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VEECH SURFACES AND THEIR PERIODIC POINTS

YOSHIHIKO SHINOMIYA

Abstract. We give inequalities comparing widths or heights of cylinder de-
compositions of Veech surfaces with the signatures of their Veech groups. As
an application of these inequalities, we estimate the numbers of periodic points
of non-arithmetic Veech surfaces. The upper bounds depend only on the topo-
logical types of Veech surfaces and the signatures of Veech groups as Fuchsian
groups. The upper bounds also estimate the numbers of holomorphic sections

of holomorphic families of Riemann surfaces constructed from Veech groups of
non-arithmetic Veech surfaces.

1. Introduction

A flat structure u on a surface X is an atlas on X without a finite subset C
such that every transition function is of the form w = ±z + c. The pair (X, u)
of the surface X and the flat structure u is called a flat surface. The points of
C are called critical points of (X, u). On (X, u), we may use terminologies of
Euclidean geometry. We focus on the case where (X, u) is of finite Euclidean area.
An affine map h : (X, u) → (X, u) is a quasiconformal map of (X, u) such that h
preserves C and is an affine map on the Euclidean plane with respect to u. The
affine group Aff+(X, u) of (X, u) is the group of all affine maps of (X, u). For an
affine map h, the derivative ±A ∈ SL(2,R) of its descriptions as affine maps on
the Euclidean plane by u is uniquely determined up to the sign. Thus, we have
the homomorphism D : Aff+(X, u) → PSL(2,R) which maps each affine map h to
its derivative ±A. The image Γ(X, u) = Im(D) of this homomorphism D is called
the Veech group of (X, u). It is proved by Veech ([Vee89], Proposition 2.7) that
Veech groups are Fuchsian groups. Conversely, there is the problem of which kinds
of Fuchsian groups are realized as Veech groups (see [HMSZ06], Problem 5). For
this problem, we have a result comparing the Veech group Γ(X, u) with geometrical
values for cylinder decompositions of (X, u). If the Veech group (X, u) is a lattice
in PSL(2,R), a flat surface (X, u) is called a Veech surface. The Veech dichotomy
theorem (Theorem 3.2) claims that if one of the geodesics with direction θ is not
dense in a Veech surface (X, u), then every geodesic with direction θ is closed
or a saddle connection, that is, a segment connecting critical points. Let θ be a
direction such that the geodesics with direction θ are closed or saddle connections.
Since there are only finitely many critical points, almost all points lie in closed
geodesic with direction θ. All connected components of the union of such closed
geodesics are Euclidean cylinders whose boundaries consist of saddle connections.
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The family of the cylinders are called a cylinder decomposition of (X, u). For a
Euclidean cylinder R, the distance H between two boundary components is called
the height of R, the shortest Euclidean length W of core curves of R is called the
width of R. We call the ratio W/H the modulus of the cylinder R and denote it
by mod(R). We showed the following theorem in [Shi14a], Theorem 3.2.

Theorem 1.1. Let (X, u) be a Veech surface such that X is a surface of type (g, n)
with 3g − 3 + n > 0. Let {Ri}mi=1 be any cylinder decomposition of (X, u). Then,
the inequality

(
mod(Ri)

mod(Rj)

) 1
2

< 2 exp

(
5

e
(3g − 3 + n)

)
Area(H/Γ(X, u))

holds for all i, j ∈ {1, · · · ,m}.

In this paper, we show the same kinds of inequalities for heights and widths of
cylinders.

Theorem 1.2. Let (X, u) be a Veech surface such that X is a surface of type
(g, n) with 3g − 3 + n > 0. Let G(·) be the Landau function and k0 the number
of punctures of H/Γ(X, u). We set d = 3g − 3 + n, λ = λ(g, n) = 2G(2d) and
μ = Area(H/Γ(X, u))−k0+1. Let {Ri}mi=1 be any cylinder decomposition of (X, u)
and Wi, Hi the width and height of the cylinder Ri, respectively. Then, we have

(λμ)−2(d−1) <
Hi

Hj
< (λμ)2(d−1)

and

(λμ)−2d <
Wi

Wj
< (λμ)2d

for all i, j ∈ {1, · · · ,m}.

In this paper, we also study periodic points of non-arithmetic Veech surfaces. In
[GHS03], Theorem 1 , Gutkin-Hubert-Schmidt showed the finiteness of the numbers
of periodic points of non-arithmetic prelattice surfaces. Even though not explicitly
stated, they obtained an upper bound of the number of periodic points of a non-
arithmetic prelattice translation surface depending only on the parameters of two
cylinder decompositions of the surface. Möller ([Möl06], Theorem 3.3) characterized
periodic points by torsion on some quotient of Jacobian variety of the flat surface.
This result also gives us an upper bound of the number of periodic points of a
compact non-arithmetic Veech surface depending only on the genus of the Veech
surface (see [Möl06], Corollary 3.6 and [Bui94], Theorem A). However, the orders
of these upper bounds are too large. We give an upper bound of the number of
periodic points of non-arithmetic Veech surface whose underlying surface is of finite
type. The upper bounds depend only on the topological types of Veech surfaces
and the signatures of the Veech groups as Fuchsian groups. The order of the upper
bounds are better than the previous ones.
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Theorem 1.3. Let (X, u) be a non-arithmetic Veech surface such that X is of type
(g, n). Then, the number of periodic points of (X, u) is less than

1

226
d10 (λμ)106d−1 .

As an application of this theorem, we estimate the numbers of holomorphic sec-
tions of holomorphic families of Riemann surfaces constructed from Veech groups.
A triple (M,π,B) of a two-dimensional complex manifold M , a Riemann surface B
and a holomorphic map π : M → B such that the fiber Xt = π−1(t) is a Riemann
surface of type (g, n) for each t ∈ B and the complex structure of Xt depends holo-
morphically on the parameter t is called a holomorphic family of Riemann surface
of type (g, n) over B. A holomorphic family (M,π,B) of Riemann surface is called
locally non-trivial if the induced map B � t �→ π−1(t) ∈ M(g, n) is non-constant.
Here, M(g, n) is the moduli space of Riemann surfaces of type (g, n). A holomor-
phic section s : B → M of a holomorphic family of Riemann surface (M,π.B) is a
holomorphic map satisfying π ◦ s = idB . Manin ([Man63], Teopema on page 1395),
Grauert ([Gra65], Satz on page 132) and Miwa ([Miw66], Theorem 1) independently
proved that if the base space B is of finite type, then the numbers of holomorphic
sections of locally non-trivial holomorphic families (M,π,B) of Riemann surfaces
of finite type is finite. In Manin’s proof, there was a gap. It was found and fixed
by Coleman [Col90] (see also [Man89]). By using Teichmüller theory, Imayoshi and
Shiga ([IS88], Section 5) also proved the finiteness. Shiga ([Shi97], Theorem 2 and
Corollary 3) gave upper bounds of the numbers of holomorphic families of Riemann
surfaces whose fibers are of type (g, n) = (0, n) (n ≥ 4), (1, 2) and (2, 0). These
upper bounds also give upper bounds of the numbers of holomorphic sections of
holomorphic families of Riemann surfaces of the above types. In [Shi14a], Theorem
3.1 and [Shi14b], Theorem 7.1, we estimate the numbers of holomorphic sections of
holomorphic families of Riemann surfaces constructed from Veech groups.

Let (X, u) be a flat surface such that X is a surface of type (g, n). We may
also regard (X, u) as a Riemann surface. For each A ∈ SL(2,R), let A ◦ u be a flat
structure given by composing A as a linear map with charts of u. The pair (X,A◦u)
is also a flat surface. Thus, we have the SL(2,R)-orbit of (X, u) in the moduli space
M(g, n). It is proved that the SL(2,R)-orbit of (X, u) in M(g, n) coincides with

the orbifold H/Γ(X, u). Here, R =

[
−1 0
0 1

]
and Γ(X, u) = R ·Γ(X, u) ·R−1 (see

[EG97], Theorem 1 and Remarks on page 173 and [HS07], Corollary 2.21). Now, we
have a holomorphic local isometry f0 : H/Γ(X, u) → M(g, n). Composing a finite
covering φ from a Riemann surface B of finite type onto H/Γ(X, u), we obtain a
holomorphic local isometry f = φ ◦ f0 : B → M(g, n) that is called a Teichmüller
curve. Through this map f , each point t of B corresponds to a Riemann surface
Xt = f(t). The correspondence gives us a holomorphic family of Riemann surfaces
over B whose fibers are Xt. Our upper bounds of the numbers of holomorphic
sections of such holomorphic families given in [Shi14a], Theorem 3.1 and [Shi14b],
Theorem 7.1 depend only on g, n and the types of the base spaces B. However, if the
degree of the finite covering φ : B → H/Γ(X, u) tends to infinity, our upper bound
also tends to infinity. In this paper, we give a uniform upper bound of the numbers
of holomorphic sections of holomorphic families of Riemann surfaces constructed
from the Veech group Γ(X, u) of a fixed Veech surface (X, u). The upper bound
does not depend on the degrees of finite coverings φ : B → H/Γ(X, u).
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Theorem 1.4. Let (X, u) be an non-arithmetic Veech surface such that X is of
type (g, n). For every holomorphic family of Riemann surfaces constructed from
the Veech group Γ(X, u), the number of holomorphic sections is less than

1

226
d10 (λμ)

106d−1
.

2. Preliminaries

In this section, we give definitions of flat surfaces, Veech groups, and periodic
points.

Let X be a (connected) compact Riemann surface of genus g. Let X be a
Riemann surface of type (g, n) with 3g−3+n > 0 that is X with n points removed.

Definition 2.1 (Flat structures and flat surfaces). A flat structure u on X is an
atlas of X minus a finite subset satisfying the following conditions:

(1) the local coordinates of u are compatible with the orientation of X,
(2) the transition functions are of the form

w = ±z + c(2.1)

in z(U ∩ V ) for (U, z), (V,w) ∈ u with U ∩ V 	= ∅,
(3) the atlas u is the maximal atlas with respect to (1) and (2).

A pair (X, u) of a Riemann surface X and a flat structure u on X is called a flat
surface. The punctures of X and the points which do not have neighborhoods in u
are called critical points of (X, u). We denote the set of all critical points of (X, u)
by C(X, u).

Remark 2.2. In Definition 2.1, if we replace the form of (2.1) to translations

w = z + c,

the pair (X, u) is called a translation surface.

We may consider terminologies of Euclidean geometry on (X, u) such as area,
segments, lengths or directions of the segments. Hereafter, we assume that the
Euclidean area of (X, u) is finite. By definition, we may regard u as a conformal
structure on X. On the Riemann surface (X, u), we have the integrable meromor-
phic quadratic differential q which is dz2 with respect to each of the charts z of
u. In this paper, we assume that q is holomorphic on (X, u). These assumptions
imply that all points of C(X, u) ∩X are zeros of q and punctures may be poles of
order at most 1. By the Riemann-Roch theorem, the sum of the orders of q at each
point of C(X, u) equals 4g − 4. Therefore, we have the following.

Lemma 2.3. Let X be a surface of type (g, n) and u a flat structure on X. The
set C(X, u) contains at most 4g − 4 + 2n points. The set C(X, u) contains just
4g− 4+ 2n points if and only if all punctures are poles of order 1 and all zeros are
of order 1.

Definition 2.4 (θ-geodesics, closed θ-geodesics, θ-saddle connections). Let θ ∈
[0, π) be a direction. A (closed) θ-geodesic on (X, u) is a (closed) geodesic of
direction θ ∈ [0, π) with respect to u which does not pass through critical points. A
θ-saddle connection is a segment of direction θ whose end points are critical points
and which does not contain critical points except for the end points. If θ = 0, π2 , we
say that θ-geodesics and θ-saddle connections are horizontal, vertical, respectively.
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Definition 2.5 (Jenkins-Strebel directions). A direction θ ∈ [0, π) is a Jenkins-
Strebel direction of (X, u) if every point of (X, u) lies in a closed θ-geodesic or a
θ-saddle connection.

Let θ ∈ [0, π) be a Jenkins-Strebel direction. Since there exist only finitely
many critical points of (X, u), almost all points on (X, u) lie in closed θ-geodesics.
Removing all θ-saddle connections from X, the resulting surface has finitely many
connected components and they are cylinders foliated by closed θ-geodesics. Thus,
the connected components are Euclidean cylinders. It is known that core curves of
the cylinders are not homotopic to each other and not homotopic to a point or a
puncture (See [Str84], Section 9).

Definition 2.6 (Cylinder decompositions). Let θ be a Jenkins-Strebel direction.
If X is decomposed into m cylinders R1, · · · , Rm by the direction θ, we call θ an
m-Jenkins-Strebel direction. The family of cylinders {Ri}mi=1 is called the cylinder
decomposition of (X, u) by the direction θ.

Remark 2.7. As core curves of the cylinders R1, · · · , Rm are not homotopic to each
other, the number of cylinders m is not greater than 3g − 3 + n.

Definition 2.8 (Affine groups). An affine map h of (X, u) is a quasiconformal self-
map of X such that h preserves critical points C(X, u) and, for (U, z) and (V,w) ∈ u
with h(U) ⊂ V , the composition w ◦ h ◦ z−1 is of the from w = Az + c for some
A ∈ GL(2,R) and c ∈ C. The affine group Aff+(X, u) of (X, u) is the group of all
affine maps of (X, u).

By the definition of flat structures, the matrix A which is the derivative of
w ◦ h ◦ z−1 is uniquely determined up to the sign. Moreover, A is in SL(2,R)
since we assume that the Euclidean area of (X, u) is finite. Therefore, we have
the homomorphism D : Aff+(X, u) → PSL(2,R) called derivative map which maps
each affine map h to its derivative ±A.

Definition 2.9 (Veech groups). The image of the derivative map D is called the
Veech group of (X, u) and we denote it by Γ(X, u).

It is proved by Veech ([Vee89], Proposition 2.7) that Veech groups are Fuchsian
groups (see also [EG97], Theorem 1 and Remarks on page 173 and [HS07], Remarks
2.18 and 2.20).

Definition 2.10 (Veech surfaces and their arithmeticity). A flat surface (X, u) is
called a Veech surface if Γ(X, u) is a lattice in PSL(2,R), that is, the corresponding
orbifold H/Γ(X, u) is of a finite hyperbolic area. A flat surface is arithmetic if the
Veech group is commensurable with PSL(2,Z) and is non-arithmetic if it is not
commensurable with PSL(2,Z).

One of our interests is periodic points on Veech surfaces.

Definition 2.11 (Periodic points). Let (X, u) be a flat surface. A point z ∈ (X, u)
is a periodic point if its Aff+(X, u)-orbit Aff+(X, u){z} is finite.

Example 2.12. Since the set C(X, u) of all critical points of (X, u) is finite and
affine maps preserve C(X, u), critical points are periodic points.

Gutkin-Hubert-Schmidt proved that the number of periodic points on a prelattice
flat surface is related to the arithmeticity of the flat surface. A flat surface is called
prelattice if it has at least two Jenkins-Strebel directions.
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Theorem 2.13 ([GHS03], Theorem 1). If a prelattice flat surface is arithmetic,
then its periodic points are dense. If a prelattice flat surface is non-arithmetic, then
it has only finitely many periodic points.

Finally, we see an important theorem about Fuchsian groups proved in [Shi14b],
Theorem 7.15.

Theorem 2.14. Let Γ be a lattice Fuchsian subgroup which is a lattice in PSL(2,R).

Assume that Γ contains

[
1 b0
0 1

]
(b0 > 0) as a primitive element. Then, Γ

contains

[
∗ ∗
c1 ∗

]
∈ Γ satisfying the inequality

1 ≤ |b0c1| < Area(H/Γ)− k0 + 1.

Here, Area(H/Γ) is the hyperbolic area of the orbifold H/Γ and k0 is the number of
punctures of H/Γ.

Remark 2.15. The lower bound of the inequality of Theorem 2.14 is a consequence
of Shimizu’s lemma ([Shi63], Lemma 4, see also [IT92], Lemma 2.21).

Lemma 2.16 (Shimizu’s lemma). Let Γ be a Fuchsian group in PSL(2,R). Suppose

that Γ contains

[
1 b0
0 1

]
(b0 > 0) as a primitive element. Then, the inequality

1 ≤ |b0c1| holds for every

[
∗ ∗
c1 ∗

]
∈ Γ with c1 	= 0.

Remark 2.17. A Fuchsian group Γ of type (p, k; ν1, · · · , νk) is one whose correspond-
ing orbifold H/Γ has genus p and k cone points of order ν1, · · · , νk ∈ {2, 3, · · · ,∞}.
A cone point of order ∞ is a puncture of H/Γ. If a Fuchsian group Γ is of type
(p, k; ν1, · · · , νk), then we have

Area(H/Γ) = 2π

(
2p− 2 +

k∑
i=1

(
1− 1

νi

))
.

3. Veech groups vs. cylinder decompositions

In this section, we show Theorem 1.2 which gives relations between Veech groups
and cylinder decompositions of Veech surfaces.

Let (X, u) be a Veech surface such that X is a surface of type (g, n) with 3g −
3 + n > 0.

Definition 3.1 (Heights, widths and moduli of cylinders). Let R be a Euclidean
cylinder. The height of R is the shortest length of curves connecting two boundary
components of R. The width of R is the shortest length of core curves of R. For
a Euclidean cylinder R with height H and width W , the ratio mod(R) = W/H is
called the modulus of R.

Given the cylinder decomposition {Ri}mi=1 by a Jenkins-Strebel direction θ. Take
the orthogonal matrix R−θ ∈ SO(2). Let us describe u as u = {(U, z)}. Considering
A−θ as a linear map, A−θ◦u = {(U,A−θ◦z)} is also a flat structure. The direction θ
of (X, u) is regarded as a horizontal direction of (X,A−θ ◦u). Moreover, Γ(X,A−θ ◦
u) = A−θ · Γ(X, u) · A−1

−θ and hence, Area(H/Γ(X,A−θ ◦ u)) = Area(H/Γ(X, u)).
Thus, we may assume that θ = 0 is the given Jenkins-Strebel direction of (X, u).
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The following theorem ([Vee89], Proposition 2.10 and 2.11) gives us an affine map
which preserves the horizontal directions.

Theorem 3.2 (The Veech dichotomy theorem). Let (X, u) be a Veech surface.
Every direction θ ∈ [0, π) satisfies one of the following properties:

• The direction θ is a Jenkins-Strebel direction. Let {Ri}mi=1 be the cylinder
decomposition of (X, u) by the Jenkins-Strebel direction θ. Then, the ratio
mod(Ri)/mod(Rj) is a rational number for all i, j ∈ {1, · · · ,m}. Moreover,

there exists an affine map h ∈ Aff+(X, u) which preserves the direction θ
and the derivative D(h) is a parabolic element of PSL(2,R).

• Every θ-geodesic is dense in X and uniquely ergodic. That is, the θ-geodesic
flow has only one transverse measure μ up to scalar multiples such that the
flow is ergodic with respect to μ.

Assume that θ = 0 is a Jenkins-Strebel direction of a Veech surface (X, u). Let
{Ri}mi=1 be any cylinder decomposition of (X, u). Denote by Wi and Hi the width
and height of the cylinder Ri, respectively. By Theorem 3.2, the Veech group

Γ(X, u) contains a parabolic element of the form

[
1 b
0 1

]
. Let B0 =

[
1 b0
0 1

]
(b0 > 0) be the primitive element which is of this form. Fix hB0

∈ D−1(B0).
Veech ([Vee89], Proposition 2.4) also proved that there exists α ∈ N such that
hα
B0

(Ri) = Ri and hα
B0

|∂Ri
= id. Moreover, hα

B0
is a power of Dehn twists along

core curves of the cylinders R1, · · · , Rm.

Definition 3.3 (The Landau function). The Landau function G : Z≥0 → Z≥0 is
one which maps each positive integer k to the greatest order of an element of the
symmetric group Sk of degree k.

Remark 3.4. Landau ([Lan03], page 94) showed that

lim
k→∞

log(G(k))√
k log k

= 1.

Massias [Mas84] showed that

logG(k) ≤ 1.05313 . . .
√
k log k

with equality at k = 1319766.

Recall that (X, u) is a Veech surface such that X is a surface of type (g, n) with
3g − 3 + n > 0 and the Veech group Γ(X, u) is a Fuchsian group. Let k0 be the
number of punctures of H/Γ(X, u). Hereafter, we set

d = 3g − 3 + n,(3.1)

λ = λ(g, n) = 2G(2d),(3.2)

μ = Area(H/Γ(X, u))− k0 + 1.(3.3)

Then, we have the following lemma.

Lemma 3.5. There exists α < λ such that hB(Ri) = Ri, hB|∂Ri
= id and hB is a

power of Dehn twists along core curves of the cylinders R1, · · · , Rm.

Proof. Let s be the number of horizontal saddle connections. Recall that m is the
number of cylinders. By the Euler characteristic, we have

2− 2g = �C(X, u)− (m+ s) +m = �C(X, u)− s.
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By Lemma 2.3, the number s is at most 2(3g−3+n) = 2d. Take α0 < G(s) ≤ G(2d)
such that hα0

B0
preserves every saddle connection. Then, h2α0

B0
|∂Ri

= id, h2α0

B0
(Ri) =

Ri for all i and h2α0

B0
is a power of Dehn twists along core curves of the cylinders

R1, · · · , Rm. Setting α = 2α0, we obtain the claim. �

We set hB = hα
B0

and B = D(hB) =

[
1 αb0
0 1

]
is the derivative of hB. Let

i(·, ·) be the geometric intersection number and Ci a core curve of Ri.

Lemma 3.6. Let h ∈ Aff+(X, u) and D(h) =

[
∗ ∗
c ∗

]
. We have

|c|Wi =

m∑
k=1

i(h(Ci), Ck)Hk

and

|c|Wi =

m∑
k=1

i(Ci, h(Ck))Hk

for all i.

Proof. We take Ci to be a horizontal closed geodesic in Ri. Considering Ci as a

vector

[
Wi

0

]
, the image h(Ci) is regarded as a vector D(h)

[
Wi

0

]
=

[
∗

cWi

]
.

We may also consider every connected component of h(Ci)∩Rk as a vector

[
∗
Hi

]
.

Since h(Ci) ∩Rk has i(h(Ci), Ck) connected components, we have

|c|Wi =

m∑
k=1

i(h(Ci), Ck)Hk.

Applying the same argument to the affine map h−1, we have

|c|Wi =
m∑

k=1

i(h−1(Ci), Ck)Hk =
m∑

k=1

i(Ci, h(Ck))Hk

as claimed. �

The following lemma ([Shi14a], Lemma 3.11) is the key of our results. Theorem
1.1 is easily proved by Lemma 3.7.

Lemma 3.7. Let λ, μ be the same as (3.2) and (3.3). Recall that b0 > 0 is the (1, 2)-

entry of the primitive element of Γ(X, u) which is of this form B0 =

[
1 b0
0 1

]
.

Then, the inequality

1 <
λb0

mod(Ri)
< (λμ)2

holds for all i ∈ {1, · · · ,m}.

Proof. Recall that hB is a power of Dehn twists along core curves of the cylinders

R1, · · · , Rm with B = D(hB) =

[
1 αb0
0 1

]
. Assume that hB|Ri

is the Ni-th power
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of the Dehn twist along a core curve of Ri. Then the derivative of hB|Ri
is of the

form

[
1 mod(Ri)
0 1

]Ni

. Thus, we have

[
1 αb0
0 1

]
=

[
1 mod(Ri)
0 1

]Ni

.

This implies the inequality

mod(Ri)

b0
=

α

Ni
< 2G(2d) = λ

which is equivalent to the lower bound of our claim.
Next, we show the second inequality. By Theorem 2.14, we can also take A0 =[
∗ ∗
c1 ∗

]
∈ Γ(X, u) satisfying 1 ≤ b0c1 < μ. Fix hA0

∈ D−1(A0) and put hA =

h−1
A0

◦ hB ◦ hA0
. The derivative A of hA is

A = D(h) = A−1
0 BA0 =

[
∗ ∗

−αb0c
2
1 ∗

]
.

Applying Lemma 3.6 to hA, we have

αb0c
2
1Wi =

m∑
k=1

i(hA(Ci), Ck)Hk(3.4)

≥ i(hA(Ci), Ci)Hi

= i(hB (hA0
(Ci)) , hA0

(Ci))Hi

for all i. By the assumption, hB is a composition of Dehn twists along Ci’s. Since
the curve hA0

(Ci) intersects some Cj , we have i(hB (hA0
(Ci)) , hA0

(Ci)) ≥ 1. Thus,
the inequality

λb0
mod(Ri)

=
λ(b0c1)

2Hi

b0c21Wi
≤ αλ(b0c1)

2 < (λμ)2

holds for each i. �

In the proof of Lemma 3.7, we show that Ni = αb0/mod(Ri) if Ni is the number
of twists of hB|Ri

. Thus, we obtain the following lemma which is used in section 4.

Lemma 3.8. The numbers of twists of hB along core curves of R1, · · · , Rm are
less than (λμ)2.

Hereafter, let hA = h−1
A0

◦ hB ◦ hA0
∈ Aff+(X, u) be the same as in the proof of

Lemma 3.7.

Lemma 3.9. If i(hA(Ci), Cj) 	= 0 or i(Ci, hA(Cj)) 	= 0, we have

(λμ)−2 <
Hj

Hi
< (λμ)2

and

(λμ)−4 <
Wj

Wi
< (λμ)4.
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Proof. Suppose that i(hA(Ci), Cj) 	= 0. Then, we have

Hj

Hi
≤ 1

Hi

m∑
k=1

i(hA(Ci), Ck)Hk ≤ αb0c
2
1Wi

Hi
= α(b0c1)

2mod(Ri)

b0
< (λμ)2

and

Hi

Hj
≤ 1

Hj

m∑
k=1

i(Cj , hA(Ck))Hk ≤ αb0c
2
1Wj

Hj
= α(b0c1)

2mod(Ri)

b0
< (λμ)2

by Lemma 3.6 and Lemma 3.7. Moreover, the inequalities

Wj

Wi
=

Wj

Hj
· Hj

Hi
· Hi

Wi
=

mod(Rj)

mod(Ri)
· Hj

Hi
< (λμ)4

and

Wi

Wj
=

Wi

Hi
· Hi

Hj
· Hj

Wj
=

mod(Ri)

mod(Rj)
· Hi

Hj
< (λμ)4

hold for any i, j with i(hA(Ci), Cj) 	= 0.
If i(Ci, hA(Cj)) 	= 0, by the same argument as above, we obtain the claim. �

Proof of Theorem 1.2. Fix any distinct i, j ∈ {1, · · · ,m}. Since the surface X is
connected, the set

⋃m
k=1 (Ck ∪ hA(Ck)) is also connected. Thus, there exists a

sequence i = i1, · · · ik+1 = j such that k < 2(m− 1) and i(hA(Cip), Cip+1
) 	= 0 for

p = 1, 2, · · · , k. Then, we have

Hi

Hj
=

Hi1

Hi2

· Hi2

Hi3

· · · · · Hik

Hik+1

< (λμ)k < (λμ)2(m−1) < (λμ)2(d−1).

Moreover, we have

Wi

Wj
=

Wi

b0Hi
· Hi

Hj
· b0Hj

Wj
=

mod(Ri)

b0
· Hi

Hj
· b0
mod(Rj)

< (λμ)2d

by Lemma 3.7. �

4. Upper bounds of the numbers of periodic points

In this section, we show Theorem 1.3. We give upper bounds of the number of
periodic points of non-arithmetic Veech surfaces. The basic idea is due to [GHS03].
They study periodic points on prelattice translation surface which is a translation
surface (see Remark 2.2) with at least two Jenkins-Strebel directions. Given two
distinct Jenkins-Strebel directions of a prelattice translation surface (X, u). Let
{Ri} and {R′

j} be the cylinder decompositions given by the directions, respectively.
The following is the outline of their ideas.

Proposition 4.1 ([GHS03], Theorem 7, Lemma 6 and Corollary 5). There exists
a constant N depending only on some parameters of the decompositions {Ri} and
{R′

j} such that if every cylinder of {Ri} and {R′
j} contains a periodic point whose

period is greater than N , then (X, u) is arithmetic.

They also proved that one periodic point with large period implies other periodic
points with large periods.
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Proposition 4.2 ([GHS03], Lemma 5 (ii)). There exists a constant c3 > 0 and
n0 ∈ N depending only on some parameters of the decompositions {Ri} and {R′

j}
such that if one of the cylinders of {Ri} (resp. {R′

j}) contains a periodic point

whose period is c1n
2 with n ≥ n0, then there exists a periodic point whose period is

n in each cylinder R′
j (resp. Ri) with Ri ∩R′

j 	= ∅.

We assume that (X, u) has a periodic point whose period is sufficiently large.
By iterating Proposition 4.2, we can conclude that every cylinder of {Ri} and
{R′

j} contains a periodic point whose period is greater than the number N as in
Proposition 4.1. Then, (X, u) is arithmetic by Proposition 4.1. This consideration
gives the upper bound of the periods of periodic points of non-arithmetic translation
surface depending only on some parameters of the two cylinder decompositions.

In this section, we estimate such upper bounds by the numbers d, λ and μ given
in (3.1), (3.2) and (3.3). As a result, we also obtain Theorem 1.3. We use the same
notations as in Section 3. Let (X, u) be a Veech surface such that the surface X is of
type (g, n) with d = 3g−3+n > 0. We may assume that θ = 0 is a Jenkins-Strebel

direction of (X, u). Then, we take B0 =

[
1 b0
0 1

]
(b0 > 0) to be the primitive

element of Γ(X, u) which is of the form

[
1 b
0 1

]
and hB0

∈ D−1(B0). By Lemma

3.5, there exists α < 2G(2d) = λ such that hB = hα
B0

is a composition of the Dehn
twists along core curves C1, · · · , Cm of cylinders R1, · · · , Rm given by the direction

θ = 0. We setB = D(hB) = Bα
0 . Theorem 2.14 gives us an element A0 =

[
∗ ∗
c1 ∗

]
of the Veech group Γ(X, u) satisfying 1 ≤ |b0c1| < μ = Area(H/Γ(X, u))− k0 + 1.
Here, k0 is the number of punctures of H/Γ(X, u). Now, we fix hA0

∈ D−1(A0)
and set hA = h−1

A0
◦ hB ◦ hA0

. We have

A = D(hA) = A−1
0 BA0 =

[
∗ ∗

−αb0c
2
1 ∗

]
.

In [GHS03], they iterate Proposition 4.2 many times so that every cylinder con-
tains periodic points with large periods. This enlarges the upper bounds of the pe-
riods of the periodic points of non-arithmetic translation surfaces. To reduce this,
we construct an affine map hM0

of (X, u) such that all pairs of Ri and hM0
(Rj) in-

tersect each other. Recall that m is the number of cylinders given by the horizontal
direction.

Proposition 4.3. Let hM0
= h−1

B ◦ (hB ◦ hA)
m. We have

i (hM0
(Ci), Cj) 	= 0

for any i, j ∈ {1, · · · ,m}.

Proof. The map hM0
is constructed by composing hA and hB alternately. Fix any

i0 ∈ {1, · · · ,m}. We see that the number of j ∈ {1, · · · ,m} satisfying

i
(
h−1
B ◦ (hB ◦ hA)

k
(Ci0), Cj

)
	= 0

becomes larger as k becomes larger. When k tends to m, the number of such j
equals m.
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We construct subsets I0, · · · , Im, J1, · · · , Jm of {1, · · · ,m} inductively as follows:

I0 = {i0} ,
Jk+1 = {j ∈ {1, · · · ,m} | i(hA(Ci), Cj) 	= 0 for some i ∈ Ik} ,
Ik+1 = {i ∈ {1, · · · ,m} | i(hA(Ci), Cj) 	= 0 for some j ∈ Jk+1} .

By definition, we have I0 ⊂ I1 ⊂ · · · ⊂ Im and J1 ⊂ · · · ⊂ Jm. The curve hA(Ci0)
intersects Cj for every j ∈ J1. Since hB is a composition of the Dehn twists along
C1, · · · , Cm, the curve hBhA(Ci0) intersects every curve hA(Ci) intersecting Cj for
some j ∈ J1. That is, the curve hBhA(Ci0) intersects hA(Ci) for every i ∈ I1.
Again, since hA is a composition of the Dehn twists along hA0

(C1), · · · , hA0
(Cm),

the curve hAhBhA(Ci0) intersects every curve Cj intersecting hA(Ci) for some
j ∈ I1. That is, the curve hAhBhA(Ci0) intersects Cj for every j ∈ J2. Continuing
this process, we conclude that hM0

(Ci0) intersects Cj for every j ∈ Jm.
We show that Jm = {1, · · · ,m}. If Jk 	= Jk+1 for all k, we have Jm = {1, · · · ,m}.

If there exists k such that Jk = Jk+1, then Jk = Jk+1 = · · · = Jm and Ik =
Ik+1 = · · · = Im. As the surface X is connected, so is

⋃m
i=1 (hM0

(Ci) ∪ Cj). Thus,
Jk = Jk+1 = · · · = Jm must be the set {1, · · · ,m}. �

We set M0 = D(hM0
) and hM = h−1

M0
◦hB ◦hM0

. Replacing (X, u) with (X,U ◦u)

for some matrix U =

[
1 ∗
0 1,

]
we may assume that R1, · · · , Rm are given by the

horizontal direction and hM0
(R1), · · · , hM0

(Rm) are given by the vertical direction.
Note that the number μ is invariant under this deformation since Γ(X,U ◦ u) =
UΓ(X, u)U−1. Then, we have

M0 = D(hM0
) =

[
0 ∗
c ∗

]
(4.1)

for some c ∈ R. Note that the affine map hM is a composition of Dehn twists along
the core curves hM0

(C1), · · · , hM0
(Cm) of the cylinders hM0

(R1), · · · , hM0
(Rm).

The width and height of the cylinder hM0
(Ri) are cWi and Hi/c, respectively.

In the following lemma, we estimate the number |b0c| by d, λ and μ.

Lemma 4.4. The (2, 1)-entry c of M0 satisfies

c = −αb0c
2
1 ·

τm+ − τm−
τ+ − τ−

.

Here, the numbers τ+ and τ− (τ+ > τ−) are solutions of the equation x2 − (2 −
α2b20c

2
1)x+ 1 = 0. In particular, we have

|b0c| < μ (λμ)2d−1 .

Proof. Let A2,2 be the (2, 2)-entry of A. By computation, we see that

BA =

[
1 + αb0cA2,2 − α2b20c

2
1 αb0(1 +A2

2,2 − αb0cA2,2)
−αb0c

2
1 1− αb0c1A2,2

]
and the eigenvalue equation of BA is x2 − (2 − α2b20c

2
1)x + 1 = 0. Let τ+, τ−

(τ+ > τ−) be the solutions of this equation. Setting

P =

[
αb0c1A2,2 + τ+ − 1 αb0c1A2,2 + τ− − 1

−αb0c
2
1 −αb0c

2
1

]
,
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we have

BA = P

[
τ+ 0
0 τ−

]
P−1.

Thus, we also have

M0 = B−1 (BA)m =

[
∗ ∗

−αb0c
2
1 ·

τm
+ −τm

−
τ+−τ−

∗

]
and

|c| = αb0c
2
1

∣∣∣∣τm+ − τm−
τ+ − τ−

∣∣∣∣ ≤ αb0c
2
1 (|τ+|+ |τ−|)m−1 ≤ αb0c

2
1

(
α2b20c

2
1 − 2

)m−1
.

The constants α, b0 and c1 are taken so that α < λ and 1 ≤ b0c1 < μ. By Remark
2.7, we have

|b0c| < μ (λμ)
2d−1

as claimed. �

We can estimate the intersection number i(hM0
(Ci), Cj) by the numbers d, λ and

μ.

Lemma 4.5. We have

0 < i(hM0
(Ci), Cj) < (λμ)2d−1

for all i, j.

Proof. By Theorem 1.2, Lemma 3.6, Proposition 4.3 and Lemma 4.4, we have

i(hM0
(Ci), Cj) ≤

1

Hj

m∑
k=1

i(hM0
(Ci), Ck)Hk = |b0c| ·

Wi

b0Hi
· Hi

Hj
< (λμ)

2d−1

as claimed. �

Definition 4.6 (G-periodic points and G-periods). Let G be a subgroup of the
affine group Aff+(X, u). A point z ∈ (X, u) is a G-periodic point if its G-orbit is
finite. The cardinal of the G-orbit is called the G-period. We denote by PG

n the set
of all G-periodic points whose G-periods are less than or equal to n.

We set G = 〈hB, hM 〉. If z ∈ (X, u) is a periodic point, then its G-orbit is
also finite. We estimate the number of G-periodic points of non-arithmetic Veech
surfaces.

Let φ(n) : Z≥0 → Z≥0 be the Euler totient function. That is, φ(n) is the number
of positive integers less than or equal to n that are relatively prime to n. We also set
Φ(n) =

∑n
k=1 φ(k). It is known that Φ(n) =

(
3/π2

)
n2 + O(n logn) (see [HW08],

Theorem 330). In this paper, we estimate it as Φ(n) < n2/2. We can understand

the sets P
〈hB〉
n and P

〈hM 〉
n by the next lemma.

Lemma 4.7. For each cylinder Ri (resp. hM0
(Ri)), the set P

〈hB〉
n ∩ Ri (resp.

P
〈hM 〉
n ∩ hM0

(Ri)) consists of NiΦ(n) horizontal (resp. vertical) closed geodesics.
Here, the number Ni is the number of twists of hB along the core curve Ci of Ri.



VEECH SURFACES AND THEIR PERIODIC POINTS 189

Proof. As hM = h−1
M0

◦ hB ◦ hM0
, we only need to prove for the set P

〈hB〉
n ∩Ri. We

identify the cylinder Ri as the rectangle [0,Wi) × [0, Hi]. Recall that Wi and Hi

are the width and height of Ri, respectively. Since hB|Ri
is the Ni-th power of the

Dehn twist, we have

D(hB) =

[
1 Nimod(Ri)
0 1

]
.

Assume that a point p = (x, y) ∈ [0,Wi) × [0, Hi] is one whose 〈hB〉-period is k.

Since hk
B(p) =

[
1 Nimod(Ri)
0 1

]k [
x
y

]
, there exists l ∈ N such that (k, l) = 1

and kNimod(Ri)y = lWi. This implies that l/(kNi) = y/Hi ≤ 1. Thus, the integer
l is of the form l = qk+ r for some q ∈ {0, · · · , Ni − 1} and r ∈ {1, · · · , k− 1} with
(k, r) = 1. This implies that the set of all points whose 〈hB〉-periods are k consists
of Niφ(k) horizontal closed curves. Thus, we obtain the claim. �

The next proposition estimates the cardinals of the sets PG
n and P

〈hB〉
n ∩P

〈hM 〉
n .

Proposition 4.8. Set F1(n) =
1
4d

2 (λμ)2d+3 n4. Then, we have

�PG
n ≤ �

(
P 〈hB〉
n ∩ P 〈hM 〉

n

)
< F1(n).

Proof. The first inequality is clear since PG
n ⊂ P

〈hB〉
n ∩ P

〈hM 〉
n . By Lemma 3.8,

Lemma 4.5 and Lemma 4.7, we have

�
(
P 〈hB〉
n ∩ P 〈hM 〉

n

)
≤

m∑
i,j=1

�
{(

P 〈hB〉
n ∩Ri

)
∩

(
P 〈hM 〉
n ∩ hM0

(Rj)
)}

=

m∑
i,j=1

i(Ci, hM0
(Cj))NiΦ(n)NjΦ(n)

<
1

4
d2 (λμ)

2d+3
n4 = F1(n)

as desired. �

From the above proposition, we obtain the following lemma.

Lemma 4.9. Let z0 ∈ (X, u) be a G-periodic point. If G-period of z0 is greater than
or equal to F1(n), then there exists z ∈ G{z0} whose 〈hB〉-period or 〈hM 〉-period is
greater than n.

The following lemma claims that a large 〈hB〉-orbit (resp. 〈hM 〉-orbit) of a
G-periodic point contains 〈hM 〉-periodic (resp. 〈hB〉-periodic) points with large
periods. Note that the cylinders Ri and hM0

(Rj) intersect for all i, j ∈ {1, · · · ,m}
by Proposition 4.3.

Lemma 4.10. Set F2(n) =
1
2 (λμ)

2d+1
n2. Let z0 ∈ (X, u) be a G-periodic point.

Suppose that G{z0} ∩Ri (resp. G{z0} ∩ hM0
(Rj)) contains a point z whose 〈hB〉-

period (resp. 〈hM 〉-period) is greater than F2(n). For all j ∈ {1, · · · ,m}, there
exists w ∈ 〈hB〉 {z} ∩ Ri ∩ hM0

(Rj) (resp. w ∈ 〈hM 〉 {z} ∩ Ri ∩ hM0
(Rj)) whose

〈hM 〉-period (resp. 〈hB〉-period) is greater than n.
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Proof. Let L be a connected component of Int(Ri) ∩ Int(hM0
(Rj)). Let Ni be the

number of twists of hB along the core curve Ci of Ri. By Lemma 4.7, the set

L ∩ P
〈hM 〉
n−1 consists of NjΦ(n− 1) vertical segments. Therefore, the set 〈hB〉 {z} ∩

L∩P
〈hM 〉
n−1 contains at most NjΦ(n−1) points. We show that 〈hB〉 {z}∩L contains

more than NjΦ(n − 1) points. Then, we conclude that the 〈hM 〉-period of one of
the points in 〈hB〉 {z} ∩ L must be greater than n.

Assume that there exists z ∈ G{z0}∩Ri whose 〈hB〉-period is greater than F2(n).
The distance between two points of 〈hB〉 {z} which are adjacent to each other is
less than Wi/F2(n). Fix any j ∈ {1, · · · ,m}. By Proposition 4.3, the cylinder
hM0

(Rj) intersects Ri. Every connected component L of Int(Ri)∩ Int(hM0
(Rj)) is

a rectangle whose horizontal edge has length Hj/|c|. By Theorem 1.2, Proposition
3.7 and Lemma 3.8, we have

� (〈hB〉 {z0} ∩ L) >
Hj

|c| ·
F2(n)

Wi

=
1

|cb0|
· b0
mod(Ri)

· Hj

Hi
· F2(n)

> μ−1λ−1 (λμ)−2(d−1) F2(n)

=
1

2
(λμ)2n2

> NjΦ(n− 1).

Hence, we obtain the claim. �
The next proposition is a consequence of Lemma 4.9 and Lemma 4.10. We see

that a G-periodic point whose period is sufficiently large induces periodic points
with large periods in all cylinders R1, · · · , Rm or hM0

(R1), · · · , hM0
(Rm).

Proposition 4.11. If the G-period of a point z0 ∈ (X, u) is greater than F1◦F2(n),
then one of the following holds:

(i) there exists zi ∈ Ri ∩ G{z0} whose 〈hB〉-period is greater than n for all
i ∈ {1, · · · ,m},

(ii) there exists wj ∈ hM0
(Rj)∩G{z0} whose 〈hM 〉-period is greater than n for

all j ∈ {1, · · · ,m}.

Proof. Suppose that the G-period of a point z0 ∈ (X, u) is greater than F1 ◦F2(n).
By Lemma 4.9, there exists z′0 ∈ G{z0} whose 〈hB〉-period or 〈hM 〉-period is greater
than F2(n). To make the argument easy, we assume that z′0 ∈ R1 ∩ hM0

(R1). By
Lemma 4.10, if the 〈hM 〉-period of z′0 is greater than F2(n), every Ri contains a
point zi whose 〈hB〉-period is greater than n. If the 〈hB〉-period of z′0 is greater
than F2(n), every hM0

(Rj) contains a point wj whose 〈hM 〉-period is greater than
n. �

Next, we observe the relation between periodic points with large periods and the
arithmeticity of Veech surfaces. By the equation (4.1) and Lemma 4.4, we recall

that hM0
is an affine map whose derivative is M0 = D(hM0

) =

[
0 ∗
c ∗

]
with c < 0.

The width and height of the cylinder hM0
(Ri) are |c|Wi and Hi/|c|, respectively.

Lemma 4.12. We identify hM0
(Ri) with the rectangle L = [0, Hi/|c|]× [0, |c|Wi).

Let z = (x, y) ∈ L be a 〈hM 〉-periodic point. Then, we have cx/Hi ∈ Q.
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Proof. Since z is a 〈hM 〉-periodic point, k = � 〈hM 〉 {z} is finite. The affine map hM

is the Ni-th power of the Dehn twist on a cylinder hM0
(Ri) given by the vertical

direction. Thus, we have

M =

[
1 0

−Nimod(hM0
(Ri)) 1

]
=

[
1 0

−c2Nimod(Ri) 1

]
and

Mk

[
x
y

]
=

[
x

−kc2Nimod(Ri)x+ y

]
.

This implies that −kc2Nimod(Ri) = cWil for some l ∈ Z. Now, we obtain our
claim cx/Hi ∈ Q. �
Lemma 4.13. Let L be a connected component of Int(Ri) ∩ Int(hM0

(Rj)). If L
contains two G-periodic points z1 and z2 with 〈hB〉 {z1} = 〈hB〉 {z2}, then we have
cWi/Hj ∈ Q.

Proof. We identify Ri with the rectangle [0,Wi) × [0, Hi]. Let us consider z1 =
(x1, y1), z2 = (x2, y2) ∈ [0,Wi) × [0, Hi]. By the assumption, y1 = y2. By Lemma
4.12, we have c(x1−x2)/Hj ∈ Q. Setting k = � 〈hB〉 {z1}, the distance between two
points of 〈hB〉 {z1} which are adjacent to each other isWi/k. Then, x1−x2 = tWi/k
for some t ∈ Z. Hence,

c
Wi

Hj
=

Wi

x1 − x2
· c(x1 − x2)

Hj
=

k

t
· c(x1 − x2)

Hj
∈ Q

holds. �
We see from the following lemma that a G-periodic point with sufficiently large

period induces commensurability of the widths Wi and heights Hi of the cylinders
R1, · · · , Rm.

Proposition 4.14. If there exists z0 ∈ (X, u) with �G{z0} > F1 ◦ F2((λμ)
2d−1

),
then the numbers cWi/Hj, Wi/Wj and Hi/Hj are rational numbers for all i, j ∈
{1, · · · ,m}.

Proof. Suppose that the G-period of z0 ∈ (X, u) is greater than F1 ◦F2((λμ)
2d−1

).
We see that the G-period of z0 is sufficiently large such that G{z0} contains periodic
points with large periods to which we can apply Lemma 4.13.

By Proposition 4.11, there are two possibilities (i) and (ii) as follows:

(i) there exists zi ∈ Ri∩G{z0} whose 〈hB〉-period is greater than (λμ)
2d−1

for
all i ∈ {1, · · · ,m},

(ii) there exists wj ∈ hM0
(Rj) ∩ G{z0} whose 〈hM 〉-period is greater than

(λμ)
2d−1

for all j ∈ {1, · · · ,m}.
Fix any i and j. If case (i) holds, then the distance between two points of 〈hB〉 {zi}
which are adjacent to each other is less than Wi/ (λμ)

2d−1. By Theorem 1.2 and
Proposition 3.7, we have

|c|Wi

Hj
= |cb0| ·

mod(Ri)

b0
· Hi

Hj
< (λμ)2d−1.

Now, we have Wi/ (λμ)
2d−1

< Hj/|c|. This means that every connected component
of Int(Ri) ∩ Int(hM0

(Rj)) contains two points that have the same 〈hB〉-orbits. By
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Lemma 4.13, we conclude that cWi/Hj ∈ Q. If case (ii) holds, then we again see
that cWi/Hj ∈ Q by the same argument as in case (i).

Moreover, we have

Hi

Hj
=

Hi

cWi
· cWi

Hj
∈ Q

and

Wi

Wj
=

cWi

Hi
· Hi

cWj
∈ Q

for any i, j. �

Finally, we prove Theorem 1.3. We show that a G-periodic point with a large
period implies commensurability of the widths Wi and heights Hi of the cylinders
R1, · · · , Rm and then the Veech surface (X, u) must be arithmetic. Therefore,
we conclude that non-arithmetic Veech surface cannot have periodic points whose
periods are too large.

Proof of Theorem 1.3. Let (X, u) be an non-arithmetic Veech surface. Assume that
there exists a G-periodic point z0 ∈ (X, u) such that �G{z0} ≥ F1 ◦F2((λμ)

2d−1) =
1
64d

2(λμ)26d−1. By Proposition 4.14, Hi/Hj and Wi/Wj are rational numbers for

any i, j. Considering (X,K ◦ u) for some K =

[
k 0
0 k

]
with k > 0, the flat

surface (X,K ◦ u) is constructed by gluing finitely many unit squares. Moreover,
there exists a translation surface (Y, u′) which is a double covering of (X,K ◦u) and
is a finite covering of a torus with at most one branched point. (See Remark 2.2
for the definition of translation surfaces.) By [GJ96], Theorem 2, we conclude that
Γ(X, u) is commensurable with PSL(2,Z) and hence, (X, u) is arithmetic. This is
a contradiction. Therefore, G-periods of G-periodic points of (X, u) are less than
d2(λμ)26d−1/64. By Proposition 4.8, the number of periodic points of (X, u) is less

than d10 (λμ)106d−1 /226. �

5. Application to holomorphic families of Riemann surfaces

Veech groups give us holomorphic families of Riemann surfaces. The holomor-
phic families of Riemann surfaces are corresponding to Teichmüller curves that are
holomorphic local isometry from Riemann surfaces into moduli spaces of Riemann
surfaces. In this section, we see that the upper bound of the numbers of periodic
points given in Theorem 1.3 is also an upper bound of the number of holomor-
phic sections of holomorphic families of Riemann surfaces constructed from Veech
groups.

Definition 5.1 (Holomorphic families of Riemann surfaces). Let M̄ be a two-
dimensional complex manifold and A be a one-dimensional analytic subset of M̄ or
an empty set. Let B be a Riemann surface and π̄ : M̄ → B a proper holomorphic
map satisfying the following two conditions:

(1) setting M = M̄ − A and π = π̄|M , the holomorphic map π is of maximal
rank at every point of M ,

(2) the fiber Xt = π−1(t) over each t ∈ B is a Riemann surface of fixed finite
type (g, n) with 3g − 3 + n > 0.
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We call such a triple (M,π,B) a holomorphic family of Riemann surfaces of type
(g, n) over the base space B.

Let (M,π,B) be a holomorphic family of Riemann surfaces of type (g, n) over
B. Let M(g, n) be the moduli space of Riemann surfaces of type (g, n). We have
the holomorphic map f : B � t �→ Xt = π−1(t) ∈ M(g, n). Fix a base point t0 ∈ B
and set X = π−1(t0). The Teichmüller space T (X) is the lift of the moduli space
M(g, n).

Definition 5.2 (Representations). A lift f̃ : H → T (X) of the holomorphic map f :
B → M(g, n) to the universal coverings of B and M(g, n) is called a representation
of (M,π,B) in T (X).

Definition 5.3 (Local triviality and local non-triviality). A holomorphic family of
Riemann surfaces (M,π,B) is locally trivial if the induced map f : B → M(g, n)
is constant and is locally non-trivial if the induced map f : B → M(g, n) is non-
constant.

Definition 5.4 (Holomorphic sections). Let (M,π,B) be a holomorphic family of
Riemann surfaces over B. A holomorphic map s : B → M is a holomorphic section
of (M,π,B) if it satisfies π ◦ s = idB .

We study a way to construct holomorphic families of Riemann surfaces from
Veech groups. Let (X, u) be a flat surface. For each A ∈ SL(2,R), we obtain a flat
surface (X,A ◦ u) which is not conformal equivalent to (X, u) in general.

Lemma 5.5. For A ∈ SL(2,R) and U ∈ SO(2), the flat surfaces (X,A ◦ u) and
(X,UA ◦ u) are conformal equivalent.

Proof. The identity map idX : (X,A◦u) → (X,UA◦u) is a conformal map between
them. �

From the above lemma, we have the map f̃ from SO(2) \ SL(2,R) into the Te-
ichmüller space T (X) ofX which maps each SO(2)·A to the Teichmüller equivalence
class [(X,A◦u), idX ]. Let us consider A ∈ SL(2,R) as a Möbius transformation act-

ing on H. Identifying SO(2)\SL(2,R) with H by the bijection SO(2)·A �→ −A−1(i),

we have the map f̃ : H → T (X).

Proposition 5.6. The map f̃ : H → T (X) is a holomorphic isometry with respect
to the hyperbolic and Teichmüller metric.

For the proof, see [HS07], Proposition 2.11. Holomorphic isometry from the
upper half-plane H into a Teichmüller space T (X) is called a Teichmüller disk.
Proposition 5.6 claims that flat surfaces give Teichmüller disks. By Teichmüller’s
theorem, it is also true that every Teichmüller disk is given by a flat surface. See
[EG97], Section 5 and [HS07], Section 2.

To construct holomorphic families of Riemann surfaces from Veech groups, we
consider the images of Teichmüller disks into the moduli spaces of Riemann surfaces.

Let X be a surface of type (g, n), u a flat structure on X and f̃ : H → T (X)
the Teichmüller disk constructed from the flat surface (X, u). The moduli space
M(g, n) of Riemann surfaces of type (g, n) is the quotient of T (X) by the mapping

class group Mod(X). Hence, the image of the Teichmüller disk Δ = f̃(H) into the
moduli space is represented by Δ/Stab(Δ). Here, the stabilizer Stab(Δ) of Δ is
the subgroup of Mod(X) consisting of all mapping classes preserving Δ.
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Theorem 5.7. Let R =

[
−1 0
0 1

]
and Γ(X, u) = R ·Γ(X, u) ·R−1. The stabilizer

Stab(Δ) coincides with Aff+(X, u). The pull-back of the action on h ∈ Aff+(X, u)

through f̃ is the action of the matrix R·D(h)·R−1 on H as a Möbius transformation.
In particular, Δ/Stab(Δ) coincides with the orbifold H/Γ(X, u).

For the proof, see [EG97], Theorem 1 and Remarks on page 173 and [HS07],
Corollary 2.21.

Remark 5.8. It is known that any two affine maps of a flat surface (X, u) are not
homotopic to each other (see [Vee89], Proposition 2.5 and [EG97], Lemma 5.2).
Thus, the affine group Aff+(X, u) is regarded as a subgroup of the mapping class
group Mod(X).

Remark 5.9. The discreteness of Veech groups is due to Theorem 5.7.

By Theorem 5.7, the Teichmüller disk f̃ : H → T (X) is projected to a map f0 :
H/Γ(X, u) → M(g, n) which is a holomorphic local isometry between the hyperbolic
and Teichmüller metric. Assume that (X, u) is a Veech surface. Then, the orbifold
H/Γ(X, u) is of finite hyperbolic area. It is not true in general that H/Γ(X, u)
is a Riemann surface. However, composing a finite covering φ from a Riemann
surface B of finite type onto H/Γ(X, u), we have a holomorphic local isometry f =
φ ◦ f0 : B → M(g, n) which is called a Teichmüller curve. Then, each point t ∈ B
corresponds to a conformal equivalence class Xt of Riemann surfaces. Now, we can
construct a holomorphic family (M,π,B) of Riemann surfaces over B such that
M = {(t, p) : t ∈ B, p ∈ f(t) = Xt} and π : M � (t, p) �→ t ∈ B. Such holomorphic
families of Riemann surfaces are ones constructed from Veech groups. Teichmüller
disks are representations of such holomorphic families of Riemann surfaces. Note
that every fiber of such a holomorphic family of Riemann surfaces coincides with a
flat surface (X,A ◦ u) for some A ∈ SL(2,R). In particular, the equivalence class
[i] ∈ H/Γ(X, u) of the imaginary unit i ∈ H is the original flat surface (X, u).

Let (X, u) be a Veech surface such that X is a surface of type (g, n). Let
(M,π,B) be a holomorphic family of Riemann surfaces constructed from the Veech
group Γ(X, u). Given a base point t0 = [i] of B. Then, the fiber π−1(t0) coin-
cides with (X, u). Denote by S the family of all holomorphic sections of (M,π,B).
Möller ([Möl06], Lemma 1.2) showed that a point of (X, u) is a periodic point if
and only if there exists a holomorphic section of a holomorphic family of Riemann
surfaces obtained from (X, u) which pass through the point on the fiber (X, u).
We also showed that a holomorphic section of a holomorphic family of Riemann
surfaces obtained from (X, u) corresponds to a point satisfying certain condition
([Shi14b], Corollary 5.6). The condition implies that holomorphic sections corre-
spond to periodic points of (X, u). The section is realized as the image of the point
by Teichmüller deformations around the base point t0 of B. Hence, holomorphic
sections of such holomorphic families of Riemann surfaces do not intersect each
other. As a result, we obtain the following.

Theorem 5.10. The map S � (s : B → M) �→ s(t0) ∈ (X, u) is injective. More-
over, the point s(t0) is a periodic point of (X, u).

From this theorem, our upper bound of the numbers of periodic points in Theo-
rem 1.3 estimates the numbers of holomorphic sections of the holomorphic family of
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Riemann surfaces constructed from Veech groups of non-arithmetic Veech surfaces.
Thus, we obtain Theorem 1.4.
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English and French summaries), Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 6, 847–
866 (2004), DOI 10.1016/j.ansens.2003.05.001. MR2032528

[GJ96] Eugene Gutkin and Chris Judge, The geometry and arithmetic of translation surfaces
with applications to polygonal billiards, Math. Res. Lett. 3 (1996), no. 3, 391–403, DOI
10.4310/MRL.1996.v3.n3.a8. MR1397686

[GJ00] Eugene Gutkin and Chris Judge, Affine mappings of translation surfaces: geometry

and arithmetic, Duke Math. J. 103 (2000), no. 2, 191–213, DOI 10.1215/S0012-7094-
00-10321-3. MR1760625

[Gra65] Hans Grauert, Mordells Vermutung über rationale Punkte auf algebraischen Kurven

und Funktionenkörper (German), Inst. Hautes Études Sci. Publ. Math. 25 (1965),
131–149. MR0222087

[HMSZ06] Pascal Hubert, Howard Masur, Thomas Schmidt, and Anton Zorich, Problems on bil-
liards, flat surfaces and translation surfaces, Problems on mapping class groups and
related topics, Proc. Sympos. Pure Math., vol. 74, Amer. Math. Soc., Providence, RI,
2006, pp. 233–243, DOI 10.1090/pspum/074/2264543. MR2264543
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