency conditions.

7.2. Outline of the approximation algorithm. Here we outline a numerical
method for approximating intrinsic circle domains. Let Ω be a given finitely con-
nected domain in the Riemann sphere. Begin by taking a circle packing P such
that the interiors of all the circles of P are contained in Ω and the complementary
components of Ω are separated by the carrier of P. All subsequent calculations
depend only on the nerve of P, so it is in this step that we have captured a discrete
approximation to the conformal equivalence class of Ω. The quality of the final
approximation of the intrinsic circle domain Ω∗ conformally equivalent to Ω will
depend on the mesh of P (the size of its largest circle) and the maximum distance
of ∂Ω from the carrier of P.
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We perform a sequence of circle packing computations in order to construct a
triangulation of the sphere together with an embedding of the nerve of P as a
subcomplex. When we compute the circle packing Q of the spherical triangulation,
the carrier of the embedded sub-packing gives an approximation to the intrinsic
circle domain Ω conformally equivalent to U . We can interpolate the mapping of
circle centers of P to the corresponding circle centers in Q to give a polyhedral
embedding of the carrier of P into the carrier of Q. Since we are mapping from
the plane to the sphere, we cannot map in a piecewise affine fashion, so instead we
map in a piecewise affine fashion to the polyhedron in R3 whose vertices are the
vertices of Q in S2, and then project radially outwards to S2. This map gives a
homeomorphism which approximates the conformal map from U to Ω and is locally
quasiconformal.

We will explain informally why each step of the computation provides an ar-
bitrarily good approximation to a conformal map occurring at the corresponding
step in the constructive proof of Theorem 1. Note that the computation consists of
finitely many circle packing steps. In each step we are approximating the solution
of a problem whose solution depends continuously on its data. This should suffice
to prove local uniform convergence of the approximations to the conformal map
from Ω to Ω∗, but we will not attempt to estimate the rate of convergence.

7.3. Approximating circle domains via circle packing. Suppose we are given
a bounded finitely connected domain Ω in the complex plane. We find a sequence
of circle packings Pn in Ω whose carriers exhaust Ω. To construct Pn we cut out a
portion of the regular hexagonal circle packing with circles all of radius ε = 2−n.
This means that we keep only those circles whose interiors are entirely contained in
Ω. Stephenson [10] describes this as using ∂Ω as a “cookie cutter”. We have to take
some care at the boundary: we retain only the largest connected component of the
hexagonal packing that remains, discarding any peripheral islands and iteratively
removing vertices of degree one until we are left with a connected triangulation.
When we take n large enough, the boundary components of this triangulation will
be in one-to-one correspondence with the complementary components of Ω.

Next, to each cycle of boundary vertices of Pn we adjoin a new “ideal” vertex,
adjacent to all of the vertices in the cycle, and in this way we obtain a triangulation
of the sphere. By the Koebe-Andreev-Thurston theorem there is a circle packing
whose nerve is this triangulation, and it is unique up to Möbius transformations.
Consider what happens to this spherical packing as we let n tend to ∞. Using
quasiconformal distortion estimates for packings of bounded vertex degree, one can
show that after a suitable Möbius normalization, the circles corresponding to the
added ideal vertices converge to limit circles of positive radius, while the maximum
radius of the other circles tends to zero uniformly.

Let fn be the polyhedral map from the hexagonal cut-out packing Pn to the
carrier of the spherical packing, normalized so that three chosen points in Ω are
fixed by fn. It turns out that as n → ∞, fn converges locally uniformly on Ω
to a conformal map from Ω to a circle domain. To prove this, we can use the
hex packing lemma of Rodin and Sullivan [7]. This says that the quasiconformal
dilatation of fn converges locally uniformly to 0 on Ω. The Rodin-Sullivan bound
for the quasiconformal dilation on a given face of the triangulation depends only
on the number of layers of hexagonal packing surrounding it, and tends to 0 as
the number of layers tends to infinity. Let Ω′ be any subdomain of Ω bounded
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by Jordan curves in Ω, such that Ω′ is homeomorphic to Ω. The dilatation bound
shows that the images of the maps fn restricted to Ω′ remain within a compact
subset of the Teichmüller space of multiply connected domains homeomorphic to Ω.
Any subsequential limit of the sequence fn must be a conformal homeomorphism,
and its image must be a circle domain. Given the normalization, there is a unique
such homeomorphism. It follows that the sequence fn converges locally uniformly
as n → ∞.

We can augment the image packings by inverting across all the “ideal” circles,
adding circles of degree 4 in the resulting four-sided interstices to maintain a tri-
angulation. By considering moduli of ring domains in the resulting packing it is
possible to show that the maximum radius of any non-ideal circle in the image
packing also converges to 0 as n → ∞.

We have now seen how to compute an arbitrarily good approximation to the circle
domain Ω∗ conformally equivalent to Ω. We may assume that Ω∗ is contained in
the plane.

Figure 3. A circle packing of a circle domain in the Riemann
sphere. Both the domain and the circle packing have sixfold sym-
metry.

7.4. Circle domains with Fuchsian symmetry. Suppose B is one of the com-
plementary components of Ω∗. Let π : D → Ω∗∪B be an analytic universal covering
map. To compute an approximation to the circle domain conformally equivalent to
D \ π−1(B), we use the same trick again. We have a triangulation of Ω∗, to which
we add just one ideal vertex vB corresponding to the complementary component B.
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Now we apply Thurston’s algorithm to compute the hyperbolic packing label for the
resulting multiply connected triangulation. If we lay the circles out according to
this packing label, we get a Fuchsian monodromy group. Call the resulting packing
PB. The circle corresponding to vB and its translates under the monodromy group
approximate the bounded components of the required circle domain. For the con-
formal welding step that follows we will only need to know the hyperbolic radii for
the circles corresponding to the vertex vB and its neighbors. It is not necessary to
perform the layout routine.

Figure 4. A circle packing approximation of the intrinsic circle
domain conformally equivalent to the circle domain in Fig. 3, with
the circle packing of the same complex shown.

7.5. Conformal welding via circle packing. Given a Jordan curve γ in the
Riemann sphere, we can compute the Riemann mappings of the unit disc onto the
interior and the exterior of γ. The boundary values of these Riemann mappings
give two different continuous maps of the unit circle onto γ, φint and φext. The
shape of γ is encapsulated in the boundary correspondence φ−1

ext ◦ φint, which is an
orientation-reversing homeomorphism of the unit circle. Conformal welding is the
process of recovering γ (up to a Möbius map) from the boundary correspondence.

The CirclePack software includes a package for performing approximate con-
formal welding, following the procedure described by Williams [12]. The idea is to
paste two combinatorial closed discs together along their boundaries, according to
a best possible combinatorial approximation of the given boundary correspondence,
to produce a triangulation of the sphere. We then compute the circle packing for
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this triangulation. For example, we may start with two maximal packings of the
unit disc (meaning that the boundary circles are internally tangent to the unit cir-
cle), and use the arc length around the unit circle as a guide for pasting together
the two triangulations, introducing new vertices where necessary to keep control of
the vertex degrees.

In our application to intrinsic circle domains, we weld a combinatorial closed disc
to the boundary cycle corresponding to each complementary component B of Ω,
using the arc length around the circle corresponding to vB in the packing PB and
the trivial boundary correspondence eiθ �→ e−iθ. A suitable choice of combinatorial
closed disc would be a large section of the regular hexagonal packing, then the
hex packing lemma of Rodin and Sullivan can be applied to show that the desired
welding and the computed welding differ by a quasiconformal map which has small
dilatation except on an annulus of small modulus and small area covering the cycle
of edges along which the welding is performed. After performing a welding for each
boundary component, we simply apply Thurston’s algorithm to compute a circle
packing of the resulting spherical triangulation. In the case where the ambient
Riemann surface R has positive genus, we would compute a packing of the universal
cover of the welded complex at this stage to get a circle packing approximation to
the Riemann surface S.

The finished spherical circle packing gives an approximation to the map ϕ and to
the desired conformal structure on the interior of each complementary component
of ϕ(Ω), and on the interior of the image of ϕ(Ω).

7.6. Convergence. We sketch a proof that the approximation scheme described
above does converge locally uniformly on the domain Ω∗ to the conformal mapping
to an intrinsic circle domain, after suitable normalization. The strategy is to show
that every map appearing in Figure 1 is well approximated by the corresponding
polyhedral map between circle packings. Then since each step depends continuously
on its input data, we will find that the polyhedral map from P∗ to S2 converges
locally uniformly on Ω∗ to the desired conformal mapping.

On the subcomplex of the packing representing the intrinsic circle domain, the
hex-packing distortion estimate of Rodin and Sullivan shows that the polyhedral
mapping is quasiconformal with dilatation that converges locally uniformly to zero.
We can apply a similar estimate on the interior of each complementary component.

It remains to show that the conformal welding step is well approximated by the
discrete conformal welding. To do this we have to control the conformal modulus of
the image of a narrow annular neighborhood of each boundary component, where
the circles are not deep enough in the hex packing for the Rodin-Sullivan estimate
to give the bound we need. To do this it suffices to bound the maximum degree of
the vertices appearing in the final triangulation. This is because the Rodin-Sullivan
ring lemma allows the quasiconformal distortion of polyhedral maps between circle
packings to be bounded in terms of the maximum degree. We can arrange that
all vertices have degree 6 except those involved in the combinatorial welding. The
largest degree arising when we weld using the hyperbolic radii of the neighbors of
vB in the packing PB can be bounded in terms of the ratio between the radii of the
largest and smallest circles adjacent to vB. Since we began with a hex-packing of Ω
with circles all of equal radius, this ratio is controlled in the limit by the maximum
and minimum value of the derivative on the boundary ∂B of the conformal map
h ◦ π−1.
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Figure 5. A circle packing of a circle domain with four comple-
mentary components.

7.7. Practical considerations. Examining the figures, the reader will note that
in our numerical experiments we have not restricted ourselves to using hex packings
as our starting point. Instead we have used packings with a few layers of degree
7 vertices near the boundary, so that there are many very small circles on the
boundary without needing a very large number of circles in total. This was done to
reduce the errors from the combinatorial welding step. We pay for this by having
larger circles far from the boundary, and losing the rigorous distortion bounds, but
this seems a worthwhile trade since we expect the Schwarzian derivative of the map
that we are approximating to be small on this region. In Figures 3 and 4 there
are circles of degree 15 fixed by a rotational symmetry of the packing of order 3.
The Schwarzian derivative of the map we are approximating must certainly vanish
at the center of this circle, by symmetry considerations. Apart from two circles of
this type, the maximum degree in the packing is 10. In the packings in Figures 5
and 6, the maximum degree is 7.

Finally, we comment that it may be more satisfactory from the point of view
of computation, and also to simplify the convergence proof, to perform the dis-
crete conformal welding using packings with specified overlap angles rather than
restricting ourselves to tangency packings. However, we have not implemented this
in practice.
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Figure 6. The spherical circle packing used to compute the in-
trinsic circle domain conformally equivalent to the circle domain
shown in Fig. 5.
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