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DYNAMICS OF HYPERBOLIC IWIPS

CAGLAR UYANIK

Abstract. We present two proofs of the fact, originally due to Reiner Mar-
tin, that any fully irreducible hyperbolic element of Out(FN ) acts on the pro-
jectivized space of geodesic currents PCurr(FN ) with uniform north-south
dynamics. The first proof, using purely train-track methods, provides an elab-
orated and corrected version of Reiner Martin’s original approach. The second
proof uses the geometric intersection form of Kapovich and Lustig and relies
on unique ergodicity results from symbolic dynamics.

1. Introduction

Thurston proved that a pseudo-Anosov homeomorphism of a closed surface acts
with north-south dynamics on Thurston’s space of projective measured laminations
[30]; see also [16]. In fact, the arguments in [16] can also be used to prove that even
on Bonahon’s larger space of geodesic currents, a pseudo-Anosov homeomorphism
of a closed surface acts with north-south dynamics. Something similar also holds
for pseudo-Anosov homeomorphisms of surfaces with boundary, but the statement
there is slightly more complicated; see [31].

There is an important analogy between homeomorphisms of surfaces, or more
precisely, the mapping class group of a surface, and Out(FN ), the outer auto-
morphism group of a free group FN . The group Out(FN) acts on the closure of
the projectivized outer space, which plays the role of the space of projective mea-
sured laminations, as well as the space of geodesic currents on FN . The dynamical
analogue of a pseudo-Anosov homeomorphism in Out(FN ) is a fully irreducible au-
tomorphism, or an iwip (irreducible with irreducible powers); see Section 2.5 for
details.

Levitt and Lustig [24] proved that iwips act on the closure of the projectivized
outer space with north-south dynamics. On the other hand, on the space of geodesic
currents, one must consider a refined classification of automorphisms. Specifically,
fully irreducible automorphisms are divided into two types: atoroidal (or hyper-
bolic) and non-atoroidal (or geometric). The action of a non-atoroidal iwip on the
space of geodesic currents reduces to the case of pseudo-Anosov homeomorphisms
on surfaces, and is described in [31], for a precise statement see Theorem 3.19. In
this paper we provide two proofs that hyperbolic iwips act with uniform north-south
dynamics, which is originally due to Martin [26].
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Theorem A. Let ϕ ∈ Out(FN ) be a hyperbolic iwip and K0 be a compact subset of
PCurr(FN) not containing [μ−]. Then, given an open neighborhood U of [μ+] there
exists M0 ≥ 0 such that ϕm(K0) ⊂ U for all m ≥ M0. Similarly, for a compact
subset K1 not containing [μ+] and a neighborhood V of [μ−], there exists an integer
M1 ≥ 0 such that ϕ−m(K1) ⊂ V for all m ≥ M1.

The fact that hyperbolic iwips act on PCurr(FN) with uniform north-south dy-
namics plays an important role in various recent applications, particularly the work
of Bestvina-Feighn [3], Hamenstädt [15], Kapovich-Lustig [22] and Clay-Pettet [8].
The proof in R. Martin’s thesis [26] of uniform north-south dynamics for hyperbolic
iwips is missing some important details, and some arguments there are not quite
correct. In particular, the definition of the“goodness function” used there is not
quite the right one for carrying out the proof. In [3] Bestvina and Feighn use a
modified notion of “goodness” that does work, and they sketch an argument for
proving Theorem A. Because of the importance of Theorem A in the subject, we
provide a complete and detailed proof of it here; in fact, we give two different proofs.
The first proof is based on an elaborated and corrected version of Reiner Martin’s
original approach, using only the train-track technology. The second, new, proof
uses unique ergodicity results from symbolic dynamics as well as some recently
developed technology such as the theory of dual algebraic laminations for R-trees
[11, 21, 23], and the Kapovich-Lustig intersection form [20, 21].

2. Preliminaries

2.1. Geodesic currents. Let FN be a non-abelian free group of rank N ≥ 2. Let
∂FN denote the Gromov boundary of FN , and ∂2FN denote the double boundary
of FN . Concretely,

∂2FN := {(x, y) | x, y ∈ ∂FN , and x �= y}.
Define the flip map αf : ∂2FN → ∂2FN by αf (x, y) = (y, x). A geodesic current
μ on FN is a non-negative Radon measure on ∂2FN , which is invariant under
the action of FN and αf . The space of geodesic currents on FN , denoted by
Curr(FN), is given the weak-* topology. Consequently, given μn, μ ∈ Curr(FN),
limn→∞ μn = μ if and only if limn→∞ μn(S1 × S2) = μ(S1 × S2) for all disjoint
closed-open subsets S1, S2 ⊂ ∂FN .

As a simple example of a geodesic current consider the counting current ηg,
where 1 �= g ∈ FN is not a proper power: For a Borel subset S of ∂2FN , define
ηg(S) to be the number of FN -translates of (g−∞, g∞) and (g∞, g−∞) that are
contained in S. For any non-trivial element h ∈ FN , write h = gk where g is not a
proper power, and define ηh := kηg. Any non-negative scalar multiple of a counting
current is called a rational current. It is known that, the set of rational currents is
dense in Curr(FN), [17, 18].

An automorphism ϕ ∈ Aut(FN ) induces a homeomorphism on both ∂FN and
∂2FN , which we also denote ϕ. Given an automorphism ϕ ∈ Aut(FN) and a
geodesic current μ ∈ Curr(FN) define the current ϕμ as follows: For a Borel
subset S ⊂ ∂2FN ,

ϕμ(S) := μ(ϕ−1(S)).

It is easy to see that, for ϕ ∈ Aut(FN ) and μ ∈ Curr(FN),

(ϕ, μ) �→ ϕμ
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defines a left action of Aut(FN ) on Curr(FN), which is continuous and linear, [18].
Moreover, the inner automorphisms of FN , Inn(FN), acts trivially and hence the
action factors through Out(FN ) = Aut(FN )

/
Inn(FN ).

The space of projectivized geodesic currents, denoted by PCurr(FN), is the quo-
tient of Curr(FN)� {0}, where two non-zero currents μ1 and μ2 are equivalent if
there exists a positive real number r such that μ1 = rμ2. The equivalence class of
a geodesic current μ in PCurr(FN) is denoted by [μ].

For ϕ ∈ Aut(FN ) and [μ] ∈ PCurr(FN), setting ϕ[μ] := [ϕμ] gives well defined
actions of Aut(FN ) and Out(FN) on the space of projectivized geodesic currents
PCurr(FN).

The rose RN with N petals is a finite graph with one vertex q, and N edges
attached to the vertex q. We identify the fundamental group π1(RN , q) with FN

via the isomorphism obtained by orienting and ordering the petals and sending the
homotopy class of the jth oriented petal to jth generator of FN . A marking on FN is
the pair (Γ, α) where Γ is a finite, connected graph with no valence-one vertices such
that π1(Γ) ∼= FN and α : (RN , q) → (Γ, α(q)) is a homotopy equivalence. The map
α induces an isomorphism α∗ : π1(RN , q) → π1(Γ, p) on the level of fundamental
groups. The induced map α∗ gives rise to natural FN -equivariant homeomorphisms
α̃ : ∂FN → ∂Γ̃ and ∂2α : ∂2FN → ∂2Γ̃.

The cylinder set associated to a reduced edge-path γ in Γ̃ (with respect to the
marking α) is defined as:

Cylα(γ) := {(x, y) ∈ ∂2FN | γ ⊂ [α̃(x), α̃(y)]},

where [α̃(x), α̃(y)] is the geodesic from α̃(x) to α̃(y) in Γ̃.

Let v be a reduced edge-path in Γ, and let γ be a lift of v to Γ̃. Then, we set

〈v, μ〉α := μ(Cylα(γ))

and call 〈v, μ〉α the number of occurrences of v in μ. It is easy to see that the
quantity μ(Cylα(γ)) is invariant under the action of FN , so the right-hand side of
the above formula does not depend on the choice of the lift γ of v. Hence, 〈v, μ〉α
is well defined. In [18], it was shown that, if we let PΓ denote the set of all finite
reduced edge-paths in Γ, then a geodesic current is uniquely determined by the set
of values (〈v, μ〉α)v∈PΓ. In particular, given μn, μ ∈ Curr(FN), limn→∞ μn = μ if
and only if limn→∞ 〈v, μn〉α = 〈v, μ〉α for every v ∈ PΓ.

Given a marking (Γ, α), the weight of a geodesic current μ ∈ Curr(FN) with
respect to (Γ, α) is denoted by wΓ(μ) and defined as

wΓ(μ) :=
1

2

∑
e∈EΓ

〈e, μ〉α ,

where EΓ is the set of oriented edges of Γ. In [18], using the concept of weight,
Kapovich gives a useful criterion for convergence in PCurr(FN).

Lemma 2.1. Let [μn], [μ] ∈ PCurr(FN), and (Γ, α) be a marking. Then,

lim
n→∞

[μn] = [μ]

if and only if for every v ∈ PΓ,

lim
n→∞

〈v, μn〉α
wΓ(μn)

=
〈v, μ〉α
wΓ(μ)

.
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2.2. One-sided shifts. The following correspondence is explained in detail in [18].
Here, we briefly recall the relevant definitions and results from there.

Let (Γ, α) be a marking. Let Ω(Γ) denote the set of semi-infinite reduced edge-
paths in Γ. Let TΓ : Ω(Γ) → Ω(Γ) be the shift map, which erases the first edge of
a given edge-path.

Define the one-sided cylinder CylΩ(v) for an edge-path v in Γ to be the set of
all γ ∈ Ω(Γ) such that γ starts with v. It is known that the set {CylΩ(v)}v∈PΓ

generates the Borel σ-algebra for Ω(Γ), [18].
Let M(Ω(Γ)) denote the space of finite, positive Borel measures on Ω(Γ) that

are TΓ-invariant. Define M′(Ω(Γ)) ⊂ M(Ω(Γ)) to be the set of all ν ∈ M(Ω(Γ))
that are symmetric, i.e. for any reduced edge path v in Γ,

ν(CylΩ(v)) = ν(CylΩ(v
−1)).

Proposition 2.2 ([18]). The map τ : Curr(FN) → M′(Ω(Γ)) defined as

μ �→ τμ,

where τμ(CylΩ(v)) = 〈v, μ〉α is an affine homeomorphism.

2.3. Outer Space and intersection form. The space of minimal, free and dis-
crete isometric actions of FN on R-trees (up to FN -equivariant isometry) is called
the unprojectivized Outer Space and denoted by cvN , [14]. There are several topolo-
gies on the Outer Space that are known to coincide, in particular, the Gromov-
Hausdorff convergence topology and the length function topology. It is known
that every point T ∈ cvN is uniquely determined by its translation length function
‖.‖T : FN → R, where ‖g‖T := minx∈T dT (x, gx). The closure cvN of the Outer
Space in the space of length functions consists of the (length functions of) very
small, minimal, isometric actions of FN on R–trees; [2, 9]. The projectivized Outer
Space CVN := PcvN is the quotient of cvN where two points T1, T2 ∈ cvN are
equivalent if the respective length functions are positive scalar multiples of each
other. Similarly, one can define CV N := PcvN , where two points T1, T2 ∈ cvN are
equivalent if T1 = aT2 for some a > 0.

The group Aut(FN ) has a continuous right action on cvN (that leaves cvN in-
variant), which on the level of translation length functions is defined as follows: For
ϕ ∈ Aut(FN ) and T ∈ cvN ,

‖g‖Tϕ = ‖ϕ(g)‖T .
It is easy to see that Inn(FN ) is in the kernel of this action, hence the above action
factors through Out(FN ).

Note that the above actions of Aut(FN ) and Out(FN) descend to well-defined
actions on CV N (that leaves CVN invariant) by setting [T ]ϕ := [Tϕ].

An important tool relating geodesic currents to the Outer Space, which will be
crucial in Section 4, is the Kapovich-Lustig Intersection form.

Proposition 2.3 ([20]). There exists a unique continuous map 〈, 〉 : cvN×Curr(FN)
→ R≥0 with the following properties:

(1) For any T ∈ cvN , μ1, μ2 ∈ Curr(FN) and c1, c2 ≥ 0, we have

〈T, c1μ1 + c2μ2〉 = c1 〈T, μ1〉+ c2 〈T, μ2〉 .
(2) For any T ∈ cvN , μ ∈ Curr(FN) and c ≥ 0, we have

〈cT, μ〉 = c 〈T, μ〉 .
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(3) For any T ∈ cvN , μ ∈ Curr(FN) and ϕ ∈ Out(FN),

〈Tϕ, μ〉 = 〈T, ϕμ〉 .
(4) For any T ∈ cvN and any non-trivial g ∈ FN ,

〈T, ηg〉 = ‖g‖T .
2.4. Laminations. An algebraic lamination on FN is a closed subset of ∂2FN

which is flip-invariant and FN -invariant. In analogy with the geodesic laminations
on surfaces, the elements (X,Y ) of an algebraic lamination are called leaves of the
lamination. The set of all algebraic laminations on FN is denoted by Λ2FN .

Let (Γ, α) be a marking. For (X,Y ) ∈ ∂2FN , let us denote the bi-infinite geodesic

in Γ̃ joining α̃(X) to α̃(Y ) by γ̃. The reduced bi-infinite path γ, which is the image
of γ̃ under the covering map, is called the geodesic realization of the pair (X,Y )
and is denoted by γΓ(X,Y ).

We say that a set A of reduced edge paths in Γ generates a lamination L if the
following condition holds: For any (X,Y ) ∈ ∂2FN , (X,Y ) is a leaf of L if and only
if every reduced subpath of the geodesic realization of (X,Y ) belongs to A.

Here we describe several important examples of algebraic laminations, all of
which will be used in Section 4.

Example 1 (Diagonal closure of a lamination). The following construction is due
to Kapovich and Lustig; see [23] for details. For a subset S of ∂2FN the diagonal
extension of S, diag(S), is defined to be the set of all pairs (X,Y ) ∈ ∂2FN such
that there exists an integer n ≥ 1 and elements X1 = X,X2, . . . , Xn = Y ∈ ∂FN

such that (Xi−1, Xi) ∈ S for i = 1, . . . , n− 1. It is easy to see that for a lamination
L ∈ Λ2FN , diagonal extension of L, diag(L) is still FN invariant and flip-invariant
but it is not necessarily closed. Denote the closure of diag(L) in ∂2FN by diag(L).
For an algebraic lamination L ∈ Λ2FN , the diagonal closure of L, diag(L) is again
an algebraic lamination.

Example 2 (Support of a current). Let μ ∈ Curr(FN) be a geodesic current. The
support of μ is defined to be supp(μ) := ∂2FN �U where U is the union of all open
subsets U ⊂ ∂2FN such that μ(U) = 0. For any μ ∈ Curr(FN), supp(μ) is an
algebraic lamination. Moreover, it is not hard to see that (X,Y ) ∈ supp(μ) if and
only if for every reduced subword v of the geodesic realization γΓ(X,Y ) of (X,Y ),
we have 〈v, μ〉α > 0; see [21].

Example 3. If (Γ, α) is a marking, and P is a family of finite reduced paths in Γ,
the lamination L(P) “generated by P” consists of all (X,Y ) ∈ ∂2FN such that for
every finite subpath v of the geodesic realization of (X,Y ) in Γ, γΓ(X,Y ), there
exists a path v′ in P such that v is a subpath of v′ or of (v′)−1.

Example 4 (Laminations dual to an R-tree). Let T ∈ cvN . For every ε > 0
consider the set

Ωε(T ) = {1 �= [w] ∈ FN : ‖w‖T ≤ ε}.
Given a marking Γ, define Ωε,Γ(T ) as the set of all closed cyclically reduced

paths in Γ representing conjugacy classes of elements of Ωε(T ). Define Lε,Γ(T ) to
be the algebraic lamination generated by the family of paths Ωε,Γ(T ). Then, the
dual algebraic lamination L(T ) associated to T is defined as

L(T ) :=
⋂
ε>0

Lε,Γ(T ).
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It is known that this definition of L(T ) does not depend on the choice of a marking
Γ.

A detailed discussion about laminations can be found in a sequence of papers by
Coulbois-Hilion-Lustig, [11–13].

2.5. IWIP automorphisms. An outer automorphism ϕ ∈ Out(FN) is called an
iwip (short for irreducible with irreducible powers) if no positive power of ϕ fixes
a conjugacy class of a proper free factor of FN . There are two types of iwips, both
of which have their own importance. An iwip ϕ ∈ Out(FN) is called atoroidal or
hyperbolic if it has no non-trivial periodic conjugacy classes. This is equivalent to
saying that the mapping torus of ϕ, the group G = FN �ϕ Z is word-hyperbolic,
[1, 7].

An iwip is called non-atoroidal or geometric otherwise. The name for geometric
iwips comes from a theorem of Bestvina-Handel [6], which states that every non-
atoroidal iwip ϕ ∈ Out(FN) is induced by a pseudo-Anosov homeomorphism on a
compact, hyperbolic surface S with one boundary component such that π1(S) ∼=
FN .

2.6. Relevant results from symbolic dynamics. Let A = {x1, x2, . . . , xm} be
a finite set of letters. A substitution ζ is a map from A to A∗, the set of non-empty
words in A. We also assume that for a substitution ζ the length of ζ(x) is strictly
greater than 1 for at least one x ∈ A. A substitution ζ induces a map from AN, the
set of infinite words in A, to itself by

ζ(an) = ζ(a0)ζ(a1) . . . .

This induced map is also called a substitution. In what follows it is assumed that
(up to passing to a power):

(1) For all x ∈ A, the length of ζn(x) goes to infinity as n tends to infinity.
(2) There exists some x ∈ A such that ζ(x) = x . . . .

Let nx(w) denote the number of x occurring in the word w and let 
n(w) denote
the column vector whose coordinates are nx(w) for x ∈ A. More generally let us
define nw0

(w) to be the number of letters in w such that starting from that letter
one can read off the word w0 in w.

A substitution ζ is called irreducible if for every x, y ∈ A there exists an integer
k = k(x, y) such that nx(ζ

k(y)) ≥ 1. ζ is called primitive if k can be chosen
independent of x, y ∈ A. A non-negative r× r matrix M is said to be irreducible if

given any 1 ≤ i, j ≤ r there exists an integer k = k(i, j) such that m
(k)
ij > 0 where

m
(k)
ij is the ijth entry of the matrix Mk. M is called primitive if there exists a k

such that Mk is a positive matrix.
The ζ-matrix, M(ζ) or transition matrix for the substitution ζ is the matrix

whose ijth entry is given by nxi
(ζ(xj)). It is easy to see that ζ is irreducible (resp.

primitive) if and only if M(ζ) is irreducible (resp. primitive). A word w is called
used for ζ if w appears as a subword of ζn(xi) for some n ≥ 1 and xi ∈ A.

A reformulation and a generalization of classical Perron-Frobenius theorem is the
following proposition due to Seneta [29] and a proof can be found in [28, Proposition
5.9].
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Proposition 2.4. Let ζ be a primitive substitution. Let x ∈ A. Then,

lim
n→∞


n(ζn(x))

|ζn(x)| = Υ,

where Υ is a positive vector independent of x, and satisfying
∑
x∈A

Υx = 1. Similarly,

for any used word w, the sequence of non-negative numbers

nw(ζ
n(x))

|ζn(x)|
admits a limit which is independent of x and positive.

The proof of the above proposition also implies the following, which is Corollary
5.2 in [28].

Proposition 2.5. For every x ∈ A,

lim
n→∞

|ζn+1(x)|
|ζn(x)| = λ,

where λ is the Perron-Frobenius eigenvalue for M(ζ).

Let Xζ be the set of semi-infinite words such that for every an ∈ Xζ , every
subword of an appears as a subword of ζk(x) for some k ≥ 0 and for some x ∈ A.
Let T : AN → AN be the shift map, which erases the first letter of each word. The
following unique ergodicity result is an important ingredient of the proof of Lemma
4.6. It is due to Michel [27], and a proof can be found in [28, Proposition 5.6].

Theorem 2.6. For a primitive substitution ζ, the system (Xζ , T ) is uniquely er-
godic. In other words, there is a unique T -invariant, Borel probability measure on
Xζ.

3. Train-tracks proof

We briefly review the theory of train-tracks developed by Bestvina and Handel
[6].

A graph Γ is a one-dimensional cell complex where 0-cells of Γ are called vertices
and 1-cells of Γ are called topological edges. The set of vertices is denoted by V Γ
and the set of topological edges is denoted by EΓ. A topological edge with a choice
of (positive) orientation is called an edge, and the set of (positive) edges is denoted
by E+Γ. Given an edge e, the initial vertex of e is denoted by o(e) and the terminal
vertex of e is denoted by t(e). The edge e with the opposite orientation is denoted
by e−1 so that o(e−1) = t(e) and t(e−1) = o(e). A turn in Γ is an unordered
pair {e1, e2} of oriented edges such that o(e1) = o(e2). A turn {e1, e2} is called
non-degenerate if e1 �= e2 and degenerate if e1 = e2. A map f : Γ :→ Γ is called a
graph map, if it maps vertices to vertices and edges to edge-paths. A graph map
induces a map Df : EΓ → EΓ which sends e to the first edge of f(e). This induces
a well-defined map Tf on the space of turns in Γ which is defined as follows:

Tf(e1, e2) = (Df(e1), Df(e2)).

A turn (e1, e2) is called legal if the turns (Tf)n(e1, e2) are non-degenerate for all
n ≥ 0. A turn is illegal if it is not legal. An edge-path e1e2 . . . ek is legal if all
the turns {e−1

i , ei+1} are legal. Let E+Γ = {e1, . . . , em} be the set of positively
oriented edges of Γ. Given a graph map f : Γ → Γ, the transition matrix M(f)
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for f is the m×m matrix whose ijth entry is the number of occurrences of ei and
e−1
i in the edge-path f(ej). A graph map is called tight if f(e) is reduced for each
edge e ∈ EΓ. A tight map f : Γ → Γ is called irreducible if there exist no proper
invariant subgraphs. Equivalently, f : Γ → Γ is irreducible if and only if M(f) is
irreducible.

Let α : RN → Γ be a marking and σ : Γ → RN a homotopy inverse. Every
homotopy equivalence f : Γ → Γ determines an outer automorphism (σ ◦ f ◦ α)∗
of FN = π1(RN , p). Let ϕ ∈ Out(FN ), the map f : Γ → Γ is called a topological
representative of ϕ if f determines ϕ as above, f is tight, and f(e) is not a vertex
for any e ∈ EΓ.

Let Γ be a finite connected graph without valence-one vertices. A graph map
f : Γ → Γ is called a train-track map if for all k ≥ 1, the map fk is locally
injective inside of every edge e ∈ EΓ. This condition means that, there is no
backtracking in fk(e) for e ∈ EΓ. An important result of Bestvina-Handel [6] states
that, every irreducible outer automorphism ϕ of FN has an irreducible train-track
representative, i.e. a topological representative which is an irreducible train-track
map.

Let λ be the Perron-Frobenius eigenvalue for the irreducible matrixM(f). There
exists a unique positive left eigenvector 
v such that 
vM(f) = λ
v, and

∑m
i=1 
vi = 1.

It is not hard to see that if we identify each edge ei with an interval of length 
vi,
then the length of the path f(ei) is equal to (
vM(f))i = λ
vi. Therefore, the length
of each edge, and hence the length of every legal edge-path, is expanded by λ after
applying f . This metric will be referred as the train-track metric, and the length
of an edge path c with respect to the train-track metric will be denoted by �t.t.(c).
In what follows, we will denote the length of a path c in Γ with respect to the
simplicial metric by �Γ(c).

For a reduced edge path γ in Γ, let [f(γ)] denote the path which is reduced and
homotopic to f(γ) relative to end points. A non-trivial reduced edge-path γ in Γ
is called a (periodic) Nielsen path if [fk(γ)] = γ for some k ≥ 1. The smallest
such k is called the period of γ. A path γ is called pre-Nielsen if its image under
some positive iterate of f is Nielsen. A Nielsen path is called indivisible if it cannot
be written as a concatenation of two Nielsen paths. A detailed discussion about
Nielsen paths can be found in [6], here we will state two results that are relevant
in our analysis.

Lemma 3.1 (Bounded Cancellation Lemma [10]). Let f : Γ → Γ be a homotopy
equivalence. There exists a constant Cf , depending only on f , such that for any
reduced path ρ = ρ1ρ2 in Γ one has

�Γ([f(ρ)]) ≥ �Γ([f(ρ1)]) + �Γ([f(ρ2)])− 2Cf .

That is, at most Cf terminal edges of [f(ρ1)] are cancelled with Cf initial edges of
[f(ρ2)] when we concatenate them to obtain [f(ρ)].

Lemma 3.2 ([5]). Let ϕ be an iwip. Then, for some k ≥ 1, the automorphism ϕk

admits a train-track representative f : Γ → Γ with the following properties:

(1) Every periodic Nielsen path has period 1.
(2) There is at most one indivisible Nielsen path (INP) in Γ for f . Moreover,

if there is an INP, the illegal turn in the INP is the only illegal turn in the
graph Γ.
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Convention 3.3. Recall that an edge e ∈ EΓ is periodic if fn(e) starts with e for
some n ≥ 1. Up to passing to a power of ϕ and hence f , we will assume that for
every periodic edge e ∈ EΓ, f(e) starts with e, and M(f) > 0; see, for example,
[19]. So we will work with a power of ϕ which satisfies both Lemma 3.2 and the
above requirements. In Proposition 3.17 we will deduce the dynamical properties
for ϕ from those of ϕl. For convenience we will still denote our map by ϕ in what
follows.

Remark 3.4. It is well known that the train-track metric �t.t. and the simplicial
metric �Γ on Γ are bi-Lipschitz equivalent. This means that there is a constant
K > 1 such that for any reduced path v in Γ,

1

K
�Γ(v) ≤ �t.t.(v) ≤ K�Γ(v).

By the discussion above, after appying f the length of every legal path is expanded
by λ which is the Perron-Frobenius eigenvalue for M(f). Therefore, for any legal
path v in Γ we have

K2λn�Γ(v) ≥ Kλn�t.t.(v) = K�t.t.(f
n(v)) ≥ �Γ(f

n(v))

≥ 1

K
�t.t.(f

n(v)) =
1

K
λn�t.t.(v) ≥

1

K2
λn�Γ(v).

Hence up to passing to a further power of ϕ and f we will assume that, after
applying f , the length of every legal path is expanded at least by a factor of λ′ > 1
with respect to the simplicial metric on Γ.

Notation 3.5. Let v, w be reduced edge paths in Γ. Consider v, w as a string of
letters such that each letter is labeled by an edge in Γ. Then, the number of
occurrences of v in w, denoted by (v, w) is the number of letters in w from which
one can read off v in the forward direction. Define 〈v, w〉 = (v, w) + (v−1, w). We
will denote the weight of ν with respect to the marking α : FN → Γ by ‖ν‖Γ, which
is defined as ‖ν‖Γ =

1

2

∑
e∈EΓ 〈e, ν〉Γ.

Lemma 3.6. For any reduced edge-path v in Γ, there exists av ≥ 0 such that

lim
n→∞

〈v, fn(e)〉
�Γ(fn(e))

= av

for all e ∈ EΓ.

Proof. Let ρ = limn→∞ fn(e0), where e0 is a periodic edge. For an edge e ∈ EΓ
we have two possibilities:
Type 1: Either only e occurs or only e−1 occurs in ρ.
Type 2: Both e and e−1 occur in ρ.

Claim. There are two disjoint cases:

(1) Every edge e ∈ EΓ is of Type 1.
(2) Every edge e ∈ EΓ is of Type 2.

Let us assume that for an edge e both e and e−1 occur in ρ. Now look at f(e).
Since M(f) > 0, for an arbitrary edge ei, it means that either ei occurs in f(e)
or e−1

i or possibly both of them occur in f(e). If both of them occur in f(e) they
occur in ρ as well and we are done, otherwise assume that only one of them occurs
in f(e), say ei. In that case e−1

i occurs in f(e−1) so that both ei and e−1
i occur in
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ρ. For the second case, assume that for an edge e either only e occurs or only e−1

occurs on ρ. We claim that this is the case for every other edge. Assume otherwise,
and say that for some edge ej both ej and e−1

j occur in ρ, but from the first part

that would imply that both e and e−1 occur in ρ which is a contradiction. We now
continue with the proof of the lemma.

Case 1 (Every edge e ∈ EΓ is of Type 1). Split EΓ = E+ ∪ E−, where

E+ = {e |e occurs in ρ only with positive sign}

and

E− = {e |e occurs in ρ only with negative sign}.
So f splits into two primitive substitutions: f+ : A0 → A∗

0 where A0 = E+ and
f− : A1 → A∗

1 where A1 = E−. The second part of Proposition 2.4, together with
the observation that (v, fn(e)) = (v−1, fn(e−1)) gives the required convergence.

Case 2 (Every edge e ∈ EΓ is of Type 2). In this case we can think of e−1 as a
distinct edge, then f becomes a primitive substitution on the set A = EΓ and the
result follows from Proposition 2.4.

This completes the proof of Lemma 3.6. �

Lemma 3.7. The set of numbers {av}v∈PΓ defines a unique geodesic current which
will be denoted by μ+ = μ+,Γ(ϕ) and called stable current of ϕ. Similarly, define
μ− = μ+(ϕ

−1), call it unstable current of ϕ.

Proof. Let us define

q+(v) = {e ∈ EΓ|ve ∈ PΓ}, q−(v) = {e ∈ EΓ|ev ∈ PΓ}.

We will show that the above set of numbers satisfies the switch conditions as in
[18].
(1) It is clear that for any v ∈ PΓ we have 0 ≤ av < 1 < ∞.
(2) It is also clear from the definition that {av} = {av−1}.
(3) We need to show that

∑
e∈q+(v)

lim
n→∞

〈ve, fn(e0)〉
�Γ(fn(e0))

= lim
n→∞

〈v, fn(e0)〉
�Γ(fn(e0))

=
∑

e∈q−(v)

lim
n→∞

〈ev, fn(e0)〉
�Γ(fn(e0))

.

For the first equality, under a finite iterate of f , the only undercount of occurrences
of ve in fn(e0) can happen if v is the last subsegment of fn(e0) or v

−1 is the first
subsegment of fn(e0). Hence∣∣∣∣∣∣

〈v, fn(e0)〉
�Γ(fn(e0))

−
∑

e∈q+(v)

〈ve, fn(e0)〉
�Γ(fn(e0))

∣∣∣∣∣∣ ≤
2|q+(v)|

�Γ(fn(e0))
→ 0

as n → ∞. The second equality can be shown similarly. �

Remark 3.8. By construction, for all m ≥ 1 we have [μ+(ϕ
m)] = [μ+(ϕ)]. We

also note that Proposition 2.5 implies that ϕμ+ = λμ+. Indeed, by definition
of av and Proposition 2.5 for any edge path v ∈ PΓ and for any edge e ∈ EΓ

we have limn→∞
〈v,fn+1(e)〉
�Γ(fn(e)) = λav. On the other hand, for a legal circuit w
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in Γ, we have limn→∞
〈v,fn(w)〉
�Γ(fn(w)) = limn→∞

〈v,fn(e)〉
�Γ(fn(e)) which in turn implies that

limn→∞
ηfn(w)

�Γ(fn(w)) = μ+. From these two observations we can see that

ϕμ+ = lim
n→∞

ϕηfn(w)

�Γ(fn(w))
= lim

n→∞

ηfn+1(w)

�Γ(fn(w))
= λμ+.

Before proceeding with the proof of the main theorem of this section we will go
over a modified version (due to Bestvina-Feighn [3]) of some necessary language
introduced by R. Martin in his thesis [26].

Definition 3.9. Let [w] be a conjugacy class in FN . Represent [w] as a reduced
circuit c in Γ. Let Cf be the bounded cancellation constant for f : Γ → Γ where Γ

is equipped with the simplicial metric. The edges in c that are at least C :=
Cf

λ′ − 1
away from an illegal turn are called “good” edges where the distance is measured
on c. The ratio of number of good edges in c and length of c is called “goodness” of
[w] and is denoted by γ([w]) ∈ [0, 1]. An edge is called “bad” if it is not good. An
edge-path γ is called “bad” if every edge in γ is bad. A “legal end” of a maximal
bad segment b is a legal subpath “a” of b such that b = aγ or b = γa. Note that
length of a legal end a, �(a) ≥ C, otherwise b wouldn’t be maximal.

Lemma 3.10. Let δ > 0 and ε > 0 be given, then there exists an integer M ′ =
M ′(δ, ε) ≥ 0 such that for any [w] ∈ FN with γ([w]) ≥ δ we have γ(ϕm([w])) ≥ 1−ε
for all m ≥ M ′.

Proof. First observe that by Lemma 3.1, the legal ends ai of the bad segments will
never get shortened by applying a power of f since

l(f(ai))− Cf ≥ λ′l(ai)− Cf ≥ λ′l(ai)− (λ′ − 1)l(ai) = l(ai).

This means that each iteration length of the good segments will increase at least by
a factor of λ′. In a reduced circuit c representing [w] ∈ FN with goodness γ([w]) ≥ δ
the number of illegal turns is bounded by l(c)(1− δ). So the number of bad edges
in fk(c) is bounded by l(c)(1− δ)2C for any k ≥ 0. Therefore,

γ(ϕm([w])) ≥ (λ′)mγ([w])l(c)

(λ′)mγ([w])l(c) + l(c)(1− δ)2C

=
(λ′)mγ([w])

(λ′)mγ([w]) + (1− δ)2C

≥ 1− ε

for all m ≥ M ′ for sufficiently big M ′. �
Lemma 3.11. Given δ > 0 and a neighborhood U of the stable current [μ+] ∈
PCurr(FN), there is an integer M = M(δ, U) such that for all [w] ∈ FN with
γ([w]) ≥ δ, we have ϕn([ηw]) ∈ U for all n ≥ M .

Proof. Recall that [ν] is in U if there exist ε > 0 and R >> 0 both depending on
U such that for all reduced edge paths v with �Γ(v) ≤ R we have∣∣∣∣ 〈v, ν〉‖ν‖Γ

− 〈v, μ+〉
‖μ+‖Γ

∣∣∣∣ < ε.

So we need to show that for any conjugacy class [w] ∈ FN with γ([w]) > δ we have∣∣∣∣ 〈v, f
n(c)〉

�Γ(fn(c))
− 〈v, μ+〉

‖μ+‖Γ

∣∣∣∣ < ε
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Figure 1. Reduced circuit representing w

for all v with �Γ(v) ≤ R. Let us write c = c1c2 . . . b1 . . . crcr+1 . . . b2 . . . bkcs where
ci ∈ EΓ and bj ∈ PΓ, where we denote good edges with ci and maximal bad
segments with bj . See Figure 1.

By Lemma 3.10 up to passing to a power let us assume that the goodness γ(w)
is close to 1, in particular,

γ(w) ≥ 1

1 + ε/4K4

so that the ratio

∑k
i=1 �Γ([f

n(bi)])

�Γ([fn(c)])
≤ (1− γ(w))�(c)(λ′)nK2

γ(w)�(c)(λ′)n 1
K2

= (
1

γ(w)
− 1)K4 ≤ ε/4,

by using Remark 3.4.
Since there are only finitely many edges and finitely many words v with �Γ(v) ≤ R

by Lemma 3.6 we can pick an integer M0 ≥ 1 such that

∣∣∣∣ 〈v, f
n(e)〉

�Γ(fn(e))
− 〈v, μ+〉

‖μ+‖Γ

∣∣∣∣ < ε/4

for all n ≥ M0, for all e ∈ EΓ and for all v with �Γ(v) ≤ R. Moreover, we can pick
an integer M1 such that

R�Γ(c)

�Γ(fn(c))
< ε/4

for all n ≥ M1 since for all paths c with goodness close to 1 the length of the path
c grows like λn up to a multiplicative constant which is independent of the path.
Here λ is the Perron-Frobenius eigenvalue of f . Now set M = max {M0,M1}.
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Then we have∣∣∣∣ 〈v, f
n(c)〉

�Γ(fn(c))
− 〈v, μ+〉

‖μ+‖Γ

∣∣∣∣
≤

∣∣∣∣∣
〈v, fn(c)〉
�Γ(fn(c))

−
s∑

i=1

〈v, fn(ci)〉
�Γ(fn(c))

∣∣∣∣∣
+

∣∣∣∣∣
s∑

i=1

〈v, fn(ci)〉
�Γ(fn(c))

−
∑s

i=1 〈v, fn(ci)〉∑s
i=1 �Γ(f

n(ci))

∣∣∣∣∣+
∣∣∣∣
∑s

i=1 〈v, fn(ci)〉∑s
i=1 �Γ(f

n(ci))
− 〈v, μ+〉

‖μ+‖Γ

∣∣∣∣

≤ R�Γ(c)

�Γ(fn(c))
+

k∑
j=1

〈v, [fn(bj)]〉
�Γ(fn(c))

+

∣∣∣∣
∑s

i=1 〈v, fn(ci)〉∑s
i=1 �Γ(f

n(ci))

+
k∑

j=1

�Γ([f
n(bj)])−

∑s
i=1 〈v, fn(ci)〉∑s
i=1 �Γ(f

n(ci))

∣∣∣∣∣∣
+

∣∣∣∣
∑s

i=1 〈v, fn(ci)〉∑s
i=1 �Γ(f

n(ci))
− 〈v, μ+〉

‖μ+‖Γ

∣∣∣∣
< ε/4 + ε/4 + ε/4 + ε/4 = ε,

where the last part follows from the mediant inequality, and the third part follows
from the observation∣∣∣∣∣

∑s
i=1 〈v, fn(ci)〉∑s

i=1 �Γ(f
n(ci)) +

∑k
j=1 �Γ([f

n(bj)])
−

∑s
i=1 〈v, fn(ci)〉∑s
i=1 �Γ(f

n(ci))

∣∣∣∣∣
=

∣∣∣∣∣
(∑s

i=1 〈v, fn(ci)〉
)(∑k

j=1 �Γ([f
n(bj)])

)
(∑s

i=1 �Γ(f
n(ci))

)(∑s
i=1 �Γ(f

n(ci)) +
∑k

j=1 �Γ([f
n(bj)])

)
∣∣∣∣∣

≤ K4
λn

∑k
j=1 �Γ(bj)

λn
∑s

i=1 �Γ(ci)
≤ ε/4

by the choice of goodness. �
The following lemma is crucial to our analysis of Lemma 3.14; It follows from

the definitions and results in [4]. A proof of it can be found in [25, Lemma 3.2].
Alternatively, one can deduce it from [23, Lemma 3.28].

Lemma 3.12. Let f be a train-track representative for a hyperbolic iwip as in
Convention 3.3. Then for any edge path γ in Γ there exist an integer M1 such that
for all n ≥ M1 the reduced edge path [fn(γ)] is a legal concatenation of INP’s and
legal edge paths.

Definition 3.13. Let γ be a reduced edge path in Γ. Let M1 be an integer as
in Lemma 3.12. Then an illegal turn in γ is called a non-INP illegal turn if it
disappears in [fM1(γ)].

Lemma 3.14 ([26]). There exist an integer M0 and some δ1, δ2 > 0 such that for
each [w] ∈ FN either γ(ϕm([w])) ≥ δ1 or

ILT ([fm(c)])

ILT (c)
≤ 1− δ2

for all m ≥ M0 where ILT (c) = number of illegal turns in c.
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Proof. There are two cases to consider in terms of existence of INP’s.

Case 1 (There are no INP’s in the graph Γ).

We can assume that the length of the circuit c representing w is greater than
2(6C +1) as there are finitely many edge-paths of length ≤ 2(6C +1), we can find
a uniform power satisfying the properties of the lemma and take the maximum of
that with M0 below. Now subdivide the circuit representing the conjugacy class
[w] ∈ FN into pieces of length 6C + 1 with an exception of the last subsegment
being of length ≤ (6C). Now let M1 ≥ 0 be a number such that for every reduced
edge-path v ∈ Γ with l(v) ≤ 6C + 1 the edge-path [fm(v)] is legal for all m ≥ M1.
Now observe that in the set of all subpaths of length = 6C + 1 either at least half
of them have ≤ 2 illegal turns, or at least half of them have ≥ 3 illegal turns. In
the first case the goodness γ([w]) ≥ 1/((6C+1)2+6C). Thus by Lemma 3.10 there
is an integer M ′ ≥ 0 such that γ(ϕm([w]) ≥ δ1 for all m ≥ M ′. In the second case
after applying fm to c for m ≥ M1 at least half of the subpaths with length 6C+1
will lose at least 3 illegal turns but will form at most two new illegal turns at the
concatenation points. Therefore,

ILT ([fm(c)])

ILT (c)
≤ 2K + 1

3K + 1
≤ 3

4
,

where 2K is the number of subpaths of length = 6C + 1 in c. Now, set M0 =
max{M ′,M1}. Then M0 satisfies the requirements of the lemma.

Case 2 (There is exactly one INP in the graph Γ).

Similar to the previous case we can assume that l(c) ≥ 4(8C+1), and subdivide
the circuit as above and let M1 ≥ 0 be a number such that for every reduced edge-
path v ∈ Γ with l(v) ≤ 8C + 1 for all m ≥ M1 the path [fm(c)] is a concatenation
of INP’s and legal segments of length at least 2C + 1 where the turns at the con-
catenations are also legal turns. For a subpath γ of c of length = 8C+1 one of the
following subcases occurs:

(1) The number of illegal turns in the subpath γ is ≤ 3.
(2) γ has at least 3 non-INP illegal turns.
(3) γ has two non-INP illegal turns and at least 2 INP illegal turns.
(4) γ has more than 3 INP illegal turns and more than 4 illegal turns overall.

At least a quarter of the subpaths of c of length 8C + 1 satisfy one of the above
possibilities.

If (1) happens then there is at least one good edge in at least a quarter of
subpaths of c of length = 8C + 1, so as in Case 1 the goodness γ([w]) > 0, hence
we can find an integer M ′ ≥ 0 such that γ(ϕm([w])) ≥ δ1 for all m ≥ M ′.

If (2) happens then at least a quarter of subpaths of c of length 8C + 1 will lose
at least 3 illegal turns but [fm(c)] will form at most two new illegal turns. Because
of the assumption on the length �(c), we can write

4K(8C + 1) ≤ �(c) < (4K + 1)(8C + 1)

for some integer K ≥ 1. Now we have,

ILT (fm(c)) ≤ ILT (c)− 3K + 2K
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where −3K comes from the illegal terms lost in at least K subpaths, and 2K comes
from possible new illegal terms formed at the concatenation points. Hence,

ILT ([fm(c)])

ILT (c)
≤ 1− K

ILT (c)
≤ 1− K

�(c)
≤ 1− K

(4K + 1)(8C + 1)
< 1− δ2

for some δ2 > 0 since the right-hand side approaches to (1 − 1/32C) as K gets
bigger and the sequence of values strictly bounded by 1 for all values of K.

If (3) happens, look at the images of the subpaths of c under the map fM1 .
First note that because of the Convention 3.3 there is a unique INP in Γ up to
inversion. Since f represents a hyperbolic automorphism, there are no consecutive
INP’s as that would imply a periodic conjugacy class. Hence there will be legal
edges between two INP’s and up; passing to a further power we can assume that
there are good edges between them. There are two cases to consider:

(3a) After concatenating the iterates of subpaths to form fM1(c) and reducing
it to obtain [fM1(c)] at least one good edge survives inside of an iterate of
a subpath.

(3b) After concatenating the iterates of subpaths and reducing to form [fM1(c)]
good edges disappear which also means that an illegal turn in one of the
INP’s together with an illegal turn in a matching INP also disappear, since
to cancel with good edges they have to pass through the INP.

This means that for at least 1/8 of all subpaths of length 8C+1 either (3a) happens
or (3b) happens. Similar to the subcases (1) and (2) either goodness γ(ϕm([w])) >
δ1 or

ILT ([fm(c)])

ILT (c)
≤ δ2

for some δ1, δ2 > 0 and for all m ≥ M1.
If (4) happens, similar to (3) there are two cases to consider:

(4a) After concatenating the iterates of subpaths at least one good edge survives
inside of an iterate of a subpath.

(4b) After concatenating the iterates of subpaths all good edges disappear which
also means that an illegal turn in two of the INP’s together with matching
INP’s also disappear, since to cancel with good edges they have to pass
through the INP’s.

Similar to the case (3), either there is a definite amount of goodness in fM1(c) or
a number of illegal turns decrease by a definite proportion in fM1(c). �

Lemma 3.15. Let f be a train-track representative for ϕ as in Convention 3.3.
Then given any D > 1, ε > 0 there exists an L > 0 such that for all [w] ∈ FN either

(1) ILT ([f−L(c)]) ≥ D�Γ(c) or
(2) γ(ϕL([w])) ≥ 1− ε

where f−L(c) is the immersed circuit in Γ representing ϕ−L([w]).

Proof. Let M0 be as in Lemma 3.14, then by applying Lemma 3.10 take a further
power of ϕ such that if γ(ϕM0([w])) ≥ δ1, then

γ((ϕM0)M
′
([w])) ≥ 1− ε.



DYNAMICS OF HYPERBOLIC IWIPS 207

In the previous lemma, if it happens for [w] that γ(ϕM0([w])) < δ1 but

ILT ([fm(c)])

ILT (c)
≤ 1− δ2

for all m ≥ M0, then we have

ILT (f−M0(c)) ≥ ILT (c)

1− δ2
,

since γ(fM0(f−M0(c))) = γ(c) < δ1. Indeed, if it was true that

γ(fM0(f−M0(c))) ≥ δ1,

then that would imply γ(ϕM0([w])) ≥ δ1 which contradicts with our assumption.
An inductive argument on M ′′ shows that for all M ′′ ≥ 1,

ILT (f−M0M
′′
(c)) ≥ ILT (c)

(1− δ2)M
′′ .

Also, notice that since γ(c) < δ1 we have

number of bad edges in c

�Γ(c)
≥ 1− δ1

and by definition we have

number of bad edges in c ≤ 2C(ILT (c)).

Hence we have

ILT (f−M0M
′′
(c)) ≥ ILT (c)

(1− δ2)M
′′ ≥ number of bad edges in c

2C(1− δ2)M
′′ ≥ �Γ(c)(1− δ1)

2C(1− δ2)M
′′ .

Let M ′′ > 0 be such that
1− δ1

2C(1− δ2)M
′′ ≥ D. Then L = max{M0M

′,M0M
′′}

satisfies the requirements of the lemma. �

Lemma 3.16. Given neighborhoods U of [μ+] and V of [μ−] there exists an M ≥ 0
such that for any conjugacy class [w] ∈ FN either ϕM ([ηw]) ∈ U or ϕ−M ([ηw]) ∈ V .

Proof. Let g : Γ′ → Γ′ be a train-track representative for ϕ−1 which adheres to
the Convention 3.3. Let Cg be the bounded cancellation constant for g : Γ′ → Γ′

where Γ′ is equipped with the simplicial metric, and analogously define C ′ and
the goodness γ′ for g : Γ′ → Γ′. It is well known that translation length functions
corresponding to any two points in the unprojectivized Outer Space are bi-Lipschitz
equivalent. Therefore there exists a real number B = B(Γ,Γ′) ≥ 1 such that

1

B
‖w‖Γ′ ≤ ‖w‖Γ ≤ B‖w‖Γ′

for all [w] ∈ FN . Pick D = 4C ′(B2) in the Lemma 3.15. Now let [w] be a conjugacy
class for which (2) holds in Lemma 3.15. We can find an integer R as in Lemma
3.11 such that for all [w] with goodness γ([w]) ≥ 1− ε, ϕn([ηw]) ∈ U for all n ≥ R.
Let [w] be a conjugacy class for which (1) holds in Lemma 3.15. Then by using the
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bi-Lipschitz equivalence we have:

B�Γ′(gL(c′)) = B‖ϕ−L(w)‖Γ′ ≥ ‖ϕ−L(w)‖Γ
≥ ILT (f−L(c))

≥ 4C ′(B2)�Γ(c)

≥ 4C ′(B2)
1

B
‖w‖Γ′ = B(4C ′)�Γ′(c′).

Therefore �Γ′(gL(c′)) ≥ (4C ′)�Γ′(c′). Since the number of illegal turns never in-
creases, after applying powers of g, this means that number of bad edges are uni-
formly bounded by 2C ′�Γ′(c) for gL(c′) which in turn implies that γ′(ϕ−L([w])) ≥
1/2 because at least half of the edges must be good. Let R′ be an integer such
that for all [w] with γ′([w]) ≥ 1/2, ϕ−n([ηw]) ∈ V for all n ≥ R′. Now let
M = max{LR,LR′} then for any conjugacy class [w] ∈ FN either ϕM ([ηw]) ∈ U or
ϕ−M ([ηw]) ∈ V . �

Proposition 3.17. Suppose that ϕ ∈ Out(FN ) is a hyperbolic iwip, and M ≥ 1
is an integer such that the conclusion of Theorem A holds for ϕ′ = ϕM . Then,
Theorem A holds for ϕ.

Proof. Assume that limm→∞(ϕM )m([ν]) = [μ+] for all [ν] �= [μ−]. Now, for any
[ν] �= [μ−], the sequence {ϕr([ν])} splits into M sequences:

{ϕ([ν]), ϕM+1([ν]), ϕ2M+1([ν]), . . . }
{ϕ2([ν]), ϕM+2([ν]), ϕ2M+2([ν]), . . . }
...
{ϕM ([ν]), ϕ2M ([ν]), ϕ3M ([ν]), . . . }

all of which converge to the same limit by the assumption on ϕM . Therefore,

lim
r→∞

ϕr([ν]) = [μ+]

for any [ν] �= [μ−]. Now let U be an open neighborhood of [μ−] and let V be an
open neighborhood of [μ+]. Set

U1 = U ∩ ϕ−1(U) ∩ ϕ−2(U) ∩ . . . ∩ ϕ−M (U).

Note that U1 is an open neighborhood of [μ−] and U1 ⊆ U . By uniform convergence
for ϕM there exists m0 ≥ 1 such that for all m ≥ m0,

ϕMm(PCurr(FN)\U1) ⊆ V.

Now let [ν] ∈ (PCurr(FN)\U) be an arbitrary current and n ≥ Mm0 be an arbi-
trary integer. Let us write n = mM + i where m ≥ m0, 0 ≤ i ≤ M − 1. First
observe that

ϕ−(M−i)([ν]) /∈ U1 i.e. ϕ−(M−i)([ν]) ∈ (PCurr(FN)\U1).

Then

ϕn([ν]) = ϕMm+M−M+i([ν]) = ϕ(m+1)Mϕ−(M−i)([ν]) ∈ V

by the choice of m0, which finishes the proof of uniform convergence for ϕ. Con-
vergence properties for the negative iterates of ϕ follow as above. �

Now, we are ready to prove the main theorem of this paper.
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Proof of Theorem A. Let us define the generalized goodness with respect to Γ for
an arbitrary non-zero geodesic current as follows:

γ(ν) =
1

2‖ν‖Γ
∑

�Γ(v)=2C+1
v is legal

〈v, ν〉 .

This coincides with the goodness for conjugacy classes and it is continuous on
Curr(FN)� {0}. Indeed, by using switch conditions one can write

‖w‖Γ =
1

2

⎛
⎜⎜⎝

∑
�Γ(v)=2C+1
v is legal

〈v, ηw〉+
∑

�Γ(v)=2C+1
v has I.T.

〈v, ηw〉

⎞
⎟⎟⎠

from which it is easy to see that γ(ηw) = γ(w). We can also define generalized

goodness with respect to Γ′ by using C ′ =
Cg

λ′
g − 1

. Observe that

γ(μ+) = 1 and γ′(μ−) = 1

with the above definitions. Moreover, generalized goodness is well defined for the
projective class of a current, so we will use γ([ηw]) = γ(ηw) interchangeably.

Let Z be the number of legal edge-paths v ∈ PΓ with �Γ(v) = 2C + 1 and let
ε1 > 0 be a real number such that Zε1 < 1/2. Similarly, let Z ′ be the number
of legal edge-paths v ∈ PΓ′ with �Γ′(v) = 2C ′ + 1 and let ε2 > 0 be such that
Z ′ε2 < 1/2. Pick an integer D1 > 2C + 1 and an integer D2 > 2C ′ + 1. Let us
define two neighborhoods of [μ+] and [μ−] as follows:

U+(ε1, D1) is the set of all [ν] ∈ PCurr(FN) such that for all edge-paths v ∈ PΓ
with �Γ(v) ≤ D1, ∣∣∣∣ 〈v, ν〉‖ν‖Γ

− 〈v, μ+〉
‖μ+‖Γ

∣∣∣∣ < ε1.

Similarly,
U−(ε2, D2) is the set of all [ν] ∈ PCurr(FN ) such that for all edge-paths v ∈ PΓ′

with �Γ′(v) ≤ D2 ∣∣∣∣ 〈v, ν〉‖ν‖Γ′
− 〈v, μ−〉

‖μ−‖Γ′

∣∣∣∣ < ε2.

Since PCurr(FN ) is a metrizable topological space and U+(ε,D), U−(ε,D) are
basic neigborhoods, by picking ε1, ε2 small enough and D1, D2 large enough we can
assume that U+(ε1, D1) and U−(ε2, D2) are disjoint. Hence in what follows we fix
D = max{D1, D2} and ε = min{ε1, ε2} so that U− := U−(ε,D) and U+ := U+(ε,D)
are disjoint.

Let w be a conjugacy class which is represented by c ∈ Γ such that [ηw] ∈ U+.
Note that

1− γ(ηw) =

∑
�Γ(v)=2C+1
v is legal

〈v, μ+〉

‖μ+‖Γ
−

∑
�Γ(v)=2C+1
v is legal

〈v, ηw〉

‖ηw‖Γ
≤ Zε1

< 1/2

because of the way we defined the neighborhood U+. Therefore for every rational
current [ηw] ∈ U+ we have γ(ηw) > 1/2. By using similar arguments, we can show
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that γ′(ηw) > 1/2 for all rational currents [ηw] ∈ U−. Therefore by Lemma 3.11
there is a power M = M(ε,D) > 0 such that for all rational currents [ηw] ∈ U+ we

have ϕM ([ηw]) ∈ U ′
+ where U ′

+ is an open subset of U+ such that U ′
+ ⊂ U+, and

for all rational currents [ηw] ∈ U− we have ϕ−M ([ηw]) ∈ U ′
− where U ′

− is an open

subset of U− such that U ′
− ⊂ U−. ( This is possible since PCurr(FN) is metrizable.)

Since rational currents are dense in PCurr(FN ), we have

(1) ϕM (U+) ⊆ U+,
(2) ϕ−M (U−) ⊆ U−,

and by Lemma 3.16;
(3) for every w ∈ [FN ] either ϕM ([ηw]) ∈ U ′

+ or ϕ−M ([ηw]) ∈ U ′
−;

and hence:
(4) for all [ν] ∈ PCurr(FN) either ϕM ([ν]) ∈ U+ or ϕ−M ([ν]) ∈ U−.

Claim. For any neighborhood U of [μ+] there exists n1 ≥ 1 such that for every
n ≥ n1 we have ϕnM (U+) ⊂ U .

Given any neigborhood U of [μ+], pick a smaller neighborhood U ′ of [μ+] such
that U ′ ⊂ U . Since every rational current [ηg] ∈ U+ has goodness ≥ 1/2, by
Lemma 3.11 there exists an M1 > 0 such that ϕm([ηg]) ∈ U ′ for all [ηg] ∈ U+ for

all m ≥ M1. Since rational currents are dense we have ϕm(U+) ⊂ U ′ ⊂ U for all
m ≥ M1. In particular, for above M = M(ε,D), for n1 ≥ 1 satisfying nM ≥ M1

we have ϕnM (U+) ⊂ U for all n ≥ n1. Thus, the claim is verified.
Let U be an arbitrary neighborhood of [μ+] and let K0 ⊂ PCurr(FN) \ {[μ−]}

be a compact set. Since W = PCurr(FN) � K0 is an open neigborhood of [μ−]
applying the claim to W and ϕ−1, we see that there exists n0 ≥ 1 such that
ϕ−n0M (U−) ⊂ (PCurr(FN) \K0) so that K0 ⊂ PCurr(FN) \ ϕ−n0M (U−). Hence
we have ϕn0M (K0) ⊂ (PCurr(FN) \U−). Since for each point [ν] ∈ ϕ(n0+1)M (K0),
we have ϕ−M ([ν]) /∈ U−, by (4) it implies that ϕ(n0+1)M (K0) ⊂ U+. Therefore, for
every m ≥ n0 + n1 + 1 we have

ϕmM (K0) ⊂ U.

A symmetric argument shows that for any compact subset K1 ⊂ PCurr(FN) \
{[μ+]} and for any open neighborhood V of [μ−] there exists m′ ≥ 1 such that for
every m ≥ m′ we have ϕ−mM (K0) ⊂ V .

Thus the conclusion of Theorem A holds for ϕM ; hence by Proposition 3.17 it
also holds for ϕ. �

3.1. Non-atoroidal iwips. In order to give a complete picture of dynamics of
iwips on PCurr(FN ) we state the analogous theorem for non-atoroidal iwips. We
first recall that a theorem of Bestvina-Handel [6] states that every non-atoroidal
iwip ϕ ∈ Out(FN) is induced by a pseudo-Anosov homeomorphism on a compact
surface S with one bounday component such that π1(S) ∼= FN .

Proposition 3.18. Let ϕ ∈ Out(FN ) be a non-atoroidal iwip. The action of ϕ on
PCurr(FN) has exactly three fixed points: [μ+] the stable current, [μ−] the unstable
current and [μβ ] the current corresponding to the boundary curve.

Moreover, we described the full picture in terms of the dynamics of the action
of ϕ on PCurr(FN ). Let us define

Δ− = {[aμ− + bμβ ] ∈ PCurr(FN) | a, b ≥ 0, a+ b > 0}
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and, similarly,

Δ+ = {[a′μ+ + b′μβ] ∈ PCurr(FN ) | a′, b′ ≥ 0, a′ + b′ > 0}.

Theorem 3.19 ([31]). Let ϕ ∈ Out(FN) be a non-atoroidal iwip, and K be a
compact set in PCurr(FN)\Δ−. Then, given an open neighborhood U of [μ+] there
exists an integer M > 0, such that for all n ≥ M we have ϕn(K) ⊂ U . Similarly,
given a compact set K ′ ⊂ PCurr(FN ) \ Δ+ and an open neighborhood V of [μ−]
there exists a integer M ′ > 0 such that for all n ≥ M ′ we have ϕ−n(K ′) ⊂ V .

We refer reader to [31] for further details.

4. Alternative proof

The main theorem of this section is the following:

Theorem 4.1. Let ϕ∈Out(FN ) be a hyperbolic iwip. Suppose that [μ]∈PCurr(FN )
�
{
[μ+], [μ−]

}
. Then,

lim
n→∞

ϕn([μ]) = [μ+] and lim
n→∞

ϕ−n([μ]) = [μ−].

By a result of Kapovich-Lustig [22, Lemma 4.7], Theorem 4.1 about pointwise
north-south dynamics implies Theorem A from the introduction about uniform
north-south dynamics.

Notation 4.2. Let ϕ ∈ Out(FN ) be a hyperbolic iwip. Let us denote the stable and
the unstable currents corresponding to the action of ϕ on PCurr(FN) by [μ+] and
[μ−] respectively, as defined in Lemma 3.7. Let T− and T+ denote representatives
in cvN of repelling and attracting trees for the right action of ϕ on CV N , where
T+ϕ = λ+T+ and T−ϕ

−1 = λ−T− for some λ−, λ+ > 1, [24].

Remark 4.3. Note that by the proof of Proposition 3.17, if ϕ is a hyperbolic iwip,
k ≥ 1 is an integer and if the conclusion of Theorem 4.1 holds for ϕk, then Theo-
rem 4.1 holds for ϕ as well. Therefore, for the remainder of this section, we pass to
appropriate powers and make the same assumptions as in Convention 3.3.

Let f : Γ → Γ be a train-track map representing a hypebolic iwip ϕ ∈ Out(FN).
Then, the Bestvina-Feighn-Handel lamination LBFH(ϕ) is the lamination generated
by the family of paths fk(e), where e ∈ EΓ, and k ≥ 0, [4].

Proposition 4.4. Let f be a train-track map representing the hyperbolic iwip
ϕ ∈ Out(FN ). Then, the Bestvina-Feighn-Handel lamination LBFH(ϕ) is uniquely
ergodic. In other words, there exists a unique geodesic current [μ] ∈ PCurr(FN )
such that supp(μ) ⊂ LBFH(ϕ), namely [μ] = [μ+].

Proof. Note that we are still working with a power of the outer automorphism ϕ
which satisfies Convention 3.3. There are two cases to consider in terms of the type
of the train track map f as in Lemma 3.6. First assume that f is of Type 2. Define
Lf to be the set of all finite edge-paths v in Γ such that there exists an edge e ∈ Γ
and an integer n ≥ 0 such that v is a subword of fn(e). Let Xf be the set of all
semi-infinite reduced edge paths γ in Γ such that every finite subword of γ is in Lf .
Note that the map τ : Curr(FN) → M′(Ω(Γ)) as defined in Section 2.2, gives an
affine homeomorphism from the set

A = {μ ∈ Curr(FN) |supp(μ) ⊂ LBFH(ϕ)}
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to the set

B = {ν ∈ M′(Ω(Γ)) |supp(ν) ⊂ Xf}.
Since Xf is uniquely ergodic by Theorem 2.6, this implies that LBFH(ϕ) is uniquely
ergodic. Now, let the map f be of Type 1. Partition the edges of Γ as in Lemma 3.6,
EΓ = E+ ∪ E−, and let f+ : E+ → E+ and f− : E− → E− be the corresponding
primitive substitutions. Define Lf+ and Xf+ similarly. Let Ω+(Γ) be the set of
all semi-infinite reduced edge-paths in Γ where each edge is labeled by an edge in
E+. Let M(Ω+(Γ)) be the set of positive Borel measures on Ω+(Γ) that are shift
invariant. Then, the map

σ : {ν ∈ M(Ω+(Γ))|supp(ν) ⊂ Xf+} → {μ ∈ Curr(FN) |supp(μ) ⊂ LBFH(ϕ)},
which is defined by 〈v, μ〉Γ = ν(Cyl(v)) for a positive edge-path v, 〈v, μ〉 =
ν(Cyl(v−1)) for a negative edge path v, and 〈v, μ〉 = 0 otherwise, is an affine
homeomorphism. Since Xf+ is uniquely ergodic, so is LBFH(ϕ). Note that because
of the way μ+ is defined (see 3.7), supp(μ+) ⊂ LBFH(ϕ). Hence, [μ+] is the only
current whose support is contained in LBFH(ϕ). �

Proposition 4.5. Let μ ∈ Curr(FN) be a geodesic current, and α : RN → Γ be a
marking.

(1) If 〈v, μ〉α > 0, then there exist ε, δ ∈ {−1, 1} and a finite path z such that〈
vεzvδ, μ

〉
> 0.

(2) If 〈v, μ〉α > 0, then for every r ≥ 2 there exists a path vr = vε1z1v
ε2 . . .

zr−1v
εr , where εi ∈ {−1, 1} such that 〈vr, μ〉α > 0.

Proof. The above proposition seems to be well known to experts in the field, but for
completeness we will provide a sketch of the proof here. Let T = Γ̃, and normalize
μ such that 〈T, μ〉 = 1. There exists a sequence {wn} of conjugacy classes such that

μ = lim
n→∞

ηwn

‖wn‖Γ
.

This means that there exists an integer M > 0 such that for all n ≥ M ,

〈v, ηwn
〉α

‖wn‖Γ
≥ ε

2
.

Note that without loss of generality we can assume ‖wn‖Γ → ∞. Otherwise, μ
would be a rational current for which the conclusion of the proposition clearly
holds. From here, it follows that for some ε1 > 0, we have

m(n)�Γ(v)

‖wn‖Γ
≥ ε1,

where m(n) is the maximal number of disjoint occurrences of v±1 in wn. Let uni

be the complementary subwords in wn as in Figure 2.

Let us set K =
�Γ(v)

ε1
. Observe that for all n ≥ M we have min �Γ(uni

) ≤ K,

otherwise we would have

‖wn‖Γ ≥ m(n)K +m(n)�Γ(v)

and hence,
m(n)�Γ(v)

‖wn‖Γ
≤ ε1,
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Figure 2. wn

which is a contradiction. Let us call complementary subwords uni
of length �Γ(uni

)
≤ K “short”. By using similar reasoning it is easy to see that short uni

cover a
definite proportion of wn for all n ≥ M .

Since there are only finitely many edge-paths ρ of length �Γ(ρ) ≤ K in Γ, for each
wn we can look at the short uni

which occurs most often in wn. This particular
uni

covers a definite amount of wn. Now, take a subsequence nk so that it is the
same short u for every nk. This means that, v±uv± covers a definite proportion of
wnk

. Since μ is the limit of ηwn
’s, this shows that〈
v±1uv±1, μ

〉
α
> 0.

This completes the proof of part (1) of Proposition 4.5. Part (2) now follows from
part (1) by induction. �

The standard proof of the following lemma uses the result that a hyperbolic iwip
ϕ ∈ Out(FN ) acts on PCurr(FN) with north-south dynamics; but since we are
proving that result in this paper we need a different argument.

Lemma 4.6. Let ϕ ∈ Out(FN ) be a hyperbolic iwip. Let [μ] �= [μ+] be a geodesic
current and T− be as in 4.2. Then, 〈T−, μ〉 �= 0. Similarly, for a geodesic current
[μ] �= [μ−] and T+ as in 4.2, we have 〈T+, μ〉 �= 0.

Proof. We will prove the first statement. The proof of the second statement is
similar. Let (Γ, α) be a marking and f : Γ → Γ be a train-track representative
for ϕ ∈ Out(FN ). Assume that for a geodesic current μ ∈ Curr(FN) we have
〈T−, μ〉 = 0. By a result of Kapovich-Lustig [21], this implies that

supp(μ) ⊂ L(T−),

where L(T−) is the dual algebraic lamination associated to T− as explained in
Example 4. It is shown in [23] that, L(T−) = diag(LBFH(ϕ)) and, moreover,
L(T−)� (LBFH(ϕ)) is a finite union of FN orbits of leaves (X,Y ) ∈ ∂2FN , where
geodesic realization γ in Γ of (X,Y ) is a concatenation of eigenrays at either an
INP or an unused legal turn.

Claim. supp(μ) ⊂ LBFH(ϕ).
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Figure 3. Singular leaves

Assume that this is not the case, this means that there is a leaf (X,Y ) in the
support of μ such that (X,Y ) ∈ L(T−) � (LBFH(ϕ)). By a result of Kapovich-
Lustig, [23] a geodesic representative of (X,Y ) ∈ L(T−) � (LBFH(ϕ)), γΓ(X,Y )
can be one of the following two types of singular leaves. See Figure 3.

(1) γΓ(X,Y ) = ρ−1ηρ′, where ρ and ρ′ are again combinatorial eigenrays of
f , and η is the unique INP in Γ. In this case turns between η and ρ, and
between η and ρ′ are legal (and may or may not be used), and γΓ(X,Y )
contains exactly one occurrence of an illegal turn, namely the tip of the
INP η.

(2) γΓ(X,Y ) = ρ−1ρ′, where ρ and ρ′ are combinatorial eigenrays of f satisfy-
ing f(ρ) = ρ and f(ρ′) = ρ′, and where the turn between ρ and ρ′ is legal
but not used. In this case all the turns contained in ρ and ρ′ are used.

First, recall that a bi-infinite geodesic γ is in the support of μ if and only if for
every subword v of γ,

〈v, μ〉α > 0.

Now, let e−1
2 e1 be either the unused subword at the concatenation point as in

the second case or the tip of the INP as in the first case. Since
〈
e−1
2 e1, μ

〉
> 0,

Proposition 4.5 implies that there exists a subword v = (e−1
2 e1)

±1 . . . (e−1
2 e1)

±1 . . .
(e−1

2 e1)
±1 . . . (e−1

2 e1)
±1 which is in the support of μ. This is a contradiction to the

fact that support of μ consists precisely of

(1) bi-infinite used legal paths, and
(2) bi-inifinite paths with one singularity as in Figure 3.

Therefore, supp(μ) ⊂ LBFH(ϕ). Now, Proposition 4.4 implies that [μ] = [μ+]. �

Proof of Theorem 4.1. We will prove the first assertion, the proof of the second
assertion is similar. Suppose that this is not the case. Then, there exists a subse-
quence {nk} such that

lim
nk→∞

ϕnk([μ]) = [μ′] �= [μ+].
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This means that there exists a sequence of positive real numbers {cnk
} such that

lim
nk→∞

cnk
ϕnk(μ) = μ′.

We first note that, by invoking Proposition 2.3, we have

〈T+, μ
′〉 =

〈
T+, lim

nk→∞
cnk

ϕnk(μ)

〉
= lim

nk→∞
cnk

λnk
+ 〈T+, μ〉 ,

which implies that limnk→∞ cnk
= 0.

Similarly, using Proposition 2.3, we get

〈T−, μ
′〉=

〈
T−, lim

nk→∞
cnk

ϕnk(μ)

〉
= lim

nk→∞
cnk

〈T−ϕ
nk , μ〉= lim

nk→∞

cnk

λnk
−

〈T−, μ〉=0,

which is a contradiction to the Lemma 4.6. This finishes the proof of the Theorem
4.1. �
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