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EQUIDISTRIBUTION OF RATIONAL FUNCTIONS HAVING

A SUPERATTRACTING PERIODIC POINT TOWARDS THE

ACTIVITY CURRENT AND THE BIFURCATION CURRENT

YÛSUKE OKUYAMA

Abstract. We establish an approximation of the activity current Tc in the pa-
rameter space of a holomorphic family f of rational functions having a marked
critical point c by parameters for which c is periodic under f , i.e., is a superat-
tracting periodic point. This partly generalizes a Dujardin–Favre theorem for
rational functions having preperiodic points, and refines a Bassanelli–Berteloot
theorem on a similar approximation of the bifurcation current Tf of the holo-
morphic family f . The proof is based on a dynamical counterpart of this
approximation.

1. Introduction

The J-stable locus Sf in a holomorphic family f of rational functions is open and
dense in the parameter space, contains the quasiconformally stable locus of f as an
open and dense subset, and is characterized by the non-activity of all the critical
points if they are marked [21] (see also [22, Chapter 4] and [20]). The J-unstable
locus or the bifurcation locus Bf of f can also be studied from a pluripotential
theoretical viewpoint. Our aim is to contribute to the study of the instability in a
holomorphic family of rational functions and the activity of its marked critical point.
We give an affirmative answer, in the superattracting case, to a question on the
removability of a seemingly technical assumption on the parameter space posed by
Dujardin–Favre [14, Theorem 4.2], and refines a result due to Bassanelli–Berteloot
[3, Theorem 3.1 (1)]. See also survey articles [6] and [13].

1.1. Equidistribution towards the activity current Tc. We say a mapping
f : Λ×P1 → P1 is a holomorphic family of rational functions on P1 of degree d > 1
over a connected complex manifold Λ if f is holomorphic and for every λ ∈ Λ,
fλ := f(λ, ·) is a rational function on P1 of degree d, and say that f has a marked
critical point c : Λ → P

1 if c is holomorphic and for every λ ∈ Λ, c(λ) is a critical
point of fλ.

For the details of pluripotential theory, we refer to [10, Chapter III] and [18, Part
I].

Definition 1.1. Let φ, ψ be meromorphic functions on a connected complex man-
ifold M . If φ �≡ ψ on M , then let [φ = ψ] be the current of integration over the
divisor defined by the equation φ = ψ on M : the Poincaré-Lelong formula asserts
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that when φ and ψ are holomorphic, ddc log |φ − ψ| = [φ = ψ] (for ddc, see Nota-
tion 2.1). On the other hand, by convention, if φ ≡ ψ, then we set [φ = ψ] := 0
as a (1, 1)-current on M ; we should be careful for this convention since in the case
that φ ≡ 0 and ψ �≡ 0 on M , [φ = 0] + [ψ = 0] = [ψ = 0] might be not equal to
[(φψ) = 0] = 0.

For each n ∈ N, set

Fn(λ) := fn
λ (c(λ)) on Λ.

Definition 1.2 (The currents Perc(n) and Per∗c(n)). Following [14, Definition 4.1],
for every n ∈ N, set

Perc(n) := [Fn = c] on Λ.(1.1)

Moreover, for each n ∈ N, let Xn be the closure in Λ of

supp[Fn = c] \ (
⋃

m∈N:m|n and m<n

supp[Fm = c]),

which is also an analytic subset in Λ and whose irreducible components are those
of suppPerc(n). Denoting by [A] the current of integration over an analytic variety
A in Λ, we set

Per∗c(n) :=
∑
V

(ordV (Perc(n))) · [V ],(1.2)

where the sum ranges over all irreducible components V of Xn.

Definition 1.3. Let ω be the Fubini-Study area element on P1 normalized as
ω(P1) = 1. To the marked critical point c of f , we can associate the activity
current

Tc := lim
n→∞

F ∗
nω

dn
as a (1, 1)-current on Λ.(1.3)

The proof of the convergence of the right hand side is due to [14, Proposition-
Definition 3.1] (see also Remark 2.3). The support of Tc coincides with the activity
locus

Ac := {λ ∈ Λ : {Fn : n ∈ N} is not normal at λ}

associated to c ([14, Theorem 3.2]).

The following is our principal result: the convergence (1.4) partially generalizes
Dujardin–Favre [14, Theorem 4.2] by removing their technical assumption in our
superattracting case. The foundational case that f(λ, z) = zd + λ and c ≡ 0 on
Λ = C was due to Levin [19].

Theorem 1. Let f : Λ×P1 → P1 be a holomorphic family of rational functions on
P1 of degree d > 1 over a connected complex manifold Λ having a marked critical
point c : Λ → P1. Then

lim
n→∞

Perc(n)

dn + 1
= Tc as currents on Λ, and(1.4)

lim
n→∞

Per∗c(n)

dn + 1
= Tc as currents on Λ.(1.5)
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Remark 1.4. Both (1.4) and (1.5) hold even if Fn ≡ c on Λ for some n ∈ N: for, in
this case, #{Fn : n ∈ N}<∞, so limn→∞ Perc(n)/(d

n+1)=limn→∞ Per∗c(n)/(d
n+

1) = 0 as currents on Λ and also Ac = ∅. The latter implies Tc = 0 on Λ since
suppTc ⊂ Ac.

Our proof of Theorem 1 relies on a dynamical counterpart of this result, and is
simpler than the Dujardin–Favre argument, which relies on a delicate classification
[14, Theorem 4] of non-active parameters.

1.2. Equidistribution towards the bifurcation current Tf . Let f : Λ×P1 →
P1 be a holomorphic family of rational functions of degree d > 1 over a connected
complex manifold Λ.

For every λ ∈ Λ, let L(fλ) be the Lyapunov exponent of fλ with respect to
the unique maximal entropy measure of fλ. The function Λ 	 λ 
→ L(fλ) ∈ R is
positive, continuous, and plurisubharmonic on Λ.

Definition 1.5 (DeMarco [11, Theorem 1.1]; see also Pham [26] and Dinh–Sibony
[12, §2.5]). The bifurcation current Tf on Λ of f is defined by

Tf := ddcλL(fλ) as a (1, 1)-current on Λ.

Taking a finitely-sheeted possibly ramified covering of Λ if necessary, we can
assume that there are marked critical points c1, . . . , c2d−2 : Λ → P1 of f such that
for every λ ∈ Λ, c1(λ), . . . , c2d−2(λ) are all the critical points of fλ taking into
account their multiplicities. Then by DeMarco’s formula [11, Theorem 1.4] (see
also Remark 2.3), Tf is decomposed as

Tf =

2d−2∑
j=1

Tcj .(1.6)

Definition 1.6 (A periodic point having the exact period). Fix n ∈ N and λ ∈ Λ.
A fixed point w ∈ P1 of fn

λ is a periodic point of fλ having the exact period n if for
every m ∈ N satisfying m|n and m < n, fm

λ (w) �= w. Let Fix∗(fn
λ ) be the set of all

periodic points of fλ having the exact period n.

For each n ∈ N, the holomorphic family f induces the multiplier polynomial
p∗n(λ,w) = p∗f,n(λ,w) on Λ × C, which satisfies that (λ,w) 
→ p∗n(λ,w) is a holo-

morphic function on Λ × C, that for each λ ∈ Λ, p∗n(λ, ·) is a polynomial on C,
and that for every w ∈ C \ {1} (the description when w = 1 is a little compli-
cated) and every λ ∈ Λ, p∗n(λ,w) = 0 if and only if there exists z0 ∈ Fix∗(fn

λ )
satisfying (fn

λ )
′(z0) = w (p∗n was introduced by Morton–Vivaldi [24, §1] working on

integral domains R more general than C). For the precise definition of p∗n(λ,w),
see Definition 4.8; in the case w = 0, for every n ∈ N and every λ ∈ Λ,

|p∗n(λ, 0)| =
∏

z∈Fix∗(fn
λ )

|f ′
λ(z)|.(1.7)

Following [4, §2], for each w ∈ C, set

Per∗f (n,w) := [p∗n(·, w) = 0] on Λ(1.8)

(the suffix * is added to the original notation Perf (n,w) in [4, §2]).
The convergence (1.5) is regarded as a refinement of the following.
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Theorem 1.7 (Bassanelli–Berteloot [4, Theorem 3.1 (1)]). Let f : Λ×P1 → P1 be
a holomorphic family of rational functions on P1 of degree d > 1 over a connected
complex manifold Λ. Then

lim
n→∞

Per∗f (n, 0)

dn
= Tf as currents on Λ.(1.9)

See Section 6 for the deduction of Theorem 1.7 from Theorem 1. This proof of
Theorem 1.7 is simpler than the proof of Bassanelli and Berteloot, which relies on
an approximation formula of the Lyapunov exponent of a rational function by the
multipliers of its repelling periodic points.

Remark 1.8. The full statement of Bassanelli–Berteloot [4, Theorem 3.1] can be de-
duced from Theorem 1.7 (see also Bassanelli–Berteloot [3, §3]). For further studies,
see also Buff–Gauthier [9] and Gauthier [15].

1.3. Organization of this article. In Section 2, we recall a reduction (1.4’) of
(1.4) in Theorem 1 as in [14, Proof of Theorem 4.2], and in Section 3, we show
a dynamical counterpart of (1.4’). In Section 4, we recall a local description of
Per∗c(n), a global decomposition of Perc(n), and the definition of p∗n(λ,w). In
Section 5, we show Theorem 1 based on this dynamical counterpart (plowing in the
dynamical space and reaping in the parameter space; see, e.g., [8, §1.1]). In Section
6, we establish a local decomposition of Per∗f (n, 0) and show Theorem 1.7 using
Theorem 1.

2. A reduction of Theorem 1

Notation 2.1. As in Section 1, let ω be the normalized Fubini-Study area element
on P1. Let ‖ · ‖ be the Euclidean norm on C2. The origin of C2 is also denoted by
0, and π : C2 \ {0} → P1 is the canonical projection. Setting the wedge product
(z0, z1)∧ (w0, w1) := z0w1 − z1w0 on C2 ×C2, the normalized chordal metric [z, w]
on P

1 is the function

(z, w) 
→ [z, w] := |p ∧ q|/(‖p‖ · ‖q‖)(≤ 1)(2.1)

on P1 × P1, where p ∈ π−1(z), q ∈ π−1(w). We normalize ddc as d = ∂ + ∂ and
dc = i(∂ − ∂)/(2π). Then π∗ω = ddc log ‖ · ‖ as currents on C2 \ {0}.

Let f : Λ × P
1 → P

1 be a holomorphic family of rational functions on P
1 of

degree d > 1 over a connected complex manifold Λ having a marked critical point
c : Λ → P1. Recall that Fn(λ) := fn

λ (c(λ)) on Λ for each n ∈ N.
The following reduction of (1.4) in Theorem 1 is due to Dujardin–Favre.

Lemma 2.2 ([14, in Proof of Theorem 4.2]). Let f, c, and Fn be as in the above.
Then the convergence (1.4) in Theorem 1 holds if

lim
n→∞

log[Fn, c]

dn + 1
= 0 in L1

loc(Λ).(1.4’)

Let us prove Lemma 2.2. For every point λ0 ∈ Λ and every open and connected
neighborhood U of λ0 in Λ small enough, there is a lift c̃ : U → C

2 \{0} of c in that

c̃ is holomorphic and that π ◦ c̃ = c on U , and there is a lift f̃ : U × C
2 → C

2 of f
in that f̃ is holomorphic and that for every λ ∈ U , f̃λ := f̃(λ, ·) is a homogeneous
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polynomial endomorphism on C2 satisfying π◦ f̃λ = fλ◦π on C2\{0} and f̃−1
λ (0) =

{0}. For each n ∈ N, set

F̃n(λ) := f̃n
λ (c̃(λ)) on U.

Recall the definition of Tc (Definition 1.3) and that F ∗
nω = ddc log ‖F̃n‖ as

currents on U . In particular,

lim
n→∞

ddc
log ‖F̃n‖

dn
= Tc as currents on U(2.2)

(see, e.g., [6, Lemma 3.2.7]). By Remark 1.4, we can assume that Fn �≡ c on Λ for
every n ∈ N. Then for every n ∈ N, by the Poincaré-Lelong formula,

ddc log |F̃n ∧ c̃| = [F̃n ∧ c̃ = 0] = [Fn = c] =: Perc(n)(2.3)

as currents on U . By (2.1), for every n ∈ N,

log |F̃n ∧ c̃| = log[Fn, c] + log ‖F̃n‖+ log ‖c̃‖ on U,(2.4)

so that the continuity of ddc on L1
loc(Λ) completes the proof of Lemma 2.2.

We also recall that the dynamical Green function of f̃ is the local uniform limit

Gλ(p) := lim
n→∞

log ‖f̃n
λ (p)‖

dn
(2.5)

on U × (C2 \ {0}) (see, e.g., [2, Proposition 1.2]). In particular,

lim
n→∞

log ‖F̃n(λ)‖
dn

= Gλ(c̃(λ)) locally uniformly on U.(2.6)

Remark 2.3. The locally uniform convergence (2.6) implies not only (1.3) but
also Tc = ddcλG

λ(c̃(λ)) on U , which with DeMarco’s formula L(fλ) = − log d +∑2d−2
j=1 Gλ(c̃j(λ)) − (2/d) log |Res(f̃λ)|, where Res(f̃λ) is the homogeneous resul-

tant of f̃λ, on U implies (1.6).

3. A dynamical counterpart of (1.4’)

For the details of complex dynamics, see, e.g., [23].

Definition 3.1. Let f be a rational function on P1. The Julia set of f is defined
by J(f) := {z ∈ P

1 : {fn : n ∈ N} is not normal at z}, whose complement in P
1 is

called the Fatou set of f and denoted by F (f).

The following is a dynamical counterpart of (1.4’).

Lemma 3.2. Let f be a rational function on P1 of degree d > 1. If a critical point
c of f is not periodic under f , then

lim
n→∞

log[fn(c), c]

dn + 1
= 0.(3.1)

Proof. Suppose that c ∈ F (f) and contrary that (3.1) does not hold, i.e.,

lim inf
n→∞

log[fn(c), c]

dn + 1
< 0.(3.2)

Then the Fatou component U containing c must intersect fn(U) for some n ∈ N, so
that U is a cyclic Fatou component of f having, say, the period m ∈ N. By the local
non-injectivity of f at c, fm : U → U is not univalent. Then by the Denjoy–Wolff
theorem (and the hyperbolicity of U , cf. [23, §5 and §16]), (3.2) even implies that
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c is a (super)attracting periodic point of f , which contradicts the non-periodicity
assumption on c under f . Hence (3.1) holds in this case.

Suppose next that c ∈ J(f). Then (3.1) follows from (the proof of) Przytycki
[27, Lemma 1], which asserts that for every critical point c ∈ J(f) of f and every
n ∈ N, [fn(c), c] ≥ 1/(20Ln), where L > 1 is a Lipschitz constant of f : P1 → P1

with respect to the normalized chordal metric [z, w] on P1. Now the proof of (3.1)
is complete. �

4. On Per∗c(n), Perc(n), and p∗n(λ,w)

We begin with a notion from the number theory; see, e.g., [1, Chapter 2].

Definition 4.1. The Möbius function μ : N → {0,±1} is defined by μ(1) = 1 and,
for every n ≥ 2, by μ(n) = 0 if p2|n for some prime number p, and μ(n) = (−1)� if
n factors as a product of distinct � prime numbers.

Let f : Λ × P1 → P1 be a holomorphic family of rational functions on P1 of
degree d > 1 over a connected complex manifold Λ.

Definition 4.2 (A periodic point having the formally exact period). Fix λ ∈ Λ
and n ∈ N. A fixed point w ∈ P1 of fn

λ is a periodic point of fλ having the formally
exact period n if either

(i) w ∈ Fix∗(fn
λ ) or

(ii) there is an m ∈ N satisfying m|n and m < n such that w ∈ Fix∗(fm
λ ) and

that (fm
λ )′(w) is a primitive (n/m)-th root of unity.

Let Fix∗∗(fn
λ ) be the set of all periodic points of fλ having the formally exact period

n.

Remark 4.3. For every distinct n,m ∈ N, Fix∗(fn
λ )∩Fix∗(fm

λ ) = ∅, but Fix∗∗(fn
λ )∩

Fix∗∗(fm
λ ) might be non-empty.

For every λ0 ∈ Λ, choose an open and connected neighborhood U of λ0 in Λ so
small that there is a lift f̃ : U × C2 → C2 of f , and set f̃λ = f̃(λ, ·), as before.

4.1. Fundamental facts. For the proof of the following facts, see e.g. Silverman
[28, Theorem 4.5] and Berteloot [6, §2.3.2].

Fact 4.4 (Holomorphic family of dynatomic polynomials). For every n ∈ N, the
function

Φ∗
f̃ ,n

(λ, p) :=
∏

m∈N:m|n
(f̃m

λ (p) ∧ p)μ(n/m) on U × C
2(4.1)

is holomorphic, and for every λ ∈ U , Φ∗
f̃ ,n

(λ, ·) is a homogeneous polynomial on C2

of degree ν(n) =
∑

m∈N:m|n μ(n/m)(dm+1), which is determined by n (and d) and

is independent of λ. By the Möbius inversion formula (cf. [1, Chapter 2]), (4.1) is
equivalent to

f̃n
λ (p) ∧ p =

∏
m∈N:m|n

Φ∗
f̃ ,m

(λ, p) on U × C
2.(4.2)
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Fact 4.5. For every n ∈ N and every λ ∈ U , we can choose (z̃
(n)
k (λ))

ν(n)
k=1 in C

2 \ {0}
such that the homogeneous polynomial Φ∗

f̃ ,n
(λ, ·) factors as

Φ∗
f̃ ,n

(λ, p) =

ν(n)∏
k=1

(p ∧ z̃
(n)
k (λ)) on C

2.(4.3)

Setting z
(n)
k (λ) := π(z̃

(n)
k (λ)) for each k ∈ {1, 2, . . . , ν(n)}, we indeed have

{z(n)k (λ) : k ∈ {1, . . . , ν(n)}} = Fix∗∗(fλ).(4.4)

Moreover, up to its permutation, the sequence (z
(n)
k (λ))

ν(n)
k=1 in P1 is determined by

f , n and λ and depends on choices of neither f̃ nor (z̃
(n)
k (λ))

ν(n)
k=1 .

4.2. Local description of Per∗c(n) and a global decomposition of Perc(n).

In addition to f̃ , for every marked critical point c : Λ → P1 of f , decreasing U if
necessary, there is also a lift c̃ : U → C

2 \ {0} of c. For every n ∈ N, recall that

F̃n(λ) := f̃n
λ (c̃(λ)) on U , and define the function

H̃n(λ) = H̃ c̃
f̃ ,n

(λ) := Φ∗
f̃ ,n

(λ, c̃(λ)) on U,(4.5)

which is holomorphic by Fact 4.4. Then by (4.3),

H̃n =

ν(n)∏
k=1

(c̃ ∧ z̃
(n)
k ) on U,(4.6)

and by (4.2),

F̃n ∧ c̃ =
∏

m∈N:m|n
H̃m on U.(4.7)

Lemma 4.6 (A local description of Per∗c(n)). For every n ∈ N,

Per∗c(n)|U = [H̃n = 0].(4.8)

Proof. For every n ∈ N, we claim that

X∗
n := supp(Per∗c(n)|U) = supp[H̃n = 0];(4.9)

for, we have

supp(Per∗c(n)|U) ={λ ∈ U : c(λ) ∈ Fix∗(fn
λ )} (by (1.1) and (1.2))

={λ ∈ U : c(λ) ∈ Fix∗∗(fn
λ )} (by (fn

λ )
′(c(λ)) = 0 �= 1)

= supp[H̃n = 0] (by (4.6) and (4.4)).

This also implies that for every distinct m,n ∈ N,

(4.10) supp[H̃m = 0] ∩ supp[H̃n = 0]

= {λ ∈ U : c(λ) ∈ Fix∗(fm
λ ) ∩ Fix∗(fn

λ )(= ∅)} = ∅.
Fix n∈N. We claim that for every irreducible component V ofX∗

n, ordV (Per
∗
c(n)|U)

= ordV [H̃n = 0]; for, we have

ordV (Per
∗
c(n)|U) = ordV (Perc(n)|U) (by (1.2))

= ordV [F̃n ∧ c̃ = 0] (by (2.3))

= ordV [H̃n = 0] (by (4.7), (4.9), and (4.10)).

Now the proof is complete. �
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For every n ∈ N, recall also that Fn(λ) := fn
λ (c(λ)) on Λ.

Lemma 4.7 (A global decomposition of Perc(n)). For every n ∈ N, under the
assumption that Fn �≡ c on Λ, it holds that

Perc(n) =
∑

m∈N:m|n
Per∗c(m) on Λ.(4.11)

Proof. Fix n ∈ N. By (2.3), (4.7), and (4.8), if Fn �≡ c on U , then Perc(n)|U =∑
m∈N:m|n Per∗c(m)|U , so (4.11) holds since λ0 is arbitrary. �

4.3. The definition of p∗n(λ,w). For the details, see Berteloot [6, §2.3.1].
For every n ∈ N, every λ ∈ Λ, and every j ∈ {0, 1, 2, . . . , ν(n)}, let σ∗

j (n, λ) be

the j-th elementary symmetric function associated to ((fn
λ )

′(z
(n)
k (λ)))

ν(n)
k=1 .

Then, for every n ∈ N, by the holomorphy of Φ∗
f̃ ,n

and f , the function σ∗
j (n, ·)

is holomorphic on Λ for every j ∈ {0, 1, 2, . . . , ν(n)}.

Definition 4.8 (cf. [4, §2.1]). For every n ∈ N, there is a holomorphic function
p∗n(λ,w) = p∗f,n(λ,w) on Λ× C, which is unique up to multiplication in n-th roots
of unity, such that

(p∗n(λ,w))
n =

ν(n)∑
j=0

σ∗
j (n, λ)(−w)ν(n)−j on Λ× C.(4.12)

For every n ∈ N and every λ ∈ Λ, we have

|p∗n(λ, 0)|

= |(σ∗
ν(n)(n, λ))

1/n| =
ν(n)∏
k=1

|(fn
λ )

′(z
(n)
k (λ))|1/n =

∏
z∈Fix∗(fn

λ )

|(fn
λ )

′(z)|1/n,

where the final equality holds since for every k ∈ {1, 2, . . . , ν(n)} satisfying

|(fn
λ )

′(z
(n)
k (λ))| �= 1,

z
(n)
k (λ) is in Fix∗(fn

λ ) and is a simple root of Φ∗
f̃ ,n

(λ, ·).
Hence, by the chain rule, we have not only (1.7) but also

|p∗n(λ, 0)| =
ν(n)∏
k=1

|f ′
λ(z

(n)
k (λ))|.(1.7’)

5. Proof of Theorem 1

5.1. Basic facts. Following Bassanelli–Berteloot [4, Theorem 2.5], we refer to the
following as a compactness principle for subharmonic functions.

Theorem 5.1 ([16, a consequence of Theorem 4.1.9 (a)]). Let (φj) be a sequence
of subharmonic functions on a domain U in Rn, and suppose that (φj) is locally
uniformly bounded from above. If φ := limj→∞ φj exists Lebesgue a.e. on U , then
indeed limj→∞ φj = φ in L1

loc(U).
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5.2. Proof of Theorem 1. Let f and c be as in Theorem 1, and recall that
Fn(λ) := fn

λ (c(λ)) on Λ for each n ∈ N. By Remark 1.4, we can assume without
loss of generality that

Fn �≡ c on Λ for every n ∈ N.(5.1)

For every λ0 ∈ Λ, choose an open and connected neighborhood U of λ0 in Λ so
small that there are a lift f̃ : U×C

2 → C
2 of f and a lift c̃ : U → C

2\{0} of c. Recall
that f̃λ = f̃(λ, ·), that for every n ∈ N, F̃n(λ) := f̃n

λ (c̃(λ)) on U and log |F̃n ∧ c̃| =
log[Fn, c]+ log ‖F̃n‖+log ‖c̃‖ on U (cf. (2.4)), and that limn→∞(log ‖F̃n(λ)‖)/dn =
Gλ(c̃(λ)) locally uniformly on U (cf. (2.6)).

Let us first prove (1.4) and then prove (1.5).

Proof of (1.4). According to Lemma 2.2, it is sufficient to prove (1.4’). Let us show

(1.4’). By (2.6) and (2.4), the sequence ((log |F̃n∧ c̃|)/(dn+1)) of plurisubharmonic
functions on U is locally uniformly bounded from above on U .

Claim.

lim
n→∞

log |F̃n(λ) ∧ c̃(λ)|
dn + 1

= Gλ(c̃(λ)) for Lebesgue a.e. λ ∈ U.

Proof. By the assumption (5.1), the union
⋃

n∈N
supp[Fn = c] is a Lebesgue null

subset in Λ, and by (2.4), Lemma 3.2, and (2.6), for every λ∈U \
⋃

n∈N
supp[Fn=c],

lim
n→∞

log |F̃n(λ) ∧ c̃(λ)|
dn + 1

= lim
n→∞

log[fn
λ (c(λ)), c(λ)]

dn + 1
+ lim

n→∞

log ‖F̃n(λ)‖
dn

= 0 +Gλ(c̃(λ)) = Gλ(c̃(λ)).

This completes the proof. �

By this claim and Theorem 5.1 (a compactness principle), using also (2.6) and
(2.4), we have

lim
n→∞

log[Fn(λ), c(λ)]

dn + 1
= lim

n→∞

log |F̃n(λ) ∧ c̃(λ)|
dn + 1

− lim
n→∞

log ‖F̃n(λ)‖
dn

= Gλ(c̃(λ))−Gλ(c̃(λ)) = 0 in L1
loc(U).

Since λ0 is arbitrary, the proof of (1.4’), and so of (1.4), is complete. �

Proof of (1.5). Under the assumption (5.1), by the Möbius inversion of the global
decomposition (4.11) of Perc(n) (in Lemma 4.7), for every smooth (dimC Λ −
1, dimC Λ− 1)-form φ on Λ,

|〈φ,Per∗c(n)− Perc(n)〉|

≤
∑

m∈N:m|n and m<n

∣∣∣μ
( n

m

)∣∣∣ · |〈φ,Perc(m)〉| = O(dn/2) as n → ∞,

where the final order estimate follows from (1.4) and m ≤ n/2 for every m ∈ N

satisfying m|n and m < n.
Hence (1.4) implies (1.5). �
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6. Proof of Theorem 1.7

Let f : Λ × P1 → P1 be as in Theorem 1.7. Taking a finitely-sheeted possibly
ramified covering of Λ if necessary, we assume without loss of generality that there
are marked critical points c1, . . . , c2d−2 : Λ → P

1 of f such that for every λ ∈
Λ, c1(λ), . . . , c2d−2(λ) are all the critical points of fλ, taking into account their
multiplicities.

Lemma 6.1 (A local decomposition of Per∗f (n, 0)). For every λ0 ∈ Λ, there are an
open neighborhood U of λ0 in Λ and N0 ∈ N such that for every n > N0,

Per∗f (n, 0) =
2d−2∑
j=1

Per∗cj (n) on U.(6.1)

By Lemma 6.1 and (1.6), the convergence (1.5) in Theorem 1 implies

lim
n→∞

Per∗f (n, 0)

dn + 1
= lim

n→∞

2d−2∑
j=1

Per∗cj (n)

dn + 1
=

2d−2∑
j=1

Tcj = Tf on U.

Since λ0 is arbitrary, the convergence (1.9) in Theorem 1.7 holds.

Remark 6.2. For every n ∈ N and every λ ∈ Λ, set R∗(fn
λ ) := {w ∈ Fix∗(fn

λ ) :
|(fn

λ )
′(w)| > 1}. The original proof of Theorem 1.7 is based on the approximation

L(fλ) = lim
n→∞

1

ndn

∑
z∈R∗(fn

λ )

log |(fn
λ )

′(z)| for each λ ∈ Λ;

for the details of this formula, see Berteloot–Dupont–Molino [7, Corollary 1.6],
and also [5, 25]. The proof of Theorem 1.7 presented here does not rely on this
approximation and, moreover, the argument developed in the proof of Lemma 6.1,
combined with the proof of Theorem 1, is simpler than the original one.

Proof of Lemma 6.1. Fix λ0 ∈ Λ. Choosing an open and connected neighborhood
U of λ0 in Λ small enough, we have a lift f̃ : U × C2 → C2 of f and a lift
c̃j : U → C

2 \ {0} of cj for every j ∈ {1, 2, . . . , 2d− 2} normalized so that for every

λ ∈ U , the Jacobian determinant of f̃λ = f̃(λ, ·) factors as

(detDf̃λ)(p) =

2d−2∏
j=1

(p ∧ c̃j(λ)) on C
2.(6.2)

For each n ∈ N, recall the definition (4.5) of the function H̃
c̃j

f̃ ,n
on U and set

H̃(j)
n := H̃

c̃j

f̃ ,n
on U, for each j ∈ {1, 2, . . . , 2d− 2}.

For each n ∈ N and each λ ∈ U , recall also the definition of (z̃
(n)
k (λ))

ν(n)
k=1 in C2 \{0}

and that z
(n)
k (λ) = π(z̃

(n)
k (λ)) for each k ∈ {1, 2, . . . , ν(n)}, in Fact 4.5.

Claim. For every n ∈ N, |p∗n(·, 0)| = |
∏2d−2

j=1 H̃
(j)
n | · ern on U .

Here rn(λ) := −ν(n) log d + 2(
∑ν(n)

k=1 log ‖f̃λ(z̃(n)k (λ))‖ −
∑ν(n)

k=1 log ‖z̃(n)k (λ)‖) is
a pointwise finite function on U .
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Proof. For every λ ∈ U and every n ∈ N, by a computation involving Euler’s
identity (cf. [17, Theorem 4.3]), for every k ∈ {1, 2, . . . , ν(n)},

|f ′
λ(z

(n)
k (λ))| = 1

d

‖f̃λ(z̃(n)k (λ))‖2

‖z̃(n)k (λ))‖2
|(det(Df̃λ)(z̃

(n)
k (λ))|,

so by (1.7’), we have |p∗n(λ, 0)| = |
∏ν(n)

k=1 (detDf̃λ)(z̃
(n)
k (λ))| · ern(λ). Moreover, for

every λ ∈ U and every n ∈ N, by (6.2) and (4.6), we have

ν(n)∏
k=1

(detDf̃λ)(z̃
(n)
k (λ)) =

ν(n)∏
k=1

2d−2∏
j=1

(z̃
(n)
k (λ) ∧ c̃j(λ)) =

2d−2∏
j=1

H̃(j)
n (λ),

which completes the proof. �

Under the convention min ∅ = 0, set

N0 := max
j∈{1,2,...,2d−2}

(
min{n ∈ N : fn

λ0
(cj(λ0)) = cj(λ0)}

)
∈ N ∪ {0}.

For every n > N0, neither H̃
(j)
n for every j ∈ {1, 2, . . . , 2d−2} nor p∗n(·, 0) identically

vanish on U , and by the claim, p∗n(·, 0)/(
∏2d−2

j=1 H̃
(j)
n ) has neither zeros nor poles on

U . Hence, for every n > N0, by the Poincaré-Lelong formula, we have [p∗n(·, 0) =
0] =

∑2d−2
j=1 [H̃

(j)
n = 0] on U , so by the definition (1.8) of Per∗f (n, 0) and the local

description (4.8) of Per∗cj (n) (in Lemma 4.6), we have (6.1). Now the proof of
Lemma 6.1 is complete. �
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[21] R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm.
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