
CONFORMAL GEOMETRY AND DYNAMICS
An Electronic Journal of the American Mathematical Society
Volume 18, Pages 110–118 (June 6, 2014)
S 1088-4173(2014)00266-5

BI-LIPSCHITZ EMBEDDING OF PROJECTIVE METRICS

LEONID V. KOVALEV

Abstract. We give a sufficient condition for a projective metric on a subset
of a Euclidean space to admit a bi-Lipschitz embedding into Euclidean space
of the same dimension.

1. Introduction

A metric d on a convex domain Ω ⊆ Rn is called projective (sometimes Desargue-
sian) provided that the equality d(x, z)+d(z, y) = d(x, y) holds if and only if z is a
convex combination of x and y. Equivalently, a metric is projective if line segments
are unique geodesics. Two well-known classes of such metrics are strictly convex
normed spaces and Hilbert geometries on convex sets [8]. A different, integral-
geometric construction of projective metrics was introduced by Busemann [6]. Let
H be the set of all hyperplanes, i.e., (n − 1)-dimensional affine subspaces, in Rn.
For a set E ⊆ Rn denote by πE ⊆ H the set of all hyperplanes that intersect E.
Throughout the paper n ≥ 2.

Definition 1.1. Let Ω ⊆ Rn, n ≥ 2, be a convex domain. Suppose ν is a positive
Borel measure on H such that

• ν(πE) = 0 when E is a one-point subset of Ω;
• ν(πE) > 0 when E is a line segment in Ω;
• ν(πE) < ∞ for every compact set E contained in Ω.

Then

(1.1) dν(x, y) = ν(π[x, y])

is a Busemann-type projective metric on Ω.

The fact that dν is a projective metric is immediate from the definition. In the
converse direction, Pogorelov [15], Ambartzumian [3] and Alexander [1] showed that
every projective metric on R2 arises from Busemann’s construction. See [2, 7, 14]
for an historical overview and other results towards Hilbert’s fourth problem, which
asks for a characterization of projective metrics.

The fact that the Euclidean metric on R
n can be constructed as in Definition 1.1

is a consequence of the classical Crofton formula (e.g., [17]). We write de for the
Euclidean metric. The main result of this paper is the following sufficient condition
for (Ω, dν) to admit a bi-Lipschitz embedding into Rn.

Theorem 1.2. In the notation of Definition 1.1, suppose that the identity map
id : (Ω, dν) → (Ω, de) is locally η-quasisymmetric. Then (Ω, dν) is bi-Lipschitz
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equivalent to (Ω′, de) for some domain Ω′ ⊆ Rn. Furthermore, if Ω = Rn, then
Ω′ = Rn.

The assumption of Theorem 1.2 is that there exists a modulus of quasisymmetry
η (see Definition 2.3) such that every point of (Ω, dν) has a neighborhood in which
the identity map is η-quasisymmetric. This is a weaker assumption than id being
quasisymmetric in Ω. Section 3 presents a more precise version of Theorem 1.2,
namely Theorem 3.7.

Theorem 1.2 highlights the difference between the Busemann construction (plac-
ing a weight on the space of hyperplanes) and the conformal deformation (placing
a weight on the Euclidean space itself). For the latter, the analog of Theorem 1.2
fails, as was demonstrated by Semmes [18] in dimensions n ≥ 3 and by Laakso [10]
in dimension n = 2. In particular, Laakso constructed a nonsmooth conformal
deformation of R2 such that the resulting space is not bi-Lipschitz embeddable into
any uniformly convex Banach space, despite the identity map to (R2, de) being
quasisymmetric.

After the definitions and preliminary results are collected in Section 2, the proof
of Theorem 1.2 is given in §3. It employs a construction of quasiconformal maps that
simultaneously extends two previously known approaches [5,13]; this connection is
discussed in §4. The concluding Section 5 presents some open problems.

2. Preliminaries

Let Ω and ν be as in Definition 1.1. Fix a point o ∈ Ω. For a hyperplane H ∈ H
that does not pass through o, let n(H) be the unit normal vector to H that points
out of the halfspace containing o. Define

(2.1) fν(x) =

∫
π[o,x]

n(H) dν(H), x ∈ Ω.

The choice of basepoint o is immaterial: it contributes only an additive constant to
fν (see the proof of Lemma 2.1 below). Note that fν(o) = 0.

Given a nonzero vector v and a hyperplane H ∈ H, let α(v,H) ∈ [0, π/2] be the
smaller angle between H and the line determined by v. For example, α(v,H) = π/2
when v is orthogonal to H. This notation will be used often in the sequel.

Lemma 2.1. For all x, y ∈ Ω,

(2.2) |fν(x)− fν(y)| ≤ ν(π[x, y])

and

(2.3) 〈fν(x)− fν(y), x− y〉 = |x− y|
∫
π[x,y]

sinα(x− y,H) dν(H).

Proof. For x, y ∈ Ω we have

(2.4) fν(x)− fν(y) =

∫
π[0,x]\π[0,y]

n(H) dν(H)−
∫
π[0,y]\π[0,x]

n(H) dν(H).

Since the symmetric difference of π[0, x] and π[0, y] agrees with π[x, y] up to a ν-null
set, (2.2) follows.

When H ∈ π[0, x] \ π[0, y], the inner product 〈n(H), x − y〉 is positive. When
H ∈ π[0, y] \ π[0, x], this inner product is negative. Therefore, taking the inner
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product of both sides in (2.4) with x− y yields

〈fν(x)− fν(y), x− y〉 =
∫
π[x,y]

|〈n(H), x− y〉| dν(H)

= |x− y|
∫
π[x,y]

sinα(x− y,H) dν(H)

proving (2.3). In particular,

�(2.5) |fν(x)− fν(y)| ≥
∫
π[x,y]

sinα(x− y,H) dν(H).

According to Lemma 2.1, fν is an injective 1-Lipschitz map from (Ω, dν) to
R

n. In general, it is not bi-Lipschitz. However, it satisfies a weaker noncollapsing
property.

Lemma 2.2. There is a constant c = c(n) > 0 such that for every cube Q ⊂ Ω,

(2.6) diam fν(Q) ≥ c diamν Q,

where diamν is the diameter with respect to the metric dν .

Proof. Let H be a hyperplane that intersects Q and does not meet any of its
vertices. Write a for the edgelength of Q. Since Q contains a ball of diameter a,
the projection of Q onto the line H⊥ has diameter at least a. This diameter is
realized by projections of two vertices that are separated by H; call them x and y.
Since |x− y| ≤ a

√
n, it follows that

(2.7) α(x− y,H) ≥ sin−1(1/
√
n).

For every pair x, y of distinct vertices of Q, let Sxy be the set of hyperplanes H
that separate x from y and satisfy (2.7). By the above, the union of Sx,y over all
such pairs {x, y} is πQ. Counting the number of pairs of vertices, we conclude that
there exists a pair {x, y} such that ν(Sx,y) ≥ 4−nν(πQ). For such a pair, (2.5)
yields

�(2.8) |fν(x)− fν(y)| ≥ 4−nn−1/2ν(πQ) ≥ 4−nn−1/2 diamν Q.

Definition 2.3. Let η : [0,∞) → [0,∞) be a homeomorphism, called a modulus of
quasisymmetry below. A topological embedding f : X → Rn of a metric space X
into R

n is called η-quasisymmetric if for every triple of distinct points a, b, x ∈ X,

(2.9) |f(x)− f(a)| ≤ η(t)|f(x)− f(b)| where t =
dX(x, a)

dX(x, b)
.

When there is no need to emphasize the modulus of quasisymmetry η, we simply
say that f is quasisymmetric. Bi-Lipschitz maps are quasisymmetric but not con-
versely. The foundational facts about quasisymmetric maps in metric spaces are
presented in [9].

In what follows we use standard notation B(a, r) = {x ∈ Rn : |x − a| < r} and

B(a, r) = B(a, r). Unspecified multiplicative constants C and c are always positive,
and may differ from one line to another.
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3. Uniform transversality

Informally, a measure ν onH is uniformly transverse if it not tightly concentrated
on hyperplanes that are nearly parallel to some line. The precise statement follows.

Definition 3.1. Let ν and Ω be as in Definition 1.1. We say that ν is uniformly
transverse on Ω if there exists κ > 0 such that

(3.1)

∫
π[x,y]

sinα(x− y,H) dν(H) ≥ κ ν(π[x, y])

for all x, y ∈ Ω.

Some remarks are in order. When a line segment [x, y] ⊂ Ω is divided into
subsegments, both sides of (3.1) are additive with respect to such partition. Thus,
it suffices to verify (3.1) for sufficiently short segments. Also, (3.1) is equivalent to
the existence of τ > 0 such that

(3.2) ν({H ∈ π[x, y] : α(x− y,H) ≥ τ}) ≥ τ ν(π[x, y]).

Indeed, (3.2) obviously implies (3.1) with κ = τ sin τ . Conversely, if (3.1) holds,
then letting τ = κ/2 we find that

κ ν(π[x, y]) ≤
∫
π[x,y]

sinα(x− y,H) dν(H)

≤ τ ν(π[x, y]) + ν({H ∈ π[x, y] : sinα(x− y,H) ≥ τ}),

hence (3.2) holds.
When Ω = Rn in Definition 3.1 we simply say that ν is uniformly transverse. The

following result relates uniform transversality to the quasisymmetry of the identity
map.

Proposition 3.2. If the map id : (Ω, dν) → (Ω, de) is locally η-quasisymmetric,
then ν is uniformly transverse.

Proof. As observed above, it suffices to consider a short segment [x, y]. Let r =
|x− y|. The assumption of quasisymmetry implies that by taking sufficiently small
c = c(η, n) > 0, we can ensure that any cube Q with center x and edgelength cr
satisfies

(3.3) diamν Q ≤ 1

2 · 4n dν(x, y).

Since ν-almost every hyperplane crossing Q separates a pair of its vertices (and
there are 2n vertices), it follows that there is a pair of vertices u, v such that
dν(u, v) ≥ 4−nν(πQ). Thus, (3.3) implies

(3.4) ν(πQ) ≤ 1

2
ν(π[x, y]).

For any hyperplane H ∈ π[x, y]\πQ the angle α(x−y,H) is bounded from below by
a constant that depends only on c. Since the set of such hyperplanes has ν-measure
at least 1

2ν(π[x, y]), the claim follows. �

For any ν as in Definition 1.1, the map fν is monotone in the sense that 〈fν(x)−
fν(y), x− y〉 ≥ 0 whenever x �= y; this is a consequence of (2.3). In fact, it satisfies
a stronger property defined below.
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Definition 3.3. Let Ω be a convex domain in Rn. A map f : Ω → Rn is called
cyclically monotone if

(3.5)

m∑
k=1

〈f(xk), xk+1 − xk〉 ≤ 0

holds for all m ≥ 2 and all x1, . . . , xm ∈ Ω. Here xm+1 = x1.

Observe that for m = 2 the inequality (3.5) amounts to monotonicity. The
concept of cyclic monotonicity is motivated by the fact that cyclically monotone
maps are precisely subsets of subgradients of convex functions [16, Theorem 24.8].
In particular, every continuous cyclically monotone map is the gradient of a C1

convex function.

Proposition 3.4. The map fν in (2.1) is cyclically monotone.

Proof. Since the inequality (3.5) is additive with respect to f , it suffices to verify
it for the integrand in (2.1). Fix a hyperplane H not passing through 0. It can
be described by the equation H = {x : 〈x, n(H)〉 = c} for some c > 0. Let g(x) =
n(H) if H separates x from 0, and g(x) = 0 otherwise. The function U(x) =
max(c, 〈x, n(H)〉) is convex and its subgradient ∂U satisfies g(x) ∈ ∂U(x) for every
x ∈ Rn. Therefore, g is cyclically monotone, and so is fν . �

Yet another concept of monotonicity comes into play when ν is uniformly trans-
verse.

Definition 3.5. Let Ω be a convex domain in Rn. For a fixed δ > 0, a map
f : Ω → Rn is called δ-monotone if

(3.6) 〈f(x)− f(y), x− y〉 ≥ δ|f(x)− f(y)| |x− y|

holds for all x, y ∈ Ω.

Neither cyclic monotonicity nor δ-monotonicity imply each other.

Proposition 3.6. The following are equivalent:

(i) ν is uniformly transverse;
(ii) fν is δ-monotone;
(iii) fν is a locally η-quasisymmetric embedding of (Ω, de) into Rn.

The equivalence is quantitative in the sense that the constants involved in each
statement depend only on one another and on the dimension n.

Proof. The equivalence of (i) and (ii) is established by the identify (2.3). By [12,
Theorem 6], every δ-monotone map is locally quasisymmetric; more precisely, there
exists a modulus of quasisymmetry η that depends only on δ, such that f is η-
quasisymmetric in every ball B(x, r) such that B(x, 2r) ⊂ Ω. This shows (ii) =⇒
(iii). For the converse, observe that fν is continuous and cyclically monotone; there-
fore, it can be written as the gradient of a differentiable convex function u : Ω → R.
By [12, Lemma 18], if the gradient of a convex function is locally η-quasisymmetric,
it is δ-monotone where δ depends only on η. This completes the proof. �

By virtue of Proposition 3.2, Theorem 1.2 is a consequence of the following more
precise statement.
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Theorem 3.7. If ν is uniformly transverse on Ω, then the map fν defined by (2.1)
is a bi-Lipschitz embedding of (Ω, dν) into Rn. Furthermore, if Ω = Rn, then
fν(Ω) = R

n.

Proof of Theorem 3.7. From (2.2) we see that fν is Lipschitz. The reverse inequal-
ity |fν(x)− fν(y)| ≥ c dν(x, y) follows by combining (2.5) and (3.1).

By Proposition 3.6 fν is a locally η-quasisymmetric embedding of (Ω, de) into
R

n, therefore it is a quasiconformal map (e.g., [9]). It is well-known that Rn cannot
be quasiconformally mapped to its proper subdomain [20, Theorem 17.4]. Thus, in
the case Ω = Rn we have fν(Ω) = Rn. �

4. Examples

A convenient way to introduce measures on the space of hyperplanes H is to push
them forward from a space where it is easier to construct measures. For example,
there is a natural surjection Rn×Sn−1 → H given by Φ(a, v) = {x : 〈x, v〉 = 〈a, v〉}.
Let ω be the normalized volume measure on Sn−1. For a Radon measure μ on Rn

the pushforward Φ∗(μ× ω) is a measure on H.

Example 4.1. Let μ be a nonatomic measure (meaning μ({x}) = 0 for every x)
such that the support of μ is not contained in any line. If

(4.1) 0 <

∫
Rn

|x|−1 dμ(x) < ∞,

then Φ∗(μ × ω) satisfies the assumptions of Definition 1.1. If, in addition, μ is a
doubling measure, then Φ∗(μ× ω) is uniformly transverse.

Recall that a measure μ is doubling if there exists a constant C such that
μ(B(x, r)) ≤ Cμ(B(x, r)) for all x ∈ Rn and all r > 0.

Proof. For every x ∈ Rn and r > 0 we have

ν(πB(x, r)) ≤ μ(B(x, r)) + C

∫
Rn

r

|x− y| dμ(y)

which implies that the first and third conditions in Definition 1.1 hold. The second
condition, ν(π[x, y]) > 0, follows from the support of μ not being contained in the
line through x and y.

Suppose μ is doubling. Fix distinct points x and y and let r = |x − y|. Also,
fix a unit vector w that is orthogonal to x − y. For k = 1, 2, . . . let μk be the
restriction of μ to the spherical shell Ak = B(x, 2k+1r) \ B(x, 2kr). This shell
contains the open ball Bk = B(x+3 ·2k−1w, 2k−1). The doubling condition implies
that μ(Bk) ≥ cμ(Ak) with c independent of k. It is geometrically evident that every
hyperplane H that meets both [x, y] and Bk satisfies α(x− y,H) ≥ π/4. Thus, the
measure νk = Φ∗(μk × ω) satisfies

(4.2)

∫
π[x,y]

sinα(x− y,H) dνk(H) ≥ c νk(π[x, y])

with c independent of k. Observe also that the restriction of μ to B(x, 2r), which
is not included in any μk, is comparable in mass to μ1; thus its contribution to
ν(π[x, y]) is controlled by (4.2) with k = 1. Summing over k, we conclude that ν is
uniformly transverse. �
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When ν = Φ∗(μ× ω), the formula (2.1) yields

(4.3) fν(x) = c

∫
Rn

(
x− y

|x− y| +
y − o

|y − o|

)
dμ(y)

with some constant factor c > 0. Indeed, it suffices to verify (4.3) for a unit point
mass δa because general measures can be approximated by linear combinations of
point masses. In turn, δa is the limit of normalized restrictions of the Lebesgue
measure to B(a, r) as r → 0. If the basepoint o in the definition of fν coincides
with a, a symmetry consideration yields∫

π[0,x]

n(H) dν(H) = c
x

‖x‖ , |x| > r

with c independent of x or r. Changing the basepoint o contributes additive con-
stants to fν and to the right side of (4.3). Since both sides of (4.3) turn to 0 when
x = o, the additive constants agree. This proves (4.3).

The integral (4.3) was used in [13] to construct quasiconformal maps from dou-
bling measures. Thus, Example 4.1 shows that the results of §3 recover some of the
main results of [13].

Beurling and Ahlfors [5] proved that every quasisymmetric self-map of R ex-
tends to a quasisymmetric self-map of R2. Up to orientation, quasisymmetric maps
on a line are precisely indefinite integrals of doubling measures of R. The follow-
ing proposition shows that the Beurling-Ahlfors extension can be obtained from
Theorem 3.7.

Example 4.2. Let μ be a doubling measure on the real axis R of the complex
plane C ≈ R

2. Denote by ω̃ the restriction of the arclength measure on S1 to the

set of unit vectors (v1, v2) such that v2 ≥
√
3
2 . Let ν = Φ∗(μ× ω̃) with Φ as above.

Then ν is uniformly transverse.
Moreover, fν : R

2 → R2 is a quasiconformal map such that fν(R) = R and for
all s, t ∈ R, s < t, we have fν(t)− fν(s) = μ([s, t]).

Observe that every line H in the support of ν crosses R at an angle of at least
π/3.

Proof. Fix two distinct points x and y. If the angle that x− y forms with the real
axis is less than π/4, the uniform transversality condition holds for the segment [x, y]
by the construction of ν. Suppose that this angle is at least π/4. By partitioning
the segment [x, y], we may assume that dist([x, y],R) ≥ |x − y|. Also without loss
of generality, dist(y,R) > dist(x,R).

Let I be the segment on R formed by the intersection points of R with the lines
that meet [x, y] at an angle less than π/12. Note that I is the base of a triangle with
vertex y in which the angle at y is π/6 and the segment [x, y] bisects this angle. Let
p be the nearest endpoint of I to y; if the endpoints are equidistant from y (i.e.,
[x, y] is vertical), pick either one. Let I ′ ⊂ R be the segment of the same length as I
and such that I∩I ′ = {p}. The doubling condition implies μ(I ′) ≥ cμ(I). It follows
that the restriction of μ to I ′ is responsible for a certain fraction of ν(π[x, y]); and
since the lines that intersect both I ′ and [x, y] form the angle of at least π/12 with
the latter, the measure ν is uniformly transverse.

The quasiconformality of fν follows from Theorem 3.7. The fact that fν(R) = R

is a consequence of the symmetry of ν: reflection of the plane across the real axis
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leaves ν invariant. Finally, for real s < t the definition of fν yields

fν(t)− fν(s) =

∫ t

s

∫ π/6

−π/6

cos θ dθ dμ = μ([s, t]). �

5. Concluding remarks

Theorem 1.2 leads to several natural questions. The main result of Pogorelov’s
book [15] is that sufficiently smooth projective metrics on R3 can be obtained as
dν with ν being a signed measure on H. Szabó [19] extended this result to all
dimensions. Although the definition of our map fν makes sense when ν is a signed
measure, all results of this paper rely on ν being positive.

Question 5.1. Can Theorem 1.2 be extended to signed measures ν that generate
positive metrics dν?

A well-known necessary condition for a metric space X to have a bi-Lipschitz
embedding into a Euclidean space is that X is doubling, but this condition is not
sufficient in general [9]. A projective metric need not be doubling. For example, the
Beltrami-Klein model of the hyperbolic space is a nondoubling projective metric on
the unit ball of Rn, since the hyperbolic space fails the doubling condition. More
generally, Hilbert geometries on convex domains are typically Gromov hyperbolic [4,
11].

Question 5.2. Does every doubling projective metric on a convex domain Ω ⊆ Rn

admit a bi-Lipschitz embedding into some RN? Or even into Rn?
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