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NIELSEN EQUIVALENCE IN MAPPING TORI
OVER THE TORUS

TAN BIRINGER

ABSTRACT. We use the geometry of the Farey graph to give an alternative
proof of the fact that if A € GL2Z and if G4 = Z2 x4 Z is generated by
two elements, then there is a single Nielsen equivalence class of 2-element
generating sets for G 4 unless A is conjugate to + (% %), in which case there
are two.

1. INTRODUCTION

Let G be a finitely generated group. Two ordered n-element generating sets
S, T for G are Nielsen equivalent if the associated surjections F,, — G differ by
precomposition with a free group automorphism. This is equivalent to requiring
that S, T are related by a sequence of Nielsen mowves:

(1) if a # b are generators, replace a with ab,
(2) if a # b are generators, switch their places in the ordering,
(3) if a is a generator, replace it with a1,
as the associated automorphisms generate Aut(F,); see [B, Chap. I, Prop. 4.1].

In [], Levitt—Metaftsis studied Nielsen equivalence within groups of the form
Ga = 7% xp Z, where A € GLgZ. Using the Cayley-Hamilton theorem, they
show that G4 is 2-generated exactly when there is a vector v € Z% such that
(v, Av) = Z?. They also show that the number of Nielsen equivalence classes of
2-element generating sets is the index of (A4, —Id) in its GL4Z-centralizer.

When d = 2, one can combine this with an observation of Cooper—Scharlemann
[2, Lemma 5.1] to prove the following theorem.

Theorem 1.1. If A € GLyZ and if G4 = 72 x4 Z is 2-generated, then there is
a single Nielsen equivalence class of 2-element generating sets for G o unless A is
conjugate to + (3 1), in which case there are two.

Note that when A = (21), G4 is 2-generated, since ((}), (%)) = Z%

Our goal here is not to prove anything new, but rather to understand how to
prove Theorem [T using the geometry of the Farey graph F. Algebraically, vertices
of F are primitive elements v = (p,q) € Z? up to negation, and vertices v,w are
connected by an edge if together they generate Z2. Any matrix A € GLyZ acts on
F, and it turns out that Nielsen equivalence classes of 2-element generating sets
of G4 correspond to geoesics in F, on which A acts as a unit translation; see §2
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Using this perspective, one can then prove Theorem [Tl just using separation prop-
erties of geodesics in F.

In [2], Cooper—Scharlemann were interested in an analogue of Theorem [[T]in the
world of Heegaard splittings. Recall that a closed surface S in a closed, orientable
3-manifold is a Heegaard splitting if M \ H has two components, each of which are
(open) handlebodies. They showed that there is a unique minimal genus Heegaard
splitting of M4 up to isotopy unless A is conjugate to £ (2 }), in which case there
are two.

Any Heegaard splitting gives a pair of generating sets for m1 M just by taking
free bases for the fundamental groups of the two handlebodies. These generating
sets are well-defined up to Nielsen equivalence, and their Nielsen types certainly do
not change if the Heegaard splitting S is isotoped in M. However, in general it is
hard to say when a generating set for m M is “geometric”, i.e., when its Nielsen
class comes from a Heegaard splitting, and when two (say, nonisotopic) Heegaard
splittings give the same Nielsen class; see, e.g., Johnson [3].

However, inspired by the fact that the Cooper—Scharlemann result also applies
when the minimal genus of a Heegaard splitting is 3, we ask:

Question 1. Is it true that if rank(G4) = 3, then there is a single Nielsen equiv-
alence class of 3-element generating sets?

Here, rank is the minimal size of a generating set. In [I], the author and Souto
studied rank and Nielsen equivalence for mapping tori My, where ¢ : S — S'is a
pseudo-Anosov homeomorphism of a closed orientable surface of genus g > 2. We
showed that as long as ¢ has large translation distance in the curve complex C(S),
the group m My has rank 2¢g 4+ 1 and all minimal size generating sets are Nielsen
equivalent.

From above, when A € GL3yZ, the group G4 has rank 2 exactly when there
was some v € Z? such that (v, Av) = Z?. The Farey graph is the curve graph of
T?% and (v, Av) = 74 exactly when v, Av € F are adjacent, so in the Euclidean
setting the analogue of the rank part of our theorem in [I] still holds, and says that
rank(G4) = 3 if the translation distance of A on F is at least two. The analogue
of the Nielsen equivalence part is (a weaker version of) Question 1.

2. THE PROOF

We will first show that for a general A € GGLyZ, there can be at most two Nielsen
equivalence classes of 2-element generating sets for G4. We will then show that the
conjugates of (2 1) are the only A that realize this bound.

The beginning of this argument overlaps with that of Levitt-Metaftsis [4], so
we will just outline it and give citations when necessary. Suppose that G4 is 2-
generated. By [4, Proposition 4.1], every minimal size generating set for G4 is
Nielsen equivalent to a generating set of the form

r = (v,0), y=(0,1), where v € Z?.
Set Sa = {v € Z* | (v, Av) = Z*}. Again by [ Proposition 4.1], if v,v" € Sa,

then {(v,0),(0,1)} and {(¢',0),(0,1)} are Nielsen equivalent if and only if v, v’ lie
in the same (A) x Z/2Z-orbit on Sa, where Z/27Z acts byv — —uv.
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We now reinterpret this in terms of the Farey graph F. Recall from the Intro-
duction that the vertex set of F consists of primitive elements of Z? up to negation,
so can be identified with Q U {oc} through the map

F — QU {o0}, i(Z) .—>%_

Below, we will regard QU {oo} as a subset of R 2 9, H?, where H? is considered in
the upper half plane model, and we will identify edges of F with the corresponding
geodesics in H2. (See Figures[IH3lbelow.) This embedding of F has some convenient
properties. All edges of F separate H? U 95 H?, and also F, into two connected
components. Every component of H? U ,,H? \ F is an ideal hyperbolic triangle,
which we will call a complementary triangle below. Finally, the action of A €
GL.,Z on F is the restriction of its action on H? U 0, H? as a fractional linear
transformation.

Returning to the proof, vertices v,w € F are adjacent if (v,w) = Z?, so S4 is
exactly the set of vertices in F that A translates a distance of 1. Also, in the Farey
graph we have identified primitive pairs up to negation, so the action of (A) x Z/27Z
on S84 is just the A-action on the corresponding set of vertices of F. Define a 1-orbit
of A O F to be an orbit all of whose points are translated a distance of 1 by A.
Theorem [[.T] then becomes the following lemma.

Lemma 2.1. The action of A O F has a single 1-orbit unless A is conjugate to
+(%1), in which case it has two.

Fix a matrix A € GLoZ and let £ be a 1-orbit of A. Adding in edges connecting
each v € £ to Av, we will regard ¢ as an oriented path in C(T?). At each of its
vertices v, a path £ has a turning number, whose absolute value is one more than
the number of Farey graph edges that separate the two edges of £ incident to v. The
turning number at v is positive if the turn is counterclockwise when ¢ is traversed
positively, and negative when the turn is clockwise. (Remember that we are viewing
F as a subset of the upper half plane in R2.) When v = oo, the turning number
is just A(v) — A~1(v). For instance, in Figure B all turning numbers on the red
1-orbit are 3, and on the blue 1-orbit they are —3.

When A is orientation preserving, all the turning numbers on a given 1l-orbit
coincide. On the other hand, if A is orientation reversing, then the turning numbers
on a l-orbit all have the same absolute value and alternate sign. As GLsZ acts
edge transitively on F, any l-orbit of A may be translated to pass through oo, 0,
which conjugates A so that it has the form

(1) A:(? ;) T €Z, e=+l.

When A is as above, the turning number at 0 is —ex. Checking eigenvalues, two
matrices ((1) o ), where ¢ = 1,2, are conjugate in PGL2Z if and only if €; = e5 and
|z1| = |z2|. This implies that the turning numbers of all the 1-orbits of a matrix A

have the same absolute value.
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It suffices to prove the lemma when A = (9 ¢) as above. Here, the conjugacy
classes of + (2 1) correspond to the cases e = —1, & = £3, so the goal is to prove

that there are two 1-orbits in those cases, and one otherwise.

e If z =0, then A? = £1, and one can check directly that the only 1-orbit of
A is the edge connecting oo, 0.

o If e = —1 and = +1, then A is orientation preserving and A% = +1. Each
of its 1-orbits has turning number either 1 or —1, so bounds a complemen-
tary triangle in F. But then A is a rotation around the barycenter of this
triangle in H?, so this 1-orbit is the only one.

e If e=—1and z = +2, then A is parabolic. Its 1-orbit has turning number
42, so consists of all vertices in the F-link of the fixed point of A.

When A is hyperbolic, its 1-orbits are simple, biinfinite paths in F that accu-
mulate onto the attracting and repelling fixed points A4 (A4), A_(A).

e If e =1 and |z| > 1, then A is hyperbolic and orientation reversing. The
turning numbers on a l-orbit ¢ alternate sign, so there is an edge of /¢
that separates Ay (A) from A_(A) in the upper half plane. Any other 1-
orbit would then have to intersect ¢, which is impossible, so A has a single
1-orbit. See Figure [l for an illustration of the case e = 1, x = 1.

e If ¢ = —1 and z = £3, then A is orientation preserving, hyperbolic, and
conjugate to £(21}). When = = 3, the orbits of —1 and 0 are distinct,
since they have opposite turning numbers (see Figure [2)). Since the edge
from —1 to 0 in F separates the attracting and repelling fixed points of A,
any l-orbit of A must pass through either —1 or 0. So, the orbits of co and
—1 are the only 1-orbits. The argument when x = —3 is similar.

It remains to deal with the case e = —1, |z| > 4, in which case A is again
orientation preserving and hyperbolic. We claim that any biinfinite path ¢ whose
turning numbers are all at least 3 in absolute value is a geodesic in F, and that
if the turning numbers are all at least 4 in absolute value, then ¢ is the unique
geodesic in C(T?) connecting its endpoints. This will imply that when |z| > 4, the
matrix A has only a single 1-orbit.

So, suppose that £ = (v;) is a biinfinite path in F whose turning numbers are
all at least 3 in absolute value. For each i, let m; be the edge of F incident to
v; that lies between the edges [v;—1,v;] and [v;, v;41], and shares a complementary
triangle of F with [v;, v;41], as in Figure Bl Each m,; separates m;_; from m;41, so
by planarity all the m; are disjoint. Two vertices v; and v;, with ¢ < j, are disjoint
from and separated by all the edges

Mig1, -0y, Myj—1.

FIGURE 1. There is a single 1-orbit for the action (¢ 1) © F, on which
the turning numbers alternate between =+1.
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FIGURE 2. There are two orbits of (? 731) O F, its 1-orbits, on which
the matrix acts as a translation by a distance of 1. The action is
hyperbolic, with every forward orbit converging to Ay =~ —0.38 and
every backwards orbit converging to A\_ ~ —2.62. Incidentally, the
square of (§1) is a conjugate of (9 3'), which is why the vertex set
of the 1-orbit in Figure [ is a translation of the union of the vertices

of the two 1-orbits above.

—4 —-3.5 —.5 0

FIGURE 3. When A = ((1) 711), there is a single 1-orbit for the action
A O F, which is the unique geodesic connecting the attracting and
repelling fixed points of A in O, H?.

Any path from v; to v; must go through all of these edges, so must have length at
least |i — j|. Therefore, ¢ is a geodesic in F.

Suppose now that all the turning numbers of ¢ = (v;) are at least 4 in absolute
value. Choose for each i two more edges n;,0; incident to v; that lie between
[vi—1,v;] and [v;,vi41], as in Figure Bl All the edges m;, n;, o; separate the forward
and backward limits of ¢, so any geodesic v in F connecting these limits must pass
through a vertex of each m;, n;, 0;. Asy cannot pass through all three of the non-v;
vertices of m;,n;, 0;, it must pass through v;, so v = ¢. Thus, ¢ is the unique
geodesic in F connecting its endpoints. This concludes the proof of Lemma 2]
and thus the proof of Theorem [[11

Remark 2.2. The educated reader will note that some of the simple properties of F
used above reflect (and probably inspired) deeper results about the curve complexes
of higher genus surfaces. For instance, the argument used to prove that a path
whose turning numbers are all at least 3 in absolute value is a geodesic is a simple
version of Masur—Minsky’s bounded geodesic image theorem [6].
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