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JULIA SETS ON RP2 AND DIANALYTIC DYNAMICS

SUE GOODMAN AND JANE HAWKINS

Abstract. We study analytic maps of the sphere that project to well-defined
maps on the nonorientable real surface RP2. We parametrize all maps with
two critical points on the Riemann sphere C∞, and study the moduli space
associated to these maps. These maps are also called quasi-real maps and are
characterized by being conformally conjugate to a complex conjugate version
of themselves. We study dynamics and Julia sets on RP2 of a subset of these
maps coming from bicritical analytic maps of the sphere.

1. Introduction

The motivation for this paper comes from multiple directions, with the common
theme of studying Julia sets for iterated maps of the real projective plane, which we
will denote by RP2. We iterate maps on RP2 that lift to analytic maps of the double
cover C∞; these are called dianalytic maps of RP2. The first mention of the topic
is in a paper by Milnor on bicritical rational maps [10], where he devotes a brief
section to real bicritical analytic maps of the sphere, defined by having moduli space
coordinates that are real. The moduli space of a parametrized family of rational
maps is the space of conformal conjugacy classes of the maps. In this context, in
([10, Section 6]) there is a paragraph describing antipode-preserving maps along
with several illustrative diagrams of parameter space. The second source is a paper
by Barza and Ghisa on dianalytic maps on Klein surfaces (nonorientable surfaces
with some complex structure) [1]. They give a general form for dianalytic maps on
RP2, which includes the case discussed in [10] and more. Further inspiration for
this paper occurred in a talk by Silverman on quasi-real maps of the sphere. These
are described in an algebraic context of field extensions, with analytic maps of the
sphere giving well-defined maps on a suitable quotient space (in this case RP2),
arising as a basic example. Finally the authors are continuing a study begun in [6]
on topological and measure theoretic properties of smooth noninvertible maps of
surfaces.

Much of what is contained in this paper is a rigorous melding of the ideas of the
three sources mentioned above, with the overarching goal of proving results about
dianalytic dynamics and Julia sets on the projective plane by focusing on a class of
maps illustrating some of the rich dynamics found there. In particular, we establish
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some basic topological properties of Julia and Fatou sets for bicritical rational maps
of C∞ that yield dianalytic maps of RP2; we derive Milnor’s normal form for these
maps; and we explore in detail the dynamics of degree 3 maps that lie along the
boundary of their parameter space. One specific goal was to find a dianalytic map
of RP2 which is topologically transitive, and by finding one with empty Fatou set
(Theorem 5.14 of this paper) we accomplish this task.

In Section 2 we give the definitions and ideas behind real and quasi-real maps
of the sphere and outline the connection to dianalytic maps of the real projective
plane. A rational map is real if it is conformally conjugate to a map that leaves the
real line invariant, or equivalently has real coefficients. It is quasi-real if it is not
real, but is conformally conjugate to its complex conjugate map. The main results
in Section 2 are to give examples of real and quasi-real rational maps of C∞, and to
give a normal form for quasi-real maps that are bicritical, which we do in Theorem
2.6. We then show in Corollary 2.8 that each of these quasi-real maps induces a
dianalytic map on RP2 by showing it commutes with the antipodal map.

In Section 3 we connect Milnor’s normal form of bicritical quasi-real maps with
real moduli space [10], to a normal form of dianalytic maps given by Barza and
Ghisa [1], and to the form derived in Section 2. For any odd degree n ≥ 3, we
give a reduced form for bicritical quasi-real maps, and describe the closure of their
moduli space.

Section 4 turns to a study of Julia sets of these maps, and in Theorem 4.5
we describe what types of nonrepelling cycles can occur. In Proposition 4.7 we
show that Julia sets of bicritical dianalytic maps on RP2 and their lifts on C∞ are
always connected sets. However some interesting topological changes occur under
the projection from the sphere to the real projective plane obtained by identifying
antipodal points as is described in Proposition 4.8 and its corollary.

In Section 5 we show the existence of dianalytic maps of RP2 with full Julia
set and also prove results that describe in some detail moduli space, where each
point represents a conformal conjugacy class of a map, using techniques from circle
homeomorphisms that apply in this setting. Finally in Section 6 we show that minor
changes in the form of the maps studied in this paper still induce dianalytic maps
of degree 3, but by dropping the bicritical condition, more complicated behavior
can occur. We support these claims with numerical and graphical evidence.

2. Real and quasi-real rational maps

The main goal of this section is to show that every bicritical quasi-real map
induces a unicritical dianalytic map on RP2, by first conjugating each to a normal
form. Theorem 2.6 and its corollary are the main results that accomplish this.
We begin with a brief discussion about quasi-real maps. If R is a rational map

of the Riemann sphere, denoted C∞, then we write R(z) = p(z)
q(z) with no common

factors between the polynomials p and q. Whenever we say a rational map R is
conformally conjugate to another rational map f , we mean that there is a Mobius
transformation M = az+b

cz+d , ad − bc �= 0, such that R = M ◦ f ◦M−1. We use the
terminology conformally conjugate throughout, since we use another meaning of
conjugate (meaning complex conjugation) regularly as well. A rational map f is
defined over R, or simply real if either f has real coefficients or f is conformally
conjugate to a rational map R such that R has real coefficients.
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We characterize real numbers in C by this property: z ∈ R ⇔ z = z, where z de-
notes complex conjugation. In order to transfer some interesting complex dynamics
to the real projective plane RP2, we perform an operation, analogous to complex
conjugation, on rational maps.

Given a rational map R, we define the complex conjugate of R by

R(z) = R(z).

Our first observation is that if γ(z) = z, then γ is an involution and R = γ ◦R ◦ γ.
We note that if p(z) = a0 + a1z + · · · + anz

n, and q(z) = b0 + b1z + · · · + bmzm,
then using γ(az) = γ(a)γ(z), and γ ◦ γ(z) = z,

(2.1) R(z) =
a0 + a1z + · · ·+ anz

n

b0 + b1z + · · ·+ bmzm
.

In other words R just conjugates the coefficients of R; however the map γ is anti-
holomorphic, so R is not necessarily conformally conjugate to R. For example,
given a quadratic polynomial of the form p(z) = z2 + c, it is well-known that if
c /∈ R, then z2 + c is not conformally conjugate to z2 + c. (see, e.g., [11]) This is
the jumping off point of our study. We first take a look at some real rational maps.

If R has real coefficients, then clearly R leaves the real line invariant; however a
real rational map could leave a circle invariant instead since it is only conformally
conjugate to one with real coefficients. We have the following class of examples of
real maps.

Lemma 2.1. If f(z) = azn or f(z) = a/zn, a ∈ C \ {0}, n ≥ 2 an integer, then f
is defined over R.

Proof. If f(z) = azn, then M(z) = ζz, with ζ = a−1/(n−1) satisfies M−1 ◦ f ◦M =
zn. If f(z) = a/zn, then M(z) = ζz, with ζ = a1/(n+1) satisfies M−1 ◦ f ◦ M =
1/zn. �

The following terminology, which we adopt for this study, was used by Silverman
in a presentation [14].

Definition 2.2. Assume that f is a rational map of C∞ of degree n ≥ 2. We define
f to be quasi-real if f is conformally conjugate to f but f is not defined over R.

Example 2.3. We consider the map R(z) = −i
(z + 1)3

(z − 1)3
, with R(z) = i

(z + 1)3

(z − 1)3
.

We can easily verify that

(2.2) R(z) =
−1

R(−1/z)
=

−1

i

(1 + z)3

(−1 + z)3
= i

(z + 1)3

(z − 1)3
.

Remark 2.4. It is useful to think of C∞ as an orientable double cover of RP2, via the
anti-holomorphic involution φ(z) = −1/z, which is the antipodal map on C∞. We
note that φ has no fixed points so induces an equivalence relation on C∞ with each
equivalence class containing exactly 2 points. Taking the quotient by the relation
∼φ gives RP2 the structure of a nonorientable Klein surface [1], and we use p to
denote the quotient map from C∞ to RP2 using ∼φ.

The anti-holomorphic conjugacy of equation (2.2) implies that R induces a well-

defined dianalytic map on RP2, which we will denote by R̂. To see this, we note
that antipodal points z∗ and −z∗ on the sphere in R3 correspond via stereographic
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projection to points in the plane of the form z and −1/z, respectively. For a rational
map R on C∞ to be well-defined on RP2, therefore, R must take antipodal points
to antipodal points. This means that for all z ∈ C∞,

(2.3) −1/R(z) = R

(
−1

z

)

for all z ∈ C. Taking the complex conjugate of both sides of (2.3) and substituting
w = −1/z gives the leftmost equality of (2.2).

A result of Borsuk from 1933 says that every continuous map of C∞ that com-
mutes with the antipodal map must have odd degree [3], (see also [7, Chapter 2,
§6]). A special case of this result is also proved in Theorem 2.6 below, but first we
look at some quasi-real maps. While the next result is true in greater generality,
we turn to the class of mappings of interest in this paper to show that they are
quasi-real or real.

Proposition 2.5. Let n ≥ 3 be an odd integer. For any a, b ∈ C, not both zero,

(2.4) f(a,b)(z) =
azn + b

−bzn + a

is conformally conjugate to f(a,b) = f(a,b). That is, each map satisfying (2.4) is

quasi-real or real. Moreover, f(a,b) commutes with the antipodal map φ.

Proof. We define the involution Mι(z) = −1/z, and conjugate f(a,b) by Mι. Writing
f = f(a,b) we compute that

f

(
−1

z

)
=

bzn − a

azn + b
= − 1

f(z)
,

so f ◦Mι = Mι ◦ f .
Since φ = Mι ◦ γ = γ ◦Mι,

(2.5) φ ◦ f ◦ φ = Mι ◦ (γ ◦ f ◦ γ) ◦Mι = Mι ◦ f ◦Mι = f,

so f commutes with φ. �

For bicritical quasi-real maps, we prove a converse to Proposition 2.5. In [10]
a short proof is given to show that any analytic map R : C∞ → C∞, of degree
n ≥ 2 with exactly two distinct critical points is, up to conjugation by a Mobius
transformation, of the form

(2.6) R(z) =
azn + b

czn + d
, a, b, c, d,∈ C, ad− bc �= 0.

The two critical points are at 0 and ∞, and each is of order n− 1.

Theorem 2.6. If f is a quasi-real (and not real), bicritical, rational map of degree
n ≥ 2, then n is odd and f is conformally conjugate to a rational map of the form
(2.4).

Moreover, the Mobius map Mι(z) = −1/z satisfies Mι ◦ f = f ◦Mι.

Proof. We start with a bicritical rational map f of the form (2.6), and assume
that f is conformally conjugate to f . We also assume that f is not real. The
conjugating Mobius map M(z) must either fix the critical points 0 and ∞ or switch
them. We consider first the case when M fixes them, in which case M(z) = ζz
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for some ζ ∈ C. Assume for now that none of a, b, c or d is 0. Then calculating
M−1(f(M(z))) = f(z) gives

ζ−1f(ζz) =
aζn−1zn + ζ−1b

cζnzn + d
=

azn + b

czn + d
;

this implies

(2.7) d = d, ζ−1b = b, aζn−1 = a, cζn = c .

Therefore d must be real. We label the critical values v0 = f(0) = b/d and
v∞ = f(∞) = a/c; since M must also map the critical values of f to the critical

values of f , M(b/d) = ζb/d = (b/d) so ζ = ζ−1 = 1, using the second equality in
(2.7). Hence M is the identity and f is a real map, contrary to our assumption.

If d = 0, then a, b, c �= 0 by Lemma 2.1, and we have |ζ| = 1; under this
hypothesis f(0) = ∞ = f(0). Then M maps v∞ to the corresponding critical value

for f , namely v∞, so M(a/c) = ζa/c = (a/c). Using substitutions from equation
(2.7), we have that ζ = ζ−1 = 1. Again we reach a contradiction to f not being
real. We argue similarly if any other one of a, b, c is 0.

Therefore M(0) = ∞ and M(∞) = 0; i.e., M(z) = ζ/z. For similar reasons to
those given above and using Lemma 2.1, we can assume a, b, c, d �= 0. Expanding
f ◦M = M ◦ f , we obtain the equation

(2.8) f(ζ/z) =
bzn + ζna

dzn + cζn
=

ζ

f(z)
=

ζczn + dζ

azn + b
,

which implies the following:

(2.9) a = d, ζc = b, ζnc = b, ζn−1a = d .

The first and last equations in (2.9) imply that

(2.10) ζn−1 = 1;

so, in particular, |ζ| = 1 and

(2.11) ζ = ζ−1.

Then the two middle equations in (2.9) with (2.11) imply that

(2.12) ζn+1 = 1.

It is clear now that equations (2.10)–(2.12) imply that ζ2 = 1, and the first possi-
bility is that ζ = −1 and so M(z) = −1/z, which implies that d = a and −b = c
and n is odd (using all the equations of 2.9), and f is conjugate to a map of the
form (2.4).

The remaining case is that ζ = 1 and M(z) = 1/z; if so, then equations (2.9)
give

(2.13) f(z) =
azn + b

bzn + a
.

We assume that both a and b are nonzero because those cases were covered earlier,
and that b �= eisa for some real s, because this would make f a constant function.
Equation (2.13) is equivalent to

(2.14) f(z) = e−it zn + b/a

(b/a) zn + 1
, eit = a/a,
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which maps the unit circle into itself since f can be written as a Blaschke product.
(There is a good discussion of Blaschke products in [11, Chapter 15].) By conju-
gating f by a Mobius map that takes the unit circle to the real line, we see that f
is defined over R; the conjugated map would leave R invariant, and hence has real
coefficients. Therefore the theorem is proved. �

Remark 2.7. To express equation (2.14) as a Blaschke product, we set c = −b/a
and let c1, c2, . . . , cn be the distinct roots of the equation zn − c = 0. None of the
cj lie on the unit circle, so the product can be written as

f(z) = eiθ
n∏

j=0

z − cj
−cjz + 1

, for some θ ∈ [0, 2π).

We obtain the following corollary which helps us analyze the complex and dy-
namical structure of quasi-real maps more closely in Section 3. A similar result to
Corollary 2.8 (2) appears in [1].

Corollary 2.8. (1) Every bicritical quasi-real analytic map f of degree n ≥ 2 on
C∞ induces a degree n dianalytic map of RP2 with one critical point.

(2) Let n ≥ 3 be an odd integer. For any a, b ∈ C, not both zero, suppose

f(a,b)(z) =
azn + b

−bzn + a
, as in equation (2.4). Then f(z) induces a degree n

dianalytic map on RP2 with one critical point.

Proof. Under the hypotheses given by Theorem 2.6, we can assume f is of the form
(2.4), so it is enough to prove (2). If f satisfies (2.4) then by Proposition 2.5 f
commutes with the antipodal map and therefore defines a dianalytic map on RP2.

The map f is bicritical with critical points of order n − 1 at 0 and ∞. Since
φ(0) = φ(∞), these critical points are identified on RP2. Similarly each point
ω ∈ C∞ has n preimages, S = {ω1, . . . , ωn} counted with multiplicity, and these
are the same preimages for the induced map on RP2, after identifying S with
φ(S). �

3. Normal forms of bicritical quasi-real maps

and Milnor’s coordinates

We are interested in studying the dynamics of unicritical dianalytic maps of
RP2 along with their Julia sets. Typically we study these maps only up to confor-
mal conjugacy so we consider moduli space. Recall that a point in moduli space
corresponds to an equivalence class of conformally conjugate maps.

Most of the analysis is done through studying the lifts of the maps on the Rie-
mann sphere, where they are bicritical rational maps. It is helpful to start with an
appropriate normal form for our maps. The goal of this section is to prove that
the moduli space for degree n unicritical dianalytic maps of RP2, with n any odd
integer greater than 3, is naturally viewed as a sector of the complex plane whose
angle depends only on n. We also compare our result with Milnor’s presentation of
the same moduli space given in [10].

In the previous section, we showed that a quasi-real bicritical map is conformally
conjugate to one of the form (2.4) with n odd, and further that such a map com-
mutes with the antipodal map φ. Combining results of Milnor ([10, Lemma 1.1])
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and Barza-Ghisa ([10, Theorem 3.1]), an antipode-preserving map with critical
points only at 0 and ∞ must be of the form

(3.1) f(z) = eiθ
azn + b

−bzn + a

for some odd n ∈ N and with |a|2 + |b|2 �= 0. The critical points at 0 and ∞ both
have order n− 1.

We can represent each map f of the form in (2.4) in matrix form:

Af =

[
a b

−b a

]
.

We need detAf �= 0 (or we do not get a rational map of degree n), but clearly
Af is not unique. Multiplying every coefficient by the same constant we leave f

unchanged while changing Af , so by multiplying each entry of Af by (detAf )
−1/2,

we can assume without loss of generality that detAf = 1. Moreover, the matrix
−Af represents the same map f .

If f is of the form given in (3.1), using the same matrix notation,

A(f,θ) =

[
eiθa eiθb

−b a

]
.

We remark that detA(f,θ) = eiθ detAf . By multiplying each entry by e−iθ/2 =(
detA(f,θ)

)−1/2
, and noting that eiθ/2a = e−iθ/2a, we now see that any bicritical

dianalytic map of degree n ≥ 3, hence a map of the form (3.1) for some odd n ≥ 3,
can be written as

(3.2) f(z) =
azn + b

−bzn + a
, |a|2 + |b|2 = 1.

The group of matrices A satisfying

(3.3) detA = det

[
a b

−b a

]
= |a|2 + |b|2 = 1,

is isomorphic to the group SU(2); and since the matrix is defined only up to sign,
the group of dianalytic maps on RP2 is isomorphic to SO(3), which has 3 real
dimensions. Consequently we can identify the group of transformations of the form
(3.1) with the group SO(3), which is doubly covered by SU(2), the group of 2× 2
unitary matrices (with complex entries) with determinant 1. The group SO(3) is
3 (real) dimensional, but we will make identifications on the maps that reduce the
dimension further.

In the dianalytic setting, conjugating two maps that commute with the antipodal
map on C∞ imposes constraints on the conjugating Mobius map M(z) = az+b

cz+d . In
particular, using the same matrix shorthand to represent the map M , AM needs
to satisfy the condition (3.3), and M must fix or interchange the critical points.
Therefore conjugating maps must have the form M(z) = eiθz or M(z) = eiθ/z.

In Theorem 3.1 we present a convenient normalization of the form: fα(z) =
zn+α

−αzn+1 , α ∈ C, and parametrize it by the complex number α = u + iv, u, v ∈ R;
therefore moduli space has 2 real dimensions.
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Theorem 3.1. Every bicritical rational map of C∞ of (odd) degree n ≥ 3 inducing
a dianalytic map of RP2 is conformally conjugate to exactly one of the form

(3.4) fα(z) =
zn + α

−αzn + 1
, arg(α) ∈ [0, π/(n− 1)].

Proof. We first assume that f is bicritical of odd degree n ≥ 3, has critical points
at 0 and ∞, and induces a dianalytic map on RP2, so it is of the form

f(z) =
azn + b

−bzn + a

for some odd n; writing a = reiθ, we can assume r2 + |b|2 = 1.
We consider the Mobius map M(z) = e2iθ/(n−1)z and compute the conjugate

map g = M ◦ f ◦M−1. We have

g(z) = e2iθ/(n−1) reiθe−i2θ(n/n−1)zn + b

−be2iθ(n/n−1)zn + re−iθ
,

and simplifying, and multiplying each coefficient by eiθ gives

g(z) =
rzn + beiθ(n+1)/(n−1)

−beiθ(n+1)/(n−1)zn + r
.

We note that we have not changed the determinant; i.e., detAg = r2 + |b|2 = 1.
To obtain the normal form stated in the theorem, we divide each entry by r. We

then set α = (b/r)ei[θ(
n+1
n−1 )] = (b/r)

(
ei[(n+1)θ]

) 1
n−1 .

We remark that α is only defined up to a choice of (n− 1)th roots. Therefore we
can find precisely one value of α in the sector arg(α) ∈ (−π/(n− 1), π/(n− 1)].

If 
(α) ≥ 0, the result is proved. If 
(α) < 0, by Proposition 2.5, we have that
f(1,α) is conformally conjugate to f(1,α) = f(1,α), so we choose α to be the unique
parameter that works. �

Milnor’s Coordinates. For n = 3 the parametrization in Theorem 3.1 is equiv-
alent to that in [10], where it is shown that every conformal equivalence class can

be represented by a pair of real coordinates, X and Y , given by X = − |α|2
1+|α|2 , and

Y = 2�(α2)
(1+|α|2)3 .

We show in Figure 1 the image of the first quadrant mapped onto the moduli
space in [10] given as follows:

Writing each α = u+ iv, u, v ∈ R+, we define the map

(X,Y ) = G(u, v) =

(
−(u2 + v2)

1 + u2 + v2
,

2(u2 − v2)

(1 + u2 + v2)3

)
.

Using polar coordinates and writing α = (r, θ), then

(X,Y ) = G(u(r, θ), v(r, θ)) =

(
− r2

1 + r2
,
2r2 cos(2θ)

(1 + r2)3

)
.

Under the assumption that u, v ≥ 0, the closed first quadrant is mapped in-
jectively onto the region in R2 with X ∈ (−1, 0), and Y bounded by the curves
Y = ±2X(X + 1)2. We show the regions for α ∈ C, with 
(α),�(α) ≥ 0 and its
homeomorphic image as (X,Y ) in Figure 1. Conversely, given a pair of coordinates
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�1
X

�0.3

�0.2

�0.1

0.1

0.2

0.3
Y

Figure 1. The image of the first quadrant mapped by G onto
the Milnor (X,Y ) parametrization. The ray u = v is mapped to

Y = 0. The (red) ray v = 0 is mapped to Y = 2
√
X2(X + 1)4

(X,Y ) (with the bounds given above), we can find a unique α = reiθ with θ ∈ [0, π
2 ]

using

r =

√
−X

X + 1
, θ =

1

2
arccos

(
−Y

2X(1 +X)2

)
.

For n > 3 and odd, coordinates are defined analogously in [10]. As before,
X = −|α|/(1 + |α|2), but Y = 2�(αn−1)/(1 + |α|2)n, which has easily computed
rectangular and polar forms.

We continue our study of moduli space in Section 5, but first we turn to a
discussion of Julia sets.

4. Julia sets on RP
2

For any rational map R : C∞ → C∞ of degree n ≥ 2, the Fatou set, F (R), is
the maximal open set in C∞ on which the family of analytic maps {Rn} is normal,
where Rn = R ◦R ◦ · · · ◦R denotes the n-fold composition. The Julia set, J(R), is
its complement.

A point z0 ∈ C∞ is a periodic point of R of period k if Rk(z0) = z0 and k ∈ N

is minimal. When k = 1, z0 is a fixed point. A periodic point z0 of period k lies in
a k-cycle, namely {z0, R(z0), . . . , R

k−1(z0)}, and each point in the cycle is a fixed
point of Rk. It is a standard exercise that F (R) = F (Rk) for each k ≥ 2, from
which it follows that J(R) = J(Rk).

For each fixed point of R, we define the multiplier of z0 by R′(z0) if z0 ∈ C;
if z0 = ∞, we define it to be lim

z→0
1/R′(1/z). Using a slight abuse of notation,

we denote the multiplier by R′(z0) for all z0 ∈ C∞. The multiplier of a k-cycle
containing z0 is the multiplier of z0 as a fixed point ofRk. We recall the classification
of periodic points for a rational map R of degree n ≥ 2. If z0 is a periodic point of
period k ≥ 1, then:

(1) z0 is attracting (superattracting) if |(Rk)′(z0)| < 1(= 0);
(2) z0 is repelling if |(Rk)′(z0)| > 1;
(3) z0 is neutral if |(Rk)′(z0)| = 1;

(a) a neutral periodic point is rationally neutral or parabolic if (Rk)′(z0)
is an mth root of unity.

(b) a neutral periodic point is irrationally neutral if it is not parabolic.
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We refer to books by Beardon [2], Carleson and Gamelin [5], and Milnor [11] for
statements and proofs of the fundamental results in complex dynamics connecting
periodic points and Julia and Fatou sets. We summarize a few results that are
useful in our setting.

Theorem 4.1. Assume f is a rational map of the form (3.4) of odd degree n ≥ 3
and U is a connected component of the Fatou set F (f). Then some forward iterate
of U is periodic, i.e., there exists m ∈ N such that V = fm(U) is periodic, and V
is one of the following types:

(1) an attracting component and V contains an attracting (superattracting)
periodic point z0;

(2) a parabolic component and ∂V contains a parabolic periodic point z0;
(3) if V contains an irrationally neutral periodic point z0, then V is a Siegel

disk.

Proof. This follows from the Sullivan Nonwandering Theorem (see, e.g., Theorem
1.3 in [5]) and the classification of forward invariant Fatou components for rational
maps (see, e.g., Theorem 2.1 in [5]). For bicritical maps, Herman rings cannot
occur, and a proof is given in ([10, Theorem A.1]). �

Assume that fα is of the form given in (3.4). Since the spherical metric on
C∞ is φ invariant, the notions of equicontinuity and normality of the family of
maps {fn

α}n≥1 pass from C∞ to RP2, so the Julia set induced by fα on RP2 is
well-defined and is just the projection of J(fα) on C∞. The map on RP2 given by

f̂α([z]) := p ◦ fα ◦ p−1([z]), with [z] the equivalence class of z ∈ C∞ under φ, is

well-defined as are its iterates. We denote by J(f̂α) the Julia set on RP2 and define

it to be the projection by the map p of J(fα); equivalently, we define F (f̂α) directly

on RP2 in the obvious way. Every map fα induces f̂α on RP2; then F (f̂α) is the

domain of normality of the family of iterates {f̂α
n}, and J(f̂α) is its complement

in RP2.
The antipodal symmetry of the Julia set of fα is evident on the sphere as can

be seen from the next result (see also Figure 2).

Proposition 4.2. If fα is a rational map of degree n ≥ 3 of the form (3.4), then
J(fα) and F (fα) have the following symmetries:

(1) ωjJ(fα) = J(fα), for ω = e
2πi
n , j = 0, . . . , n− 1.

(2) ωjF (fα) = F (fα), for ω = e
2πi
n , j = 0, . . . , n− 1.

(3) φ(J(fα)) = J(fα) and φ(F (fα)) = F (fα).

Proof. Since for each z ∈ C∞, fk
α(z) = fk

α(ω
jz) for all k ∈ N, and for each j =

0, 1, . . . , n − 1, it follows that z0 ∈ F (fα) ⇔ ωjz0 ∈ F (fα). The third statement
holds since φ is an isometry on C∞ with respect to the spherical metric, so z0 ∈
F (fα) ⇔ φ(z0) ∈ F (fα). �

Lemma 4.3. Assume f : C∞ → C∞ commutes with the map φ(z) = −1/z. Then
z0 is a fixed point for f if and only if w0 = −1/z0 is a fixed point for f .

Proof. If f(z0) = z0, then the hypothesis implies that f(−1/z0) = −1/z0 . �

Proposition 4.4. Suppose f is analytic on C∞ and commutes with φ, and z0 is a
fixed point for f . Then w0 = −1/z0 is also fixed for f and f ′(w0) = f ′(z0).
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Figure 2. On the left, J(f1.86) has a single attracting 8-cycle. On
the right, the antipodal symmetry of the Julia set is shown with
the unit circle in green in both pictures.

Proof. By Lemma 4.3 it is enough to prove the statement about the multipliers of
the fixed points. We assume z0 and w0 = −1/z0 are fixed under f . If we regard
the sphere as a smooth manifold, we consider the derivatives of the maps on C∞,
f ◦ φ = φ ◦ f , i.e.,

D(f ◦ φ)(z) = D(φ ◦ f)(z), ∀z ∈ C.

Since f(z0) = z0, then

Df(φ(z0))Dφ(z0) = Dφ(z0)Df(z0).

Therefore, since φ is anti-holomorphic, Dφ(z0) is nonsingular and thus the two
linear transformations Df(w0) and Df(z0) have the same spectrum, namely the set

of eigenvalues: {f ′(z0), f ′(z0)} (possibly repeated). Therefore f ′(w0) = f ′(z0). �

We recall that if z0 is an attracting fixed point of f , then z0 ∈ F (f) and the
immediate basin of attraction is the connected component of F (f) containing z0. If
{z0, f(z0), . . . , fk−1(z0)} is an attracting cycle of period k, then each zj = f j(z0)
is an attracting fixed point for fk and the immediate basin of attraction for the
k-cycle is the union of the immediate basins of the k fixed points zj of fk. The
basin of attraction of the fixed point z0 is the open set V ⊂ F (f) consisting of all
points z ∈ C∞ such that limn→∞ fn(z) = z0.

Theorem 4.5. Suppose for a map fα of the form (3.4) there exists a periodic
connected component U ⊂ F (fα), associated with the nonrepelling k-cycle B =
{z0, fα(z0), . . . , fk−1

α (z0)}. Then exactly one of the following holds:

(1) B = φ(B); in this case B is the only nonrepelling cycle for fα. This cannot
occur for k = 1 (or any odd period).

(2) B ∩ φ(B) = ∅; in this case, there exist exactly two nonrepelling cycles for
fα and they are antipodal to each other on C∞.
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Figure 3. On the left, J(fi) has two attracting 2-cycles (0, i)
and (∞,−i). On the right, J(f1) has one attracting 4-cycle at
(0, 1,∞,−1). Both collapse to a single attracting 2-cycle on RP2.

Proof. Assume U is a periodic component of F (fα). Then by Theorem 4.1, U
has a nonrepelling k-cycle associated to it, and, in turn at least one critical point
associated to it. More precisely there is a critical point in the immediate attracting
basin for cases (1) and (2) in Theorem 4.1, or with an infinite forward orbit closure
containing the boundary of the Siegel disk cycle in case (3) [2]. If there are two
nonrepelling cycles for fα, then one of the cycles, say B, is associated to 0, while
∞ corresponds to the other one. By Lemma 4.3 the second cycle must be φ(B).
Therefore B ∩ φ(B) = ∅.

If there is a pair of points z0, φ(z0) ∈ B, then φ(z0) = fm
α (z0), for some 1 ≤ m ≤

k− 1, so since φ ◦ fm
α = fm

α ◦ φ, for all m ∈ N, B = φ(B). In this case both critical
points c1 = 0 and c2 = ∞ = φ(c1) must be associated to the same cycle B so no
other nonrepelling cycles can occur. Since φ has no fixed points, B must contain
z0 and φ(z0) for each z0 ∈ B, so has an even number of points and hence an even
period k. �

Remark 4.6. Figure 3 illustrates the result of Theorem 4.5. A cycle satisfying (1)
of Theorem 4.5 must have an even period, say 2k, and is referred to in [10] as a
k+k cycle since under the quotient map p it becomes a k-cycle on RP2 (see Remark
(2.4)). We refer to it here as a collapsing cycle. Each cycle of type (2) is called a
k-cycle or a noncollapsing k-cycle.

Proposition 4.7. J(fα) and J(f̂α) are connected.

Proof. If fα(z0) = z0, then by Lemma 4.3 w0 = −1/z0 �= z0 is also fixed. For a
bicritical rational map R, there is a dichotomy stating that the Julia set is either
connected or totally disconnected (homeomorphic to a Cantor set); this is Theorem
3.1 in [10]. In the totally disconnected case there is exactly one nonrepelling fixed
point, and both critical points lie in the immediate attracting basin of that point
(see, e.g., [10]). Since in our setting there cannot be exactly one nonrepelling fixed
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Figure 4. For many parameters, (extremely small and extremely
large), J(fα) is a quasicircle.

point by Proposition 4.4, the disconnected case is impossible. Therefore J(fα) is

connected on C∞, and since J(f̂α) is the image of a connected set under a continuous
mapping, it is connected as well. �

A Jordan curve C is a quasicircle if C is the image of a circle under a quasicon-
formal homeomorphism of the sphere.

Proposition 4.8. Assume fα is of odd degree n ≥ 3.

(1) If fα has exactly one attracting period 2 orbit, then it is collapsing, and

J(fα) is a quasicircle. Moreover, the map f̂α on RP2 has a single attracting
fixed point and no other nonrepelling cycles.

(2) If fα has two distinct attracting fixed points, p and q, then J(fα) is a

quasicircle and f̂α has one attracting fixed point on RP2 .

Proof. If f = fα has exactly one attracting period 2 orbit, {p, q}, then q = −1/p. If
not, then let p̃ = −1/p, and we have that {p̃, q̃} is also an attracting period 2 orbit.
By hypothesis, we have p̃ = q, since it cannot be equal to p. We must have 0 lying
in the same Fatou component as either p or q, so assume it is in the component
containing p, call it Fp, hence the other critical point ∞ lies in the same Fatou
component as q, namely Fq = φ(Fp). Consider f−1(Fp): it must contain Fq since
f(q) = p, and so contains the order n− 1 critical point at ∞. This implies that Fq

is an n-fold covering of Fp by the map f , hence contains all the preimages of Fp.
By symmetry the same is true for Fp covering Fq. Therefore there cannot be any
other Fatou components. It has been proved that if the Fatou set has exactly two
components and f is hyperbolic on J(f), then J(f) is a quasicircle (see [5, Theorem
VI.2.1]). The points p and q are identified under φ so there is a single attracting

fixed point for f̂ on RP2.
If f has exactly 2 attracting fixed points, p and q, then q = −1/p. The rest of

the argument is the same. �

Recall that a Jordan curve C lying on a surface S is separating if S \ C consists
of 2 connected components; otherwise C is called nonseparating. Every quasicircle
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on C∞ is separating. Before giving a corollary of Proposition 4.8, we prove a
topological lemma which is of general interest. To avoid confusion with complex
conjugation, we let cl(U) denote the topological closure of a set U ⊂ C∞.

Lemma 4.9. If C is a Jordan curve on C∞, such that φ(C) = C, then p(C) is a
nonseparating Jordan curve on RP2.

Proof. By the Jordan curve theorem and the Schoenflies theorem, if U1 and U2 are
the two components of C∞ \ C, then cl(U1) and cl(U2) are each homeomorphic to
the closed unit disk in C [13]. Then either φ(U1) = U1 or φ(U1) = U2. In the
first case, by continuity, φ(cl(U1)) ⊆ cl(U1) and the Brouwer fixed point theorem
implies that φ has a fixed point in cl(U1). This is a contradiction, so φ(U1) = U2

and because it is a homeomorphism, φ(U2) = U1.
As before let p denote the projection map from C∞ to RP2 induced by equivalence

under φ. The curve C projects to a homeomorphic image of a circle on RP2, since
p is a covering map and hence a local homeomorphism. Therefore the image of C is
a compact one-dimensional manifold without boundary. Given any point ω ∈ RP2,
if ω /∈ p(C), then p−1(ω) consists of one point in ω1 ∈ U1 and the point φ(ω1) ∈ U2.
Now choose any two points ω �= z ∈ RP2 \ p(C); we can find inverse images of each
under p, ω1, z1 ∈ U1. Take any path from ω1 to z1 lying in U1; then the projection
of the path under p cannot intersect p(C). Therefore p(C) is a nonseparating Jordan
curve. �
Corollary 4.10. Under the hypotheses of Proposition 4.8 J(f̂α) is a non-separating
Jordan curve on RP2

Proof. By Proposition 4.8 J(fα) is a quasicircle which is invariant with respect to

φ, and by Lemma 4.9 J(f̂α) is therefore a non-separating Jordan curve. �

5. Moduli space

In this section we turn to a study of moduli space of bicritical quasi-real maps,
the space of conformal conjugacy classes of each such rational map. Equivalently
we can frame the same idea using unicritical dianalytic maps of RP2. We have
shown the following.

Theorem 5.1. Moduli space for degree n ≥ 3 (n odd) dianalytic maps of RP2 with
one critical point, is homeomorphic to the closed sector of the complex plane given
by {α ∈ C : α = reiθ, θ ∈ [0, π

n−1 ], r ≥ 0}. Equivalently, each map of the form

(3.2) is conformally conjugate to precisely one of the form (3.4).

Proof. This follows from Theorem 3.1 and its proof. If we say two dianalytic maps
of RP2 are (dianalytically) conjugate if and only they are conjugate via a dianaltyic

automorphism M̂ , then M̂ must lift to a Mobius transformation M on C∞ that

commutes with φ. Every dianalytic map f̂ of RP2 lifts to a map of the form
given in equation (3.2), which in turn by Theorem 3.1 is conformally conjugate to
exactly one map of the form (3.4), with α in the sector given above. Moreover, the
conjugating maps commute with φ. �

While properties of this space were described in [10], we make some rigorous
statements here that explain Figure 9 in [10], focusing on degree 3 maps. By
Definition 2.2 the positive axes, which form the boundary of moduli space, do not
correspond to quasi-real maps even though they define dianalytic maps of RP2. For
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Figure 5. This is parameter space for fα, parametrized by α,
when n = 3; it is homeomorphic to Figure 9 in [10].

b > 0, the map fb is obviously real, and the map fib is conformally conjugate to

gb(z) = z3+b
bz3−1 . However it is clear from the parameter space shown in Figure 5

that the dynamics occurring along the axes is significant. We show that for maps
fα with α on the boundary, a C∞ homeomorphism is induced on a great circle of
C∞ that contains both critical points. The fact that along the imaginary axis the
circle homeomorphism is orientation-reversing accounts for the simple bifurcations
we see there, and that the one along the real axis is orientation-preserving gives us
the rich dynamics that result from the resulting rotation number changes. We first
look at what happens along the imaginary axis, when α = ib, b ∈ R.

Proposition 5.2. Let I denote the imaginary axis, and I its compact closure in
C∞ (a great circle). The map fib, b ∈ R, maps I onto I, inducing an orientation-
reversing homeomorphism of the circle.

Proof. Assume fib(z) =
z3+ib
ibz3+1 , b ∈ R; using h(z) = iz we consider the map

(5.1) gb(z) =
z3 + b

bz3 − 1
= h ◦ fib ◦ h−1(z),

with a pole at p0 = b−1/3 > 0 and derivative

(5.2) g′b(z) =
−3z2(1 + b2)

(bz3 − 1)2
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Figure 6. The orientation-reversing circle homeomorphism (red
graph) induced by fib on the imaginary axis. From left to right,

b < 1/
√
2, 1/

√
2 < b <

√
2, and b >

√
2. The green graph is g2b (x)

(orientation-preserving), and x = y is the dotted black line.

with g′b(x) < 0 for all x ∈ R \ {p0}, and so gb|R is decreasing. Let R denote the
compact closure of the reals in C∞. We next show that gb|R induces an orientation-
reversing homeomorphism of the circle, viewed on the sphere passing through 0
and ∞, from which the proposition follows. It is clear that gb(x) ∈ R if x ∈ R,
gb(∞) = 1/b, and gb(p0) = ∞, which defines gb as a smooth map on R. Setting
ω = e2πi/3 we see that gb(ω

jz) = gb(z), j = 1, 2 for all z. Then for each real w
that is not a critical value, g−1

b (w) consists of one real point w1, and the 2 points

wj = ωjw1, j = 1, 2. Clearly the critical values and ∞ each have a preimage in R, so
gb is surjective. Equation (5.2) shows it is injective; we note that the critical value
−b has a triple preimage at the critical point 0, and its antipode, 1/b has a triple
preimage at ∞. It is also clear (by mapping the upper half-plane conformally to the
unit disc and because gb|R is decreasing), that gb|R is conjugate to an orientation-
reversing homeomorphism of the circle. �

Corollary 5.3. Assume fib(z) = z3+ib
ibz3+1 , b ∈ R; then fib|I has exactly two fixed

points in I. Every point z ∈ I is either asymptotic under fn
ib to one of the fixed

points or to a periodic point of period 2 in I.

Proof. It is a basic property of orientation-reversing circle homeomorphisms that
each one has exactly 2 fixed points and that each point in the circle is attracted to
a fixed point, or, attracted to a period 2 cycle. This result and proof can be found
for example in [12, Chapter 1.1]. Since fib(0) = ib, and fib(∞) = −i/b, the fixed
points are in I. �

We see immediately that this basic result on circle homeomorphisms, often found
as an exercise in books, completely determines the dynamics for parameters along
the imaginary axis. Since Corollary 5.3 implies that the critical points for these
maps are attracted to fixed points or attracting period 2 orbits, which is stable
behavior in the holomorphic family fα, or are contained in an attracting period 2
orbit, this explains some of the dynamics off the axis as well. Most of the following
statements are easily verified but we give short proofs of the parts that are not
immediately verifiable. Figure 6 illustrates the trichotomy given by (4), (6), and
(8) in the result below. This can also be seen by looking along the imaginary axis
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in parameter space in Figure 5. The dark bulb near the origin contains parameters
associated with attracting fixed points for fα; moving up the imaginary axis there
are two antipodal period 2 orbits that project onto one attracting period 2 orbit,
and the large region outside corresponds to a single attracting period 2 orbit on
C∞ giving an attracting fixed point on RP2.

Proposition 5.4. Assume fib(z) =
z3+ib
ibz3+1 , b ∈ R.

(1) The map S(z) = 1/z commutes with fib.

(2) The fixed points of fib are: z± = ±1, and w± =
−i

2b

(
1±

√
1 + 4b2

)
∈ I.

(3) We have |f ′
ib(±1)| = 3, so z± are repelling fixed points for all b ∈ R, and

f ′
ib(w±) =

−3b2

1+b2 < 0.

(4) There exists an antipodal pair of attracting fixed points in I if and only if

b < 1/
√
2. At b = 1/

√
2, fib has 2 neutral imaginary fixed points.

(5) At b = 1, the map fi has two super-attracting period two orbits in I, one
at {0, i}, and the other is its antipodal pair {∞,−i}. These two orbits are
identified to form a single super-attracting period 2 orbit for the induced
map on RP2.

(6) For every b ∈ R there exist period 2 orbits in I of the form: {p1, p2}, with
p2 = 1/p1 = −1/p1. We have

p1 = i

⎛
⎝ b

2
−

√
1 +

(
b

2

)2
⎞
⎠

and

p2 = i

⎛
⎝ b

2
+

√
1 +

(
b

2

)2
⎞
⎠ .

For b >
√
2, {p1, p2} is an attracting period 2 orbit that collapses to an

attracting fixed point on RP2.
(7) At b =

√
2 the period 2 orbit {p1, p2} given above is neutral.

(8) For all b ∈ (
1√
2
,
√
2), there exist two antipodal noncollapsing period 2 at-

tracting cycles in I.

Proof. (2): A point z0 is fixed for fib if and only if z0 is a root of the quartic
polynomial

q(z) = ibz4 − z3 + z − ib.

It is easy to check that 1 and −1 are roots of q(z); we can factor out the polynomial
z2 − 1 and obtain the quadratic polynomial

Q(z) = i(bz2 + iz + b).

The roots of Q(z)/i are −i±
√
−1−4b2

2b , the remaining two fixed points.
To show (6), we start with the observation that if z = iy, y ∈ R, then −z = z.

We next compute that for any b ∈ R,

(ib/2− i
√
1 + (b/2)2)(ib/2 + i

√
1 + (b/2)2) = −b2/4 + 1 + b2/4 = 1,
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so if p1=(ib/2−i
√

1 + (b/2)2) = i(b/2−
√
1 + (b/2)2) and p2= i(b/2+

√
1 + (b/2)2),

then they satisfy p2 = 1/p1 = −1/p1. We now solve fib(p) = 1/p. Then

fib(p) =
p3 + ib

ibp3 + 1
= 1/p,

or equivalently,

(5.3) p4 − ibp3 + ibp− 1 = 0.

Clearly 1 and −1 are roots of equation (5.3), so we factor out p2 − 1 from (5.3) to
obtain the quadratic polynomial

p2 − ibp+ 1 = 0,

which in turn has the easily computable roots p1, p2 given in (6). Since fib(p1) =
1/p1 = p2, and fib(p2) = p1 we have a period 2 orbit.

In order to compute the multiplier of the period 2 cycle, we note that for z = iy,

we have the negative real derivative f ′
ib(iy) =

−3y2(1+b2)
(1+by3)2 , and a bit of computation

and cancellation gives us

(5.4) f ′
ib(p1)f

′
ib(p2) =

9

(1 + b2)2
.

From equation (5.4) we see that whenever b >
√
2, we have an attracting period 2

cycle for fib that collapses to an attracting fixed point on RP2. When b =
√
2 the

2-cycle is neutral, and otherwise it is repelling.
For the remaining case we assume that b ∈ (1/

√
2,
√
2). Looking at the ten

possible fixed points for the degree 9 map f2
ib, by the above cases we have four

repelling fixed points and a repelling 2-cycle in I. However, by Corollary 5.3 there
must be an attracting period 2 orbit, and since it cannot be of the form in (6),
there must be two antipodal attracting 2-cycles, which proves (8). �

Proposition 5.4 shows that the behavior of the map fα is fairly simple when
α lies on the imaginary axis. However, there are many bifurcations in parameter
space if we look elsewhere. Some analogous results for real parameters show that
the bifurcations are much more complicated.

We begin by showing that for maps fα with α ∈ R, fα|R is an orientation-
preserving homeomorphism of the circle (see Figure 7). The arguments are similar
to those given in Proposition 5.2.

Proposition 5.5. Consider the compact closure of the reals, R ⊂ C∞, as a great
circle. The map fα, α > 0 maps R onto R, inducing an orientation-preserving
homeomorphism of the circle.

Proof. Assume fα(z) = z3+α
−αz3+1 , α > 0; fα has a pole at p0 = α−1/3 > 0 and

derivative

(5.5) f ′
α(z) =

3z2(1 + α2)

(−1 + αz3)2
> 0

on R \ {p0}. Also f ′
α(∞) = −1/α. We show that fα|R induces an orientation-

preserving homeomorphism map of a circle on the sphere passing through 0 and
∞, from which the proposition follows. Since fα(x) ∈ R if x ∈ R, fα(∞) =
−1/α, fα(p0) = ∞ defines fα as a smooth map on R ∪ ∞. With ω = e2πi/3,
fα(ω

jz) = fα(z), j = 1, 2 for all z. Then for each real w that is not a critical value,
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Figure 7. The orientation-preserving circle homeomorphism
(blue graph) induced by fα on the real axis. From left to right,

α < 1/(2
√
2), and α = 3/2, for which there are no real fixed points.

The dashed graphs are x = y and x = −1/α, the value of fα(∞).

f−1
α (w) consists of one real point w1, and the two points wj = ωjw1, j = 1, 2. The

critical values and ∞ each have a preimage in R, so fα is surjective. Equation
(5.5) shows it is injective; we note that the critical value α has a triple preimage
at the critical point 0, and its antipode, −1/α has a triple preimage at ∞ so it is
not a diffeomorphism. However, fα|R is (topologically) conjugate to an orientation-
preserving homeomorphism. �

Rotation numbers of orientation-preserving homeomorphisms of the cir-
cle. It is a classical result that every orientation-preserving homeomorphism has
a rotation number. A detailed treatment of the topic can be found for example in
[8] or [12]. We recall that viewing S1 = R/Z, there is a natural projection map
π : R → R/Z, and each orientation-preserving homeomorphism f : S1 → S1 lifts

to a continuous map f̃ : R → R such that f ◦ π = f̃ ◦ π. The lift is unique up to
addition by an integer constant, but 1 = deg(f) := f̃(x+ 1)− f̃(x). From now on

we choose the unique lift f̃ such that 0 ≤ f̃(0) < 1.
We define the rotation number of f via the classical proposition found in many

books such as [12]. This serves as a source of most of the general results we use
here.

Proposition 5.6. If f : S1 → S1 is an orientation-preserving homeomorphism,
with a lift f̃ , then

(5.6) ρ(f̃) = lim
n→∞

f̃n(x)− x

n

exists for all x ∈ R, and is independent of x.
If g̃ is another lift of f , ρ(f̃)− ρ(g̃) = f̃(x)− g̃(x) ∈ Z ∀x ∈ R.

The value ρ(f) := ρ(f̃) ∈ [0, 1) is called the rotation number of the map f : S1 →
S1. Moreover, ρ(f) is invariant under topological conjugacy; i.e., ρ(h ◦ f ◦ h−1) =
ρ(f) for any orientation-preserving homeomorphsim h : S1 → S1.

We state a few properties of interest to us in this setting about ρ(f), when
f = fα|R. We begin with the case of rational rotation numbers.
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Proposition 5.7. Assume fα is of the form (3.4), with α > 0 and set f = fα|R.
(1) ρ(f) ∈ Q if and only if f has a periodic point. We write ρ(f) = p/q, with

p/q in reduced form.
(2) ρ(f) = p/q if and only if there exists a periodic orbit of period q. Moreover,

all periodic orbits of f have period q in this case.
(3) If there exists a periodic orbit for f , B = {x0, f(x0) . . . , f

q−1(x0)}, then
the circular ordering of points in B on S1 is determined completely by p
and q.

(4) Under the assumptions that: (i) ρ(f) = p/q, (ii) f has exactly one periodic
orbit, B, and (iii) if x is not periodic, we have

(5.7) lim
m→∞

f−mq(x) = a, lim
m→∞

fmq(x) = b, a, b ∈ B,

with a = b if and only if q = 1 (so ρ(f) = 0).
(5) Under the assumptions in (4), replacing (ii) with: f has two periodic orbits,

then equation (5.7) holds with a and b lying on different periodic orbits.

It is a classical theorem that if ρ(f) is irrational, then f is semiconjugate or
conjugate to the irrational rotation Tρ(f)(x) = x + ρ(f) mod 1. The theory for
smooth homeomorphisms with critical points is complex and interesting but Yoccoz
showed that when the circle map is induced by an analytic map of C∞, then the
result is the best possible [15].

A critical point x0 of a smooth circle map f is nonflat if some kth derivative is
nonzero, i.e., f (k)(x0) �= 0 for some k ∈ N.

Proposition 5.8. Assume fα(z) =
z3+α

−αz3+1 , α ∈ R. We write f ≡ fα|R. If ρ(f) is
irrational then the following hold:

(1) There exists a homeomorphism h : R → S1 conjugating f to Tρ(f), irra-

tional rotation by ρ(f) on S1.

(2) J(fα) = C∞ and J(f̂α) = RP2.

Proof. (1) is the result of Yoccoz which states that if there is a nonflat critical
point for an analytic circle homeomorphism with an irrational rotation number,
then f is topologically conjugate to Tρ(f). In the family fα we have two order
3 inflection points at 0 and ∞ so the theorem of Yoccoz applies. To prove (2)
we assume that there is some nonempty connected component of F (fα). Then
Theorem 4.5 implies the existence of a nonrepelling periodic orbit or a Siegel disk
cycle. The nonrepelling orbit is impossible by Proposition 5.7 and using the fact
that the critical orbits remain real; i.e., if a nonrepelling orbit exists it must be
real. By conjugacy to Tρ(f), we know that for any x ∈ R, {fk(x)}k≥1 is dense in

R. The Siegel disk cannot occur because its boundary would be the equator (R),
which along with the antipodal symmetry of fα, would imply that fα is itself a
homeomorphism, contradicting the assumption that deg(fα) = 3. Therefore there
can be no nonempty component of F (fα). �

It remains to explore what actually occurs in the family of maps we study in
this paper. First we show that a variety of rational rotation numbers for fα occurs
along the positive real axis.

The next results show that the rotation number is 0 for values near the origin
and 1/2 if α is large enough.
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Proposition 5.9. Assume fα(z) =
z3+α

−αz3+1 , α > 0. We write f ≡ fα|R.
(1) For each α > 0 the fixed points are:

p1 =
−1−

√
1− 8α2 +

√
2
√
1 + 4α2 +

√
1− 8α2

4α
, p2 = −1/p1

and

p3 =
−1 +

√
1− 8α2 −

√
2
√
1 + 4α2 −

√
1− 8α2

4α
, p4 = −1/p3.

(2) If 0 < α <
1

2
√
2
, all fixed points are real and p1 and p2 are attracting fixed

points for fα.
(3) At the parameter value α =

√
2/5, the four real fixed points consist of two

attracting with multiplier 1/3 at p1 = −
√
2 +

√
3 and p2 = −

√
2 −

√
3 =

−1/p1, and two repelling at p3 = −
√
2 and p4 = −1/p3, with multiplier 2.

(4) If α =
1

2
√
2
, there are two real neutral fixed points at p =

−
√
2±

√
6

2
(with

multiplier 1), and each has multiplicity 2.

(5) When α ≤ 1/(2
√
2), ρ(f) = 0/1 = 0.

Proof. To prove (1) we use the quartic formula on the polynomial resulting from
setting fα(x) = x; namely p(x) = αx4 + x3 − x + α, to obtain the roots given in
(1).

For any x ∈ R, x �= 0 we have

(5.8) f ′(x) =
3(1 + α2)x2

(αx3 − 1)2
> 0.

For (2)–(4) we note that plugging p1 in (1) into equation (5.8) gives

(5.9) f ′
α(p1) =

3(1− 2α2 −
√
1− 8α2)

2(1 + α2)
,

and by Proposition 4.4 the multiplier is the same for p2. The fixed points are real
(and then so are their derivatives by equation (5.8)) if and only if α ≤ 1/(2

√
2),

and if this holds then f ′(p1) ≤ 1, with f ′(p1) < 1 when α < 1/(2
√
2).

To show (3) we simply substitute α =
√
2
5 < 1

2
√
2
into the formulas.

When α = 1/(2
√
2) we see that p3 = −1/p1 = p2, and f ′(pj) = 1 for all j. (5)

follows from Proposition 5.7. �

Similarly, we show that when α is large enough and real, ρ(fα|R) = 1/2. For this
we use the following lemma.

Lemma 5.10. For fα(z) =
z3+α

−αz3+1 , α ∈ R, we have

(5.10) fα(−1/z) = f−1/α(z)

for all z.

Proof. Both sides of equation (5.10) are
αz3 − 1

z3 + α
for every z ∈ C∞. �

Proposition 5.11. If p is a fixed point for fα(z) =
z3+α

−αz3+1 , α ∈ R, then −p is a
periodic point for f1/α of period 2.
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Proof. We first observe that

fα(p) = p ⇔ f−α(−p) = −p,

because f−α(−z) = −fα(z) for all z. Therefore assume p1 is real and fixed for fα,
then so is p2 = −1/p1 by Lemma 4.3. Then by the observation, f−α has fixed points
q1 = −p1 and q2 = −p2 = 1/p1. By Lemma 5.10, f1/α(q2) = f−α(−1/q2) = p1
and f1/α(p1) = f−α(q2) = q2. Therefore f2

1/α(q2) = q2, and since p1 �= q2, it is not

fixed. �

Proposition 5.12. Assume fα(z) =
z3+α

−αz3+1 , α ∈ R.

(1) When α = 2
√
2, there exists a neutral real period 2 orbit.

(2) When α > 2
√
2, there exists an attracting real 2-cycle.

(3) When α ≥ 2
√
2, ρ(fα|R) = 1/2.

Proof. From Proposition 5.11 we see that we have a real 2-cycle whenever α ≥ 2
√
2;

if {p1, p2} are the attracting fixed points for fα, then {−p1,−p2} form an attracting
2-cycle for f1/α. We can use the chain rule to calculate directly that the cycle is
attracting (or neutral), or we can apply Proposition 5.7 to see that the cycle must
attract all real points, hence must be a nonrepelling cycle on C∞. �

We write f ≡ fα|R. Finally we show that since the rotation number ρ(f) varies
continuously with f using the uniform topology on the space of homeomorphisms
of S1, together with the holomorphic dependence of f on α, we obtain irrational
rotation numbers. In particular, every irrational number between 0 and 1/2 occurs
as a rotation number of fα for some real α > 0, so Proposition 5.8 holds for many
maps.

Proposition 5.13. Assume fα(z) =
z3+α

−αz3+1 , α > 0. Then as α increases from 0

to 2
√
2, ρ(fα|R) increases continuously from 0 to 1/2.

Proof. By Proposition 5.9 we have that ρ(fα) = 0 for α ∈ [0, 1
2
√
2
]. By Propostion

5.12 we have that ρ(fα) = 1/2 for α > 2
√
2. Therefore it is enough to show that,

when viewed on the circle, the maps increase (angularly) monotonically and con-
tinuously in α. Then the classical rotation number theory shows that the rotation
number behaves in the same way.

We conjugate fα by a Mobius transformation that maps the upper half-plane to

the unit disk, and hence the real axis to the unit circle, M(z) =
z − i

z + i
. Then we

consider the map

(5.11) hα(z) := M ◦ fα ◦M−1(z) =

(
α− i

α+ i

)(
−(1 + 3z2)

3z + z3

)
,

obtained by simplifying the fractions appearing.
We consider the argument of the left factor, and define for α ≥ 0, θ(α) =

arg(α−i
α+i ) = 2 arg(α − i), where arg denotes the principal branch of the argument

function, 0 ≤ arg(z) < 2π. We see θ is an increasing and continuous function of α
for real α; in particular, θ(α) increases from 0 to 2π as α increases from 0 to ∞.

Since
∣∣∣α−i
α+i

∣∣∣ = 1 for all α ≥ 0, we have

eiθ(α) =
α− i

α+ i
.
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Considering hα restricted to S1 = {z ∈ C : |z| = 1}, we have from equation (5.11),
for each t ∈ [0, 1),

(5.12) hα(e
2πit) = ei(θ(α)+π−2πt)

(
1 + 3e4πit

3 + e4πit

)
.

From equation (5.12) it is clear that the lifting of hα|S1 to R is increasing in α
so the rotation number is continuous and increasing in α as claimed. �

As a corollary of Propositions 5.8 and 5.13 we obtain the following theorem.

Theorem 5.14. There exist dianalytic maps of RP2 induced by maps fα of the

form (3.4) with J(f̂α) = RP2.

Ergodic properties with respect to (local) Lebesgue measurem of maps satisfying
the conclusion of Theorem 5.14 are unknown, as each critical point has an infinite
forward orbit returning near itself infinitely often. (See also examples of a similar
type constructed by Herman [9].) However it is well-known that there is a unique
invariant measure of entropy log 3, singular with respect tom, with respect to which

fα and hence f̂α are one-sided Bernoulli. Discussion of one-sided Bernoulli maps
and their measures can be found in [4, Section 7], and the references therein. Recall
that a continuous map f of a compact space X is topologically transitive if for any
nonempty open sets U, V ⊆ X, there exists an n ∈ N such that fn(U) ∩ V �= ∅;
equivalently, f is topologically transitive if there exists a point x ∈ X such that
O+(x) = X. The following corollary holds for any map with full Julia set.

Corollary 5.15. There exist dianalytic maps of RP2 of the form (3.4) that are
topologically transitive.

6. Other dianalytic maps of RP2

We limited our study in this paper to dianalytic maps of RP2 with only one
critical point. Even in the degree 3 case there are more complicated maps, and the
analysis gets more difficult. We mention one example but do not prove most of our
assertions. Consider the map

(6.1) f(z) =
z3 + 3

2z
2 + 3

2 i
3
2 iz

3 − 3
2z + 1

.

By checking directly that f commutes with the antipodal map φ or by applying the
condition given in [1], we see that f gives rise to a dianalytic map on RP2. Now we
no longer have double critical points at 0 and ∞; instead we have two antipodal
pairs of critical points. We can calculate 4 distinct critical points for f :

c1 ≈ −1.016 + 2.117i, c2 = −1/c1

and
c3 ≈ 1.409− .676i, c4 = −1/c3.

Numerical estimates show that the four fixed points are repelling but there are 2
noncollapsing attracting period 2 cycles for f given by

{p1, p2} ≈ {1.65− .308i, .035− 1.214i} and {q1, q2} = {−1/p1,−1/p2}.
Moreover, limn→∞ fn(c3) = {p1, p2} so limn→∞ fn(c4) = {q1, q2}. However, it
does not seem that c1 and c2 are attracted to these cycles as the attraction is quite
robust and they do not approach them. In Figure 8 we color points in C dark blue
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Figure 8. J(f) is the boundary between colored regions. We
include the unit circle in red so that the antipodal symmetry can
be seen.The antipodal symmetry of Fatou components shows that
every yellow point at z0 has a corresponding blue point at w0 =
−1/z0, as can be seen by reflecting antipodally about the red unit
circle.

if they are attracted to {p1, p2}, yellow if they are attracted to {q1, q2}, and green
otherwise. It remains somewhat of a mystery as to what is going on in the green
region.

While many of the results of this paper go through for general dianalytic maps

of RP2, the connectivity of J(f̂) for this example is not easy to determine without
further analysis.
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