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Abstract. We are studying topological properties of the Julia set of the map

F (z, p) =

((
2z
p+1

− 1
)2

,
(

p−1
p+1

)2
)

of the complex projective plane PC2 to

itself. We show a relation between this rational function and an uncountable
family of “paper folding” plane filling curves.
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1. Introduction

We study the topology of the Julia set of the map

F (z, p) =

((
2z

p+ 1
− 1

)2

,

(
p− 1

p+ 1

)2
)

of the projective plane PC2 to itself. In particular, we show an interesting connec-
tion between this map and an uncountable class of plane-filling curves coming from
folding a strip of paper. One of the goals of the paper is to show how techniques of
iterated monodromy groups can be used to obtain interesting topological properties
of dynamical systems. All our results are proved using algebraic computations with
self-similar groups.

Let us start from the end of the article, and describe the plane-filling curves.
Take a long narrow strip of paper and fold it in two. Then repeat the procedure
several times. Note that each time you have a choice of two directions to fold.
Then unfold it so that you get right angles at the creases. You will get something
as shown in Figure 1.

Figure 1. Folded paper

Let us record the way we folded the paper as a sequences of letters L, R, standing
for “left” and “right”, respectively.

Now fold two equal strips of paper in the same way (described by the same
sequence of letters L, R), and rotate one with respect to the other by 180◦. Put
them down so that their endpoints touch; see Figure 2.

You will get a closed curve γ, bounding a connected maze of square rooms. See
two examples of such mazes in Figure 3. The rooms are shaded black. Two red dots
mark the endpoints of the strips of paper, and the green dots mark their midpoints
(i.e., the creases of the first folding).

The marked points are vertices of a square (this easily follows from the con-
struction). Let us choose an infinite sequence w = X1X2 . . . of letters L and R.
Let us draw rescaled closed curves γwn

corresponding to finite sequences wn =
X1X2 . . . Xn of instructions in such a way that the marked points stay at the ver-
tices of a fixed square Q. Let us parametrize the curves γwn

uniformly (propor-
tionally to the arclength) by t ∈ [0, 1], so that γwn

|[0,1/2] and γwn
|[1/2,1] are the two

folded paper strips. Then the vertices of Q are γwn
(0), γwn

(1/2) (the endpoints of
the strips), and γwn

(1/4), γwn
(3/4) (their midpoints).

It follows from the description of the folding procedure that the maze γwn+1
is

obtained from the maze γwn
by replacing each wall by a corner (so that the old wall

is the hypotenuse and the new walls are legs of an isosceles right triangle). Note
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Figure 2. Two strips

Figure 3. Mazes

that there are two ways of doing it (depending on the last letter of wn+1). We then
get a sequence of curves converging uniformly to some limit curve γX1X2....

The best known and studied example is the Heighway dragon curve, which corre-
sponds to a constant sequence w = LLL · · · (or RRR · · · ). It was defined for the first
time by NASA physicists J. Heighway, B. Banks, and W. Harter, and popularized
by M. Gardner in “Scientific American.” It is also called sometimes the “Jurassic
Park Fractal”, as the curves γLn |[0,1/2] appear at the beginning of each chapter of
Jurassic Park by M. Crichton. The closed version γw is called sometimes the twin-
dragon curve. See the images of these curves in Figure 4. In [8, p. 190] a relation
of the twin-dragon curve to numeration systems on complex numbers is discussed.

Consider the group H of transformations of the plane generated by rotations by
180◦ around the vertices of the square Q (recall that it is the square whose vertices
are the endpoints and the midpoints of the strips of paper). A fundamental domain
of the group H is the square Q′ of a twice bigger area such that the vertices of Q
are the midpoints of the sides of Q′. The quotient R2/H of the plane by the action
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Figure 4. Dragon and twin-dragon curves

of H is homeomorphic to the sphere and can be realized as the pillowcase obtained
from the square Q′ by folding its corners over the sides of the square Q.

If we take the curve γwn
, then its image γwn

/H on the pillowcase R2/H is a nice
Eulerian path tracing a square grid on the pillow; see Figure 5. The figure shows
how pieces of the curve γwn

that are outside the fundamental domain Q′ are moved
inside Q by elements of H (actually, just by the generators).

Figure 5. Curve on the pillowcase R2/H

For every infinite sequence w = X1X2 . . . the image γw/H of the curve γw is a
curve passing through every point of the sphere R2/H.

It follows directly from the construction that the curves γX1X2...Xn
|I for I =

[0, 1/4], [1/4, 1/2], [1/2, 3/4], [3/4, 1] are similar (with the similarity coefficient 1/
√
2)

to the curves γX2X3...Xn
|[0,1/2] and γX2X3...Xn

|[1/2,1]. The partition of γX1X2...Xn

into the above-defined sub-curves corresponds to splitting the original strip of pa-
per in two (and “forgetting” about the first folding). Moreover, the similarities
γX1X2...Xn

|[0,1/4] −→ γX2X3...Xn
|[0,1/2], γX1X2...Xn

|[1/4,1/2] −→ γX2X3...Xn
|[1/2,1],

γX1X2...Xn
|[1/2,3/4] −→ γX2X3...Xn

|[0,1/2], γX1X2...Xn
|[3/4,1] −→ γX2X3...Xn

|[1/2,1] are
restrictions of a branched self-covering SX1

: R2/H −→ R2/H. See Figure 6 for
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a description of SX1
. In the limit SX1

induces a piecewise similarity map from
γX1X2... to γX2X3....

Figure 6. Pillowcase folding

Each of the curves γX1X2...Xn
divides the sphere into two parts: it separates

squares of different colors of a checkerboard coloring of the pillow R2/Z2. The
squares of one color are connected to each other by the corridors of the maze in a
tree-like fashion. It is reasonable to assume that in the limit the curve γX1X2... goes
around a dendrite that is a limit of the sequence of the trees bounded by γX1X2...Xn

.
See, for example [11, II.7], where the relation between plane-filling curves and the
“rivers” they bound is explored.

The map SX1
induces a degree two branched covering of the dendrite bounded

by γX2X3... by the dendrite bounded by γX1X2....
The case of the twin-dragon curve was analyzed in detail by J. Milnor in [12].

He showed that the dendrites into which the curve γRRR.../H separates the sphere
can be naturally identified with the Julia set of the polynomial f(z) = z2+c, where
c ≈ −0.228 + 1.115i is a root of the polynomial c3 + 2c2 + 2c + 2. Moreover, the
curve γRRR.../H goes around the dendrite in the same way as the Caratheodory loop
goes around the Julia set, so that the sphere R2/H is the mating of the polynomial
z2 + c with itself: it is obtained by gluing two Julia sets along the Caratheodory
loops so that one loop is a complex conjugate of the other.

The general paper folding curves γw were studied in [6], where a connection with
numeration systems on complex numbers was described (it is closely related to the
“pillowcase folding” maps SL, SR : R

2/H −→ R2/H).
We show in our paper a relation of the sphere-filling curves γw with the dynamics

of the map

F (z, p) =

((
2z

p+ 1
− 1

)2

,

(
p− 1

p+ 1

)2
)

of the projective plane PC2 to itself. Note that F on the second coordinate is the

rational function f : p �→
(

p−1
p+1

)2

, whereas on the first coordinate the iterations

of F are compositions of the polynomials hp : z �→
(

2z
p+1 − 1

)2

, where p runs

through a forward orbit of iterations of f . Intersections of the Julia set of F
with the lines p = p0 are then the Julia sets of the non-autonomous iterations

C
hp0−→ C

hp1−→ C
hp2−→ · · · , where pn+1 =

(
pn−1
pn+1

)2

. These Julia sets, which we will

denote J(p0), are dendrites (see Figure 8) if p0 belongs to the Julia set of f . Denote
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by J the union of the Julia sets J(p0) for p0 running through the set of points of

the Julia set of f : p �→
(

p−1
p+1

)2

. It coincides with the support of the measure of

maximal entropy for the map F .
We show that the dendrites J(p0) are precisely the dendrites around which the

loops γw go. Moreover, the pillow R2/Z2 can be obtained by gluing two copies of
J(p0) along the Caratheodory loop going around J(p0) (one loop is glued to the
other using reflection with respect to a diameter). The curve γw is the image of the
Caratheodory loop. Moreover, the construction is dynamical: the map hp0

agrees
with the double coverings γX1X2... −→ γX2X3....

The paper is organized as follows. We start with a short reminder of the main
notions and techniques of self-similar groups. Section 3 is devoted to the study
of dynamics of the endomorphism F : PC2 −→ PC2. We start with computation
of the iterated monodromy group of F in Theorem 3.3. It is a self-similar group
acting on a degree 4 rooted tree. A computationally more convenient group is an
index two extension of IMG (F ), which is defined in Subsection 3.2. We denote it
G, and it is the iterated monodromy group of the quotient of the dynamical system
F : PC2 −→ PC2 by complex conjugation automorphism.

The group IMG(F ) contains a natural subgroup G corresponding to the non-
autonomous iterations hp of polynomials on the first coordinate. It is not transitive
on the levels of the rooted tree, and we get an uncountable family of quotients of
G coming from restricting of G to invariant binary subtrees. A similar family of
groups was studied in [15, 17, 19, 21].

The group G corresponds to a dynamical system F̃ : JG −→ JG , where JG is
a bundle of the Julia sets J(p0) over the Cantor set {0, 1}ω of one-sided binary

sequences. It is obtained from J by “exploding” the Julia set of f(p) =
(

p−1
p+1

)2

into the Cantor set {0, 1}ω, while keeping the Julia sets J(p0) intact. The inclusion

G ↪→ IMG (F ) induces a semiconjugacy (F̃ ,JG) −→ (F, J). The semiconjugacy
restricted to any connected component of JG is a homeomorphism onto J(p0) for
some p0. The projection of the semiconjugacy onto {0, 1}ω and onto the variable
p of F is a semiconjugacy of the one-sided shift on {0, 1}ω with the action of the
rational function f(p) on its Julia set.

The graphs of the action of G on the levels of binary sub-trees are approximations
of the Julia sets J(p) of the non-autonomous iterations of hp (i.e., the corresponding
slices of the Julia set of F ). They are trees, in accordance with the fact that the J(p)
are dendrites. We study these trees in Subsection 3.4 using a recursive description
of the generators of the self-similar group G. In particular, we describe inductive
algorithms for constructing these graphs; see Corollaries 3.11 and 3.12.

In the next subsection we study the external angles to the Julia sets J(p), i.e., the
Caratheodory loops around them. This is also done using the theory of self-similar
groups. Let O denote the bundle over the Julia set Jf of f of the Caratheodory
loops around J(p0). The corresponding dynamical system D : O −→ O is a skew
product acting on the base Jf of the bundle as f , and as double covering maps on
the fibers (circles). We have a semiconjugacy O −→ J acting identically on the
base Jf and mapping the corresponding circles onto the slices J(p) according to
the Caratheodory loops.

The iterated monodromy group of the dynamical system D : O −→ O is a
subgroup R of IMG (F ), and O is naturally homeomorphic to the limit space JR.
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The circle bundle O = JR is a continuous image (homeomorphic on the fibers)
of the trivial circle bundle R/Z×{0, 1}ω over the Cantor set {0, 1}ω, corresponding
to a cyclic subgroup 〈τ 〉 of G.

We get the following diagram of semiconjugacies of skew-product dynamical
systems:

R/Z× {0, 1}ω −→ O⏐⏐
 ⏐⏐

JG −→ J

,

where the vertical arrows correspond to the Caratheodory loops in the fibers of the
bundles (and homeomorphic on the bases of the bundles), and the horizontal arrows
are homeomorphic on the fibers and are gluing the Cantor set {0, 1}ω together into
the Julia set of f . The semiconjugacies are associated with the diagram of group
monomorphisms

〈τ 〉 −→ R⏐⏐
 ⏐⏐

G −→ IMG (F )

,

which is our main tool in the investigation of the semiconjugacies.
We use the group-theoretic information to understand which external angles

land on the points of the line z = p. In particular, we show that for a countable
set of parameters p (equal to the backward orbit of the unique real fixed point of

f(p) =
(

1−p
1+p

)2

) there are two external rays to J(p) landing on (p, p), and that in

all the other cases such a ray is unique (see Proposition 3.15).
In Section 4 we define matings of the non-autonomous iterations hp. Namely,

for every p in the Julia set of f(p) =
(

1−p
1+p

)2

consider the corresponding slice J(p)

of the Julia set of F and the Caratheodory loop around it. Take then another copy
of J(p) and glue them together along the Caratheodory loops so that one loop is a
mirror image of the other with respect to the diameter containing an external angle
landing on (p, p). Note that in the case when p belongs to the backward orbit of the
real fixed point of f , there are two such rays, and we have therefore two possible
choices for the mating.

We define the mating and study it in purely algebraic terms. We construct an

“amalgam” of the group G with itself, generating a group Ĝ = 〈G1,G2〉 by two
copies of G. Then the inclusion of the two copies of G induce two semiconjugacies
JG −→ J

̂G of the limit dynamical systems. We show that these semiconjugacies
realize the matings as described in the previous paragraph.

We then study the limit dynamical system of Ĝ, i.e., the obtained bundle of the

matings. We show that the group Ĝ contains a virtually abelian subgroup H such

that the inclusion H ↪→ Ĝ induces a conjugacy of the limit dynamical systems. We
then show that the limit space J

̂G = JH is the direct product of the Cantor set

{L, R}∞ with the sphere C/H, where H is the group of affine transformations of the
form z �→ ±z + a + ib for a, b ∈ Z, i.e., the pillowcase described above. The limit
dynamical system J

̂G −→ J
̂G acts as the one-sided shift on the Cantor set and as

multiplication by 1+ i or 1− i on the pillowcase C/H (the choice of the coefficient
1± i depends on the first letter of the corresponding element of the one-sided shift).

It follows that the constructed matings are Lattès examples, though non-
autonomous, as we can choose one of the two multiplications.
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Since G < Ĝ the graphs of the action of G on the levels of the tree are sub-graphs

of the graphs of action of Ĝ. The graphs of the action of Ĝ are square grids on the
pillowcases. We show that the graphs of the action of the two copies of G partition
the edges of the grid into two disjoint sub-trees; see Figure 23. These partitions
of a square grid into two subtrees converge to the decomposition of the pillowcase
C/H into two dendrites.

We will relate, in Section 5, the obtained results about the mating with the
paper folding curves. Namely, we show that the curve separating the two subtrees
of the square grid on C/H coincide with the paper-folding curves γv described in
this introduction and that in the limit the curves γv converge to the image of the
Caratheodory loop in the mating.

Section 6 describes the structure of the slices of the Julia set of F that correspond
to the values of p belonging to the boundaries of the Fatou components of f(p) =(

p−1
p+1

)2

. We show that they are obtained by “flattening” the boundaries of the

Fatou components of the polynomials 16z2(1 − z)2 and (2z2 − 4z + 1)2. In other
terminology they are obtained by the (rotated) tuning of these polynomials by
the polynomial z2 − 2. As before, the proof is carried out using just algebraic
computations with the iterated monodromy groups.

2. Self-similar groups

We present here, in a very condensed form, the main definitions and results of
the theory of self-similar and iterated monodromy groups. For a more detailed
account, see [14, 16, 18, 20].

2.1. Covering bisets.

Definition 2.1. Let G be a group. A G-biset is a set M together with commuting
left and right actions of G on M. In other words, we have two maps G × M −→
M : (g, x) �→ g · x and M×G −→ M : (x, g) �→ x · g satisfying 1 · x = x · 1 = x for
all x ∈ M and

g1 · (g2 · x) = (g1g2) · x, (x · g1) · g2 = x · (g1g2) (g1 · x) · g2 = g1 · (x · g2)
for all g1, g2 ∈ G, x ∈ M.

We say that M is a covering biset if the right action of G on M is free, i.e., if
x · g = x implies g = 1. We also assume then that the number of right orbits is
finite.

We also consider G1−G2 bisets M, which are sets with commuting left G1-action
and right G2-action.

Definition 2.2. The isomorphism class of a pair (G,M), where G is a group and
M is a covering G-biset, is called a self-similar group. Here two pairs (G1,M1) and
(G2,M2) are isomorphic (the corresponding self-similar groups are called equiva-
lent) if there exists an isomorphism φ : G1 −→ G2 and a bijection f : M1 −→ M2

such that f(g1 · x · g2) = φ(g1) · f(x) · φ(g2) for all g1, g2 ∈ G1 and x ∈ M1.

Let M1,M2 be G-bisets. Then their tensor product, denoted M1 ⊗ M2, is the
quotient of M1 × M2 by the equivalence relation x1 ⊗ g · x2 = x1 · g ⊗ x2, with
the actions g1 · (x1 ⊗ x2) · g2 = (g1 · x1) ⊗ (x2 · g2). It is easy to show that the
tensor product of two covering bisets is a covering biset. It is also easy to see that
(M1 ⊗M2)⊗M3 is naturally isomorphic to M1 ⊗ (M2 ⊗M3).
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Let M be a covering G-biset. Consider the disjoint union M∗ =
⋃

n≥0 M
⊗n of

the tensor powers M⊗n, n ≥ 0, where M⊗0 is the group G with the natural left
and right actions on itself. Denote by TM the set of orbits of the right action of G
on M∗. Then G acts on TM from the left. The set TM has a natural structure of
a rooted tree, where the right orbit of x1 ⊗ x2 ⊗ · · · ⊗ xn is connected by an edge
to the right orbit of x1 ⊗ x2 ⊗ · · · ⊗ xn ⊗ xn+1 for xi ∈ M. The left action of G on
TM is an action by automorphisms of the rooted tree (the root is the unique right
orbit of the action of G onto itself).

The action of G on TM is not faithful in general. Let N be the kernel of the
action. Denote then by M/N the set of right N -orbits. It is easy to see that h · x
and x belong to one right N -orbit for every x ∈ M and h ∈ N , and that the left
and right actions of G on M descend to left and right actions of G/N on M/N .
We call the self-similar group (G/N,M/N) the faithful quotient of the self-similar
group (G,M).

2.2. Wreath recursions and virtual endomorphisms. Let (G,M) be a self-
similar group. We say that X = {x1, x2, . . . , xd} ⊂ M is a basis if it is a transversal
of the right G-orbits. In other words, it is such a subset of M that for every x ∈ M

there exists a unique xi ∈ X such that x = xi · g for some g ∈ G. Note that g is
also uniquely determined by x, since the right action is free.

For every n the set Xn = {a1 ⊗ a2 ⊗ · · · ⊗ an : ai ∈ X} is a basis of M⊗n.
Consequently, X∗ =

⋃
n≥0 X

n is a basis of M∗. Here X0 consists of a single empty

word identified with the identity element of G = M⊗0. We will usually write
a1 ⊗ a2 ⊗ · · · ⊗ an just as the word a1a2 . . . an. We get a natural bijection between
the set TM of the right orbits of M∗ and the set X∗ of finite words over X. The
vertex adjacency on the tree TM corresponds to a similar adjacency of elements of
X∗: a word v ∈ X∗ is adjacent to the words of the form vx for x ∈ X. In other
words, we consider X∗ as the right Cayley graph of the free monoid generated by
X. The action of G on TM is hence transformed to an action of G on X∗. We call
this action the self-similar action associated with the basis X of the biset M.

Let g ∈ G and x ∈ X; then there exist unique y ∈ X and h ∈ G such that
g · x = y · h. The induced map x �→ y is a permutation coinciding with the
restriction of the action of g to the first level X ⊂ X∗ of the rooted tree X∗. Let us
denote this permutation by σg ∈ Symm(X). Denote also h = g|x. We get a map

Φ : g �→ σg(g|x)x∈X

from G to the semidirect product Symm(X) � GX . The semidirect product is
called the (permutational) wreath product of the symmetric group Symm(X) with
G.

It is easy to check that Φ : G −→ Symm(X) � GX is a homomorphism. We
call it the wreath recursion associated with the self-similar group (G,M) (and the
basis X). If we change the basis X to another basis Y and identify GX and GY

with G|X| = G|Y | using some bijections X ←− {1, 2, . . . , d} −→ Y , then the wreath
recursions associated with X and Y differ from each other by post-composition
with an inner automorphism of the wreath product Symm(d)�Gd.

If the left action of G on the set of right orbits of M (i.e., on the first level of
the tree TM) is transitive, then the self-similar group is uniquely determined by the
associated virtual endomorphism. Let x ∈ X, and denote by Gx the stabilizer of
the vertex x of the tree X∗. Then the associated virtual endomorphism φx is the



312 VOLODYMYR NEKRASHEVYCH

homomorphism φx : Gx −→ G defined by the condition

g · x = x · φx(g).

The biset M is reconstructed (up to an isomorphism) from the associated virtual
endomorphism in the following way. Let φ : G1 −→ G be a virtual endomorphism
(where G1 is a subgroup of finite index in G). Let Mφ be the set of formal expres-

sions [φ(g1)g2], for g1, g2 ∈ G, where [φ(g1)g2] = [φ(h1)h2] if and only if h−1
1 g1 ∈ G1

and φ(h−1
1 g1) = h2g

−1
2 . This convention agrees with the identification of an expres-

sion [φ(g1)g2] with the partial transformation

[φ(g1)g2] : x �→ φ(xg1)g2

ofG. Note that φ(xg1)g2=φ(xh1)h2 is equivalent to φ(xg1)=φ(xg1)φ(g
−1
1 h1)h2g

−1
2 ,

and hence to φ(h−1
1 g1) = h2g

−1
2 .

The set Mφ is invariant with respect to pre- and post-composition with the right
translations x �→ xg. We hence get a natural G-biset structure on Mφ. It is given
by the formulas

[φ(g1)g2] · g = [φ(g1)(g2g)], g · [φ(g1)g2)] = [φ(gg1)g2].

It is easy to see that if φ = φx is the virtual endomorphism associated with a
covering biset M, then M is isomorphic to Mφ. Since the action of G on the set of
right orbits is transitive, every element y ∈ M can be written as y = g1 · x · g2, and
then the isomorphism maps y to [φ(g1)g2].

2.3. Iterated monodromy groups. Let M1,M0 be path connected and locally
path connected topological spaces or orbispaces. A topological correspondence is a
pair of maps f, ι : M1 −→ M0, where f is a finite degree covering map and ι is a
continuous map.

Choose a basepoint t ∈ M0. Let M be the set of pairs (z, �), where z ∈ f−1(t)
and � is the homotopy class of a path in M0 from t to ι(z). The set M has a natural
structure of a covering π1(M0, t)-biset. Namely, for a loop γ ∈ π1(M0, t), denote by
(z, �) · γ the element (z, �γ). Here and in the sequel we compose paths as functions:
in a product �γ the path γ is passed first, and then �. Denote by γ · (z, �) the
element (y, ι(γz)�), where γz is the unique lift of γ by f that starts at z and y is
the end of γz.

A basis of M is any set {(z1, �1), (z2, �2), . . . , (zd, �d)}, where d = deg f and
f−1(t) = {z1, z2, . . . , zd}.

The faithful quotient of the self-similar group (π1(M0, t),M) is called the iterated
monodromy group of the correspondence f, ι : M1 −→ M0.

The virtual endomorphism associated with the biset M is equal to ι∗ :π1(M1)−→
π1(M0), where π1(M1) is identified with a subgroup finite index in π1(M0) by the
isomorphism f∗. It is well defined up to compositions with inner automorphisms of
π1(M0), as is any virtual endomorphism associated with a self-similar group.

If f : M −→ M is a branched self-covering, then we can transform it into a
topological correspondence by removing from M the closure P of the union of
the forward orbits of branch points of M . If P is not too big, in particular, if
it does not disconnect M , then we can consider the topological correspondence
f, ι : M1 −→ M0, where M0 = M \ P , M1 = f−1(M0), and ι : M1 −→ M0 is the
identical embedding. This is done, for example, if f is a post-critically finite rational
function or a post-critically finite endomorphism of PC2 (which means that P is
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the union of a finite number of varieties). In these cases we represent the elements
of M just as paths � = ι(�), since their endpoints are uniquely determined by �.

2.4. Contracting self-similar groups. Let M be a covering G-biset, and let X
be a basis of M. For every v ∈ X∗ and g ∈ G denote by g|v the unique element of
G such that g · v = u · g|v for some u ∈ X∗. We call it the section of g in v.

Definition 2.3. The self-similar group (G,M) (with a chosen basis X of M) is
said to be contracting if there exists a finite set N ⊂ G such that for every g ∈ G
there exists n such that g|v ∈ N for every v ∈ Xk such that k ≥ n. The smallest
set N satisfying the above condition is called the nucleus of the group.

It is proved in [14, Corollary 2.11.7] that the property of a biset to be contracting
does not depend on the choice of a basis X. The nucleus, however, depends on X.

Since a biset M and a basis are uniquely determined by the associated wreath
recursion, we call a wreath recursion G −→ Symm(X) � GX contracting if the
corresponding self-similar group is contracting. Sometimes we say that a G-biset
M is hyperbolic if the self-similar group (G,M) is contracting. It is easy to see that
if (G,M) is contracting, then its faithful quotient is also contracting.

The nucleus N satisfies the property that g|x ∈ N for all g ∈ N and x ∈ X. We
will often represent N as an automaton using its Moore diagram. It is the oriented
graph with the set of vertices N in which for every g ∈ N and x ∈ X we have an
arrow from g to g|x labeled by x|y, where y is the image of x under the action of g
on the first level of the tree X∗, i.e., we have g · x = y · g|x.

Let (G,M) be a contracting self-similar group, and let X ⊂ M be a basis.
Consider the space X−ω of left-infinite sequences . . . x2x1 of elements of X. We say
that . . . x2x1, . . . y2y1 ∈ X−ω are asymptotically equivalent if there exists a sequence
gn ∈ G taking values in a finite subset of G such that gn(xn . . . x1) = yn . . . y1 (with
respect to the action of G onX∗). The quotient of the topological spaceX−ω by the
asymptotic equivalence relation is called the limit space of the group (G,M) and is
denoted JG. The shift . . . x2x1 �→ . . . x3x2 agrees with the asymptotic equivalence
relation, so that it induces a continuous map s : JG −→ JG. We call the pair
(JG, s) the limit dynamical system of the self-similar group.

One can show (see [14, Theorem 3.6.3]) that two sequences . . . x2x1 and . . . y2y1
are asymptotically equivalent if and only if there exists an oriented path . . . e2e1 of
arrows in the Moore diagram of the nucleus such that en is labeled by xn|yn.

Consider now X−ω × G, where G is discrete. We write elements of the space
X−ω × G as . . . x2x1 · g for xi ∈ X and g ∈ G. Two sequences . . . x2x1 · g and
. . . y2y1 ·h are said to be asymptotically equivalent if there exists a sequence gk ∈ G
taking values in a finite subset of G such that gn · xn . . . x2x1 · g = yn . . . y2y1 · h in
M⊗n for all n. One can show that . . . x2x1 · g and . . . y2y1 · h are asymptotically
equivalent if and only if there exists an oriented path . . . e2e1 in the Moore diagram
of the nucleus such that en is labeled by xn|yn for every n and the last vertex of
the path is hg−1.

The quotient of X−ω × G by the asymptotic equivalence relation is called the
limit G-space and is denoted XG. The group G acts naturally on X−ω ×G by the
right multiplication. This action agrees with the asymptotic equivalence relation,
so that it induces a right action of G on XG by homeomorphisms.

For every x ∈ M and . . . x2x1 · g ∈ X−ω ×G the asymptotic equivalence class of
. . . x2x1 · g ⊗ x = . . . x2x1y · h, where h ∈ G and x ∈ X are such that g · x = y · h,
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is uniquely determined by x and the asymptotic equivalence class of . . . x2x1 · g. It
follows that we get a well-defined continuous map ξ �→ ξ ⊗ x of XG to itself.

The biset structure of M agrees with the maps ξ �→ ξ ⊗ x on XG, so that
(ξ · g1 ⊗ x) g2 = ξ ⊗ (g1 · x · g2) for all ξ ∈ XG, g1, g2 ∈ G, x ∈ M. Moreover, we
have the following rigidity theorem; see [14, Theorem 3.4.13].

Theorem 2.1. Let M be a hyperbolic G-biset. Let X be a metric space such that
G acts on X co-compactly and properly by isometries from the right. Suppose that
for every x ∈ M we have a continuous strictly contracting map ξ �→ ξ ⊗ x such
that (ξ · g1 ⊗ x) · g2 = ξ ⊗ (g1 · x · g2) for all ξ ∈ X , g1, g2 ∈ G, and x ∈ M. Then
there exists a homeomorphism Φ : X −→ XG such that Φ(ξ · g) = Φ(ξ) · g and
Φ(ξ ⊗ x) = Φ(ξ)⊗ x for all ξ ∈ X , g ∈ G, and x ∈ M.

2.5. Contracting correspondences. Let f, ι : M1 −→ M0 be a topological cor-
respondence. Its limit space M∞ is a subspace of all sequences (x1, x2, . . .) ∈ M∞

1

such that f(xn) = ι(xn+1). For example, if ι is an identical embedding, then M∞ is
naturally identified (using the first coordinate) with the intersection of the domains
of all iterations of the partial map f .

The shift (x1, x2, . . .) �→ (x2, x3, . . .) is a continuous self-map on M∞, which we
will denote f∞. We call (f∞,M∞) the limit dynamical system of the topological
correspondence.

Definition 2.4. Let f, ι : M1 −→ M0 be a topological correspondence. We say
that it is contracting if M0 is a compact length metric space (i.e., there is a notion
of length of arcs such that distance between two points is the infimum of lengths
of arcs connecting them) and ι is contracting with respect to the length metric on
M0 and the lift of the length metric from M0 to M1 by f .

In particular, if f is expanding and ι is an identical embedding, then the corre-
spondence f, ι : M1 −→ M0 is contracting.

One can show that the iterated monodromy group of a contracting topological
correspondence is a contracting self-similar group; see [20].

Theorem 2.2. The limit dynamical system (f∞,M∞) of a contracting topological
correspondence F is topologically conjugate to the limit dynamical system of the
iterated monodromy group of F .

The correspondence between contracting self-similar groups and expanding self-
coverings is functorial in a precise way; see [16]. For example, any embedding of
self-similar contracting groups (preserving self-similarity) induces a semiconjugacy
of their limit dynamical systems.
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3. The Julia set of an endomorphism of PC2

3.1. The endomorphism and its iterated monodromy group. Consider the
following map on C2:

F (z, p) =

((
2z

p+ 1
− 1

)2

,

(
p− 1

p+ 1

)2
)
.

It can be extended to an endomorphism of PC2 given in homogeneous coordinates
by the formula

F [z : p : u] = [(2z − p− u)2 : (p− u)2 : (p+ u)2].

Note that this map has no points of indeterminacy, since (2z−p−u)2 = (p−u)2 =
(p+ u)2 = 0 implies p = u = z = 0. The Jacobian of the map F is∣∣∣∣∣∣

4(2z − p− u) 0 0
−2(2z − p− u) 2(p− u) 2(p+ u)
−2(2z − p− u) −2(p− u) 2(p+ u)

∣∣∣∣∣∣ = 32(2z − p− u)(p− u)(p+ u),

hence the critical locus consists of three lines, 2z− p−u = 0, p = u, and p+u = 0.
Their orbits under the action of F are

{2z − p− u = 0} �→ {z = 0} �→ {z = u} �→ {z = p} �→ {z = p},
{p = −u} �→ {u = 0} �→ {p = u} �→ {p = 0} �→ {p = u}.

We see that the post-critical set of F is the union of the six lines z = 0, z = u,
z = p, p = 0, p = u, and u = 0. (Or, in affine coordinates, z = 0, z = 1, z = p,
p = 0, p = 1, and the line at infinity.)

The map F is a particular case of a general class of post-critically finite skew-
product maps related to the Teichmüller theory of post-critically finite branched
self-coverings of the sphere (Thurston maps). See [2], where the map F was (some-
what implicitly) constructed, and [4, 10], where other different classes of similar
examples are studied.

Denote by J2 the Julia set of F , i.e., the set of points without neighborhoods
on which the sequence F ◦n is normal. Denote by J1 the support of the measure of
maximal entropy of F , which coincides with the attractor of backward iterations of
F . Both sets are completely F -invariant and we have J1 ⊂ J2; see more in [7].

Proposition 3.1. The limit dynamical system of the iterated monodromy group of
F is topologically conjugate with the action of F on J1.

Proof. By [14, Theorem 5.5.3] (see also Theorem 2.2 in our paper), it is enough
to construct an orbifold metric on a neighborhood of J1 with respect to which F
is expanding. Let U be an open relatively compact subset of C \ {0, 1} containing

the Julia set of the rational function f(p) =
(

p−1
p+1

)2

and such that f−1(U) ⊂ U .

Consider the inverse image W of U in PC2 under the projection map (z, p) �→ p
of C2 ⊂ PC2 onto C. Note that the lines p = 0 and p = 1 are disjoint from W ,
hence the intersection points of the lines z = p, z = 0, z = 1, p = 0 and p = 1 do
not belong to W . Consider the orbifold with the underlying space W , where the
lines z = 0, z = 1 and z = p are singular with the isotropy groups of order two
uniformized in an atlas of the orbifold as rotations by 180◦ in the z-planes (and
projected to the identity map on the p-plane). The function F can be realized as a
covering F : W1 −→ W of a sub-orbispace W1 of W , where W1 is the orbifold with
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the underlying space F−1(W ) and singular lines z = 0, z = 1, z = p, z = p + 1 of
order two (also uniformized by a rotation in the z-planes).

The orbifold W is a locally trivial bundle over the set U with hyperbolic fibers
(as the fundamental group of every fiber is the free product of three copies of the
group of order two). It follows from Proposition 3.2.2 and Theorem 3.2.15 of [9]
that the orbifold W is Kobayashi hyperbolic (i.e., that its universal covering is
Kobayashi hyperbolic). Consequently, the embedding of orbifolds ι : W1 −→ W is
contracting with respect to the Kobayashi metrics on W1 and W , while the map
F : W1 −→ W is a local isometry. Theorem 2.2 finishes the proof. �

An important property of the map F , greatly facilitating its study, is a skew-

product structure: the second coordinate
(

p−1
p+1

)2

of F (z, p) depends only on p.

See Figure 7 for the Julia set of f(p) =
(

p−1
p+1

)2

together with marked post-critical

points 0 and 1.

Figure 7. Julia set of
(

p−1
p+1

)2

We have on the first coordinate a quadratic polynomial hp(z) = (2z/(p+1)−1)2

in z, depending on the parameter p. This makes it possible, in particular, to draw
the intersections of the Julia set of F with the z-lines p = p0. See Figures 8 and 9,
where some slices of the Julia set of F are shown. We will denote by J(q) the
intersection of the Julia set J1 of F with the line p = q.

The rational function
(

p−1
p+1

)2

has three fixed points:

q0 ≈ −0.6478 + 1.7214i, q0 ≈ −0.6478− 1.7214i, q1 ≈ 0.2956.

The corresponding polynomials hq(z) =
(

2z
q+1 − 1

)2

, for q ∈ {q0, q0, q1}, are post-

critically finite, with the dynamics

0 �→ 1 �→ q �→ q
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Figure 8. Slices of the Julia set J1 of F

on the post-critical set. These polynomials and their iterated monodromy groups
were studied in [2].

Consider the polynomial for q0 ≈ −0.6478 + 1.7214i. Its iterated monodromy
group is generated by

α = σ,(1)

β = (1, α),(2)

γ = (γ, β),(3)

where α, β and γ are loops around 0, 1 and q0, respectively (see a general formula
for iterated monodromy groups of quadratic polynomials in [3]).

We can interpret the complement M of the post-critical set of F as the config-
uration space of pairs of complex numbers (z, p) which are different from ∞, 0, 1,
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Figure 9. Slices of the Julia set J2 of F

and from each other. We can identify the loops α, β, γ with the loops in the config-
uration space M coming from p staying fixed at q0 and z traveling along the loops
α, β, γ inside the line p = q0.

Let S and P be the elements of the fundamental group ofM uniquely determined
by the following relations (see [19, Section 4]):

PαP−1 =βαβ−1, SαS−1 =αγαγ−1α−1,(4)

PβP−1 =βαβα−1β−1, SβS−1 =β,(5)

PγP−1 =γ, SγS−1 =αγα−1.(6)

Denote also T = γS−1P−1βα. We then have:

TαT−1 =α,(7)

TβT−1 =γβγ−1,(8)

TγT−1 =γβγβ−1γ−1.(9)

In the same way, as in [19, Section 4], the loops S, T , and P are obtained by
moving p around 0, 1, and z, respectively, in the configuration space M. See
also [19, Figure 2].

Proposition 3.2. The virtual endomorphism φ associated with F is given by

φ(α2) = 1, φ(β) = 1, φ(γ) = γ,

φ(α−1βα) = α, φ(α−1γα) = β,

φ(S2) = βαγS−1P−1, φ(T ) = P, φ(P 2) = 1.

Proof. The elements of the fundamental group of M are uniquely determined by
their action by conjugation on the normal subgroup generated by α, β, and γ. Let
us use this fact (see, for example, [2, Proposition 4.1] and [19, Proposition 4.2])
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to compute the virtual endomorphism of π1(M) associated with the partial self-
covering F .

The domain of the restriction φ0 of the virtual endomorphism φ onto 〈α, β, γ〉 (as-
sociated with the first coordinate of the recursion (1)–(3)) is generated by α2, β, γ,
α−1βα, and α−1γα. The action of the virtual endomorphism is given by

φ0(α
2) = 1, φ0(β) = 1, φ0(γ) = γ,

φ0(α
−1βα) = α, φ0(α

−1γα) = β.

The domain of the virtual endomorphism φ associated with F is generated by
the above generators of the domain of φ0 and the automorphisms S2, P 2 and
T = γS−1P−1βα.

Denote τ = γ−1α−1β−1 (which is the element given by z traveling around infinity
for fixed p). A direct computation shows that τ commutes with S and with P . We
also have

(10) τ−1S−1P−1αPSτ = βγβ−1γ−1αγβγ−1β,

(11) τ−1S−1P−1βPSτ = βγβγ−1β−1,

and

(12) τ−1S−1P−1γPSτ = βγβ−1.

Let us find φ(S2) by computing its action by conjugation on the subgroup
〈α, β, γ〉. It follows from (1)–(2) that α = φ0(α

−1βα), and hence

φ(S2)αφ(S−2) = φ(S2α−1βαS−2).

Using (4)–(6), we compute

S2α−1βαS−2 = (αγ)2α−1(αγ)−2β(αγ)2α(αγ)−2.

Applying the wreath recursion (1)–(3) to the righthand side of the last equality,
we see that the value of φ0 (i.e., the first coordinate of the wreath recursion) is
βγβ−1γ−1αγβγ−1β−1. It follows that

φ(S2)αφ(S−2) = φ0((αγ)
2α−1(αγ)−2β(αγ)2α(αγ)−2) = βγβ−1γ−1αγβγ−1β−1.

We compute the action of φ(S2) on β and γ using the same methods:

φ(S2)βφ(S−2) = φ(S2α−1γαS−2) = φ0((αγ)
2α−1γα(αγ)−2) = βγβγ−1β−1,

φ(S2)γφ(S−2) = φ(S2γS−2) = φ0(αγαγα
−1γ−1α−1) = βγβ−1.

We see that the action of φ(S2) by conjugation on 〈α, β, γ〉 is the same as the action
of τ−1S−1P−1; see (10)–(12). We conclude that

φ(S2) = τ−1S−1P−1.

In order to compute φ(T ), we find

φ(T )αφ(T−1) = φ(Tα−1βαT−1) = φ0(α
−1γβγ−1α−1) = βαβ−1,

φ(T )βφ(T−1) = φ(Tα−1γαT−1) = φ0(α
−1γβγβ−1γ−1α) = βαβα−1β−1,

and
φ(T )γφ(T−1) = φ(TγT−1) = φ0(γβγβ

−1γ−1) = γ,

which implies that φ(T ) = P .
It remains to compute φ(P 2). We have

φ(P 2)αφ(P−2) = φ(P 2α−1βαP−2) = φ0(βαβα
−1β−1) = α,
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φ(P 2)βφ(P−2) = φ(P 2α−1γαP−2)

= φ0(βαβα
−1β−1α−1β−1γβαβαβ−1α−1β−1) = β,

φ(P 2)γφ(P−2) = φ(P 2γP−2) = φ0(γ) = γ,

which implies that φ(P 2) = 1. �
Theorem 3.3. The iterated monodromy group IMG (F ) is generated by the wreath
recursion

α = σ(β, β−1, βα, α−1β−1),

β = (1, βαβ−1, α, 1),

γ = (γ, β, γ, β),

P = π,

S = σπ(P−1τ−1, P−1, S−1τ−1, S−1),

where σ = (12)(34), π = (13)(24), and τ = γ−1α−1β−1.

Note that it follows from the recursions that the elements α, β, γ, P of the iterated
monodromy group are involutions, hence the wreath recursion can be written as

α = σ(β, β, βα, αβ),

β = (1, βαβ, α, 1),

γ = (γ, β, γ, β),

P = π,

S = σπ(Pτ−1, P, S−1τ−1, S−1),

where τ = γαβ.

Proof. Denote by L0 the element [φ(1)1] of the biset Mφ. Then denote

L1 = τ · L0, R0 = P · L0, R1 = Pτ · L0,
and order the basis of the biset associated with φ in the sequence (L0, L1, R0, R1).

Using the definitions in Subsection 2.2, we get

α · L0 = τ · L0 · φ(τ−1α) = L1 · φ(βαγα) = L1 · β,
α · L1 = L0 · φ(ατ ) = L0 · φ(αγ−1α−1β−1) = L0 · β−1,

α · R0 = Pτ · L0 · φ(τ−1P−1αP ) = L1 · φ(βαγα−1β−1αβα) = L1 · βα,
and

α · R1 = P · L0 · φ(P−1αPτ ) = R0 · φ(α−1β−1αβαγ−1α−1β−1) = R0 · α−1β−1.

Consequently,
α = σ(β, β−1, βα, α−1β−1).

We have
β · L0 = L0 · φ(β) = L0 · 1,

β · L1 = τ · L0 · φ(τ−1βτ ) = L1 · φ(βαγβγ−1α−1β−1) = L1 · βαβ−1,

β · R0 = P · L0 · φ(P−1βP ) = R0 · φ(α−1βα) = R0 · α,
and

β · R1 = Pτ · L0 · φ(τ−1P−1βPτ ) = R1 · φ(βαγα−1βαγ−1α−1β−1) = R1 · 1,
hence

β = (1, βαβ−1, α, 1).
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We have

γ · L0 = L0 · φ(γ) = L0 · γ,

γ · L1 = τ · L0 · φ(τ−1γτ ) = L1 · φ(βαγα−1β−1) = L1 · β,
and also

γ · R0 = R0 · γ, γ · R1 = R1 · β,
since P commutes with γ.

Since φ(P 2) = 1 and P commutes with τ , we have

P = π.

Finally,

S · L0 = Pτ · L0 · φ(τ−1P−1S) = R1 · φ(βαγ · P−2βα · α−1β−1PSγ−1 · γ)
= R1 · φ(P−2 · βαγβα · T−1 · γ) = R1 · βαP−1γ = R1 · τ−1P−1.

Since T commutes with α, we have:

S · L1 = P · L0 · φ(P−1Sτ )

= R0 · φ(P−2βα · α−1β−1PSγ−1 · α−1β−1) = R0 · φ(P−2βαT−1α−1β−1)

= R0 · φ(βT−1β−1) = R0 · P−1.

Since S commutes with αγ, and T commutes with α, we have:

S · R0 = τ · L0 · φ(τ−1SP )

= L1 · φ(βαγS2γ−1 · γS−1P−1βα · α−1β−1P 2) = L1 · φ(βS2αγα−1Tβ−1)

= L1 · τ−1S−1P−1P = L1 · τ−1S−1,

and, since P and S commute with τ , and γ commutes with P :

S · R1 = L0 · φ(SPτ ) = L0 · φ(S2γ−1 · γS−1P−1βα · α−1β−1P 2γ−1α−1β−1)

= L0 · φ(S2γ−1Tα−1β−1γ−1α−1β−1P 2) = L0 · τ−1S−1P−1γ−1Pα−1β−1

= L0 · τ−1S−1τ = L0 · S−1,

which implies

S = σπ(P−1τ−1, P−1, S−1τ−1, S−1),

which finishes the proof. �

Computation (for example using the GAP packages [1] or [13]) gives the following
nucleus of IMG (F ):

(13) {1, α, β, γ, αβ, βα, γα, γβ, γαβ , P, γP, γαβP}
∪ {αβ, αγ, βγ, τ, ατ, βτ,

S, αS, Sβ, Sγ, αβS, Sαβ, Sγβ, Sβγ, Sγα, Sαβ, γαβS, τS, βτS, αSαβ,

Pα, Pβ, Pαβ, Pτ}±1

consisting of 60 elements.
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3.2. An index two extension of IMG (F ). The wreath recursion defining IMG (F )
(see Theorem 3.3) can be simplified by embedding IMG (F ) into a bigger group G.
We will do this just to simplify computations (in particular to get a smaller nu-
cleus), though G also has a dynamical interpretation. (It is the iterated monodromy
group of the dynamical system obtained by taking the quotient of F by the action
of the complex conjugation (z, p) �→ (z, p).)

Definition 3.1. Denote by G the group generated by the elements

α = σ, β = (1, α, α, 1), γ = (γ, β, γ, β),

a = π, b = (a, a, αa, αa), c = (βb, βb, γc, γc),

where σ = (12)(34) and π = (13)(24).

We will see later that the subgroup of G generated by α, β, γ is equivalent as a
self-similar group to the subgroup 〈α, β, γ〉 < IMG (F ), so we use the same letters
for the corresponding generators of these groups.

It is easy to check that a2 = b2 = c2 = 1,

(14) aβa = αβα, bγb = βγβ, cβc = γβγ,

and that a, b, c commute with the remaining generators α, β, γ.
Denote by (e00, e01, e10, e11) the ordered basis of the biset in the definition of

the group G. Then σ(ei,j) = ei,(1−j) and π(ei,j) = e(1−i),j .

Proposition 3.4. The group IMG (F ) is equivalent as as a self-similar group to
an index two subgroup of the group G. The isomorphism maps α, β, γ to the corre-
sponding generators of IMG (F ) and maps S and P to acαγ and βba, respectively.
The bisets of the wreath recursions for IMG (F ) (as in Theorem 3.3) and G (as in
Definition 3.1) are identified with each other by the equalities

{L0 = e00, L1 = e01 · β, R0 = e10 · a, R1 = e11 · βαa}.

Proof. Conjugating the righthand side of the recursion from Definition 3.1 by
(1, β, a, βαa), we get

α = σ(β, β, aαβa, aβαa) = σ(β, β, βα, αβ),

β = (1, βαβ, aαa, 1) = (1, βαβ, α, 1),

γ = (γ, β, aγa, aαβαa) = (γ, β, γ, β),

a = π(a, αa, a, αa),

b = (a, βaβ, aαaa, aαβαaβαa) = (a, βαβαa, αa, αa),

c = (βb, ββbβ, aγca, aαβγcβαa) = (βb, βb, γaca, αγαaca).

Let us show that S = acαγ and P = βba satisfy the wreath recursion of Propo-
sition 3.4.

We have, using commutation of the involutions a and α,

βba = π(aαaαaa, αaαa, aa, βαββαβαaαa) = π,

which agrees with the condition P = π.
We have

acαγ = π(a, αa, a, αa)(βb, βb, γaca, αγαaca)σ(β, β, βα, αβ)(γ, β, γ, β)

= πσ(αabγ, abβ, γαcaβαγ, γcaα) = πσ(abβ · βαγ, abβ, γαcaβαγ, γαca),
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which also agrees with

S = πσ(P−1τ−1, P−1, S−1τ−1, S−1),

and finishes the proof. �

3.3. Properties of the groups G,G, and IMG (F ). Denote by G the subgroup of
IMG (F ) generated by α, β, γ. It is also equivalent to the subgroup of G generated
by the same elements.

Note that for every element g ∈ G and for every eij we have g · eij = eik · h for
some h ∈ G and k ∈ {0, 1}. In other words, the self-similarity biset of G is a disjoint
union (“direct sum”) of the bisets M0 = {e00, e01} · G and M1 = {e10, e11} · G.

Let us denote Ei = {ei0, ei1} for i ∈ {0, 1}. We will also denote E∅ = {∅} and

Ei1i2...in = Ei1Ei2 . . . Ein ⊂ {e00, e01, e10, e11}n.
Then for every sequence w = i1i2 . . . {0, 1}ω the subtree

Tw =
⋃
n≥0

Ei1i2...in

of the tree T = {e00, e01, e10, e11}∗ is invariant under the action of the group G.
Let us identify Tw, for w = x1x2 . . ., with the binary tree {0, 1}∗ by the isomor-

phism

ex1i1ex2i2 . . . exnin �→ i1i2 . . . in.

Denote by Gw the restriction of the action of G onto the subtree Tw, seen as an
automorphism group of the binary tree.

Then it follows directly from the wreath recursion for G that the group Gw is
generated by automorphisms αw, βw, γw (the images of α, β, γ) which are defined
by the following recursions:

αw = σ, γw = (γw, βw)

and

βw =

{
(1, αw) if x1 = 0,
(αw, 1) if x1 = 1.

Here w = x2x3 . . . is the shift of w.
The group G is the universal group of the family {Gw : w ∈ {0, 1}ω}, i.e., G is the

quotient of the free group 〈α, β, γ | ∅〉 by the normal subgroup R =
⋂

w∈{0,1}ω Rw,

where Rw is the kernel of the natural epimorphism α �→ αw, β �→ βw, γ �→ γw of
the free group 〈α, β, γ | ∅〉 onto the group Gw. This follows from the fact that the
subtrees Tw cover the tree T .

Proposition 3.5. The group G is contracting with the nucleus (for the recursion
from Definition 3.1) N = {1, α, β, γ}.

Proof. By [14, Lemma 2.11.2] we have to show that sections of N · {α, β, γ} even-
tually belong to N . But sections of the elements α, β in words of length more
than one are trivial, while γ is of order two. Hence, sections of the elements of
N · {α, β, γ} in words of length two belong to N . �

Consider the map {e00, e01, e10, e11}∗ −→ {0, 1}∗ generated by the map eij �→ j
(i.e., applying eij �→ j to every letter of a word). It is a surjective morphism of the

trees. It follows directly from the recursion defining the group G that the action
of G on {eij}∗ projects to an action on {0, 1}∗. Note also that it follows from the
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discussion above that the action of G on {eij}∗ is projected to the trivial action on

{0, 1}∗. The action of G on {0, 1}∗ is not faithful. Let us denote by K the quotient
of G by the kernel of this action.

The following proposition then follows directly from the wreath recursion defining
G.

Proposition 3.6. Denote by K the self-similar group generated by

ã = σ, b̃ = (ã, ã), c̃ = (b̃, c̃),

where σ is the transposition. The map g �→ g̃ defined on the generators by

a �→ ã, b �→ b̃, c �→ c̃

and g �→ 1 for g ∈ G defines the epimorphism G −→ K. Together with the map
eij �→ j it generates an epimorphism of bisets.

The image of the subtree Tw under the action of an element h ∈ G is the subtree
T

˜h(w).

Proposition 3.7. For any element g of the kernel of the epimorphism G −→ K
there exists n such that g|v ∈ G for all words v of length greater than n.

Proof. It is easy to check that the wreath recursion

ã = σ, b̃ = (ã, ã), c̃ = (b̃, c̃)

is contracting on the abstract group K̃ given by the presentation K̃ = 〈ã, b̃, c̃ | (ã)2 =

(b̃)2 = (c̃)2 = 1〉. The nucleus of K̃ is {1, ã, b̃, c̃}. The group K is the faithful quotient

of the self-similar group K̃.

It follows from [14, Proposition 2.13.2] that a product g̃ of the generators ã, b̃, c̃
is trivial in K if and only if there exists n such that g̃ belongs to the kernel of the

nth iterate of the wreath recursion on K̃. Let g be a product of the generators of
G equal to an element of the kernel of G −→ K, and let g̃ be the word obtained

from g by removing all generators α, β, γ and applying the homomorphism h �→ h̃
to every letter a, b, c. Then the word g̃ represents a trivial element of K. Let n be

such that g̃ belongs to the kernel of the nth iterate of the wreath recursion on K̃.
Then it follows from the wreath recursion defining G and normality of G in G that
the sections of g in all words of length n belong to G. �

The epimorphism of self-similar groups (i.e., of groups and bisets) described in
Proposition 3.7 induces a semiconjugacy JG −→ JK. This semiconjugacy is induced
by the same map eij �→ j as the epimorphism of self-similar groups. The image

of IMG (F ) < G under this epimorphism is the self-similar group generated by the
wreath recursion

(15) S = σ(P, S−1), P = σ.

The corresponding epimorphism of the self-similarity bisets acts by the rule Li �→ L

and Ri �→ R, where (L, R) is the ordered basis associated with the above recursion

for IMG (f). This is the iterated monodromy group of f(p) =
(

p−1
p+1

)2

, where the

generators S and P of IMG (f) are identified with the images of the correspond-
ing generators of IMG (F ) under the projection (z, p) �→ p. See also an explicit
computation of IMG (f) in the proof of Proposition 3.8 below.
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It follows that the restriction of the epimorphism from Proposition 3.7 to the
subgroup IMG (F ) < G is the natural epimorphism IMG (F ) −→ IMG (f) induced
by the projection (z, p) �→ p. Consequently, the induced map of the limit spaces
JIMG(F ) −→ JIMG(f) coincides with the restriction of the projection (z, p) �→ p to
the Julia sets of F and f .

Proposition 3.8. The transformation κ of the space {L, R}−ω changing in every
sequence w ∈ {L, R}−ω each letter L to R and vice versa induces a homeomorphism
of the limit space of IMG (f), corresponding to the complex conjugation on the Julia
set of f .

Proof. Let us compute the iterated monodromy group IMG(f) directly, in order
to understand the geometric meaning of the elements L and R.

The post-critical set of f is {∞, 0, 1}. Take −1 as the basepoint. Let S and
P be the loops going in the positive direction around 0 and around both 0 and
1, respectively, as it is shown in the top part of Figure 10. (This agrees with
the interpretation of the generators S and P of IMG (F ); see 3.1.) Connect the
basepoint −1 with its preimages ±i by straight segments.

Figure 10. Computation of IMG (f)

The bottom part of Figure 10 shows the inverse images of the generators under
the action of the rational function. We see that if we label the path connecting the
basepoint −1 to i by �R and the path connecting −1 to −i by �L, then the associated
biset is defined by

P · L = R, P · R = L,
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and

S · R = L · P, S · L = R · S−1,

which agrees with the wreath recursion (15).
A sequence . . .X(1)X(0) ∈ {L, R}−ω represents the point of the Julia set equal

to the limit of the path �0�1 · · · , where �k is a continuation of the path �k−1 and
is a lift of the path �X(k) by the kth iteration of the rational function. Since the

rational function
(

p−1
p+1

)2

has real coefficients, the basepoint −1 is real, and com-

plex conjugation permutes the paths �R and �L, then the transformation κ maps a
sequence corresponding to a point z to the sequence corresponding to the conjugate
point z. �

Recall that J(q) denotes the intersection of the Julia set J1 with the z-line p = q.

Proposition 3.9. Each connected component of the limit space JG of the group

G consists of points represented by the sequences of the form . . .X
(2)
i2

X
(1)
i1

, where

w = . . .X(2)X(1) ∈ {R, L}−ω is fixed and ik ∈ {0, 1} are arbitrary. The connected
component corresponding to w ∈ {R, L}−ω is homeomorphic J(p0), where p0 is the
point of the Julia set of f encoded by the sequence w.

Proof. Since G is a self-similar subgroup of IMG (F ), the equivalence relation as-
sociated with G is a sub-relation of the asymptotic equivalence relation associ-

ated with IMG (F ). The group G changes only the indices of the symbols X
(k)
ik

,

hence G-equivalent sequences are of the form . . . X
(2)
i2

X
(1)
i1

, . . . X
(2)
j2

X
(1)
j1

for some

ik, jk ∈ {0, 1} and X(k) ∈ {L, R}. Since G is level-transitive on each of the subtrees,

the image of the set {. . .X(2)
i2

X
(1)
i1

: . . . i2i1 ∈ {0, 1}−ω} in the limit space of G
is connected (by the argument similar to that of [14, Section 3.5]); hence it is a
connected component.

It remains to show that the equivalence relation associated with IMG (F ) re-

stricted to the set {. . .X(2)
i2

X
(1)
i1

: . . . i2i1 ∈ {0, 1}−ω} coincides with the restriction
of the equivalence associated with G, i.e., that the group IMG(F ) does not intro-
duce new identifications inside the connected components of the limit space of G.
Suppose that the sequences . . .X

(2)
i2

X
(1)
i1

, . . .X
(2)
j2

X
(1)
j1

are equivalent with respect

to the action of IMG (F ). It means that there exists a sequence gk of elements of

IMG (F ) assuming a finite set of values and such that gk · X(k)
ik

= X
(k)
jk

· gk−1 for

all k ≥ 1. The limit space of IMG (f) has no singular points, since the rational

function f(p) =
(

p−1
p+1

)2

is hyperbolic. It follows that the images of gk in K are

trivial. But this implies by Proposition 3.7 that the elements gk belong to G, i.e.,
that the sequences are equivalent with respect to the action of the group G. �

Let us summarize different groups and dynamical systems appearing in our anal-
ysis. We have self-similar groups and homomorphisms

(16)

G ↪→ IMG (F ) ↪→ G⏐⏐
 ⏐⏐
 ⏐⏐

{1} ↪→ IMG (f) ↪→ K.
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They induce semiconjugacies

(17)

JG −→ J1 −→ J1/((z, p) ∼ (z, p))⏐⏐
 ⏐⏐
 ⏐⏐

{L, R}−ω −→ Jf −→ Jf/(z ∼ z)

of the corresponding limit dynamical systems. The limit dynamical systems of
IMG (F ) and IMG(f) are F : J1 −→ J1 and the restriction of f onto its Julia set
Jf , respectively. The limit dynamical system of G, by Proposition 3.9, is a bundle
of the Julia sets J(p0) over the Cantor set {R, L}−ω, where J(p0) is the fiber above
a sequence w ∈ {R, L}−ω if the sequence w is mapped to p0 by the natural map
from {R, L}−ω to Jf . The limit dynamical system of G acts on each fiber in the
same way as the map F acts on the fibers J(p0) of J1, and by the shift on {R, L}−ω.
The map JG −→ J1 identifies fibers corresponding to the same points of Jf . The
epimorphisms IMG (F ) −→ IMG (f) and G −→ {1} are induced by the projection
(z, p) �→ p, i.e., by collapsing the fibers to points.

The limit dynamical systems of G and K are quotients of F : J1 −→ J1 and
f : Jf −→ Jf by complex conjugation (compare with Proposition 3.8). We will not
give a full proof of this fact, since we do not need it here.

3.4. The Schreier graphs of the groups Gw. Recall that for v = i1i2 . . . in ∈
{0, 1}n, we denoted by Ev the set of words of the form ei1j1ei2j2 . . . einjn , where
j1j2 . . . jn ∈ {0, 1}n. We will denote the word ei1j1ei2j2 . . . einjn just by j1j2 . . . jn,
for simplicity of notation. This notation agrees with the interpretation of Ev as the
nth level of the tree on which the group Gw acts.

Let v ∈ {0, 1}∗. Denote by Γv the Schreier graph of the action of G on the set
Ev, i.e., the graph with the set of vertices Ev in which two elements w1, w2 ∈ Xv

are adjacent if and only if g(w1) = w2 for some g ∈ {α, β, γ}. We label the
corresponding edge of Γv by g.

Note that the graph Γv is the Schreier graph of the action of the group Gw on
the nth level of the tree, where w is any infinite word starting with v and n is the
length of v.

It follows from the wreath recursion defining α, β, γ in Definition 3.1 that for
every generator g ∈ {α, β, γ} of G there exists a unique word zg,v ∈ Ev of length
n and a generator h ∈ {α, β, γ} such that h|zg,v = g. For the remaining pairs
h ∈ {α, β, γ} and u ∈ Ev we have h|u = 1. Namely, we have, for v ∈ {0, 1}n:

zα,v = 00 . . . 0︸ ︷︷ ︸
n − 2 times

1x′, zβ,v = 00 . . . 0︸ ︷︷ ︸
n − 1 times

1, zγ,v = 00 . . . 0︸ ︷︷ ︸
n times

,

where x′ = 1− x is the letter different from the last letter x of v. If the word v has
length less than 2, one has to take the endings of length |v| in the righthand sides
of the equalities.

Proposition 3.10. Let v, u ∈ {0, 1}∗ be arbitrary finite words. Consider for each
word w ∈ {0, 1}|v| a copy Γu,w of the edge-labeled graph Γu. Connect, for each

g ∈ {α, β, γ} and w ∈ {0, 1}|v|, the copy of zg,u in Γu,w with the copy of zg,u in
Γu,g(w) by an edge labeled by the element h ∈ {α, β, γ} such that h|zg,u = g. The
obtained graph is isomorphic to Γuv.

In this graph the vertex zg,uv is the copy of zh,u in Γu,w for h ∈ {α, β, γ} and

w ∈ {0, 1}|v| such that h|w = g.
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Note that the copies Γu,w of Γu are connected in Γuv in the same way as the
vertices w are connected in the graph Γv.

Proof. Let w1w2 ∈ Xuv and |w1| = |u|, |w2| = |v|. It follows from the definition of
the words zα,u, zβ,u, zγ,u that a generator g ∈ {α, β, γ} changes the end of length
|w2| in the word w1w2 only when w1 = zh,u for some h ∈ {α, β, γ}, and then we have
g(w1w2) = w1h(w2). In all the other cases g(w1w2) = g(w1)w2, since g|w1

= 1. �

In the case |v| = 1 we get the following inductive rule for constructing the graphs
Γu.

Corollary 3.11. In order to get Γux one has to take two copies Γ
(0)
u and Γ

(1)
u of

Γu and connect by an edge the copies of the vertices zα,u. The obtained graph is

Γux. The vertex zα,ux is the copy of zβ,u in Γ
(1−x)
u , the vertex zβ,ux is the copy of

zγ,u in Γ
(1)
u , and the vertex zγ,ux is the copy of zγ,u in Γ

(0)
u .

In the opposite case (when |u| = 1) we get the following rule.

Corollary 3.12. In order to get Γxv one has to replace in Γv each vertex w by a
pair of vertices 0w and 1w, connected by an edge (labeled by α), connect (1 − x)w
to (1−x)α(w) by an edge (labeled by β), and connect 0w to 0γ(w) and 1w to 1β(w)
by edges labeled by γ.

We get nice pictures of the graphs Γv when we draw the edges labeled by α, β, and
γ in such a way that they have equal length, and for every vertex w the edge labeled
by β incident with w (if it exists) is obtained from the edge labeled by α by rotation
by π/2 around w, while the edge labeled by γ is obtained from the edge labeled by
α by rotation by −π/2. We can also use the opposite agreement (changing the signs
of π/2 and −π/2). Note that since the generators are involutions, we draw them as
single non-oriented edges (instead of drawing pairs of oriented edges) and we ignore
the loops. See, for instance, Figure 11, where some graphs Γv are constructed this
way. Figure 12 shows all graphs Γv for |v| = 6 (there are only 16 of them since
every isomorphism class appears four times).

Figure 11. Graphs Γv
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Figure 12. Graphs Γv for |v| = 6

The rule from Corollary 3.12 is shown in Figure 13. Note that in the transition
from Γv to Γ1v the relative position of the edges labeled by α (connecting 0w with
1w), β (connecting 0w with 0α(w)) and γ (connecting 0w with 0γ(w) and 1w with
1β(w)) is inverted. This can be corrected by taking the mirror image of Γ1v.

The inductive rule shown in Figure 13 can be used to prove many properties of
the graphs Γv, but we will use a more unified approach later.

3.5. External angles. The group generated by the binary adding machine
(odometer) τ = σ(1, τ ) is the iterated monodromy group of the polynomial z2. For
every quadratic polynomial h(z) the loop around infinity generates a self-similar
cyclic subgroup of IMG (h) equivalent as a self-similar group to the group gener-
ated by the adding machine. If h(z) is sub-hyperbolic, then the obtained embedding
IMG

(
z2
)
↪→ IMG (h) induces a surjection from the circle (the Julia set of z2) onto

the Julia set of h, which agrees with the dynamics (i.e., is a semiconjugacy). This
semiconjugacy coincides with the classical Caratheodory loop (see [12]) i.e., with
the extension to the boundary of the biholomorphic conjugacy from the action of
z2 on the complement of the unit disc to the action of h on the complement of its
filled Julia set (i.e., of the set of points that have bounded h-orbits).

Consider now the non-autonomous iterations of the polynomials hp(z), which
are obtained by restricting the rational function F (z, p) to the first coordinate z.
Then there also exists a bi-holomorphic isomorphism Φq from the complement of
the dendroid Julia set J(q) in the z-plane p = q to the complement of the unit disc.
The isomorphism Φq is unique up to post-composition with a rotation. It follows
that Φf(p) ◦ hp ◦ Φ−1

p (z) = uz2, where u is a complex number of absolute value 1,
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Figure 13. Inductive construction of Γv

depending on the particular choice of the isomorphisms Φp and Φf(p). Retracting
the complement of the unit disc to the unit circle (using the map z �→ z/|z|) we get a
circle bundleO over the Julia set Jf of f and the mapD = Φf(p)◦hp◦Φ−1

p : O −→ O
acting as the angle doubling maps (composed with rotations) on the fibers of O
and as f : Jf −→ Jf on the base of the bundle.

The iterated monodromy of D : O −→ O is the subgroup R = 〈P, S, τ 〉 <
IMG (F ), where τ = γαβ is the loop around infinity in a z-plane. Recall that τ
commutes with S and P , so that 〈τ 〉 is a normal subgroup of R.

The generators of the subgroup R are given by the wreath recursion

P = π,

S = πσ(Pτ−1, P, S−1τ−1, S−1),

τ = σ(1, τ, 1, τ ).

Recall that P is an involution, so P = P−1.
It follows from the wreath recursion that 〈τ 〉 is a self-similar group whose limit

space is R/Z × {L, R}−ω. The limit dynamical system acts on it by the angle
doubling map on R/Z and by the shift on {L, R}−ω. The embedding 〈τ 〉 ↪→ G will
induce a surjection from R/Z × {L, R}−ω to JG . The surjection will map a circle
R/Z × {w} for w ∈ {L, R}−ω to the connected component of JG corresponding to
the sequence w.

We get the following commutative diagram of embeddings of self-similar groups:

(18)

〈τ 〉 −→ R⏐⏐
 ⏐⏐

G −→ IMG (F )



MATING, PAPER FOLDING, AND AN ENDOMORPHISM OF PC
2 331

inducing semiconjugacies of the corresponding dynamical systems

(19)

R/Z× {L, R}−ω −→ O⏐⏐
 ⏐⏐

JG −→ J1

The vertical arrows of (19) are maps that are identical on the bases of the cor-
responding fiber bundles and are Caratheodory loops around the Julia sets J(p)
on the fibers. The horizontal semiconjugacies are homeomorphisms on the fibers,
and they make in the bases the necessary identifications in the Cantor set {L, R}−ω

producing the Julia set of f .
We will now study the embeddings of the self-similar groups from the commuta-

tive diagram (18) to understand the identifications in the semiconjugacies from (19).

Proposition 3.13. The nucleus of the group R = 〈P, S, τ 〉 is the set

N = {1, S, S−1, P, τ, τ−1, Sτ, S−1τ−1, P τ, P τ−1}.

Proof. It follows directly from the recursion (and the fact that τ commutes with P
and S) that N is a symmetric state-closed set (a subset A of a self-similar group
is called state-closed if for every g ∈ A and x ∈ X we have g|x ∈ A). We have to
prove that the sections of the elements

{S, S−1, τ, τ−1, Sτ, S−1τ−1} · {S, τ}
eventually belong to N (sections of P are trivial in non-empty words, so we do not
have to consider it). But this follows from the equalities

S2 = (PS−1τ−1, PS−1τ−1, S−1Pτ, S−1Pτ ),

Sτ−1 = π(Pτ−1, P τ−1, S−1τ−1, S−1τ−1),

S2τ = σ(PS−1τ−1, PS−1, S−1Pτ, S−1P ),

τ2 = (τ, τ, τ, τ ),

Sτ2 = πσ(P, Pτ, S−1, S−1τ ).

See the Moore diagram of the nucleus in Figure 14. �

Let w = . . .X
(3)
i3

X
(2)
i2

X
(1)
i1

be an element of {L0, L1, R0, R1}−ω, where X(k) ∈
{L, R} and ik ∈ {0, 1}. Then denote

p(w) = . . .X(3)X(2)X(1) ∈ {L, R}−ω

and

θ(w) =

∞∑
k=1

ik
2k

∈ R/Z.

The following proposition describes which points (θ, p(w)) ∈ R/Z× {L, R}∞ are
mapped to the same point of the bundle of Caratheodori loops O by the semicon-
jugacy R/Z× {L, R}−ω −→ O from the commutative diagram (19).

Proposition 3.14. Two sequences are asymptotically equivalent with respect to R
if and only if they are equal to sequences w1, w2 ∈ {L0, L1, R0, R1}−ω such that one
of the following conditions is satisfied:

(1) p(w1) = p(w2), θ(w1) = θ(w2),
(2) p(w1) = (RL)−ω, p(w2) = (LR)−ω, θ(w1) = θ(w2) +

2
3 ,
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Figure 14. Moore diagram of the nucleus of R

(3) p(w1) = (RL)−ωL, p(w2) = (LR)−ωR, θ(w1) = θ(w2) +
1
3 ,

(4) there exists a non-empty word v ∈ {L, R}∗ such that

p(w1) = (RL)−ωLv, p(w2) = (LR)−ωRv′, θ(w1) = θ(w2) +
1

2|v|3
,

where v′ is obtained from v by changing the first letter.

Proof. Note that the wreath recursion for τ and P can be written in terms of the
self-similarity biset as

τ ·X0 = X1, τ ·X1 = X0 · τ,

P · Ri = Li, P · Li = Ri,

where X is one of the symbols L, R and i is one of the symbols 0, 1.
Note also that τS = π(P, P, S−1, S−1); hence

S · Li = τ−1 · Ri · P, S · Ri = τ−1 · Li · S−1,

which implies

S−1 · Li = τ · Ri · S, S−1 · Ri = τ · Li · P,
since S and τ commute.
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Examining the nucleus of the group in Figure 14, we see that left-infinite (infinite
in the past) paths labeled by (w1, w2) in its Moore diagram belong to one of the
following types:

(I) The path travels inside the set {1, τ, τ−1}. In this case we have p(w1) = p(w2)
and θ(w1) = θ(w2), and every pair (w1, w2) satisfying these two equalities can be
obtained this way.

(II) Its vertices alternatively belong to {S, Sτ} and to {S−1, S−1τ−1}.
If the last vertex of the path belongs to {S, Sτ}, then p(w1) = (RL)−ω and

p(w2) = (LR)−ω. If the last vertex belongs to {S−1, S−1τ−1}, then p(w1) = (LR)−ω

and p(w2) = (RL)−ω, which is symmetric with the first case.
(III) The last vertex of the path belongs to {P, Pτ, Pτ−1}. Then either p(w1) =

(RL)−ωL and p(w2) = (LR)−ωR (if the previous vertex belongs to {S, Sτ}), or
p(w1) = (LR)−ωR and p(w2) = (RL)−ωL (otherwise).

(IV) One of the vertices of the path (but not the last) belongs to {P, Pτ, Pτ−1}.
Then p(w1) = (RL)−ωLv and p(w2) = (LR)−ωRv′, or p(w1) = (LR)−ωRv and p(w2) =
(RL)−ωLv′, where v′ is obtained from v by changing the first letter.

In the first case of (II), if w1 = . . . Ri4Li3Ri2Li1 and w2 = . . . Lj4Rj3Lj2Rj1 , then
for any n either

S · Ri2nLi2n−1
. . . Ri2Li1 = Lj2nRj2n−1

. . . Lj2Rj1 · S
or

S · Ri2nLi2n−1
. . . Ri2Li1 = Lj2nRj2n−1

. . . Lj2Rj1 · Sτ
or

τS · Ri2nLi2n−1
. . . Ri2Li1 = Lj2nRj2n−1

. . . Lj2Rj1 · S
or

τS · Ri2nLi2n−1
. . . Ri2Li1 = Lj2nRj2n−1

. . . Lj2Rj1 · Sτ.
This implies that either

τ−1 · Li2n · τ · Ri2n−1
. . . τ−1 · Li2 · τ · Ri1 · S = Lj2nRj2n−1

. . . Lj2Rj1 · S
or

τ−1 · Li2n · τ · Ri2n−1
. . . τ−1 · Li2 · τ · Ri1 · S = Lj2nRj2n−1

. . . Lj2Rj1 · Sτ
or

Li2n · τ · Ri2n−1
. . . τ−1 · Li2 · τ · Ri1 · S = Lj2nRj2n−1

. . . Lj2Rj1 · S
or

Li2n · τ · Ri2n−1
. . . τ−1 · Li2 · τ · Ri1 · S = Lj2nRj2n−1

. . . Lj2Rj1 · Sτ.
In all cases, as n → ∞, we get

θ(w2) = θ(w1) + 1/2− 1/4 + 1/8− 1/16 + · · · = θ(w1) + 1/3 (mod 1),

i.e., θ(w1) = θ(w2) + 2/3.
In the first case of (III) we have

w1 = . . . Ri5Li4Ri3Li2Li1

and

w2 = . . . Lj5Rj4Lj3Rj2Rj1 ,

and we have

τk1S · Ri2n+1
Li2n . . . Ri3Li2Li1 = Lj2n+1

Rj2n . . . Lj3Rj2Rj1 · Pτk2
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for k1 ∈ {0, 1} and k2 ∈ {0,−1}. Then
τk1−1 ·Li2n+1

· τ ·Ri2n . . . τ−1 ·Li3 · τ ·Ri2 · τ−1 ·Ri1 ·P = Lj2n+1
Rj2n . . . Lj3Rj2Rj1 ·Pτk2 ,

which implies

θ(w2) = θ(w1)− 1/2 + 1/4− 1/8 + · · · = θ(w1)− 1/3 (mod 1),

which proves case (III) of the proposition.
Now consider case (IV). We have

w1 = . . . Ri5Li4Ri3Li2Li1u

and
w2 = . . . Lj5Rj4Lj3Ri2Ri1u

′

for some u, u′ ∈ {L0, L1, R0, R1}∗, and for every n we have

τk1S · Ri2n+1
Li2n . . . Ri3Li2Li1u = Lj2n+1

Rj2n . . . Lj3Rj2Rj1u
′,

for some k1 ∈ {0, 1}. Hence

τk1−1 · Li2n+1
· τ · Ri2n . . . τ−1 · Li3 · τ · Ri2 · τ−1 · Ri1 ·P · u = Lj2n+1

Rj2n . . . Lj3Rj2Rj1u
′.

This implies that

θ(w2) = θ(w1) +
1

2|u|

(
−1

2
+

1

4
− 1

8
+ · · ·

)
= θ(w1)−

1

2|u| · 3 ,

which finishes the proof. �

Recall that the iterated monodromy group IMG(f) of f(p) =
(

p−1
p+1

)2

is the

image of the group G = 〈α, β, γ,R, S〉 under the natural epimorphism G −→ K
of self-similar groups described in Proposition 3.6. See also the diagram (16).
Restricting the diagram (16) to subgroups we get

(20)

〈τ 〉 ↪→ R⏐⏐
 ⏐⏐

{1} ↪→ IMG (f)

where the vertical arrows are still surjective.
The embedding {1} ↪→ IMG (f) induces the semiconjugacy from {L, R}−ω to the

Julia set of f . The asymptotic equivalence relation defined by IMG(f) (i.e., the
identifictions produced by this semiconjugacy) is generated by the identifications

(RL)−ω ∼ (LR)−ω, (RL)−ωLv ∼ (LR)−ωRv′,

where v ∈ {L, R}∗ is arbitrary and v′ is obtained from v by changing the first letter.
This also follows from Proposition 3.14 just by ignoring the indices, i.e., the map
θ.

The morphisms (20) induce semiconjugacies

(21)

R/Z× {L, R}−ω −→ JR⏐⏐
 ⏐⏐

{L, R}−ω −→ JIMG(f)

where JIMG(f) is naturally identified with the Julia set of f .
The map p̃ : JR −→ JIMG(f) is induced by the natural projection

p : {L0, L1, R0, R1}−ω −→ {L, R}−ω.
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The fibers of the map p̃ are circles by Proposition 3.14. It follows that the limit space
of R can be interpreted as the bundle O over the Julia set of f of the Caratheodory
loops around the p-slices J(p) of the Julia set of F , and the map p̃ is the natural
projection from O to the Julia set of f .

Let us describe the limit space of the group IMG(f) following [14, Section 3.10].
As the zero step approximation of the tile of the group take a rectangle. The
vertices of the rectangle (which will correspond to the boundary points of the tile)
are labeled by the sequences (RL)−ωL, (LR)−ωR, (LR)−ω, (RL)−ω in the given cyclic
order counterclockwise. Hence, the zero step approximation of the limit space will
be the rectangle with two pairs of vertices identified. In order to get the next
approximation of the tile one has to take two copies of the previous approximation,
append R to the end of the label of one of them and append L to the label of the
other. After that one has to identify the point labeled by (LR)−ωRR with the point
labeled by (RL)−ωLL and the point labeled by (LR)−ωRL with the point labeled by
(RL)−ωLR.

See the sixth approximation of the tile in the middle picture of Figure 15. The
two pairs of the boundary points of the tile, which are identified in the limit space,
are drawn close to each other, so that we get a picture approximating the limit
space. The lefthand side of Figure 15 shows the identifications of the vertices of
64 rectangles made in the process of constructing the approximation of the limit
space. Compare the obtained pictures with the Julia set of the rational function

u �→ u2+1
u2−1 , shown on the righthand side of Figure 15. This rational function is

conjugate to f : p �→
(

1−p
1+p

)2

via the identification p = u−1
u+1 .

Figure 15. The Julia set of (p− 1)2/(p+ 1)2 and its combinatorial model

If we apply just the identifications (1) of Proposition 3.14 to the space
{L0, L1, R0, R1}−ω, i.e., if we consider the limit space of 〈τ 〉, then we will get the
direct product of the Cantor set {L, R}−ω with the circle R/Z.

Figure 16 shows the remaining identifications producing the limit space of R.
The arrows show which sequences w ∈ {L, R}−ω are identified, while the labels are
the rotations applied to the corresponding circles. Namely, if we have an arrow
from w1 to w2 labeled by θ0, then each point θ of the circle above w1 is identified
with the point θ + θ0 of the circle above w2. The limit dynamical system acts on
the Julia set of f as f (equivalently, as the shift on {L, R}−ω), and on the circles as
the map θ �→ 2θ. Note that the identifications described by Proposition 3.14 and
Figure 16 are such that the resulting map on the limit space of R is well defined.
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Figure 16. Building the space of external angles

The embedding R ↪→ IMG (F ) induces a semiconjugacy of the limit spaces

Φ : JR −→ JIMG(F ) = J1.

We call the points of JR external rays. We say that an external ray ζ ∈ JR lands
on (z, p) ∈ J1 if Φ(ζ) = (z, p). Points of JR are encoded by pairs (θ, w), where
w ∈ {L, R}−ω is a sequence representing a point p ∈ J1 and θ ∈ R/Z. The coordinate
θ is called the angle of the external ray. Note that the angle of an external ray
may not be uniquely defined, since a point of the Julia set of f may be represented
by different sequences. On the other hand, the difference between angles of two
external rays above the same point of the Julia set of f is well defined, since two
circles are pasted to each other (in Proposition 3.14) using a rotation.

Proposition 3.15. Denote by q1 the fixed point ≈ 0.2956 of f(p) =
(

1−p
1+p

)2

; see

Figure 7. If p0 belongs to the backward orbit
⋃

n≥0 f
−n(q1) of q1, then there are

two external rays landing on (p0, p0). The difference of the angles of these external
rays is equal to 1

2k−13
, where k is the smallest integer such that fk(p0) = q1. In all

the other cases there is a unique ray landing on (p0, p0).

Recall from Subsection 3.1 that the line z = p is contained in J1 and is an
F -invariant subset of the post-critical locus of F .

Proof. It follows from the description of the asymptotic equivalence relation of the
group IMG(f) that the fixed points of f are encoded in the limit space by the
sequences R−ω, L−ω and (RL)−ω ∼ (LR)−ω. The transformation κ permutes the first
two sequences and fixes the last one. Since κ corresponds to complex conjugation
(see Proposition 3.8), we conclude that the real fixed point of f is encoded by the
sequences (RL)−ω ∼ (LR)−ω. Hence, the points of the backward orbit of q1 are the
points encoded by the sequences of the form (RL)−ωv, for v ∈ {R, L}∗.

It follows from the dynamics on the post-critical set of F that the points of
the line z = p are the only singular points with the isotropy group a conjugate
of 〈γ〉. The wreath recursion in Theorem 3.3 implies that the points of the limit

dynamical system encoded by the sequences . . . X
(2)
0 X

(1)
0 for X(k) ∈ {L, R} are the
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only singular points with isotropy group a conjugate of 〈γ〉. Hence these sequences
encode the points z = p0, where p0 is encoded by . . . X(2)X(1) in the limit space of
IMG (f). (For the orbispace structure of the limit dynamical systems, see Chapters
4 and 5 of [14].)

Let us see to which sequences of the form . . . X
(2)
i2

X
(1)
i1

the sequence . . .X
(2)
0 X

(1)
0

can be equivalent. By Proposition 3.9, two such sequences, if they are equivalent
with respect to IMG (F ), are equivalent with respect to G.

The nucleus of G for the wreath recursion of Theorem 3.3 is equal to

{α, β, γ, (αβ)±1, αβ , (αγ)±1, βα, (βγ)±1, γα, γβ, γαβ , τ±1, (ατ )±1, (βτ )±1};
see (13) on page 321.

We are interested in the left-infinite paths in the Moore diagram of the nucleus
with the arrows labeled by pairs of the form (X0, Xi) for X ∈ {L, R} and i ∈ {0, 1}.
Removing all the other arrows and removing all arrows which do not belong to any
left-infinite path, we get the graph shown in Figure 17.

Figure 17. A part of the nucleus of G.

It follows that we have only the following non-trivial identifications

(L0R0)
−ωR0X

(n)
0 . . . X

(2)
0 X

(1)
0 ∼ (L1R0)

−ωR1X
(n)
1 . . . X

(2)
1 X

(1)
1 ,

(R0L0)
−ωL0X

(n)
0 . . . X

(2)
0 X

(1)
0 ∼ (R0L1)

−ωL0X
(n)
0 . . . X

(2)
0 X

(1)
0 ,

their shifts and the identification

. . . X
(2)
0 X

(1)
0 ∼ . . .X

(2)
1 X

(1)
1 .

The last identification is trivial in terms of the external angles.
It follows that the point z = p0 is a landing point of one external ray to the slice

p = p0 of the Julia set of F except when p0 is in the backward orbit of the fixed
point q1, when it is a landing point of exactly two external rays.

The remaining statements follow from Proposition 3.14. �
Note that the points of the backward orbit of q1 are precisely the points where

different Fatou components of f touch each other, i.e., the points belonging to
boundaries of two Fatou components of f . This follows from the fact that the fixed
point q1 belongs to the boundaries of the Fatou components containing 0 and 1,
and that every Fatou component of f is mapped by some iterations of f onto the
Fatou components containing 0 and 1.
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See Figure 18, where the external rays to the point (q1, q1) are shown.

Figure 18. External rays landing at (q1, q1)

4. Matings

4.1. An amalgam of G with itself. Consider a copy G1 of the group G generated
by

α1 = σ(β1, β1, β1α1, α1β1),(22)

β1 = (1, β1α1β1, α1, 1),(23)

γ1 = (γ1, β1, γ1, β1),(24)

as in Theorem 3.3.
Let us conjugate the righthand side of the recursion defining α1, β1, γ1 by π =

(1, 3)(2, 4) (which corresponds to changing each Li by Ri and vice versa). We then
get an equivalent copy G2 of G:

α2 = σ(β2α2, α2β2, β2, β2),(25)

β2 = (α2, 1, 1, β2α2β2),(26)

γ2 = (γ2, β2, γ2, β2).(27)

Note that

γ1α1β1 = σ(1, γ1α1β1, 1, γ1α1β1).

Similarly,

γ2α2β2 = σ(1, γ2α2β2, 1, γ2α2β2),

which implies that γ1α1β1 = γ2α2β2 = τ .

Denote by Ĝ the group generated by the set G1 ∪ G2.

Lemma 4.1. The elements β1 and β2 act non-trivially on disjoint sets of words
and hence commute. The same is true for γ1 and γ2.

Proof. The first statement follows directly from the wreath recursion. The second
statement follows from the first. �
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Computer computation using GAP shows that Ĝ is contracting with the following
nucleus of 122 elements:

{1, αi, βi, γi, α
βi

i , γαi
i , γβi

i , βαi
i ,

α
βj

i , β
αj

i , γ
αj

i , γ
βj

i , α
αjβj

i , γαiβi

i , β
αjβj

i ,

αB
i , α

C
i , B, C,Bαi , Bαiβi , Cαi , Cβi , Cτ , αiβjαjβj}
∪ {αiβi, αiγi, βiγi, βiαj , βiγj , αiγj ,

τ, βiαiβj , βiαiαj , αiβiαjβj , βiγiαj , αiτ, βiτ, αiB, βiC, βiαiB,

βiτβj , Cτ, αiCτ, βiCτ}±1.

Here {i, j} = {0, 1} and B = β1β2, C = γ1γ2.

Proposition 4.2. The connected components of the limit space of the group Ĝ are
obtained by taking the slices J(p) and J(p) of the Julia set of F and gluing one
to the other along the Caratheodory loop, where the external ray landing on (p, p)
is identified with the external ray landing on (p, p). If there are two external rays
landing on (p, p) (i.e., if p belongs to the backward orbit of the real fixed point q1
of f), then the Caratheodory loops are aligned in such a way that only one external
ray landing on (p, p) is identified with the external ray landing on (p, p).

Equivalently, the connected components of the limit space of Ĝ are obtained by
taking two copies of J(p) and gluing the Caratheodory loop around one copy of
J(p) to its mirror reflection along the diameter containing a ray landing on (p, p).

Proof. It follows from Propositions 3.9 and 3.8 that the connected components of

the limit space of Ĝ are obtained by gluing together the slice J(p) of the Julia set of
F with the slice J(p). Since γ1α1β1 = γ2α2β2 = τ , the Caratheodory loop around
J(p) is identified with the Caratheodory loop around J(p) by the map induced

by the map . . .X
(2)
i2

X
(1)
i1

�→ . . . Y
(2)
i2

Y
(1)
i1

on the corresponding sets of sequences.

Here . . . i2i1 ∈ {0, 1}−ω encodes the points of the circle J〈τ〉 and . . . X(2)X(1) =

κ(. . . Y (2)Y (1)) is the sequence encoding the point p. The identification rule of the
circles of external rays then follows from Proposition 3.14. �

Classically (see [12]) the identifications described in Proposition 4.2 are called
“matings”. The only difference is that in the case of the classical mating the
polynomials are monic, and the corresponding Caratheodory loops are reflected
with respect to the real axis (which corresponds to the angle 0 external ray of a
special fixed point of the polynomial). In our case we reflect the Caratheodory loop
with respect to the diameter containing a ray landing on the points of the invariant
line (p, p). Since there can be two rays landing on (p, p), there can be two “rotated
matings”.

As particular cases of the components described in Proposition 4.2 we get the

mating of the polynomial hq0(z) =
(

2z
q0+1 − 1

)2

, for q0 ≈ −0.6478 + 1.7214i, with

itself (see a detailed analysis of this mating in [12]), and two rotated matings of the

polynomial hq1(z) =
(

2z
q1+1 − 1

)2

, for q1 ≈ 0.2956, with itself.
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4.2. The self-similarity biset of Ĝ. Let (L̂0, L̂1, R̂0, R̂1) be the ordered basis of

the self-similarity Ĝ-biset corresponding to the original wreath recursion (22)–(27).
Then the G1-biset {L̂0, L̂1, R̂0, R̂1}·G1 is naturally isomorphic to the self-similarity

biset of G (if we identify G1 with G in the natural way). The isomorphism is given
by the map

L̂0 �→ L0, L̂1 �→ L1, R̂0 �→ R0, R̂1 �→ R1,

where {L0, L1, R0, R1} is the usual basis of the self-similarity biset of G (giving the
wreath recursion from Theorem 3.3).

The G2-biset {L̂0, L̂1, R̂0, R̂1} · G2 is also isomorphic to the self-similarity biset of
G via the mapping

L̂0 �→ R0, L̂1 �→ R1, R̂0 �→ L0, R̂1 �→ L1.

The self-similarity biset of Ĝ is a direct sum (i.e., disjoint union) of the biset

L = {L̂0, L̂1} · Ĝ and R = {R̂0, R̂1} · Ĝ. Also denote for i = 1, 2

Li = {L̂0, L̂1} · Gi, Ri = {R̂0, R̂1} · Gi.

Let us identify G1 and G2 with G in the natural way, so that Li and Ri become
G-bisets. Note that then L1 = R2 and L2 = R1.

Let a = π(a, aα, a, αa), which is the element a = π of G written with respect to
the basis L0 = e00, L1 = e01 · β, R0 = e10 · a, R1 = e11 · βα1a; see Proposition 3.4.
Then a induces an automorphism of G by conjugation:

αa = α, βa = βα, γa = γ.

Let M0 = {e00, e01} · G and M1 = {e10, e11} · G be the natural G-bisets; see
Subsection 3.3.

Proposition 4.3. Let v = X(1)X(2) . . .X(n) ∈ {L,R}n denote

xi =

{
0 if X(i) = L,
1 if X(i) = R.

Then the biset X
(1)
1 ⊗X

(2)
1 ⊗ · · · ⊗X

(n)
1 is isomorphic to the biset

Mx1
⊗Mx1+x2

⊗Mx2+x3
⊗ · · · ⊗Mxn−1+xn

· axn ,

where addition of indices is modulo two.

The G-biset X(1)
2 ⊗X

(2)
2 ⊗ · · · ⊗X

(n)
2 is isomorphic to the biset

M1+x1
⊗Mx1+x2

⊗Mx2+x3
⊗ · · · ⊗Mxn−1+xn

· a1+xn .

Proof. We have L0 = e00, L1 = e01 · β1, so L1 = M0. We have R0 = e10 · a and
L1 = e11 · βαa, hence R1 is identified with M1 · a. Consequently, L2 is isomorphic
to M1 · a, and R2 is isomorphic to M0.

Note that it follows from the wreath recursions defining G that a ·M0
∼= M1 and

a ·M1
∼= M0.

Consequently, the biset X
(1)
1 ⊗ X

(2)
1 ⊗ · · · ⊗ X

(n)
1 is isomorphic to the biset

Mx1
· ax1 ⊗Mx2

· ax2 ⊗ · · · ⊗Mxn
· axn , which is isomorphic to Mx1

⊗Mx1+x2
⊗

Mx2+x3
⊗ · · · ⊗Mxn−1+xn

· axn .

Similarly, the G-biset X(1)
2 ⊗X

(2)
2 ⊗ · · · ⊗X

(n)
2 is isomorphic to M1+x1

· a1+x1 ⊗
M1+x2

· a1+x2 ⊗ · · · ⊗ Mxn
· a1+xn , which is isomorphic to M1+x1

⊗ Mx1+x2
⊗

Mx2+x3
⊗ · · · ⊗Mxn−1+xn

· axn . �
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4.3. A virtually abelian subgroup of Ĝ. Denote A = α2, B = β1β2, and
C = γ1γ2. We then have α1 = CAB = BAC.

Let us pass to the basis

x1 = L̂0, x2 = L̂1 · β1, x3 = R̂0, x4 = R̂1 · β2,

i.e., conjugate the wreath recursion defining Ĝ by (1, β1, 1, β2). We then get

CAB = α1 = σ(1, 1, AC,CA),

β1 = (1, CAB,CAB, 1),

γ1 = (γ1, β1, γ1, β1),

A = α2 = σ(BA,AB, 1, 1),

β2 = (A, 1, 1, A),

γ2 = (γ2, β2, γ2, β2).

It follows that

A = σ(BA,AB, 1, 1),

B = (A,CAB,CAB,A),

C = (C,B,C,B).

Proposition 4.4. The subgroup H = 〈A,B,C〉 of Ĝ is equivalent as a self-similar
group to the group of affine transformations of C of the form z �→ ±z + q, where
q ∈ Z[i]. The isomorphism identifies A,B and C with the affine transformations

z ·A = −z + 1, z ·B = −z + 1 + i, z · C = −z.

The basis of the self-similarity biset is identified with the affine transformations

z · x1 =
1

1 + i
z =

1− i

2
z,

z · x2 =
1

1 + i
(−z + i) = −1− i

2
z +

1 + i

2
,

z · x3 =
1

1− i
z =

1 + i

2
z,

z · x4 =
1

1− i
(−z + 1) = −1 + i

2
z +

1 + i

2
.

For identification of permutational bisets with sets of (partial) transformations,
see Subsection 2.2. The biset structure comes from pre- and post-composition with
the group action.

Proof. We have x4 = A · x3 and A · x4 = x3,

z ·A · x1 = −1− i

2
z +

1− i

2
= −

(
−
(
−1− i

2
z +

1 + i

2

)
+ 1 + i

)
+ 1 = x2 ·BA;

hence A ·x1 = x2 ·BA and A ·x2 = x1 ·AB, which agrees with the wreath recursion.
We have

z ·B · x1 =
1− i

2
(−z + 1 + i) = −1− i

2
z + 1 = z · x1 ·A,

z ·B · x2 = −1− i

2
(−z + 1 + i) +

1 + i

2
=

1− i

2
z − 1− i

2
= z · x2 · CAB,
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since z · CAB = −z + i,

z ·B · x3 =
1 + i

2
(−z + 1 + i) = −1 + i

2
z + i = z · x3 · CAB,

and

z ·B · x4 = −1 + i

2
(−z + 1 + i) +

1 + i

2
=

1 + i

2
z +

1− i

2
= z · x4 ·A,

which also agrees with the wreath recursion.
Finally, it is easy to check that z · C · x1 = z · x1 · C, z · C · x3 = z · x3 · C and

z · C · x2 =
1− i

2
z +

1 + i

2
= z · x2 ·B,

and

z · C · x4 =
1 + i

2
z +

1 + i

2
= z · x4 ·B.

�
4.4. The limit dynamical system of H.

Proposition 4.5. The limit H-space XH is homeomorphic to the direct product of
C with the Cantor set {L, R}−ω with the natural (right) action of H on C and trivial
action on {L, R}−ω. The self-similarity structure is given by

(z, . . . y2y1)⊗ x1 =

(
1− i

2
z, . . . y2y1L

)
,

(z, . . . y2y1)⊗ x2 =

(
−1− i

2
z +

1 + i

2
, . . . y2y1L

)
,

(z, . . . y2y1)⊗ x3 =

(
1 + i

2
z, . . . y2y1R

)
,

(z, . . . y2y1)⊗ x4 =

(
−1 + i

2
z +

1 + i

2
, . . . y2y1R

)
.

Proof. Direct corollary of Proposition 4.4 and Theorem 2.1. �
The orbispace C/H is a flat surface homeomorphic to the sphere with four sin-

gular points, which are the images of the fixed points 1/2, (1 + i)/2, 0, and i/2 of
the transformations A,B,C and CAB, respectively. Let us denote these singular
points by ZA, ZB, ZC and ZCAB , respectively. A fundamental domain D of H is
the rectangle with the vertices i/2, 0, 1 and 1 + i/2.

The natural map D −→ C/H folds this rectangle along the segment connecting
1/2 and (1+i)/2 in two, so that we get a “pillowcase”, whose vertices are the points
ZA, ZB , ZC and ZCAB; see Figure 19.

The following is a direct corollary of the description of the limit H-space given
in Proposition 4.5.

Corollary 4.6. The limit space JH is homeomorphic to the direct product C/H×
{L, R}−ω. The shift map s : JH −→ JH acts by the rule

s(z, . . . y2y1) =

{
((1− i)z, . . . y3y2), if y1 = L,
((1 + i)z, . . . y3y2), if y1 = R.

Here z, (1 − i)z, and (1 + i)z are complex numbers representing the corresponding
points of the orbispace C/H.
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Figure 19. Fundamental domain of H

4.5. Schreier graphs of H and Ĝ. Consider the natural (right) action of H on
C. Take the basepoint ξ = 1+i

4 . It has trivial stabilizer in H, hence we can consider
the orbit of ξ as a vertex set of the left Cayley graph ΓH of H with respect to
the generating set A,B,C,CAB. See the Cayley graph on Figure 20. Here edges
corresponding to the generators A,B,C, and CAB are orange, blue, green, and
red, respectively.

Figure 20. Cayley graph of H

Denote by Hn the subgroup of H consisting of the affine transformations of the
form z �→ ±z + q, where q ∈ Z[i] is a Gaussian integer divisible by (1 + i)n.

It follows then from Proposition 4.4 that the Schreier graph of the action of H
on the nth level of the tree consists of 2n copies of the graph Γn(H) := ΓH/Hn. A
fundamental domain of Hn is the rectangle with vertices 0, (1+i)n, i(1+i)n/2, and
(1 + i/2)(1 + i)n. Note that its sides are either parallel to the real and imaginary
axis (for even n) or parallel to the diagonals �(z) = �(z) and �(z) = −�(z).

See Figure 21 for the Schreier graphs Γ5(H) and Γ4(H). Note that they have
four loops, which we will usually omit in the sequel.

Figure 22 shows a more convenient way of drawing the Schreier graphs Γn(H)
and their subgraphs. Here the graphs Γ5(H) and Γ4(H) are drawn inside the



344 VOLODYMYR NEKRASHEVYCH

Figure 21. Schreier graphs Γn(H)

fundamental domains of the action of Hn on C. In order to get the Schreier graphs
one has to fold the rectangle into a square pillowcase (which corresponds to taking
the quotient C/Hn).

Figure 22. Unfolded Schreier graphs ΓHn

Denote, for v = X(1)X(2) . . . X(n) ∈ {L, R}n, by Γ1,v and Γ2,v the corresponding
connected components of the Schreier graphs of the actions of G1 and G2 on the nth
level of the tree. More precisely, they are the Schreier graphs of the left actions of
Gi on the spaces of right orbits of the bisets

{X(1)
0 , X

(1)
1 } ⊗ {X(2)

0 , X
(2)
1 } ⊗ · · · ⊗ {X(n)

0 , X
(n)
1 } · Gi.

The graphs Γ1,v and Γ2,v are isomorphic to the Schreier graphs Γw1
and Γw2

of
the group G, where w1, w2 ∈ {0, 1}∗ are determined by the rules given in Proposi-
tion 4.3. Note that w2 is obtained from w1 by changing the first letter.

By Lemma 4.1, the graphs Γ1,v and Γ2,v have disjoint sets of edges such that
their union is the set of edges of Γn(H) (if we ignore the loops). Namely, the red
edges of Figure 20 correspond to α1, and the orange ones to α2; each blue edge
corresponds either to β1 or to β2, and each green edge either to γ1 or to γ2.
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See Figure 23 for an example of the subgraphs Γ1,v and Γ2,v (colored red and
black, respectively) of Γ6(H). We have removed the edges corresponding to the
loops in Γ6(H).

Figure 23. A component of a Schreier graph of Ĝ

Note that each edge of ΓH is a diagonal of a square with the sides of length
1/2 parallel to the real and imaginary axes. These squares tile the plane and the
pillowcases C/Hn, and each square of the tiling has precisely one diagonal belonging
to the Cayley graph ΓH. By coloring the squares containing the edges of Γ1,v and
Γ2,v in different colors (e.g., black and white), we get a nice visualization of the
partition of Γn(H) into the trees Γ1,v and Γ2,v; see Figure 24. Here the squares
whose diagonals are loops of Γn(H) are colored blue. We will call them singular.

Let us denote by K1,v the union of the squares whose diagonals belong to Γ1,v

and by K2,v the union of the squares whose diagonals belong to Γ2,v and of the
singular squares.

Figure 24. Partition into sets Ki,v

Proposition 4.7. The boundary between K1,v and K2,v is a closed broken line λv

describing the action of τ on the vertex set of Γn(H). Namely, for every vertex u
there are no vertices of Γn(H) on λv between u and τ (u).

Note that our choice to include the singular squares inK2,v is not very important.
It will change only the side on which the path λv goes around the singular point of
C/Hn.
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Proof. We have τ = γ1α1β1 = γ2α2β2. Consider the little squares of Γn(H). Two
of their sides (opposite to each other) correspond to α1 = CAB and α2 = A, and
the other two sides correspond to B and C. Each of the latter two edges may
belong either to Γ1,v or to Γ2,v. Figure 25 shows all four possible cases. Note that
if an edge corresponding to B or C belongs to Γi,v, then its endpoints are fixed
under the action of β1−i, γ1−i, respectively. This information makes it possible to
determine for one of the pairs of vertices of the square that one is the image of the
other under the action of τ , as it is shown by the black arrows in Figure 25. If one of
the edges of the squares is a loop of Γn(H), then we assume that it belongs to Γ2,v

(according to our convention about the set K2,v). Note that the other agreement
does not change the order in which λv connects the vertices of Γn(H).

Figure 25. Action of τ

We see that the arrows describing the action of τ belong to the boundary λv

between the sets K1,v and K2,v. �
Consequently, the partition of the pillowcase C/Hn into the sets K1,v and K2,v

is an approximation of the mating described in Proposition 4.2. The boundary λv

between the sets converges (as v converges to a left-infinite sequence w ∈ {L, R}−ω)
to the map from the circle to a connected component of J

̂G induced by the inclusion

〈τ 〉 < Ĝ.
See Figure 26, where two examples (approximations for w = R−ω and (LR)−ω)

of the partition are given.

Figure 26. “Pillowcase ornaments”

We orient λv according to the action of τ , so that the oriented segments go from
u to τ (u). Then λv goes around Γ1,v in the positive direction and around Γ2,v in
the negative direction (if we orient C in the standard way); see Figure 25.
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4.6. Recursive rule of constructing Γ1,v and Γ2,v. It follows from Proposi-
tion 4.3 that the graphs Γ1,v and Γ2,v for v = z1z2 . . . zn ∈ {L, R}n are isomorphic
to the Schreier graphs Γw1

and Γw2
of G, where w1 = x1x2 . . . xn, w2 = y1y2 . . . yn ∈

{0, 1}n are defined by the rule

xk = yk =

{
0 if zk−1 = zk,
1 otherwise,

for k ≥ 2, while x1 and y1 are defined by the same rule with the assumption z0 = L

and z0 = R, respectively.
Let us now translate the recursive rule from Corollary 3.11 of construction of

the graphs Γv in terms of the sequences over the alphabet {L, R} and subgraphs of
the graph ΓH.

Note that since the graphs Γi,v are trees (as they are isomorphic to Γw for some
w), they can be lifted by the natural quotient map ΓH −→ ΓH/Hn to a subgraph
of the Cayley graph ΓH of H.

On the initial step (for the empty word v = ∅) the graphs Γi,∅ consist of one
vertex only, which is marked by zα,∅, zβ,∅, and zγ,∅ simultaneously. Choose a point
in ΓH, which will be the lift of the graphs Γ∅,i. We will add, for convenience, halves
of the incident edges of ΓH, corresponding to CAB,B,C for Γ1,∅ and A,B,C for
Γ2,∅. Let us denote the obtained graphs by Δ1,∅ and Δ2,∅, respectively.

Suppose that we have constructed the graphs Δ1,v and Δ2,v, which are lifts of
the graphs Γ1,v and Γ2,v, respectively, with three marked vertices zα,v, zβ,v, and
zγ,v and halves of some edges of ΓH attached to the marked vertices. Let z′α,v, z

′
β,v,

and z′γ,v be the other (“hanging”) vertices of the half-edges.
Then the graphs Δi,vx for i ∈ {1, 2}, x ∈ {L, R} together with the marking are

obtained by the following rule.

Denote Δi,v,0 = Δi,v and let Δi,v,1 be Δi,v rotated by 180◦ around z′α,v. Take
the union of Δi,v,0 with the Δi,v,1, connecting in this way the respective copies of
zα,v by an edge.

The copy of zγ,v in Δi,v,0 is the vertex zγ,vx. The copy of zγ,v in Δi,v,1 is the
vertex zβ,vx. If the last letter of v coincides with x (or if v = ∅, x = L, i = 1,
or v = ∅, x = R, i = 2), then the copy of zβ,v in Δi,v,1 is zα,vx; otherwise zα,vx is
the copy of zβ,v in Δi,v,0. Remove the half-edge attached to the other (unmarked)
copy of zβ,v. The obtained graph is Δi,vx. The graph Γi,vx is obtained from it by
removing the three half-edges attached to the marked vertices.

See the first three steps of this recursion (for i = 1) in Figure 27.
Note that it follows directly from the construction that the points z′α,v, z

′
β,v and

z′γ,v are vertices of a right isosceles triangle. Orientation of the triangles z′α,vz
′
β,vz

′
γ,v

depends on the last letter of v: it is counterclockwise if it is L and clockwise if it is
R.

5. Paper-folding curves

5.1. Mazes associated with graphs Γ1,v. Consider again the Cayley graph H
drawn in C, as in Figure 20. Consider the half-integral grid on C, i.e., the tiling
of the plane by the parallel translations by the elements of Z[i]/2 of the square
with the vertices 0, 1/2, i/2, and 1/2 + i/2. The group H acts freely on the set of
these squares with two orbits (corresponding to the two colors of the checkerboard
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Figure 27. Graphs Γ1,v

coloring). We get this way a checkerboard coloring of the pillowcases C/Hn. Let
Qn be the graph consisting of the sides of the half-integral grid on C/Hn.

The vertices of the graph Γ1,v are the centers of the squares of one color in the
checkerboard coloring of C/Hn. Since Γ1,v is a tree, there is a closed Eulerian path
ρv in Qn without transversal self-intersections, which goes around Γ1,v, i.e., does
not intersect it transversally (see Figure 28) where the squares containing Γ1,v are
colored red and the other squares are white. The path ρv is the boundary of the
white region (after we glue the picture into a pillowcase).

Note that, unlike the path λv, there are no problems in the definition of ρv
concerning the singular points.

Figure 28. Path ρv

See more examples of the paths ρv in Figure 29, where their connected lifts to
C are shown.
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Figure 29. Paths ρv around Γv

Recall that the curve λv describes the action of τ on the vertices of Γ1,v. It is
easy to check that ρv is obtained from λv by the replacements of the segments of
λv between the vertices of Γ1,v by the curves shown in Figure 30. In particular,
the curves ρv also approximate the plane-filling curves coming from the matings
described in Proposition 4.2.

Figure 30. Changing λv to ρv

5.2. Another pair of Schreier graphs. The curve ρn in Figure 28 goes around
Γ1,v, bounding the red cells of the checkerboard tiling of the pillowcase C/Hn. It
also goes around the white cells, and these cells are arranged into a tree around
which ρv travels. Let us try to interpret this “white” tree in terms of the group G.

Let ζ1 = 1/4 + i/4 and ζ2 = 1/4 − i/4. Let Σ1 = ΓH be the left Cayley graph
of H with the set of vertices ζ1 · H and the edges corresponding to the generators
A,B,C,CAB. Let Σ2 be the left Cayley graph of H with the set of vertices ζ2 · H
and the edges corresponding to the generators A,ABA,C,ABC.

See Figure 31 for the graphs Σ1, Σ2. Note that each edge of Σ1 intersects
exactly one edge of Σ2 and vice versa. Namely, the edges of Σ1 corresponding
to A,B,C, and CAB intersect the edges of Σ2 corresponding to A,ABA,C, and
ABC, respectively.

For a given word v = X(1)X(2) . . . X(n) ∈ {L, R}∗ of length n, denote by Σ1,v and

Σ2,v the Schreier graphs of the groups G1 and G2 acting on the set X(1) ×X(2) ×
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Figure 31. Graphs Σ1 and Σ2.

· · · ×X(n) (i.e., on the set of the right orbits of the bisets X
(1)
1 ⊗X

(2)
1 ⊗ · · · ⊗X

(n)
1

and X
(1)
2 ⊗X

(2)
2 ⊗ · · · ⊗X

(n)
2 , respectively), defined with respect to the generating

sets {α1 = CAB, β1, γ1} and {α2 = A,α2β2α2, γ2}. We identify them with the
corresponding sub-graphs of the graphs Σ1/Hn and Σ2/Hn, respectively.

Proposition 5.1. The graphs Σ1,v and Σ2,v do not intersect (as subsets of C/Hn).
In each pair of intersecting edges of Σ1/Hn and Σ2/Hn one edge belongs to one of
the graphs Σ1,v and Σ2,v and the other edge does not belong to either graph.

It follows that ρv separates the trees Σ1,v = Γ1,v and Σ2,v and that the graphs
Σ1,v and Σ2,v describe adjacency of the cells on the corresponding side of the curve
ρv.

Proof. Connect the basepoints ζ1 and ζ2 by a straight segment �. The points ζ1
and ζ2 as vertices of the Cayley graphs Σ1 and Σ2 correspond to the identity in the
group H. Consequently, the images of � under the action of H connect the vertices
of Σ1 and Σ2 corresponding to the same elements of H. It follows now from the
construction of the graphs Σi (see Figure 32) that the edge connecting h ∈ H to
Ch in Σ1 intersects with the edge connecting the corresponding vertices in Σ2. The
same statement for the edges connecting h to Ah is true. The edge in Σ1 connecting
Ah to BAh intersects the edge in Σ2 connecting h to ABAh.

If the graph Σ1,v contains an edge from w to γ1(w) = C(w), then the graph Σ2,v

does not contain an edge connecting w to γ2(w), and vice versa. The edge w to
γ1(w) coincides with the edge from some h to Ch in Σ1, while the edge from w to
γ2(w) coincides with the edge from the same element h to Ch in Σ2. This settles
the statement for the edges (w, γi(w)).

The edge from w to α2(w) corresponds to the edge from h to Ah, which is not
included into Σ1. Similarly, the edge from w to α1(w) = CAB(w) is not included
into Σ2.
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Figure 32. Proof of Proposition 5.1

If Σ2(w) contains an edge from w to α2β2α2(w) = ABA(w), then w �= α2β2α2(w),
i.e., α2(w) �= β2α2(w), which is equivalent to the condition that the graph Σ1(w)
does not have an edge from A(w) to BA(w). �

Proposition 5.2. The graphs Σ1,v and Σ2,v are isomorphic for every word v.

Proof. We know (see Proposition 4.3) that for every finite sequence v = X1X2 . . . Xn

∈ {L, R}∗ the G1
∼= G-biset X1⊗X2⊗· · ·⊗Xn · G1 is isomorphic to the G2

∼= G-biset
a ·X1 ⊗X2 ⊗ · · · ⊗Xn · G2 · a. We have α = aαa, αβα = aβa and γ = aγa, which
implies that the map

w �→ a(w)

is an isomorphism of the Schreier graphs Σ2,v −→ Σ1,v. �

5.3. Paper-folding. Consider a lift Σ′
1,v of the graph Σ1,v to C, and let ρ′v be the

corresponding lift of the path ρv (i.e., a closed path going around the lift of the tree
Σ1,v).

Since the singular points ZA, ZB , ZC , and ZCAB of the orbifold C/Hn belong to
the graph Qn for every n, the path ρv also passes through these points. The lift ρ′v
will pass through preimages Z ′

A, Z
′
B , Z

′
C and Z ′

CAB of the singular points.

Proposition 5.3. The path ρ′v consists of four pieces: ρv(A,B) from Z ′
A to Z ′

B,
ρv(B,CAB) from Z ′

B to Z ′
CAB, ρv(CAB,C) from Z ′

CAB to Z ′
C , and ρv(C,A) from

Z ′
C to Z ′

A.
If the last letter of v is L, or if v is empty (resp., if the last letter of v is R),

then the path, going consecutively through ρv(A,B), ρv(B,CAB), ρv(CAB,C), and
ρv(C,A), goes in the positive (resp., negative) direction around Σ′

1,v. Each path
ρv(X1, X2) is equal to the image of the previous path ρv(X0, X1) under rotation by
−π/2 (resp. π/2) around Z ′

X1
.

The path ρvL(C,A) (resp. ρvR(C,A)) can be taken equal to the union of the path
ρv(C,A)∪ ρv(A,B) with its image under rotation by −π/2 (resp. π/2) around Z ′

B.
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Proof. The proof is obtained by straightforward induction, using the inductive rule
of constructing the graphs Γ1,v. See Figure 33 for the inductive step. The points
z′α,v, z′β,v and z′γ,v will coincide with the points Z ′

CAB , Z ′
B and Z ′

C (which are

denoted CAB,B and C in Figure 33). �

Figure 33. Inductive proof of Proposition 5.3

Consider a strip of paper of length 2n−1. Let us denote one end of the strip by
C. For a given word v = X1X2 . . .Xn of letters Xi ∈ {L, R} fold the strip in two,
fixing C and moving the other end of the strip to C on the left side, if Xn = L,
or on the right side, if Xn = R (see Figure 34). Now repeat the procedure for the
word X1X2 . . .Xn−1. After n steps unfold the strip so that all bends are at right
angles. This way we get a broken line Pv. Take a copy of Pv, rotate it by 180◦ and
connect its endpoints with the endpoints of Pv. We get a closed broken line P v.

The following statement is a direct corollary of Proposition 5.3.

Corollary 5.4. The broken line P v is isometric to the path ρ′v going around the
graph Σ′

1,v.

6. Boundaries of Fatou components of f and rotated tunings

Consider the group B = 〈S, γα, β〉 = 〈S〉 × 〈γα, β〉. Let us write the images of
the generators under the wreath recursion:

S = σπ(Pβαγ, P, S−1βαγ, S−1),

γα = σ(1, γβ, α, γαβ),

β = (1, βαβ, α, 1).

Conjugate the righthand side of the recursion by (34)(β, β, Pβαγβ, Pβ):

S = (13)(24)(1, 1, T, T ),

γα = σ(1, βγ, 1, βγ),

β = (1, α, 1, α).
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Figure 34. Folding the paper according to RLRL

We see that on the righthand side we get elements of the group A = 〈T, βγ, α〉 =
〈T 〉×〈βγ, α〉. Moreover, the corresponding (B−A)-bisetMB,A is the direct product
of the (〈S〉 − 〈T 〉)-biset given by the binary recursion

S = σ(1, T ),

with the (〈γα, β〉 − 〈βγ, α〉)-biset given by the recursion

γα = σ(1, βγ),(28)

β = (1, α).(29)

The following proposition is proved by direct computation.

Proposition 6.1. The biset over the free groups of rank two given by (28)–(29) is
isomorphic to the biset associated with the partial covering

C \ {0, 1} ⊃ C \ {1, 0, 2} −→ C \ {0, 1}
defined by the polynomial (1− z)2, where γα and β correspond to the loops around
the punctures 0 and 1 in the range of the covering, respectively, and the generators
βγ and α correspond to the loops around the punctures 1 and 0 in the domain of
the covering, respectively.

The generators of the group A are decomposed (in the original recursion) as
follows:

T = (P, βPβ, γSγ, S),

βγ = (γ, βα, αγ, β),

α = σ(β, β, βα, αβ).
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Conjugate the wreath recursion by (1, β, α, β):

T = (P, P, S, S),

βγ = (γ, αβ, γα, β),

α = σ.

Restricting to the last two coordinates of the wreath product (i.e., to the biset
R) we get a biset MA,B, which is a direct product of the biset defined by the
isomorphism T �→ S and the (〈βγ, α〉 − 〈γα, β〉)-biset given by the recursion

βγ = (γ, αβ),(30)

α = σ.(31)

The proof of the following proposition is also straightforward.

Proposition 6.2. The biset over the free groups defined by the wreath recur-
sion (30)–(31) is isomorphic to the biset associated with the partial covering

C \ {0, 1} ⊃ C \ {0, 1, 1/2} −→ C \ {0, 1},
given by the polynomial (2z− 1)2, where the generators α and βγ correspond to the
loops around 0 and 1 in the domain, while the generators γ and αβ correspond to
the loops around 1 and 0 in the range, respectively.

Taking tensor products MB,A ⊗A MA,B and MA,B ⊗B MB,A we see that A and
B are self-similar subgroups of IMG

(
F ◦2).

Corollary 6.3. The bisets MB,A ⊗A MA,B and MA,B ⊗B MB,A are isomorphic to
the bisets associated with the post-critically finite polynomials (2(1 − z)2 − 1)2 =
(2z2 − 4z + 1)2 and (1− (2z − 1)2)2 = 16z2(1− z)2, respectively.

Proof. It follows from Propositions 6.1 and 6.2. �
Note that the polynomials 16z2(1 − z)2 and (2z2 − 4z + 1)2 coincide with the

restrictions of the second iteration of the endomorphism F of PC2 to the post-
critical lines p = 1 and p = 0, respectively. The action of F is written in the
homogeneous coordinates as

[z : p : u] �→ [(2z − p− u)2 : (p− u)2 : (p+ u)2],

hence its restriction to the line p = u is

[z : p : p] �→ [(2z − 2p)2 : 0 : 4p2],

so that it acts on the first coordinate (in the non-homogeneous coordinates) as

z �→ (z − 1)2.

The restriction of F to the line p = 0 is

[z : 0 : u] �→ [(2z − u)2 : u2 : u2],

i.e.,
z �→ (2z − 1)2.

Proposition 6.4. The limit spaces of (A,MA,B⊗MB,A) and (B,MB,A⊗MA,B) are
direct products of the circle with the Julia sets of the polynomials 16z2(1− z)2 and
(2z2 − 4z + 1)2, respectively. The images of JA and JB in JIMG(F ) are identified
with the subsets of the Julia set projected by (z, p) �→ p to the boundaries of the

Fatou components of f(p) =
(

p−1
p+1

)2

, containing 1 and 0, respectively.
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Proof. The description of the limit space follows directly from the structure of
the wreath recursion and Corollary 6.3. The groups 〈α, βγ〉 and 〈β, γα〉 are level-
transitive, which implies that the map from the limit spaces of A and B to the limit
space of IMG (F ) is surjective on the fibers of the natural projection JIMG(F ) −→
JIMG(f).

It follows from the post-critical dynamics of f and the interpretation of the maps
S and P as loops in the space C \ {0, 1} (see Proposition 3.8) that the images of
the limit spaces JA and JB in the Julia set of f are the boundaries of the Fatou
components of 1 and 0, respectively. �

See Figure 35, where the Julia sets of the polynomials 16z2(1− z)2 and (2z2 −
4z + 1)2 are shown.

Figure 35. The Julia sets of 16z2(1− z)2 and (2z2 − 4z + 1)2

The natural map from JA and JB to the Julia set of F are not injective. Let us
see which points of the limit space are identified under these maps.

Consider the group B1 = 〈γ, α, S〉. Its generators are written as

α = σ(β, β, βα, αβ),

γ = (γ, β, γ, β),

S = πσ(Pβαγ, P, S−1βαγ, S−1).

Conjugating the righthand side by (1, β, P, Pβα) we get

α = σ,

γ = (γ, β, γ, β),

Sγα = π(1, 1, Tβγ, Tβγ).
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Consider now the group A1 = 〈γ, β, T 〉. We have

β = (1, βαβ, α, 1),

γ = (γ, β, γ, β),

T = (P, βPβ, αSα, S),

Tβγ = (Pγ, βPα, Sγα, Sβ).

The restriction to the third coordinate of the righthand side gives the homomor-
phism

β �→ α,

γ �→ γ,

Tβγ �→ Sγα.

Note that the subgroups 〈γα, S〉 and 〈βγ, T 〉 are also subgroups of B and A,
respectively. The corresponding wreath recursions for these groups are

γα = σ(1, βγ),

S = σ(1, T )

Sγα = (T, βγ),

(here we use a conjugated version (28)–(29)), and

βγ �→ γα,

T �→ S,

Tβγ �→ Sγα.

It follows from the recursions and post-critical dynamics of the polynomials
16z2(1−z)2 and (2z2−4z+1)2 that the limit space of 〈γα, S〉 with respect to these
recursions is the natural direct product of the boundary of the Fatou component
of f containing 0 (which is the limit space of the subgroup 〈S〉) and the boundary
of the Fatou component of (2z2 − 4z + 1)2 containing 0 (the limit space of 〈γα〉).
Similarly, the limit space of 〈βγ, T 〉 is the direct product of the the boundary of the
Fatou component of f containing 1 (the limit space of 〈T 〉) with the boundary of
the Fatou component of 16z2(1− z)2 containing 1 (the limit space of 〈βγ〉). Hence,
both limit spaces are tori.

In particular, the natural maps from the limit spaces of the groups 〈γα, S〉 and
〈βγ, T 〉 to JB and JA, respectively, are injective.

Let us compare the limit spaces of these groups with the limit spaces of their
extensions B1 and A1. We have B1 = 〈α, γ〉 × 〈Sγα〉, and A1 = 〈β, γ〉 × 〈Tβγ〉.
The direct factors 〈α, γ〉 and 〈β, γ〉 are infinite dihedral with the wreath recursions

α = σ, γ = (γ, β)

and
β �→ α, γ �→ γ.

It follows that the limit spaces of the subgroups 〈α, γ〉 and 〈β, γ〉 are segments with
singular endpoints (one with the isotropy group 〈α〉 or 〈β〉 and the other with the
isotropy group 〈γ〉).

Consequently, the limit spaces of B1 and A1 are annuli (direct products of the
circle and the segment) and the natural map from the limit spaces of 〈γα, S〉 and
〈βγ, T 〉 to the limit spaces of B1 and A1 “flattens” the tori into annuli, by flatten-
ing the circles J〈γα〉 and J〈βγ〉 to the segments J〈γ,α〉 and J〈β,γ〉. Note that the
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natural direct product decomposition of the spaces J〈γα,S〉 and J〈βγ,T 〉 comes from
the direct product decompositions 〈γα〉×〈S〉 and 〈βγ〉×〈T 〉, while we have decom-
positions of the self-similar groups B1 = 〈γ, α〉 × 〈Sγα〉 and A1 = 〈β, γ〉 × 〈Tβγ〉.
Consequently, the preimages of the boundaries of the annuli in the tori are di-
agonals with respect to the natural decomposition of the torus into the product
of the boundaries of the Fatou components. It means that the diameter with re-
spect to which we flatten the boundary of the Fatou component of the polynomials
16z2(1 − z)2 and (2z2 − 4z + 1)2 rotates as p travels along the boundary of the
Fatou component of f .

This flattening of the circles into segments can be interpreted as a “rotated
tuning” of the polynomials 16z2(1 − z)2 and (2z2 − 4z + 1)2 by the polynomial
z2 − 2 (which is the quadratic polynomial with the dihedral iterated monodromy
group and the Julia set a segment). It can be nicely illustrated by the slices of
the Julia set of F as p travels close to the boundary of the Fatou component of
f , but stays inside it. Then the slices are still homeomorphic to the Julia sets of
16z2(1 − z)2 and (2z2 − 4z + 1)2, but are close to the dendrite slices of the Julia
set of F along the boundary of the Fatou component of f .

See Figure 36 where slices of the Julia set of F are shown when p is traveling
close to the boundary of the Fatou component of f containing 1 (the top half of
the figure). Corresponding slices for p on the boundary of the Fatou component
are shown in the bottom part of the figure.

Figure 36. Rotated tuning

The described rotated tunings are analgous to the “rotated matings” studied
in [5].
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