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GEOMETRIC CONSTRUCTION OF QUASICONFORMAL

MAPPINGS IN THE HEISENBERG GROUP

ROBIN TIMSIT

Abstract. In this paper, we are interested in the construction of quasicon-
formal mappings between domains of the Heisenberg group H that minimize
a mean distortion functional. We propose to construct such mappings by con-
sidering a corresponding problem between domains of Poincaré half-plane H

and then, lifting every of its solutions to H. The first map we construct is
a quasiconformal map between two cylinders. We explain the method used
to find it and prove its uniqueness up to rotations. Then, we give geometric
conditions which ensure that a minimizer (in H) comes as a lift of a minimizer
between domains of H. Finally, as a non-trivial example of the generalization,
we manage to reconstruct the map from [Ann. Acad. Sci. Fenn. Math. 38
(2013), pp. 149–180] between two spherical annuli and prove its uniqueness as
a minimizer.

Introduction and statement of results

The theory of quasiconformal mappings in the complex plane is known to be a
powerful tool to study deformations of complex structures. In spherical CR geom-
etry, an adapted theory of quasiconformal mappings has been developed [KR85,
KR95] and used to define a distance in an analogue of Teichmüller space [Wan06].
In the case of spherical CR geometry, extremal quasiconformal mappings are still
to be understood. Recently, some progress has been made in the area. A method
using modulus of curve families has been developed [BFP13] in order to understand
when a quasiconformal map has minimal mean distortion. In particular, the au-
thors gave a condition, once we have a candidate for minimizing a mean distortion,
to verify if it is indeed a minimizer. Minimizing a mean distortion functional is
different from the classical Grötzsch problem which concerns minimizers for max-
imal distortion. However, the modulus of curve families method can be used to
find lower bounds for maximal distortion and so, it can also be used to minimize
maximal distortion (see [Tan96] for this type of argument in CR geometry). Here,
we are interested in a new method to construct candidates for minimizing a mean
distortion functional. For other uses of modulus of curve families in CR geome-
try, we may quote [Min94,Kim14] who studied quasiconformal conjugacy classes of
CR-diffeomorphisms of the 3-dimensional sphere.

In order to state our results, let us set notation and recall preliminary facts
about the theory of quasiconformal mappings in the Heisenberg group. First, the
Heisenberg group H is the set C× R with the group law: if (z, t), (z′, t′) ∈ C× R,
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then

(z, t) ∗ (z′, t′) = (z + z′, t+ t′ + 2�(zz′)).
On H, we have two left-invariant (complex) vector fields

Z =
∂

∂z
+ iz

∂

∂t
and Z =

∂

∂z
− iz

∂

∂t
.

If we set T = ∂
∂t , one may verify that

i[Z,Z] = 2T.

The other commutator relations give zero. Denoting the distribution span(Z) by
V , V is a CR structure on H. It is known that the one point compactification of the
Heisenberg group with this CR structure is CR-diffeomorphic to the 3-dimensional
sphere endowed with its standard CR structure. Thus, the Heisenberg group is a
local model of spherical CR geometry. Recall that a spherical CR-manifold is a
(G,X)-manifold for G = PU(2, 1) and X the 3-dimensional sphere.

A theory of quasiconformal mappings on the Heisenberg group was developped
by Korányi and Reimann. In what follows, we recall a few facts about it. For details,
refer to [KR85,KR95]. The Heisenberg group is endowed with a left-invariant metric

dH(p, q) := ‖p−1 ∗ q‖H,

where ‖(z, t)‖H :=
(
|z|4 + t2

) 1
4 is the Heisenberg norm. By analogy with the clas-

sical case, a homeomorphism f : Ω −→ Ω′ between domains of H is called quasi-
conformal if

H(p, f) := lim sup
r→0

max
dH(p,q)=r

dH(f(p), f(q))

min
dH(p,q)=r

dH(f(p), f(q))
, p ∈ Ω

is uniformly bounded. We say that f is K-quasiconformal if ‖H(., f)‖L∞ ≤ K. As
in the case of the complex plane, we have equivalent analytic definitions of qua-
siconformality. A sufficiently regular (C2 is enough) quasiconformal map between
domains of H has to be a contact map for the contact structure induced by the
form ω = dt − izdz + izdz, meaning that f∗ω = λω for a nowhere vanishing real
function λ. Moreover, denoting f = (f1, f2) with f1 the complex part of the map
and f2 the real one, then, if f is an orientation-preserving quasiconformal map, it
satisfies a system of PDEs quite similar to a Beltrami equation. Indeed, in that
case, there is a complex valued function μ ∈ L∞ (called a Beltrami coefficient) with
‖μ‖L∞ < 1 such that

Zf1 = μZf1 and Z
(
f2 + i|f1|2

)
= μZ

(
f2 + i|f1|2

)
a.e.

We then define the distortion function of the map f by

K(p, f) :=
1 + |μ(p)|
1− |μ(p)| =

|Zf1(p)|+ |Zf1(p)|
|Zf1(p)| − |Zf1(p)|

for p ∈ Ω where it makes sense and the maximal distortion of f by

Kf := ess sup
p∈Ω

K(p, f).

It is known that a conformal (i.e., 1-quasiconformal) map f : Ω −→ Ω′ is the
restriction to Ω of the action of an element of SU(2, 1) (see [KR85, p. 337] for the
smooth case and [Cap97, p. 869] for the general one).
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Here, we are interested in the following minimization problem: consider a set of
quasiconformal mappings F ⊂ {f : Ω −→ Ω′ q.c.}. We are looking for a quasicon-
formal map f0 ∈ F such that∫

Ω

K(p, f0)
2ρ40(p)dL

3(p) = min
f∈F

∫
Ω

K(p, f)2ρ40(p)dL
3(p)(1)

for a density ρ0 depending on the geometry of the domain Ω and where dL3 is the
Lebesgue measure on R3. If f0 ∈ F satisfies (1), we say that f0 minimizes the mean
distortion on F for the density ρ0.

We propose here a geometric way to construct such minimizers in specific cases.
The construction relies on the projection

Π : H\ ({0} × R) −→ H

(z, t) 	−→ t+ i|z|2.
This projection comes from the CR identification between the Heisenberg group and
the boundary of Siegel domain E = {(z, w) ∈ C2 | �(w) > |z|2} (that itself comes
from the identification of standard CR structures of the one-point compactification
of the Heisenberg group and the 3-dimensional sphere). The boundary of Siegel
domain is identified with C × R by (z, w) 	−→ (z,
(w)). Moreover, ∂E\{z =
0} is also diffeomorphic to a trivial circle bundle over the upper half-plane H by

(z, w) 	−→
(

z√
�(w)

, w

)
. So, identifying ∂E\{z = 0} with H\ ({0} × R), it gives a

diffeomorphism

Ψ−1 : H\ ({0} × R) −→ S1 ×H

(z, t) 	−→
(

z
|z| , t+ i|z|2

)
and the projection Π, is simply the second component of that diffeomorphism.
The (topological) identification of H\{z = 0} with a trivial circle bundle over
the hyperbolic plane isn’t new. For example, Korányi and Reimann in [KR87]
introduced coordinates

(a, α, ϕ) 	−→ (a cos
1
2 (α)eiϕ, a2 sin(α))

so that (up to rotation and conjugation), (a2, α) correspond to polar coordinates
in H.

Throughout the paper, we will study the following two problems:

(1) When can a minimizer of a mean distortion between domains of H be lifted
by Π into a quasiconformal map between domains of H?

(2) When does a minimizer of a mean distortion in H necessarily come as a lift
of a quasiconformal map between domains of H?

The idea is the following. Under appropriate geometric conditions on domains Ω
and Ω′ and on the density ρ0, we can define a corresponding minimization problem
between two domains U and V of Poincaré half-plane. If we have a solution to the
problem on H, g : U −→ V such that there is a quasiconformal map f = (f1, f2) :
Ω −→ Ω′ verifying

(
f2 + i|f1|2

)
(z, t) = g

(
t+ i|z|2

)
, then f will be a solution to

the problem on the Heisenberg group (Proposition 1.12 and Corollary 1.13). We
study more precisely an example between two cylinders. In that case, we manage to
construct explicitly a unique (up to rotations) solution of the minimization problem
on H by lifting every solution of the corresponding problem on the half-plane,
leading to Propositions 2.3 and 2.4. Proposition 2.3 states that, in the case of the
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cylinder, there is only one solution of the corresponding problem in H that can
be lifted by Π into a quasiconformal map between cylinders and Proposition 2.4
ensures that those lifts minimize a mean distortion functional. Then, Theorem
2.5 states that a minimizer of the mean distortion functional considered between
cylinders is inevitably the lift of a minimizer of the corresponding problem in H.
After that, we generalize the result obtained between cylinders to some domains
of the Heisenberg group. Namely, under appropriate conditions on Ω, Ω′ and the
density ρ0, a minimizer f has to be a lift by Π of a minimizer for the corresponding
problem in H (Theorem 3.18). It reduces the problem of finding such a minimizer,
to the resolution of an ordinary differential equation with boundary conditions
(Proposition 3.7).

We suppose, in the whole paper, that every quasiconformal map considered is
C2 and orientation-preserving and every curve is C1, which gives a more restrictive
class of maps than what was considered in, e.g., [BFP15].

The paper is organized as follow. In Section 1, we present some theoretical
background about moduli of curve families and state the problem we consider in the
Heisenberg group and its corresponding one in the half-plane. Section 2 deals with
construction and uniqueness (up to rotations) of a minimizer of a mean distortion
functional between cylinders. We then generalize the construction in Section 3 and
explain when it is the only way to find such minimizers; as an application, we
reconstruct the extremal quasiconformal map between two spherical annuli found
in [BFP13] and prove its uniqueness as a minimizer of a mean distortion functional.

1. Minimization problem considered in H
and its corresponding one in H

Modulus of a curve family. By analogy with the complex case, in order to
understand extremal properties of a quasiconformal map between two domains of
the Heisenberg group, we look at its behavior on a well chosen family of rectifiable
curves (with respect to dH) that foliates the domain. We restrict the study here to
C1 curves and C2 orientation-preserving quasiconformal mappings, but most of the
results of this section were proved in a general case. First of all, rectifiable curves
are horizontal.

Definition 1.1 (Horizontal curves). A C1 curve γ :]a, b[−→ H is called horizontal
if its tangents are in the contact distribution D = ker(ω). This condition is given
explicitly by the following. Let γ(s) = (γ1(s), γ2(s)), s ∈]a, b[ be a curve in H.
Then, γ is horizontal if and only if

γ̇2(s) = −2�(γ1(s)γ̇1(s)) for all s ∈]a, b[.
We can then define the modulus of a family of horizontal curves.

Definition 1.2 (Modulus of a family of horizontal curves). Let Γ be a family of
horizontal curves in a domain Ω of H. We denote adm (Γ) the set of measurable

Borel functions ρ : Ω −→ [0,+∞] such that
∫
γ
ρdl :=

∫ b

a
ρ(γ(s))|γ̇1(s)|ds ≥ 1 for

all curves γ ∈ Γ. We call densities the elements of adm(Γ). The modulus of the
family Γ is then defined by

M (Γ) := inf
ρ∈adm(Γ)

∫
Ω

ρ(p)4dL3(p).

We say that a density ρ0 is extremal if it verifies M (Γ) =
∫
Ω
ρ0(p)

4dL3(p).
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When an extremal density exists, it is essentially unique (Proposition 3.4 in
[BFP15, p. 143]).

Lemma 1.3. If ρ1 and ρ2 are both an extremal density for a family Γ of horizontal
curves in a domain Ω of H, then ρ1 = ρ2 a.e. in Ω.

There is a link between quasiconformality and modulus of a family of horizontal
curves. Indeed, we have the following.

Proposition 1.4. Let f : Ω −→ Ω′ be a quasiconformal map between domains of
H. Then, for every family of horizontal curves Γ in Ω and every ρ ∈ adm (Γ), one
has

M(f(Γ)) ≤
∫
Ω

K(p, f)2ρ(p)4dL3(p).(2)

This result is a direct consequence of an essential notion we will need. Fixing a
density ρ and a C1 quasiconformal map f : Ω −→ Ω′, one may define a push-forward
by f of the density ρ (see, e.g., [BFP13]).

Definition/Proposition 1.5 (Push-forward density). Let f = (f1, f2) : Ω −→
Ω′ be a quasiconformal mapping between two domains of H, let Γ be a family of
horizontal curves in Ω and ρ ∈ adm(Γ). Then,

ρ′ =
ρ

|Zf1| − |Zf1|
◦ f−1 ∈ adm (f (Γ)) .

Moreover, ∫
Ω′

ρ′4dL3 =

∫
Ω

K(., f)2ρ4dL3.

Proof. A simple application of the chain rule and the fact that every γ ∈ Γ is
horizontal lead to the following. For every curve γ = (γ1, γ2) :]a, b[−→ Ω, γ ∈ Γ,
one has

˙(f1 ◦ γ)(s) = Zf1(γ(s))γ̇1(s) + Zf1(γ(s))γ̇1(s) for every s ∈]a, b[.
This leads to the important inequality: for every s ∈]a, b[,

(3) |Zf1(γ(s))| − |Zf1(γ(s))| ≤
| ˙(f1 ◦ γ)(s)|

|γ̇1(s)|
≤ |Zf1(γ(s))|+ |Zf1(γ(s))|.

So, if γ ∈ Γ, using inequality (3) and the fact that ρ ∈ adm(Γ), we find∫
f1◦γ

ρ′dl =

∫ b

a

ρ

|Zf1| − |Zf1|
◦ γ(s)| ˙(f1 ◦ γ)(s)|ds ≥

∫ b

a

ρ(γ(s))|γ̇1(s)|ds ≥ 1.

For the second part, this is simply an application of the following change of variable
formula for quasiconformal mappings (Theorem 16 in [BFP13, p. 175]). For every
non-negative measurable function u : Ω′ −→ R, we have∫

Ω

(u ◦ f)(p)|J(p, f)|dL3(p) =

∫
Ω′

u(q)dL3(q),

where J(p, f) =
(
|Zf1(p)|2 − |Zf1(p)|2

)2
. So, using this formula and the definition

of ρ′, we have∫
Ω′

ρ′dL3 =

∫
Ω

ρ4
(
|Zf1|2 − |Zf1|2

)2(
|Zf1| − |Zf1|

)4 dL3 =

∫
Ω

K(., f)2ρ4dL3.

�
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Just applying the previous proves Proposition 1.4. Now, in order to find a
minimizer of a mean distortion in a class of quasiconformal maps, a first place
to look would be for maps realizing equality in inequality (2) and then, use the
following (obvious) proposition.

Proposition 1.6. Let Ω, Ω′ be domains of H, let F be a subset of the set of all
orientation-preserving quasiconformal maps from Ω to Ω′, and let Γ0 be a family of
horizontal curves in Ω with ρ ∈ adm(Γ0). Suppose that f0 ∈ F satisfies

M(f0(Γ0)) =

∫
Ω

K(., f0)
2ρ4dL3

and that there is a larger family Γ ⊃ Γ0 of horizontal curves in Ω with ρ ∈ adm(Γ)
and verifying

M(f0(Γ0)) ≤ M(f(Γ))

for every f ∈ F . Then, f0 minimizes the mean distortion in F for the density ρ.

Proof. Proposition 1.4 ensures that for every f ∈ F we have

M(f(Γ)) ≤
∫
Ω

K(., f)2ρ4dL3.

Moreover, for every f ∈ F ,∫
Ω

K(., f0)
2ρ4dL3 = M(f0(Γ0)) ≤ M(f(Γ)).

So, for every f ∈ F , ∫
Ω

K(., f0)
2ρ4dL3 ≤

∫
Ω

K(., f)2ρ4dL3.

�

Theorem 1 in [BFP13, p. 153] gives a sufficient condition on a map to ensure
that it minimizes the mean distortion in a subset of quasiconformal maps between
bounded domains of H for a nice density.

Theorem 1.7. Let Ω and Ω′ be bounded domains of H. Let γ :]a, b[×Λ −→ Ω be
a diffeomorphism that foliates Ω, where ]a, b[⊂ R with a > 0 and Λ is a domain of
R2, such that γ(·, λ) is a horizontal curve verifying |γ̇1(s, λ)| �= 0 for all λ ∈ Λ and
dL3(γ(s, λ)) = |γ̇1(s, λ)|4dsdμ(λ) for a measure dμ on Λ.

Then,

ρ0(p) :=
1

(b− a)|γ̇1(γ−1(p))|
is an extremal density for the family Γ0 := {γ(·, λ) | λ ∈ Λ}.

Moreover, if F is a subset of the set of all quasiconformal maps from Ω on Ω′

and f0 ∈ F is such that:

1) μf0(γ(s))
γ̇1(s)
γ̇1(s)

< 0 for all s ∈]a, b[,
2) for all λ ∈ Λ, K(γ(s, λ), f0) does not depend on s,
3) there is Γ ⊃ Γ0 such that ρ0 ∈ adm(Γ) and M(f0(Γ0)) ≤ M(f(Γ)) for all

f ∈ F .
Then f0 minimizes the mean distortion in F for the extremal density ρ0.
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Statement of the corresponding problem in H. The previous theorem gives
a way, once we have a candidate, to check if that candidate minimizes a mean
distortion functional. But, finding such a candidate may be quite challenging.
Here, we explain how to construct such mappings in specific cases. As said in the
introduction, the construction relies on the identification of H\{z = 0} with S1×H

where S1 is the unit circle of C and H is the Poincaré half-plane, identification given
by the diffeomorphism Ψ−1 defined in the introduction whose inverse is the map

Ψ : S1 ×H −→ H\ ({0} × R)

(eiθ, w) 	−→
(√

�(w)eiθ,
(w)
)
.

It gives new coordinates on H\ ({0} × R) and a simple computation gives the
following expression of vector fields Z and Z:

Z = 2i
√
�(w)e−iθ∂w − ie−iθ

2
√
�(w)

∂θ,

Z = −2i
√

�(w)eiθ∂w +
ieiθ

2
√
�(w)

∂θ,

where ∂w = ∂
∂w , ∂w = ∂

∂w and ∂θ = ∂
∂θ .

In the following, we consider Ω̃ and Ω̃′ domains in H\({0} × R) such that

Ψ−1
(
Ω̃
)

= S1 × Ω and Ψ−1
(
Ω̃′
)

= S1 × Ω′ with Ω, Ω′ domains of H. We

will look at lifts by Π of curves in the half-plane.

Lemma 1.8. Let γ :]a, b[−→ H be a C1 curve. Then, the only horizontal curves

on H\({0}×R), γ̃ = (γ1, γ2) such that Π(γ̃) = γ are the curves
(√

�(γ)eiτ ,
(γ)
)

where τ̇ = − 	(γ̇)
2�(γ) .

Proof. Saying that γ2 + i|γ1|2 = γ gives γ2 = 
(γ) and |γ1| =
√
�(γ). So, we only

have to check that
(√

�(γ)eiτ ,
(γ)
)
is horizontal if and only if τ̇ = − 	(γ̇)

2�(γ) , which

is a simple application of the definition of a horizontal curve. �

Remark 1.9. Notice that lifting a curve gives a one-parameter family of curves in
H, which are obtained by rotating one lift around the vertical axis. Moreover, for
a family of curves in H, Γ, we define

Γ̃ = {γ̃ | Π(γ̃) ∈ Γ}

and call Γ̃ the lifted family of Γ.

Before going further, let’s recall how the modulus of a curve family is defined
in C. Let Γ be a family of curves γ :]a, b[−→ Ω in a domain Ω of C. We denote
again adm(Γ) the set of measurable Borel functions ρ : Ω −→ [0,∞] such that∫
γ
ρdl =

∫ b

a
ρ(γ(s))|γ̇(s)|ds ≥ 1. The modulus of the family Γ is

M(Γ) = inf
ρ∈adm(Γ)

∫
Ω

ρ2dL2,

where dL2 is the Lebesgue measure of R2. With that in mind, we can define the
pull-back by Π of a density.
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Definition/Proposition 1.10 (Pull-back density). Let Ω be a domain in H and

Ω̃ = Ψ(S1 × Ω). Let Γ be a curve family in Ω and denote Γ̃ its lifted family in Ω̃.

If ρ ∈ adm(Γ), define ρ̃ for every (z, t) ∈ Ω̃ by

ρ̃(z, t) := |ZΠ(z, t)|ρ(Π(z, t)) = 2|z|ρ(t+ i|z|2).
Then ρ̃ ∈ adm(Γ̃). We call the density ρ̃ the pull-back by Π of ρ.

Proof. Let γ̃ = (γ1, γ2) ∈ Γ̃. By definition, there is γ ∈ Γ such that γ2 + i|γ1|2 = γ.
Since γ̃ is horizontal, γ̇ = 2iγ1γ̇1. Using the definition of ρ̃, we find∫

γ̃

ρ̃dl =

∫ b

a

2|γ1(s)|ρ(γ(s))|γ̇1(s)|ds =
∫ b

a

ρ(γ(s))|γ̇(s)|ds ≥ 1.

�
Notation 1.11.

• Let Γ be a curve family in a domain Ω of H and ρ ∈ adm (Γ). Then, Π∗ρ
refers to the pull-back by Π of ρ. Moreover, one can define the same notion
of push-forward density in C by setting g∗ρ = ρ

|∂wg|−|∂wg| ◦ g−1 for any

quasiconformal map g : Ω −→ Ω′ ⊂ C. In that case, the push-forward
density satisfies ∫

Ω′
(g∗ρ)

2dL2 =

∫
Ω

ρ2K(., g)dL2,

where K(., g) is the quasiconformal distortion function of g.

• Let Γ̃ be a family of horizontal curves in a domain Ω̃ of H, ρ̃ ∈ adm
(
Γ̃
)
,

and let f : Ω̃ −→ Ω̃′ ⊂ H be a quasiconformal map. Then, the push-forward
by f of ρ̃ is denoted by f∗ρ̃.

The following proposition and corollary explain the link between some mini-
mization problems in the Heisenberg group and corresponding problems in the
half-plane.

Proposition 1.12. Let Ω and Ω′ be domains of H. Denote Ω̃ := Ψ(S1 × Ω) and

Ω̃′ := Ψ(S1 × Ω′). Let Γ be a curve family in Ω and let Γ̃ be its lifted family in

Ω̃. If ρ ∈ adm(Γ) and g : Ω −→ Ω′ is a quasiconformal map such that there is a

quasiconformal map f : Ω̃ −→ Ω̃′ with Π ◦ f = g ◦Π, then

Π∗(g∗ρ) = f∗(Π
∗ρ).

Before going through the proof, we give a corollary of this.

Corollary 1.13. Let g : Ω −→ Ω′ and f : Ω̃ −→ Ω̃′ be as in the previous propo-
sition. Let Γ be a curve family in Ω with continuous extremal density ρ0 and
Γ′ := g(Γ) with continuous extremal density ρ′0. Suppose the following:

1) M(Γ̃) =
∫
Ω̃
(Π∗ρ0)

4dL3 where Γ̃ is the lifted family of Γ,

2) M(Γ̃′) =
∫
Ω̃′(Π

∗ρ′0)
4dL3 where Γ̃′ is the lifted family of Γ′.

Then,

M(f(Γ̃)) =

∫
Ω̃

(Π∗ρ0)
4K(., f)2dL3

if and only if

M(g(Γ)) =

∫
Ω

K(., g)ρ20dL
2.
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Proof of Proposition 1.12. By definition, g∗ρ = ρ
|∂wg|−|∂wg| ◦ g−1 and so

Π∗(g∗ρ) = |ZΠ|
(

ρ

|∂wg| − |∂wg|
◦ g−1 ◦Π

)
.

Moreover, since f is contact, one has (see [KR85, p. 335])

Z(Π ◦ f) = Z(f2 + i|f1|) = 2if1Zf1 and Z(Π ◦ f) = Z(f2 + i|f1|) = 2if1Zf1.

Thus, since Π is a CR-function, using the chain rule we have

|Zf1| − |Zf1| =
1

2|f1|
(
|Z(Π ◦ f)| − |Z(Π ◦ f)|

)
=

1

2|f1|
(
|Z(g ◦Π)| − |Z(g ◦Π)|

)
=

|ZΠ|
2|f1|

((|∂wg| − |∂wg|) ◦Π) .

Now, computing f∗(Π
∗ρ), we find

f∗(Π
∗ρ) =

|ZΠ|(ρ ◦Π)

|Zf1| − |Zf1|
◦ f−1

= 2|f1 ◦ f−1|
(

ρ

|∂wg| − |∂wg|
◦Π ◦ f−1

)
= |ZΠ|

(
ρ

|∂wg| − |∂wg|
◦ g−1 ◦Π

)
�

Proof of Corollary 1.13. Notice that Γ′ = g(Γ) = g(Π(Γ̃)) = Π(f(Γ̃)) and Γ̃′ =

f(Γ̃):

δ̃ ∈ f(Γ̃) ⇐⇒ f−1(δ̃) ∈ Γ̃

⇐⇒ Π ◦ f−1(δ̃) ∈ Γ

⇐⇒ g−1 ◦Π(δ̃) ∈ Γ

⇐⇒ Π(δ̃) ∈ Γ′

⇐⇒ δ̃ ∈ Γ̃′.

Now, assume first that M(Γ′) =
∫
Ω
K(., g)ρ20dL

2. Then, g∗ρ0 and ρ′0 are both
extremal for Γ′. By a result similar to Lemma 1.3 for the complex plane, and
continuity of g∗ρ0 and ρ′0, g∗ρ0 = ρ′0 in Ω′. So

f∗Π
∗ρ0 = Π∗g∗ρ0 = Π∗ρ′0

in Ω̃′. Thus, we have

M(f(Γ̃)) = M(Γ̃′) =

∫
Ω̃′
(f∗Π

∗ρ0)
4dL3 =

∫
Ω̃

K(., f)2(Π∗ρ0)
4dL3.

Conversely, assume that M(f(Γ̃)) =
∫
Ω̃′(f∗Π

∗ρ0)
4dL3. Then, we have∫

Ω̃′
(Π∗ρ′0)

4dL3 = M(Γ̃′) =

∫
Ω̃′
(Π∗g∗ρ0)

4dL3.
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By Lemma 1.3, and continuity of densities, we deduce that Π∗g∗ρ0 = Π∗ρ′0 in Ω̃′.
Using the formula given for pull-back densities, one easily finds that g∗ρ0 = ρ′0.
This leads to

M(Γ′) = M(g(Γ)) =

∫
Ω

K(., g)ρ20dL
2.

�

Lemma 1.14. Let g : Ω −→ Ω′ be a map between domains of H. Denote Ω̃ =

Ψ(S1 ×Ω) and Ω̃′ = Ψ(S1 ×Ω′). Assume that there is a contact map f : Ω̃ −→ Ω̃′

such that Π ◦ f = g ◦Π. Then, for every (z, t) in Ω̃,

K((z, t), f) = K(Π(z, t), g).

This means that f is K-quasiconformal if and only if g is K-quasiconformal.

Proof. Just using

Z(Π ◦ f) = 2if1Zf1 and Z(Π ◦ f) = 2if1Zf1

together with the fact that Π is CR, leads to

|Zf1| − |Zf1|
|Zf1|+ |Zf1|

=
|∂wg| − |∂wg|
|∂wg|+ |∂wg|

◦Π

which is exactly the statement of the lemma. �

So, if we are looking for a quasiconformal map on the Heisenberg group that
minimizes a mean distortion for a nice density, a first step would be to look for
solutions of the corresponding problem in H that can be lifted by Π into contact
transformations. This is what we will do in the next section for cylinders.

2. Construction and uniqueness of

an extremal quasiconformalmap between cylinders

2.1. Construction of the map. In this section, we construct explicitly a mini-
mizer of a mean distortion functional in a class of quasiconformal maps between
cylinders. Our objective is to prove Proposition 2.4.

As said, we are looking for a quasiconformal map between cylinders defined as
a lift by Π of a quasiconformal map between projections of cylinders. For r, R > 0,
we denote Cr,R the cylinder

Cr,R = {(z, t) ∈ H | 0 < t < r & |z| <
√
R}.

Here we are interested in finding a quasiconformal map f : Ca,b −→ Ca′,b′ with
ab′

a′b > 1 that minimizes a mean distortion functional within the set F of all
orientation-preserving quasiconformal mappings from Ca,b to Ca′,b′ that extend
homeomorphically to the boundary and map

• the disc {(z, t) ∈ H | |z| ≤
√
b & t = 0} to the disc {(z, t) ∈ H | |z| ≤√

b′ & t = 0},
• the disc {(z, t) ∈ H | |z| ≤

√
b & t = a} to the disc {(z, t) ∈ H | |z| ≤√

b′ & t = a′},
• and the cylinder {(z, t) ∈ H | |z| =

√
b & 0 ≤ t ≤ a} to the cylinder

{(z, t) ∈ H | |z| =
√
b & 0 ≤ t ≤ a}.
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Consider the rectangles

Ra,b = {w ∈ C | 0 < 
(w) < a, 0 < �(w) < b}
and

Ra′,b′ = {w ∈ C | 0 < 
(w) < a′, 0 < �(w) < b′}.
Then Π(Ca,b\{z = 0}) = Ra,b and Π(Ca′,b′\{z = 0}) = Ra′,b′ . On the cylinder,
Ca,b, there is a natural foliation by horizontal curves given by

Γ̃0 = {γ̃z(s) =
(
ze

− is
2|z|2 , s

)
| 0 < |z| <

√
b & 0 < s < a}

which are the horizontal lifts by Π of curves

γy(s) = s+ iy for 0 < y < b

on Ra,b (see Figure 1).

Figure 1. Cylinder foliated by curves in Γ̃0 (foliation given by
rotations around the vertical axis of drawn curves and the vertical
axis itself).

To state the minimization problem we are dealing with, we need to find the

modulus and extremal density of Γ̃0.

Lemma 2.1. The curve family Γ̃0 has modulus

M(Γ̃0) =
16πb3

3a3

and its extremal density is ρ̃0(z, t) =
2|z|
a .

Proof. If ρ̃ ∈ adm(Γ̃0), by definition we have∫
γ̃z

ρ̃dl =

∫ a

0

ρ̃(γ̃z(s))
ds

2|z| ≥ 1
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for all 0 < |z| <
√
b. So, ∫ a

0

ρ̃(γ̃z(s))ds ≥ 2|z|(4)

for all 0 < |z| <
√
b. But,∫

Ca,b

ρ̃4dL3 =
cylindrical coordinates

∫ 2π

0

∫ √
b

0

∫ a

0

ρ̃4(r, θ, t)rdtdrdθ

=
substitution with Jacobian 1

∫ 2π

0

∫ √
b

0

∫ a

0

ρ̃4
(
r, θ − s

2r2
, s
)
rdsdrdθ

=

∫ 2π

0

∫ √
b

0

∫ a

0

ρ̃4 (γ̃reiθ(s)) rdsdrdθ.

Moreover, ∫ a

0

ρ̃4(γ̃reiθ(s))ds ≥
Hölder inequality

1

a3

(∫ a

0

ρ̃(γ̃reiθ(s))ds

)4

≥
inequality (4)

16r4

a3

for all 0 < r <
√
b and 0 < θ < 2π. Thus, we get∫

Ca,b

ρ̃4dL3 ≥ 32π

a3

∫ √
b

0

r5dr =
16πb3

3a3

for all ρ̃ ∈ adm(Γ̃0). Consequently,

M(Γ̃0) ≥
16πb3

3a3
.

Moreover, set

ρ̃0(z, t) =
2|z|
a

.

Then ρ̃0 ∈ adm(Γ̃0) and ∫
Ca,b

ρ̃40dL
3 =

16πb3

3a3
.

�

Let us set Γ0 = {γy | 0 < y < b} where γy :]0, a[−→ Ra,b is defined by

γy(s) = s+ iy. It is known since the work of Grötzsch that Γ0 has modulus b
a and

extremal density ρ0(w) =
1
a . Let G be the set of all quasiconformal mappings from

Ra,b to Ra′,b′ that map homeomorphically the vertical and horizontal boundary
components of Ra,b on the corresponding ones of Ra′,b′ . Here, and in the following,
rectangles are considered as subsets of C and so, boundaries are considered in C.
The following is well known (a short proof is given in the appendix).

Lemma 2.2. Any minimizer of the mean distortion in G for the density ρ0 is a

map fϕ(x + iy) = a′

a x + iϕ(y) where ϕ : [0, b] −→ [0, b′] is a diffeomorphism such

that ϕ(0) = 0, ϕ(b) = b′, and ϕ̇ ≥ a′

a .
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Notice also that ρ̃0 = Π∗ρ0 and

M(f̃ϕ(Γ0)) =

∫
Ca′,b′

(Π∗ρ′0)
4dL3,

where ρ′0(w) =
1
a′ is extremal for fϕ(Γ0) = Γ′

0 and Γ′
0 is the family of horizontal lines

in Ra′,b′ (which is true for every ϕ defined as in the previous lemma). Moreover,
every fϕ defined as in the previous lemma satisfies

M(fϕ(Γ0)) =

∫
Ra,b

K(., fϕ)ρ
2
0dL

2.

Then, according to Corollary 1.13, if we find a quasiconformal map f̃ ∈ F that maps

the vertical axis homeomorphically on the vertical axis and such that Π◦ f̃ = fϕ ◦Π
for a function ϕ defined as previously, then f̃ will satisfy

M(f̃(Γ̃0)) =

∫
Ca,b

K(., f̃)2ρ̃40dL
3.

Proposition 2.3. There is only one function ϕ : [0, b] −→ [0, b′] with ϕ(0) = 0,

ϕ(b) = b′, and ϕ̇ ≥ a′

a such that fϕ can be lifted into a quasiconformal map f̃ :
Ca,b −→ Ca′,b′ . That function is defined for every x ∈ [0, b] by

ϕ(x) =
b′x(

1− ab′

a′b

)
x+ ab′

a′

and the lifts are compositions with rotations around the vertical axis of

f̃0 : Ca,b −→ Ca′,b′

(z, t) 	−→
(

√
b′ze

i
2b (1− a′b

ab′ )t√
(1− ab′

a′b )|z|2+
ab′
a′

, a′

a t

)
.

Proof. To prove this, it will be more convenient to compute in usual cylindrical
coordinates on H = R3, meaning (r, θ, t) 	−→ (reiθ, t). In those coordinates, the
contact form writes as

ω = dt+ 2r2dθ.

So, we are looking for four functions R,Θ, T, ϕ such that

T + iR2(r, θ, t) =
a′

a
t+ iϕ(r2) and dT + 2R2dΘ = λ(dt+ 2r2dθ)

for a nowhere vanishing function λ. Moreover, for all r, t, Θ(r, ., t) is 2π-periodic

modulo 2π. Since T + iR2(r, θ, t) = a′

a t+ iϕ(r2), we get

T (r, θ, t) = T (t) =
a′

a
t and R2(r, θ, t) = R2(r) = ϕ(r2).

The idea is to use the system of PDEs that the functions R, Θ, and T must verify in
order to find an ordinary differential equation that ϕ must verify. In the following,
we denote by an index r (resp., θ, resp., t) the partial derivative of a function
according to r (resp., θ, resp., t).

Since Tr = Tθ = 0, Tt(t) =
a′

a , and dT + 2R2dΘ = λ(dt+ 2r2dθ), we get that

Θr(r, θ, t) = 0 and Θθ(r, θ, t) =
a′r2

aϕ(r2)
+ 2r2Θt(r, θ, t).
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Moreover, from Θr = 0, we deduce that

Θr,θ = Θr,t = 0.

So, differentiating Θθ(r, θ, t) =
a′r2

aϕ(r2) + 2r2Θt(r, θ, t) with respect to r gives

2Θt(r, θ, t) =
a′

a

r2ϕ̇(r2)− ϕ(r2)

ϕ2(r2)

and we deduce

Θθ(r, θ, t) = Θθ(r) =
a′r4ϕ̇(r2)

aϕ2(r2)
.

From the fact that Θr,θ = 0, putting x = r2, ϕ must verify the differential equation

d

dx

(
x2ϕ̇(x)

ϕ2(x)

)
= 0

whose solutions are the functions

ϕ(x) =
x

Cx+D
with C,D ∈ R.

For such functions, we have Θθ(r, θ, t) = a′

a D. So, for (R,Θ, T ) to be a home-
omorphism, we must have D = a

a′ . Moreover, we want that ϕ(b) = b′, so C =
1
b′

(
1− ab′

a′b

)
. Consequently,

ϕ(x) =
b′x(

1− ab′

a′b

)
x+ ab′

a′

for all x ∈ [0, b] (one may check that
(
1− ab′

a′b

)
x+ ab′

a′ > 0 if x ∈ [0, b]). Moreover,

it is easy to see that

ϕ̇ ≥ a′

a
.

Replacing ϕ by its value, we find

Θθ(r, θ, t) = 1,

Θr(r, θ, t) = 0,

Θt(r, θ, t) =
1

2b
− a′

2ab′
.

And so

Θ(r, θ, t) = θ +
1

2

(
1

b
− a′

ab′

)
t+ α with α ∈ R,

R(r, θ, t) =

√
b′r√(

1− ab′

a′b

)
r2 + ab′

a′

,

T (r, θ, t) =
a′

a
t,

which gives in usual coordinates

f̃α(z, t) =

⎛⎝ √
b′eiαze

i
2b

(
1− a′b

ab′

)
t√(

1− ab′

a′b

)
|z|2 + ab′

a′

,
a′

a
t

⎞⎠ .

�
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The mappings f̃α are quasiconformal with distortion function

K((z, t), f̃α) =
1(

1 +
(

a′

ab′ −
1
b

)
|z|2

)2
and maximal distortion

Kf̃α
=

(
ab′

a′b

)2

.

Moreover, they map the vertical axis homeomorphically to the vertical axis, so
according to what we said before the proposition, they satisfy

M(f̃α(Γ̃0)) =

∫
Ca,b

K(., f̃α)
4ρ̃40dL

3.

It remains to show that they minimize the mean distortion in F for the density
ρ̃0. For that, we will use Proposition 1.6 and so, we need to find a larger family

of horizontal curves Γ̃ ⊃ Γ̃0 for which ρ̃0 ∈ adm(Γ̃) and M(f̃α(Γ̃0)) ≤ M(f(Γ̃)) for
every f ∈ F .

Let Γ̃ be the set of all horizontal curves in Ca,b joining the discs Ca,b ∩ {t = 0}
and Ca,b ∩ {t = a}. Then, we will see (first part of Lemma 2.6) that ρ̃0 ∈ adm(Γ̃).

Moreover, by definition of F , for every f ∈ F , f(Γ̃) is the family of all horizontal
curves in Ca′,b′ joining the two discs Ca′,b′ ∩ {t = 0} and Ca′,b′ ∩ {t = a′}. So, for

every f ∈ F , f̃α(Γ̃0) ⊂ f(Γ̃) and thus we have M(f̃α(Γ̃0)) ≤ M(f(Γ̃)) for every
f ∈ F . Applying Proposition 1.6 is enough to prove the following.

Proposition 2.4. Every composition by a rotation around the t-axis of the map

f̃0 : Ca,b −→ Ca′,b′

(z, t) 	−→
(

√
b′ze

i
2b (1− a′b

ab′ )t√
(1− ab′

a′b )|z|2+
ab′
a′

, a′

a t

)
is a minimizer of the mean distortion in F for the density ρ̃0.

2.2. Uniqueness up to rotations of the map. Here, we are dealing with finding
every minimizer of the mean distortion in F for the density ρ̃0. We will show that
such minimizers must be constructed as we did in the previous section. Thus, the
section is dedicated to the proof of the following.

Theorem 2.5. Suppose that f ∈ F minimizes the mean distortion in F for the

density ρ̃0. Then, there is α ∈ R such that f = f̃α.

The proof is decomposed in three steps. The first two are a reformulation of the
beginning of [BFP15] in the setting of cylinders. In the third one, we prove that,
for a minimizer of the mean distortion considered, f , Π ◦ f does not depend on
arg(z), so Π ◦ f induces a quasiconformal map g : Ra,b −→ Ra′,b′ which will be in
fact a minimizer of the mean distortion in G for the density ρ0.

We start by giving a characterisation lemma for curves to be in Γ̃0.

Lemma 2.6. Let Γ̃ be the set of all horizontal curves joining the two boundary

discs of Ca,b and take an element γ of Γ̃. Then,∫
γ

ρ̃0dl ≥ 1.

Moreover, we get equality if and only if γ ∈ Γ̃0.



114 ROBIN TIMSIT

Proof. If γ ∈ Γ̃, take a parametrization of γ between 0 and a,∫
γ

ρ0dl =
1

a

∫ a

0

2|γ1(s)||γ̇1(s)|ds

=
1

a

∫ a

0

∣∣∣∣ dds (γ2 + i|γ1|2)(s)
∣∣∣∣ds

≥ 1

a

∫ a

0

|γ̇2(s)|ds

= 1.

Equality happens if and only if |γ1|2 is constant. In that case, one may check that

γ(s) =

(
ze

−i
ζ(s)

2|z|2 , ζ(s)

)
, meaning γ ∈ Γ̃0. �

Let Γ̃′
0 be the curve family

Γ̃′
0 = {δz(s) =

(
ze

−i s
2|z|2 , s

)
| 0 < |z| <

√
b′}.

Notice that f ∈ F minimizes the mean distortion in F for the density ρ̃0 if and only

if M(Γ̃′
0) =

∫
Ca,b

K(., f)2ρ̃40dL
3. Indeed, since f̃α minimizes the mean distortion in

F for the density ρ̃0, any other minimizer f satisfies∫
Ca,b

K(., f)2ρ̃40dL
3 =

∫
Ca,b

K(., f̃α)
2ρ̃40dL

3.

Moreover, we have

M(f̃α(Γ̃0)) = M(Γ̃′
0) =

∫
Ca,b

K(., f̃α)
2ρ̃40dL

3.

So, f ∈ F satisfies
∫
Ca,b

K(., f)2ρ̃40dL
3 =

∫
Ca,b

K(., f̃α)
2ρ̃40dL

3 if and only if M(Γ̃′
0)

=
∫
Ca,b

K(., f)2ρ̃40dL
3. Then, we prove the following.

Proposition 2.7. If f is as in Theorem 2.5, then f(Γ̃0) = Γ̃′
0, meaning that for

every 0 < |z| <
√
b and s ∈]0, a[,

f(γz(s)) =

(
z′e

−i ζz(s)

2|z′|2 , ζz(s)

)
,

where ζz is a homeomorphism from ]0, a[ to ]0, a′[. Moreover, f maps the vertical
axis on the vertical axis.

Proof. The fact that f minimizes the mean distortion in F for the extremal density

ρ̃0 ensures that f∗ρ̃0 is an extremal density of the family Γ̃′
0. But,

ρ̃′0(z, t) =
2|z|
a′

is also an extremal density of the family Γ̃′
0. Then, by Lemma 1.3, since f∗ρ̃0 and

ρ̃′0 are continuous,

f∗ρ̃0 = ρ̃′0.

Let δ ∈ Γ̃′
0. According to the previous lemma, we get

1 =

∫
δ

ρ̃′0dl =

∫
δ

f∗ρ̃0dl =

∫ a′

0

f∗ρ̃0(δ(s))|δ̇1(s)|ds.
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Moreover, since f−1(δ) ∈ Γ, we have, using the fact that |Z(f−1)1| + |Z(f−1)1| =
1

|Zf1|−|Zf1|
◦ f−1 and inequality (3),

1 ≤
∫
f−1(δ)

ρ̃0dl

=

∫ a′

0

ρ̃0(f
−1(δ(s)))| ˙((f−1)1 ◦ δ(s))|ds

≤
∫ a′

0

ρ̃0(f
−1(δ(s)))|δ̇1(s)|

(
|Z(f−1)1(δ(s))|+ |Z(f−1)1(δ(s))|

)
ds

=

∫ a′

0

f∗ρ̃0(δ(s))|δ̇1(s)|ds

= 1.

Using the previous lemma, it means that f−1(δ) ∈ Γ̃0. So,

Ca′,b′\{z = 0} ⊂ f(Ca,b\{z = 0}).
Since f is a homeomorphism,

f(Ca,b ∩ {z = 0}) ⊂ Ca′,b′ ∩ {z = 0}.
Moreover, using that f ∈ F , it implies f(0, 0) = (0, 0) and f(0, a) = (0, a′). So, f

maps the vertical axis to itself and f(Γ̃0) = Γ̃′
0 because Γ̃0 and Γ̃′

0 are foliations of
Ca,b\{z = 0} and Ca′,b′\{z = 0}, respectively. �

Now that we know that f
(
ze

−i s
2|z|2 , s

)
=

(
z′e

−i ζz(s)

2|z′|2 , ζz(s)

)
, we want to find

the functions ζz.

Proposition 2.8. For every 0 < |z| <
√
b and s ∈]0, a[, we have

f
(
ze

−i s
2|z|2 , s

)
=

(
z′e

−i a′s
2a|z′|2 ,

a′

a
s

)
for a complex number 0 < |z′| <

√
b′.

Before giving a proof, we need the following result: Proposition 2.12 in [BFP15,

p. 133]. If f is a map as in Theorem 2.5, then for every curve γ ∈ Γ̃0,

| ˙(f1 ◦ γ)| =
(
|Zf1(γ)| − |Zf1(γ)|

)
|γ̇1|.(5)

This property is called the minimal stretching property.

Proof. In order to prove this, we consider two vector fields on H\{z = 0}

W := − iz

2|z|2Z and W :=
iz

2|z|2Z.

Then, Wγ(s) = γ̇1(s)Zγ(s) and W γ(s) = γ̇1(s)Zγ(s) for every γ ∈ Γ0. Thus,

|Wf1(γ) +Wf1(γ)| = |γ̇1Zf1(γ) + γ̇1Zf1(γ)| = | ˙(f1 ◦ γ)|.
So, using (5), we have

|Wf1(γ) +Wf1(γ)| =
(
|Zf1(γ)| − |Zf1(γ)|

)
|γ̇1|.
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Since |Zf1(γ)| − |Zf1(γ)| = 1
|γ̇1|

(
|Wf1(γ)| − |Wf1(γ)|

)
, we get that

|Wf1 +Wf1| = |Wf1| − |Wf1|.
From this and the fact that f is a contact transform, we also deduce

|W (Π ◦ f) +W (Π ◦ f)| = |W (Π ◦ f)| − |W (Π ◦ f)| = 2|f1|
(
|Wf1| − |Wf1|

)
.

Finally, by definition of W and W , we find

|W (Π ◦ f)| − |W (Π ◦ f)| =
|f1|
|z|

(
|Zf1| − |Zf1|

)
.(6)

Now, we know that

f∗ρ̃0 ◦ f =
ρ̃0

|Zf1| − |Zf1|
=

by (6)

2|f1|
a

1

|W (Π ◦ f)| − |W (Π ◦ f)|
and, by continuity and Lemma 1.3,

f∗ρ̃0 ◦ f = ρ̃′0 ◦ f =
2|f1|
a′

.

Thus,

|W (Π ◦ f)| − |W (Π ◦ f)| = a′

a
.

Moreover, Proposition 2.7 leads to (Π ◦ f ◦ γz)(s) = ζz(s) + i|z′|2 for every curve

γz ∈ Γ̃0. So,
d
dsζz(s) =

d
ds (Π ◦ f ◦ γz)(s). But,∣∣∣∣ dds (Π ◦ f ◦ γz)

∣∣∣∣ = |Z(Π ◦ f)(γz)γ̇z,1 + Z(Π ◦ f)(γz)γ̇z,1|

= |W (Π ◦ f)(γz) +W (Π ◦ f)(γz)|
= |W (Π ◦ f)(γz)| − |W (Π ◦ f)(γz)|

=
a′

a
.

Thus, ζz(s) =
a′

a s for every 0 < |z| <
√
b. �

In particular, we proved that f2(z, t) =
a′

a t. Now, we are in a position to show

that f2 + i|f1|2 does not depend on arg(z).

Proof of Theorem 2.5. As shown previously, it is more convenient to think in cylin-
drical coordinates. In those coordinates, the curves γz are the curves s 	→ (r, θ −
s

2r2 , s) for 0 < r <
√
b and θ ∈ R and we write the map f as (R,Θ, T ) (meaning

that (f1, f2) = (ReiΘ, T )). Since f maps Γ̃0 to Γ̃′
0, then

d

ds
R(r, θ − s

2r2
, s) = 0.

Thus,

Rθ(r, θ −
s

2r2
, s) = 2r2Rt(r, θ −

s

2r2
, s).

As it is true for every r, θ, we have

Rθ(r, θ, t) = 2r2Rt(r, θ, t) for every (r, θ, t) ∈]0,
√
b[×R×]0, a[.

Differentiating with respect to r, we also find,

Rr,θ(r, θ, t) = 4rRt(r, θ, t) + 2r2Rr,t(r, θ, t)
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for every (r, θ, t) ∈]0,
√
b[×R×]0, a[. Since (R,Θ, T ) is a contact map with Tr(r, θ, t)

= 0, then

Θr(r, θ, t) = 0.

Moreover, there is a nowhere vanishing function λ such that for every (r, θ, t) ∈
]0,

√
b[×R×]0, a[, we have

a′

a
+ 2R2(r, θ, t)Θt(r, θ, t) = λ(r, θ, t) and 2R2(r, θ, t)Θθ(r, θ, t) = 2r2λ(r, θ, t).

This leads to, for every (r, θ, t) ∈]0,
√
b[×R×]0, a[,

Θθ(r, θ, t) = 2r2Θt(r, θ, t) +
a′r2

aR2(r, θ, t)
.(7)

Now, since Θr = 0, differentiating the previous equation with respect to r, we get
for every (r, θ, t) ∈]0,

√
b[×R×]0, a[,

0 = 4rΘt(r, θ, t) +
a′

a

(
2r

R2(r, θ, t)
− 2r2Rr(r, θ, t)

R3(r, θ, t)

)
.

Then, for every (r, θ, t) ∈]0,
√
b[×R×]0, a[,,

2Θt(r, θ, t) =
a′

a

(
rRr(r, θ, t)

R3(r, θ, t)
− 1

R2(r, θ, t)

)
.

Replacing in (7): for every (r, θ, t) ∈]0,
√
b[×R×]0, a[,

Θθ(r, θ, t) =
a′r3Rr(r, θ, t)

aR3(r, θ, t)
.

Differentiating the expression of Θt with respect to θ, replacing Rθ(r, θ, t) by
2r2Rt(r, θ, t) and Rr,θ(r, θ, t) by 4rRt(r, θ, t)+2r2Rr,t(r, θ, t), we find that for every

(r, θ, t) ∈]0,
√
b[×R×]0, a[,

Θθ,t(r, θ, t) =
a′r2

a

(
4Rt(r, θ, t) + rRt,r(r, θ, t)

R3(r, θ, t)
− 3rRr(r, θ, t)Rt(r, θ, t)

R4(r, θ, t)

)
.

Differentiating the expression of Θθ with respect to t, we have for every (r, θ, t) ∈
]0,

√
b[×R×]0, a[,

Θt,θ(r, θ, t) =
a′r2

a

(
rRt,r(r, θ, t)

R3(r, θ, t)
− 3rRr(r, θ, t)Rt(r, θ, t)

R4(r, θ, t)

)
.

Since we assumed all our maps to be C2, by use of the Schwarz theorem about com-
mutativity of partial derivatives, we conclude that for every (r, θ, t) ∈]0,

√
b[×R×]0, a[,

4Rt(rθ, t)

R3(r, θ, t)
= 0.

This leads to

Rt(r, θ, t) = Rθ(r, θ, t) = 0

for every (r, θ, t) ∈]0,
√
b[×R×]0, a[. Then, f must be constructed as a lift of a

quasiconformal map g between rectangles. Now, it remains to show that g is a
minimizer of the mean distortion in G for the density ρ0.

First, notice that

M(f(Γ̃0)) =

∫
Ca,b

K(., f)2ρ̃40dL
3 and ρ̃0 = Π∗ρ0.
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Moreover, if Γ′
0 = Π(f(Γ̃0)), then by Proposition 2.7, Γ′

0 is the family of straight
horizontal lines in the rectangle Ra′,b′ which has as extremal density ρ′0 = 1

a′ and

its lifted family is by definition Γ̃′
0 which has as extremal density Π∗ρ′0. We can

then apply Corollary 1.13 to state that

M(g(Γ0)) =

∫
Ra,b

K(., g)ρ20dL
2.

Finally, let Γ be the set of all curves in Ra,b connecting the two vertical boundary
edges. Then, ρ0 ∈ adm(Γ) and for every h ∈ G, since g(Γ0) ⊂ h(Γ), M(g(Γ0)) ≤
M(h(Γ)). So, by a result similar to Proposition 1.6 for quasiconformal maps in the
complex plane, g minimizes the mean distortion in G for the density ρ0. Thus, by

Lemma 2.2 and Proposition 2.3, f is one of the f̃α. �

To sum up, in Section 2 we proved the following.

Theorem 2.9. The map

f̃0 : Ca,b −→ Ca′,b′

(z, t) 	−→
(

√
b′ze

i
2b (1− a′b

ab′ )t√
(1− ab′

a′b )|z|2+
ab′
a′

, a′

a t

)
minimizes the mean distortion in F for the density ρ̃0 and is the unique such
minimizer up to composition with a rotation around the vertical axis.

3. Generalized construction

3.1. Notation and the “pull-back density condition”. In this section, we
want to determine conditions in order to generalize the construction we made before
to domains in H that are not conformally equivalent to cylinders but whose projec-
tions on the half-plane are biholomorphic to rectangles. So, let us take two bounded
domains of H, Ωa,b and Ωa′,b′ with two biholomorphic maps φ : Ra,b −→ Ωa,b and
ψ : Ra′,b′ −→ Ωa′,b′ that extend homeomorphically to boundaries (boundaries taken
in C). Ωa,b and Ωa′,b′ may also be defined as quadrilaterals in the sense of Ahlfors
(see [Ahl66]).

Notation 3.1.

• We denote Γ0 (resp., Γ
′
0) the family of horizontal lines in Ra,b (resp., Ra′,b′),

then Γφ := φ(Γ0) and Γψ := ψ(Γ′
0).

• We also denote ρ0 = 1
a (resp., ρ′0 = 1

a′ ) the extremal density of Γ0 (resp.,
Γ′
0). Then, ρφ = φ∗ρ0 ∈ adm(Γφ) and ρψ = ψ∗ρ

′
0 ∈ adm(Γψ) are the

push-forward densities. Since φ and ψ are holomorphic, ρφ (resp., ρψ) is
extremal for Γφ (resp., Γψ).

• Consider Ra,b and Ra′,b′ as ]0, a[×]0, b[ and ]0, a′[×]0, b′[ and still write
φ :]0, a[×]0, b[−→ Ωa,b and ψ :]0, a′[×]0, b′[−→ Ωa′,b′ for the holomorphic
maps. Then, for every s ∈ [0, a], ∂Ωs := φ({s} × [0, b]) and for every
s ∈ [0, a′], ∂Ω′

s := ψ({s} × [0, b′]).
• We denote Gφ,ψ the set of quasiconformal maps from Ωa,b to Ωa′,b′ that
extend homeomorphically to boundaries and map ∂Ω0 to ∂Ω′

0 and ∂Ωa to
∂Ω′

a′ .
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Remark 3.2. Notice that since quasiconformal maps (in C) are orientation-preserving,
G can also be described as the set of quasiconformal maps from Ra,b to Ra′,b′ that
extend homeomorphically to closures and map the vertical boundary components
onto their corresponding ones. In other words, Gid,id = G.

Recall from Lemma 2.2 that every minimizer of the mean distortion in G for the
density ρ0 is of the form

fϕ(x+ iy) =
a′

a
x+ iϕ(y)

for a function ϕ : [0, b] −→ [0, b′] with ϕ(0) = 0, ϕ(b) = b′ and ϕ̇ ≥ a′

a . Now, since
the modulus of a curve family is a conformal invariant, every minimizer of the mean
distortion in Gφ,ψ for the density ρφ is one of the

gϕ = ψ ◦ fϕ ◦ φ−1.

In order to state the results of the section, we need to introduce more notation.

Notation 3.3.

• Ω̃a,b :=
˚

Ψ(S1 × Ωa,b) and Ω̃a′,b′ :=
˚

Ψ(S1 × Ωa′,b′). These are the right
domains to consider since, as in cylinders, we don’t want potential pieces
of the vertical axis to be on the topological boundaries.

• Γ̃φ (resp., Γ̃ψ) is the lifted family of Γφ (resp., Γψ).
• Extending Π to a function from H to H ∪ {�(w) = 0}, we write for every

s ∈ [0, a], ∂Ω̃s = Π−1(∂Ωs) and for every s ∈ [0, a′], ∂Ω̃′
s = Π−1(∂Ω′

s).

• The set of quasiconformal maps from Ω̃a,b to Ω̃a′,b′ that extend homeomor-

phically to boundaries and map ∂Ω̃0 to ∂Ω̃′
0 and ∂Ω̃a to ∂Ω̃′

a′ is denoted
Fφ,ψ. Notice that Fid,id is the set F from Section 2.

Notice that it could happen that ∂Ω̃s lies inside Ω̃a,b for s ∈ {0, a} and not in

the topological boundary of Ω̃a,b.

In the whole section, we will assume that Π∗ρφ (resp., Π∗ρψ) is extremal for Γ̃φ

(resp., Γ̃φ). This is a quite important condition for both existence and uniqueness
results of Section 3. We wish to give a better understanding of this condition. First,
let us give an example of a holomorphic map φ for which Π∗ρφ isn’t extremal for

the family Γ̃φ.

Example 3.4. The example is quite simple. We know that in a rectangle Ra,b,
horizontal lines satisfy the above property, but vertical ones don’t. Indeed, let Δ
be the family of curves

δx(s) = x+ is for 0 < x < a and 0 < s < b.

It is well known that the modulus of the family Δ is a
b with extremal density σ = 1

b .

Now, let Δ̃ be the lifted family of Δ. One may verify that Δ̃ is the family of curves

δ̃(z,t)(s) = (sz, t) for |z| = 1, 0 < t < a and 0 < s <
√
b.

With a calculus quite similar to the one done in the proof of Lemma 2.1, we find

the modulus of Δ̃ to be

M(Δ̃) =
16πa

27b



120 ROBIN TIMSIT

with extremal density

σ̃(z, t) =
2

3b
1
3 |z| 13

which is not the pull-back by Π of σ. Now, we may send the rectangle Rb,a to the
rectangle Ra,b by the composition of a rotation of angle π

2 and a translation by a
which is a holomorphic map sending horizontal lines to vertical ones.

The following gives an interpretation of the pull-back density condition in our
setting (h′ refers to the complex derivative of any holomorphic function h).

Proposition 3.5. If |φ′|
�(φ) is a function of the imaginary part only, then

M(Γ̃φ) =

∫
Ω̃a,b

(Π∗ρφ)
4dL3.

Conversely, if M(Γ̃φ) =
∫
Ω̃a,b

(Π∗ρφ)
4dL3, then |φ′|

�(φ) is a function of the imaginary

part only.

Proof. Let γx,α ∈ Γ̃φ. By definition,

γx,α(s) =
(√

�(φ(s, x))ei(α+τ(s,x)),
(φ(s, x))
)

with τ (s, x) = −
∫ s

0
	(φt(t,x))
2�(φ(t,x))dt for every s, x (here, the index t refers to the partial

derivative with respect to the first variable). Then, computing, we have for every
s, x

|γ̇x,α,1(s)| =
|φ′(s, x)|

2
√
�(φ(s, x))

,

where γx,α,1 is the first coordinate of the curve γx,α. Thus, if ρ ∈ adm(Γ̃φ), then,
for every x, we have ∫ a

0

ρ(γx,α(s))
|φ′(s, x)|

2
√
�(φ(s, x))

ds ≥ 1.

But, by substitution, we have the following:∫
Ω̃a,b

ρ4dL3 =
1

2

∫ 2π

0

∫ b

0

∫ a

0

ρ4(γx,α(s))|φ′(s, x)|2dsdxdα.(8)

Moreover, using Hölder inequality, we have for every x, α,(∫ a

0

ρ(γx,α(s))
|φ′(s, x)|

2
√
�(φ(s, x))

ds

)4

≤
(∫ a

0

ρ4(γx,α(s))|φ′(s, x)|2ds
)

×

⎛⎝∫ a

0

(
|φ′(s, x)| 12

2
√
�(φ(s, x))

) 4
3

ds

⎞⎠3

.

So that

1 ≤
∫ a

0

ρ4(γx,α(s))|φ′(s, x)|2ds

⎛⎝∫ a

0

(
|φ′(s, x)| 12

2
√
�(φ(s, x))

) 4
3

ds

⎞⎠3

.(9)
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Now, assume first that |φ′|
�(φ) is a function of x only. Then by assumption there is a

real valued function h such that

h(x) =
(�(φ(s, x)))2
|φ′(s, x)|2 for every s, x.

Thus, using (9), we have for every x,∫ a

0

ρ4(γx,α(s))|φ′(s, x)|2ds ≥ 16h(x)

a3
.

Using (8), it leads to,

M(Γ̃φ) ≥
16π

a3

∫ b

0

h(x)dx.

Now, by definition,

Π∗ρφ =
|ZΠ|

a|φ′(φ−1 ◦Π)| .

So, again by substitution,∫
Ω̃a,b

(Π∗ρφ)
4
dL3 =

1

2

∫ 2π

0

∫ b

0

∫ a

0

16 (�(φ(s, x)))2

a4|φ′(s, x)|2 dsdxdα =
16π

a3

∫ b

0

h(x)dx.

Thus,

M(Γ̃φ) =

∫
Ω̃a,b

(Π∗ρφ)
4dL3.

Conversely, assume that M(Γ̃φ) =
∫
Ω̃a,b

(Π∗ρφ)
4dL3. Then, using (8) and (9),

we find for every ρ ∈ adm(Γ̃φ),∫
Ω̃a,b

ρ4dL3 ≥ 16π

∫ b

0

dx(∫ a

0
|φ′(s,x)|

2
3

(�(φ(s,x)))
2
3
ds

)3 .

Now, let ρ ∈ adm(Γ̃φ) be defined for every x, s, α by

ρ(γx,α(s)) :=

(∫ a

0

|φ′(s, x)| 23
2(�(φ(s, x))) 2

3

ds

)−1
|φ′(s, x)|− 1

3

(�(φ(s, x))) 1
6

.

Then, ∫
Ω̃a,b

ρ4dL3 = 16π

∫ b

0

dx(∫ a

0
|φ′(s,x)|

2
3

(�(φ(s,x)))
2
3
ds

)3 .

Since, Π∗ρφ is extremal, we have Π∗ρφ = ρ. This leads to

|φ′(s, x)| 23
(�(φ(s, x))) 2

3

=
1

a

∫ a

0

|φ′(s, x)| 23
(�(φ(s, x))) 2

3

ds

for every s, x. So, |φ′|
�(φ) does not depend on s. �

To end the discussion on the pull-back density condition, one can show that (by
the previous proposition) it is equivalent to the condition given on the foliation in
Theorem 1.7.

In the following, we will answer (in this setting) the questions asked in the
Introduction. First, we will give conditions on the function ϕ so that gϕ lifts to a
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quasiconformal map between Ω̃a,b\{z = 0} and Ω̃a′,b′\{z = 0}. To be more precise,

we will prove that gϕ can be lifted to a quasiconformal map between Ω̃a,b\{z =

0} and Ω̃a′,b′\{z = 0} if and only if ϕ satisfies an ordinary differential equation.
Moreover, we will see that when such a ϕ can be found and if lifts of gϕ can be
extended to maps in Fφ,ψ, then those lifts minimize the mean distortion in Fφ,ψ

for the density Π∗ρφ. After that, we will explain that if we can find a minimizer of
the mean distortion functional by that process, then we actually found all of them.
Finally, we give two examples.

3.2. Conditions for existence of a lift. As stated, here we wish to find con-
ditions on ϕ so that gϕ can be lifted by Π into a quasiconformal map between

Ω̃a,b\{z = 0} and Ω̃a′,b′\{z = 0}. To do so, we make a change of coordinates in
H more adapted to the problem. New coordinates are then given by the following
two maps:

Ψφ : ]0, a[×]0, b[×R −→ Ω̃a,b\{z = 0}
(s, x, θ) −→

(√
�(φ(s, x))eiθ,
(φ(s, x))

)
Ψψ : ]0, a′[×]0, b′[×R −→ Ω̃a′,b′\{z = 0}

(s, x, θ) −→
(√

�(ψ(s, x))eiθ,
(ψ(s, x))
)

so that

Π ◦Ψφ(s, x, θ) = φ(s, x) and Π ◦Ψψ(s, x, θ) = ψ(s, x),

where it makes sense. Moreover, a map (S,X,Θ) :]0, a[×]0, b[×R −→]0, a′[×]0, b′[×R

induces a well-defined map (g1, g2) : Ω̃a,b\{z = 0} −→ Ω̃a′,b′\{z = 0} if and only if
S,X are 2π-periodic (in the third variable) and Θ is 2π-periodic modulo 2π (also
in the third variable). Then, one may verify that a map (S,X,Θ) defines a contact

map from Ω̃a,b\{z = 0} to Ω̃a′,b′\{z = 0} if and only if there is a nowhere vanishing
function λ such that,

(10) 
(ψs(S,X))dS −�(ψs(S,X))dX + 2�(ψ(S,X))dΘ

= λ (
(φs)ds−�(φs)dx+ 2�(φ)dθ) .
Here again, we denote the partial derivative with respect to s (resp., x, resp., θ) by
an index s (resp., x, resp., θ). Finally, a map (S,X,Θ) defines a lift of a gϕ if the
diagram

]0, a[×]0, b[×R
(S,X,Θ)

��

Π◦Ψφ

��

]0, a′[×]0, b′[×R

Π◦Ψψ

��

Ωa,b gϕ
�� Ωa′,b′

is commutative.

Lemma 3.6. Let (S,X,Θ) :]0, a[×]0, b[×R −→]0, a′[×]0, b′[×R. The previous dia-
gram is commutative if and only if we have

S(s, x, θ) = S(s) =
a′

a
s and X(s, x, θ) = X(x) = ϕ(x)

for every (s, x, θ) ∈]0, a[×]0, b[×R. In other words, (s, x) 	−→ (S(s), X(x)) agrees
with fϕ.
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Proof. The diagram is commutative if and only if

(gϕ ◦Π ◦Ψφ)(s, x, θ) = (Π ◦Ψψ)(S(s, x, θ), X(s, x, θ),Θ(s, x, θ))

for every (s, x, θ) ∈]0, a[×]0, b[×R, leading to

(S,X)(s, x, θ) = (ψ−1 ◦ gϕ ◦ φ)(s, x) = fϕ(s, x) =

(
a′

a
s, ϕ(x)

)
for every (s, x, θ) ∈]0, a[×]0, b[×R. �

To sum up, a map (S,X,Θ) :]0, a[×]0, b[×R −→]0, a′[×]0, b′[×R induces a con-
tact lift of gϕ if and only if, (s, x) 	−→ (S(s), X(x)) agrees with fϕ, Θ is 2π-periodic
modulo 2π in the third variable, and the functions S, X, and Θ satisfy the contact
condition (10). Now, we are able to state conditions for the existence of a contact
lift; then quasiconformality of the lift comes from Lemma 1.14.

Proposition 3.7. Suppose that (S,X,Θ) is a contact transform from ]0, a[×]0, b[×R

to ]0, a′[×]0, b′[×R such that

gϕ ◦Π ◦Ψφ = Π ◦Ψψ ◦ (S,X,Θ).

Then, first, for every (s, x, θ) ∈]0, a[×]0, b[×R,

S(s, x, θ) =
a′

a
s and X(s, x, θ) = ϕ(x).

Moreover, ϕ, ψ, and φ satisfy for every (s, x, θ) ∈]0, a[×]0, b[×R

a′

a
ϕ̇(x)

∣∣∣ψ′
(

a′

a s, ϕ(x)
)∣∣∣2 (�(φ(s, x)))2

|φ′(s, x)|2
(
�
(
ψ
(
a′

a s, ϕ(x)
)))2 = 1.(11)

Conversely, if those conditions are satisfied, then (S,X,Θ) : (s, x, θ) 	−→ (a
′

a s, ϕ(x),
θ + h(s, x)) with

2hx(s, x) =
�
(
ψs

(
a′

a s, ϕ(x)
))

�
(
ψ
(
a′

a s, ϕ(x)
)) ϕ̇− �(φs(s, x))

�(φ(s, x)) ,(12)

2hs(s, x) =

(φs(s, x))

�(φ(s, x)) − a′

a



(
ψs

(
a′

a s, ϕ(x)
))

�
(
ψ
(
a′

a s, ϕ(x)
)) ,(13)

a contact transform satisfying gϕ ◦Π ◦Ψφ = Π ◦Ψψ ◦ (S,X,Θ).

Proof. The proof is similar to the one of 2.3, we take information from the map
(S,X,Θ) to be contact in order to find the three partial derivatives of Θ. According

to the previous lemma, we know that S(s, x, θ) = a′

a s andX(s, x, θ) = ϕ(x) for every
(s, x, θ) ∈]0, a[×]0, b[×R. Now, the contact condition gives the following PDEs:

a′

a

(ψs(S,X)) + 2�(ψ(S,X))Θs = λ
(φs),(14)

�(ψs(S,X))ϕ̇− 2�(ψ(S,X))Θx = λ�(φs),(15)

�(ψ(S,X))Θθ = λ�(φ),(16)

for a nowhere vanishing function λ. From (16), since �(φ) > 0, we find

λ =
�(ψ(S,X))

�(φ) Θθ.
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Replacing in (14) and (15) and dividing by �(ψ(S,X)) > 0, we deduce

a′

a


(ψs(S,X))

�(ψ(S,X))
+ 2Θs =


(φs)

�(φ) Θθ,(17)

�(ψs(S,X))

�(ψ(S,X))
ϕ̇− 2Θx =

�(φs)

�(φ) Θθ.(18)

Differentiating (17) with respect to x, (18) with respect to s, and using Cauchy-
Riemann equations for ψ and φ, we find

(19) − a′

a
ϕ̇

(
�(ψs,s(S,X))

�(ψ(S,X))
+

(

(ψs(S,X))

�(ψ(S,X))

)2
)

+ 2Θx,s =

(φs)

�(φ) Θx,θ

−
(
�(φs,s)

�(φ) +

(

(φs)

�(φ)

)2
)
Θθ,

(20)
a′

a
ϕ̇

(
�(ψs,s(S,X))

�(ψ(S,X))
−
(
�(ψs(S,X))

�(ψ(S,X))

)2
)

− 2Θs,x =
�(φs)

�(φ) Θs,θ

+

(
�(φs,s)

�(φ) −
(
�(φs)

�(φ)

)2
)
Θθ.

Thus, replacing the value of 2Θs,x from (19) in (20), and using |h′|2 = (
(hs))
2 +

(�(hs))
2 for any holomorphic function, we find

−a′

a
ϕ̇

|ψ′(S,X)|2
(�(ψ(S,X)))2

− 
(φs)

�(φ) Θx,θ +
|φ′|2

(�(φ))2Θθ =
�(φs)

�(φ) Θs,θ.(21)

Now, differentiating (17) and (18) both with respect to θ, we also have

Θs,θ =

(φs)

2�(φ)Θθ,θ and Θx,θ = −�(φs)

2�(φ)Θθ,θ.

So, replacing those in (21), we finally have

Θθ =
a′

a
ϕ̇(x)

∣∣∣ψ′
(

a′

a s, ϕ(x)
)∣∣∣2 (�(φ(s, x)))2

|φ′(s, x)|2
(
�
(
ψ
(
a′

a s, ϕ(x)
)))2 .

The term on the right side does not depend on θ. So

0 = Θθ,θ = Θs,θ = Θx,θ.

Thus, Θθ is constant. So, for Θ to follow the periodicity condition, Θθ must be
everywhere equal to 1, which ends the first part of the proof.

For the second part, it is a simple verification that a map (S,X,Θ) defined by

(s, x, θ) 	−→ (a
′

a s, ϕ(x), θ + h(s, x)) with

2hx(s, x) =
�
(
ψs

(
a′

a s, ϕ(x)
))

�
(
ψ
(
a′

a s, ϕ(x)
)) ϕ̇(x)− �(φs(s, x))

�(φ(s, x)) ,

2hs(s, x) =

(φs(s, x))

�(φ(s, x)) − a′

a



(
ψs

(
a′

a s, ϕ(x)
))

�
(
ψ
(
a′

a s, ϕ(x)
)) ,
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and ϕ satisfying (11) is a contact transform satisfying gϕ◦Π◦Ψφ = Π◦Ψψ◦(S,X,Θ).
Moreover, such a function h exists: using the fact that ϕ satisfies (11), one may
verify that

∂

∂s

⎛⎝�
(
ψs

(
a′

a s, ϕ(x)
))

�
(
ψ
(
a′

a s, ϕ(x)
)) ϕ̇(x)− �(φs(s, x))

�(φ(s, x))

⎞⎠
=

∂

∂x

⎛⎝
(φs(s, x))

�(φ(s, x)) − a′

a



(
ψs

(
a′

a s, ϕ(x)
))

�
(
ψ
(
a′

a s, ϕ(x)
))

⎞⎠
and so, the system of equations for h has a solution by the Poincaré lemma. �

Finally, let us take a map (s, x, θ) 	−→ (a
′

a s, ϕ(x), θ + h(s, x)) with ϕ satisfying

(11), ϕ(0) = 0, ϕ(b) = b′, ϕ̇ ≥ a′

a and h satisfying (12) and (13). Then, it induces

a quasiconformal lift of gϕ, g : Ω̃a,b\{z = 0} −→ Ω̃a′,b′\{z = 0}. Assume moreover
that g can be extended continuously to a map in Fφ,ψ. Then, Corollary 1.13 ensures
that

M(g(Γ̃φ)) =

∫
Ω̃a,b

K(., g)2(Π∗ρφ)
4dL3.

Now, let Γ̃ be the family of all horizontal curves in Ω̃a,b connecting ∂Ω̃0 and ∂Ω̃a.

Then, Π∗ρφ ∈ adm(Γ̃) (see Lemma 3.14). Moreover, by definition of Fφ,ψ, for every

f ∈ Fφ,ψ, g(Γ̃φ) ⊂ f(Γ̃) so that

M(g(Γ̃φ)) ≤ M(f(Γ̃))

for every f ∈ Fφ,ψ. Thus, using Proposition 1.6, g minimizes the mean distortion
in Fφ,ψ for the density Π∗ρφ. So, we just showed the following.

Theorem 3.8. Let gϕ : Ωa,b −→ Ωa′,b′ be a minimizer of the mean distortion in
Gφ,ψ for the density ρφ with ϕ satisfying (11). Then, there is a quasiconformal lift

of gϕ, g : Ω̃a,b\{z = 0} −→ Ω̃a′,b′\{z = 0}. If g can be extended continuously to a
map in Fφ,ψ, then g minimizes the mean distortion in Fφ,ψ for the density Π∗ρφ.

To end this section, we give a general theorem for lifting quasiconformal map-
pings from H. It produces a new way to lift quasiconformal mappings from the
plane to the Heisenberg group different from [CT95, BHIT06]. The formulation

of the theorem (to be precise the link between the formula r4 Jac g
(�(g))2 = 1 and the

preservation of the hyperbolic area form) is heavily inspired by a work in progress
by Cano and Platis (see [ACIDP16]). In their work, the authors create a setting
in which the lifting theorem fits. The proof they give is therefore more concep-
tual than the one we give here (in the appendix) which relies on the same kind of
computations as the proof of Proposition 3.7.

Theorem 3.9. Let g : Ω −→ Ω′ be a C2-quasiconformal map between simply

connected domains of H. Let Ω̃ = Π−1(Ω) and Ω̃′ = Π−1(Ω′).

• If g is a symplectomorphism with respect to the hyperbolic area form of H

(i.e., for every w ∈ H, Jac g(w)
(�(g(w)))2 = 1

(�(w))2 where Jac g is the Jacobian

determinant of g), then there is a quasiconformal map f : Ω̃ −→ Ω̃′ such
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that Π ◦ f = g ◦Π. Moreover, f is of the form:

(z, t) 	−→
(
z(Jac g(t+ i|z|2)) 1

4 eih(t+i|z|2),
(g(t+ i|z|2))
)
,

where h : Ω −→ R is given by the following equations, for every w ∈ Ω:

∂h

∂w
(w) =

1

4�(w) −
1

2�(g(w))
∂
(g)
∂w

(w),

∂h

∂w
(w) =

1

4�(w) −
1

2�(g(w))
∂
(g)
∂w

(w).

• Conversely, if g can be lifted by Π into a quasiconformal map between Ω̃

and Ω̃′, then g is a symplectomorphism with respect to the hyperbolic area
form of H and f has the form given previously.

Remark 3.10. Proposition 3.7 is a version of Theorem 3.9 in the case

g = gϕ = ψ ◦ fϕ ◦ φ−1.

In particular, using holomorphicity of φ and ψ, and Jac fϕ = a′

a ϕ̇, condition (11) is
equivalent to

Jac(gϕ)(φ(s, x))

(�(gϕ(φ(s, x))))2
=

a′

a
ϕ̇(x)

|ψ′(fϕ(s, x))|2
|φ′(s, x)|2(�(ψ(fϕ(s, x))))2

=
1

(�(φ(s, x)))2

so that condition (11) is equivalent to gϕ being symplectic with respect to the
hyperbolic area form.

3.3. Geometric conditions for uniqueness of the construction. In this sec-
tion, we will prove that when there is a minimizer of the mean distortion in Gφ,ψ

for the density ρφ that can be lifted into a quasiconformal map in Fφ,ψ, then every
minimizer of the mean distortion in Fφ,ψ for the density Π∗ρφ is constructed by
that process. The section is dedicated to the proof of the following theorem, which
may be understood as a converse of Proposition 1.12 in the case of domains Ω and
Ω′ biholomorphic to rectangles plus boundary conditions.

Theorem 3.11. Let f : Ω̃a,b −→ Ω̃a′,b′ be a quasiconformal map in Fφ,ψ such

that f∗Π
∗ρφ = Π∗ρψ. Suppose that Π∗ρφ (resp., Π∗ρψ) is extremal for Γ̃φ (resp.,

Γ̃ψ). Then, f is a lift of a minimizer of the mean distortion in Gφ,ψ for the density
ρφ. Namely, there is a quasiconformal map g ∈ Gφ,ψ such that Π ◦ f = g ◦ Π and
g∗ρφ = ρψ.

Remark 3.12. It could be tempting to phrase the previous theorem using modulus

of a curve family as: if Π∗ρφ (resp., Π∗ρψ) is extremal for Γ̃φ (resp., Γ̃ψ), then every
quasiconformal map f ∈ Fφ,ψ such that

M(f(Γ̃φ)) =

∫
Ω̃a,b

K(., f)2(Π∗ρφ)
4dL3

is a lift of a gϕ.
But this is not what Theorem 3.11 states. In fact, it concerns maps f ∈ Fφ,ψ

satisfying

M(Γ̃ψ) =

∫
Ω̃a,b

K(., f)2(Π∗ρφ)
4dL3.

Nevertheless, we can still phrase Theorem 3.11 using moduli of curve families—only

not with f(Γ̃φ).
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Let Γ̃ be the family of all horizontal curves in Ω̃a,b connecting ∂Ω̃0 and ∂Ω̃a.

Then, Π∗ρφ ∈ adm(Γ̃) (see Lemma 3.14) and so it is extremal for Γ̃. In the same

way, Π∗ρψ ∈ adm(Γ̃′) is also extremal where Γ̃′ is the family of all horizontal curves

in Ω̃a′,b′ connecting ∂Ω̃′
0 and ∂Ω̃′

a′ . Now, by definition of Fφ,ψ, for every f ∈ Fφ,ψ,

f(Γ̃) = Γ̃′. So,

f∗Π
∗ρφ = Π∗ρψ ⇐⇒ M(f(Γ̃)) =

∫
Ω̃a,b

K(., f)2(Π∗ρφ)
4dL3.

So, Theorem 3.11 is equivalent to the following theorem.

Theorem 3.13. Let Γ̃ be the family of all horizontal curves in Ω̃a,b connecting

∂Ω̃0 and ∂Ω̃a, and let Γ̃′ be the family of all horizontal curves in Ω̃a′,b′ connecting

∂Ω̃′
0 and ∂Ω̃′

a′ . Assume that Π∗ρφ (resp., Π∗ρψ) is extremal for Γ̃ (resp., Γ̃′). Let
f ∈ Fφ,ψ be a quasiconformal map satisfying

M(f(Γ̃)) =

∫
Ω̃a,b

K(., f)2(Π∗ρφ)
4dL3.

Then, f is a lift of one of the gϕ.

The proof of Theorem 3.11 follows the same steps as the one of Theorem 2.5.
Again the main thing we have to prove is that a quasiconformal map f = (f1, f2)
as in the previous theorem has the property: (f2 + i|f1|2)(z, t) does not depend on

arg(z). Let us set a quasiconformal map f : Ω̃a,b −→ Ω̃a′,b′ with the hypothesis
of the theorem. The first objective is to show that a map f ∈ Fφ,ψ such that
f∗Π

∗ρφ = Π∗ρψ must be defined by a map (S,X,Θ) that sends a curve

(s, x, α+ τ (s, x)) with τs(s, x) = −
(φs(s, x))

2�(φ(s, x))

on a curve (
a′

a
s, x′, α′ + υ

(
a′

a
s, x′

))
with υs(s, x) = −
(ψs(s, x))

2�(ψ(s, x)) .

For that, we will follow essentially what we did in Section 2.2. First, a curve
γ̃(t) = (s(t), x(t), θ(t)) in ]0, a[×]0, b[×R (resp., in ]0, a′[×]0, b′[×R) is said to be

horizontal if Ψφ(γ̃(t)) is horizontal in Ω̃a,b (resp., Ψψ(γ̃(t)) is horizontal in Ω̃a′,b′).

Lemma 3.14. Let Γ̃ be the family of all horizontal curves

γ̃(t) = (s(t), x(t), θ(t)) such that s(0) = 0 and s(a) = a′.

Then, for every γ̃ ∈ Γ̃, ∫
Ψφ(γ̃)

Π∗ρφdl ≥ 1.

Moreover, we have equality if and only if Ψφ(γ̃) ∈ Γ̃φ.
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Proof. Let γ̃ be a curve in Γ̃ and γ = Ψφ(γ̃). Then, we have the following:∫
γ

Π∗ρφdl =

∫ a

0

2|γ1(t)||γ̇1(t)|
a|φ′(φ−1(Π ◦ γ)(t))|dt

=
1

a

∫ a

0

˙(Π ◦ γ)(t)
|φ′(φ−1(Π ◦ γ)(t))|dt

=
1

a

∫ a

0

|ṡ(t) + iẋ(t)|dt

≥ 1

a

∫ a

0

|ṡ(t)|dt

= 1.

We have equality here if and only if ẋ = 0. One may then verify that a curve

(s(t), x0, θ(t)) is horizontal if and only if its image by Ψφ is an element of Γ̃φ. �

Now, we may prove the following the same way that we proved Proposition 2.7.

Proposition 3.15. In our setting we have

f(Γ̃φ) = Γ̃ψ.

Moreover, f maps (potential pieces of) the vertical axis to itself.

Thus, according to this proposition, we can restrict our attention to Ω̃a,b\{z =

0} and Ω̃a′,b′\{z = 0}, meaning that f induces a well-defined map (S,X,Θ) :
]0, a[×]0, b[×R −→]0, a′[×]0, b′[×R that sends a curve

γ̃(x,α) = (s, x, α+ τ (s, x)) with τ̇ (s, x) = −
(φs(s, x))

2�(φ(s, x))
on a curve

δ̃(x′,α′)(s) = (ζ(x,α)(s), x
′, α′ + υ(ζ(x,α)(s), x

′)) with υ̇(s, x) = −
(ψs(s, x))

2�(ψ(s, x)) .

It remains to show that

ζ(x,α)(s) =
a′

a
s.

Proposition 3.16. The map (S,X, θ) sends a curve γ̃(x,α)(s) = (s, x, α+ τ (s, x))

with τ̇ (s, x) = −	(φs(s,x))
2�(φ(s,x)) on a curve δ̃(x′,α′)(s) = (a

′

a s, x
′, α′ + υ(a

′

a s, x
′)) with

υ̇(s, x) = −	(ψs(s,x))
2�(ψ(s,x)) .

Proof. Again, the proof is very similar to the one of Proposition 2.8. We consider
the following two complex vector fields:

U := − izφ′(φ−1(t+ i|z|2))
2|z|2 Z and U :=

izφ
′
(φ−1(t+ i|z|2))

2|z|2 Z.

Then, using the same method as in Proposition 2.8, one may check that

|U(Π ◦ f)| − |U(Π ◦ f)| = |f1||φ′(φ−1(t+ i|z|2))|
|z|

(
|Zf1| − |Zf1|

)
.

Now, since

f∗ρ̃φ ◦ f = ρ̃ψ ◦ f with ρ̃φ = Π∗ρφ = Π∗φ∗ρ0 and ρ̃ψ = Π∗ρψ = Π∗ψ∗ρ
′
0
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we have

f∗ρ̃φ ◦ f =
2|f1|

a
(
|U(Π ◦ f)| − |U(Π ◦ f)|

) =
2|f1|

a′|ψ′(ψ−1 ◦Π ◦ f)| .

This leads to

|U(Π ◦ f)| − |U(Π ◦ f)| = a′

a
|ψ′(ψ−1 ◦Π ◦ f)|.

Now, let γ̃(x,α)(s) = (s, x, α + τ (s, x)) with τ̇ (s, x) = −	(φs(s,x))
2�(φ(s,x)) and γ(x,α)(s)

= Ψφ(γ̃(x,α)(s)). Then we have,

Π ◦ f ◦ γ(x,α)(s) = ψ(ζ(x,α)(s), x
′).

Thus, ∣∣∣∣ dds (
(Π ◦ f ◦ γ(x,α))

)
(s)

∣∣∣∣ = |ψ′(ζ(x,α)(s), x
′)||ζ̇(x,α)(s)|.

But we also have∣∣∣∣ dds (
(Π ◦ f ◦ γ(x,α))

)
(s)

∣∣∣∣ = |U(Π ◦ f)(γ(x,α)(s))| − |U(Π ◦ f)(γ(x,α)(s))|

=
a′

a
|ψ′(ψ−1 ◦Π ◦ f ◦ γ(x,α))(s)|

=
a′

a
|ψ′(ζ(x,α)(s), x

′)|.

So, ζ(x,α)(s) =
a′

a s which ends the proof. �

Finally, a rather long but elementary calculus (done in the appendix) shows the
following.

Proposition 3.17. The map (S,X,Θ) satisfies Xθ = 0.

Combining Propositions 3.16 and 3.17 together with Corollary 1.13 is enough
to prove Theorem 3.11. Before giving examples, we sum up the results gotten in

Section 3. In the following theorem, we denote by Γ̃ the family of all horizontal

curves in Ω̃a,b connecting ∂Ω̃0 and ∂Ω̃a.

Theorem 3.18. If Π∗ρφ is extremal for Γ̃φ and Π∗ρψ is extremal for Γ̃ψ, then we
have the dichotomy:

1) If there is a minimizer g of the mean distortion in Gφ,ψ for the density ρφ
that can be lifted into a quasiconformal map f ∈ Fφ,ψ, then f minimizes the mean
distortion in Fφ,ψ for the density Π∗ρφ. Moreover, every minimizer of the mean
distortion in Fφ,ψ for the density Π∗ρφ is a lift of a minimizer of the mean distortion
in Gφ,ψ for the density ρφ.

2) If none of the minimizers of the mean distortion in Gφ,ψ for the density ρφ
can be lifted into a quasiconformal map in Fφ,ψ, then, for every f ∈ Fφ,ψ,

M(f(Γ̃)) <

∫
Ω̃a,b

K(., f)2(Π∗ρφ)
4dL3.

Proof. We only have one thing left to prove here: in the first case, every minimizer
of the mean distortion in Fφ,ψ for the density Π∗ρφ is a lift of a minimizer of
the mean distortion in Gφ,ψ for the density ρφ. We will show that in that case, a
minimizer f must satisfy f∗Π

∗ρφ = Π∗ρψ. Then, the result will follow by Theorem
3.11. So, pick f ∈ Fφ,ψ as a minimizer of the mean distortion and denote by f0
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the minimizer of the mean distortion coming from the hypothesis. Then, it is clear

that f0(Γ̃φ) = Γ̃ψ. Moreover, Corollary 1.13 ensures that

M(f0(Γ̃φ)) =

∫
Ω̃a,b

K(., f0)
2(Π∗ρφ)

4dL3.

So,

M(Γ̃ψ) =

∫
Ω̃a,b

K(., f0)
2(Π∗ρφ)

4dL3 =

∫
Ω̃a,b

K(., f)2(Π∗ρφ)
4dL3,

which means that f∗Π
∗ρφ is extremal for Γ̃ψ. Since Π∗ρψ and f∗Π

∗ρφ are contin-
uous, they are equal by Lemma 1.3. �

We now wish to give two examples of the construction. The first one is between
spherical annuli on the Heisenberg group and comes from [BFP13], [BFP15] where
extremality and uniqueness were proved. Here, it is constructed using the holo-
morphic map z 	−→ ez. Applying Proposition 3.7 and Theorem 3.11, we are able
to reconstruct the map and prove its uniqueness. The second example uses the
translation z 	−→ z + i.

Example 3.19. Let us consider two half-annuli in H:

Aa := {w ∈ H | 1 < |w| < a2} and Aak := {w ∈ H | 1 < |w| < a2k}
for k < 1 and a > 1. Then,

Aa = φ(]0, 2 ln(a)[×]0, π[) and Aak = ψ(]0, 2k ln(a)[×]0, π[),

where φ(s, x) = ψ(s, x) = es+ix. Then,

|φ′(s, x)|2
�(φ(s, x))2 =

1

sin2(x)

is a function of x only. Moreover, we denote

Ãa =
˚

Π−1(Aa) = {(z, t) ∈ H | 1 < ‖(z, t)‖H < a}
and

Ãak =
˚

Π−1(Aak) = {(z, t) ∈ H | 1 < ‖(z, t)‖H < ak}
the spherical annuli in H. The set Fφ,ψ here is the set of quasiconformal maps

f : Ãa −→ Ãak that extend homeomorphically on {(z, t) ∈ H | 1 ≤ ‖(z, t)‖H ≤ a},
sending {‖(z, t)‖H = 1} on {‖(z, t)‖H = 1} and {‖(z, t)‖H = a} on {‖(z, t)‖H =
ak}. Finally, the family of curves considered here is the family of radial curves

γ(x,α)(s) =
(√

es sin xei(α−
cotx

2 s), es cosx
)

which has modulus π2 ln(a)−3 with extremal density

ρφ(z, t) =
|z|

ln(a)
√
t2 + |z|4

for Ãa and π2 ln(ak)−3 with extremal density

ρψ(z, t) =
|z|

ln(ak)
√
t2 + |z|4

for Ãak (see Figure 2).
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Figure 2. Spherical annulus foliated by radial curves (foliation
given by rotations around the vertical axis of drawn curves and
the two pieces of the vertical axis itself).

According to Proposition 3.7, if a lift (S,X,Θ) of gϕ exists, it must verify the
following:

S(s, x, θ) = ks, X(s, x, θ) = ϕ(x),

ϕ̇(x)
sin2(x)

sin2(ϕ(x))
= k−1.

Thus, solving the ordinary differential equation, we find for every x,

ϕ(x) = cot−1(k−1 cot(x) +D) where D ∈ R.

Moreover, ϕ̇(x) ≥ k for every x. For ϕ(x) = cot−1
(
k−1 cot(x) +D

)
, this is equiv-

alent to

k + 2D cot(x) + kD2 ≤ 1 for every x,

which is possible if and only if D = 0. So,

ϕ(x) = cot−1
(
k−1 cot(x)

)
for every x ∈]0, π[. In particular, notice that ϕ extends continuously in a homeo-
morphism from [0, π] to [0, π]. By Proposition 3.7 again, we know that we can find
the function Θ to make (S,X,Θ) define a quasiconformal map between spherical
annuli (minus pieces of the vertical axis):

Θ(s, x, θ) = θ + h(s, x),

where h verifies

2hs(s, x) = 0 and 2hx(s, x) = ϕ̇(x)− 1.

Thus, we find

h(s, x) =
ϕ(x)− x

2
+ θ0 with θ0 ∈ R.
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Using Ψφ one is invited to check that in usual coordinates, it gives (up to compo-
sition with a rotation around the t-axis) the map

f : Ãa\{z = 0} −→ Ãak\{z = 0}

(z, t) 	−→
(√

kz
(

t−i|z|2
t−ik|z|2

) 1
2 |t+ i|z|2| k−1

2 , t |t+i|z|2|k
|t+ik|z|2|

)
.

Then, f extends in a homeomorphism in Fφ,ψ. This is the map studied in [BFP13]
called the radial stretch map. By Theorem 3.8, f minimizes the mean distortion in
Fφ for the density ρ̃φ. Finally, the first part of Theorem 3.18 ensures that, up to
composition with vertical rotations, f is the only minimizer of the mean distortion
in Fφ,ψ for the density ρφ.

The radial stretch map appeared in various contexts, for instance, in [Min94],
[Aus16].

Example 3.20. Let us consider a subset of a cylinder

Dr,R := {(z, t) ∈ H | 0 < t < r, 1 < |z|2 < R+ 1}.

We are interested in the same minimization problem as in Section 2 but this time

between Da,b and Da′,b′ with
a(b′+1)
a′(b+1) > 1. This means that we consider the foliation

of Da,b given by the subset of Γ̃0 of curves that lie in Da,b (see Figure 3).

Figure 3. Da,b foliated by a subset of Γ̃0 (foliation given by ro-
tations around the vertical axis of drawn curves).

Those cylinders are simply lifts up by Π of rectangles φ(Ra,b) and φ(Ra′,b′) for
φ(w) = w + i. According to Theorem 3.9, a lift of one of the gϕ exists only if
φ(Ra,b) and φ(Ra′,b′) have the same (finite) hyperbolic area. Moreover, equation
(11) writes as

a′

a
ϕ̇(x)

(x+ 1)2

(ϕ(x) + 1)2
= 1
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whose solutions are functions defined for x by

ϕ(x) =
a′

a

x+ 1

Cx+ C + 1
− 1 with C ∈ R.

From ϕ(0) = 0, we deduce that

C =
a′

a
− 1.

So, for every x ∈ [0, b],

ϕ(x) =
a

a′
x(

1− a
a′

)
x+ 1

.

Then, assume that φ(Ra,b) and φ(Ra′,b′) have the same hyperbolic area, meaning
that,

ab

b+ 1
=

a′b′

b′ + 1
.

Using a
a′ =

b′(b+1)
b(b′+1) , we have then

ϕ(b) =
a

a′
b(

1− a
a′

)
b+ 1

=
b′(b+ 1)

b(b′ + 1)− b′(b+ 1) + b′ + 1
= b′.

So, gϕ can be lifted to a contact map between Da,b and Da′,b′ . Moreover, for every
s ∈ [0, a], x ∈ [1, b+ 1],

gϕ(s, x) =
a′

a
s+ i

a′

a

x(
a′

a − 1
)
(x− 1) + a′

a

=
a′

a
s+ i

a′

a

x(
a′

a − 1
)
x+ 1

.

Replacing a′

a by b(b′+1)
b′(b+1) in the imaginary part of gϕ, we find for every s ∈ [0, a],

x ∈ [1, b],

gϕ(s, x) =
a′

a
s+ i

(b′ + 1)x(
1− b′

b

)
x+ b′(b+1)

b

=
a′

a
s+ i

(b′ + 1)x(
1− a(b′+1)

a′(b+1)

)
x+ a(b′+1)

a′

which is exactly the restriction to [1, b+ 1] of the function found in Section 2 from
the rectangle [0, a]× [0, b+1] to the rectangle [0, a′]× [0, b′+1]. So gϕ can be lifted
into a quasiconformal map between Da,b and Da,b and a lift is the restriction to

Da,b of one of the f̃α : Ca,b+1 −→ Ca′,b′+1 from Proposition 2.3. Finally, Theorem
3.8 ensures that lifts of gϕ minimize the mean distortion in Fφ,φ for the density
Π∗ρφ. So, Theorem 3.18 gives the dichotomy:

• If φ(Ra,b) and φ(Ra′,b′) have the same hyperbolic area, then restrictions of

f̃α : Ca,b+1 −→ Ca′,b′+1 to Da,b minimize the mean distortion in Fφ,φ for
the density Π∗ρφ and they are the only such minimizers.

• If φ(Ra,b) and φ(Ra′,b′) don’t have the same hyperbolic area, then for every
quasiconformal map f ∈ Fφ,φ,

M(f(Γ̃)) <

∫
Da,b

K(., f)2(Π∗ρφ)
4dL3,

where Γ̃ is the family of horizontal curves in Da,b connecting the two bound-
ary annuli.
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Appendix

Here, we provide some proofs left aside in the paper.

Proof of Lemma 2.2. First, it is a simple verification that maps fϕ minimize the
mean distortion in G for the density ρ0. Moreover, since those maps satisfy

M(Γ′
0) =

∫
Ra,b

K(., fϕ)ρ
2
0dL

2,

every minimizer must also satisfy it. So, with the same argument as in Proposition
2.7, if f ∈ G minimizes the mean distortion functional, then f(Γ0) = Γ′

0. So for
every s, y,

f(s+ iy) = ζy(s) + iϕ(y)

for functions ζy and ϕ. Moreover, using a similar argument as the one in Proposition
2.8, we find that

ζy(s) =
a′

a
s for every s, y.

To sum up,

f(x+ iy) =
a′

a
x+ iϕ(y) for every x+ iy ∈ Ra,b.

For such a function to be orientation-preserving, ϕ̇ ≥ 0 and, since f sends horizontal
boundary components on the corresponding ones, ϕ(0) = 0 and ϕ(b) = b′. Finally,

the minimal stretching property in that case leads to |ϕ̇| ≥ a′

a . So f is one of the
fϕ. �

Proof of Theorem 3.9. Again, partial derivatives are denoted by an index.
For the first part, let k : Ω −→ C be defined for every w ∈ Ω by

k(w) =
1

4�(w) −
(
(g))w(w)
2�(g(w)) and β = k(w)dw + k(w)dw.

Then, using the fact that g is a symplectic map, a calculus shows that β is closed,
hence exact by the Poincaré lemma. So (since β is a real 1-form) there is a real
valued function h : Ω −→ R such that

hw = k and hw = k.

Now, it is a simple verification to check that the map f defined in the theorem is
a contact map and then, quasiconformality follows from Lemma 1.14.

For the second part, let f : Ω̃ −→ Ω̃′ be a contact lift of g. Here, it will be easier
to compute in usual cylindrical coordinates (r, θ, t) 	−→ (reiθ, t). f is then a map
(R,Θ, T ) with

R(r, θ, t) =
√
�(g(t+ ir2)) and T (r, θ, t) = 
(g(t+ ir2)).

The contact form ω is in those coordinates

ω = dt+ 2r2dθ.

So, f is contact if and only if the following three PDEs are satisfied:

Tr + 2R2Θr = 0,

Tt + 2R2Θt = λ,

R2Θθ = r2λ,
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with λ a nowhere vanishing function. Moreover, for every (r, θ, t),

Tr(r, θ, t) = 2ir
(
(
(g))w(t+ ir2)− (
(g))w(t+ ir2)

)
and

Tt(r, θ, t) = (
(g))w(t+ ir2) + (
(g))w(t+ ir2).

So, we find

Θr(r, θ, t) =
ir

�(g(t+ ir2))

(
(
(g))w(t+ ir2)− ∂w(
(g))(t+ ir2)

)
and deduce the following two:

Θr,θ = 0

and

Θr,t =
−ir

(�(g))2 ((�(g))w + (�(g))w) ((
(g))w − (
(g))w)

+
ir

�(g) ((
(g))w,w − (
(g))w,w) .

Moreover, we have

Θθ =
r2

�(g) ((
(g))w + (
(g))w) + 2r2Θt

and so, differentiating with respect to r, we find

Θt =
r2 Jac g

2(�(g))2 − (
(g))w + (
(g))w
2�(g) .

From that, we deduce two things:

Θθ,t = 0 and Θθ = r4
Jac g

(�(g))2 .

So,

Θθ,θ = 0.

Thus, Θθ is constant with value 1 (if not so, (R,Θ, T ) would not be a homeomor-
phism). It leads to

Jac g

(�(g))2 =
1

(�(w))2

which ends the proof. �

Proof of Proposition 3.17. The proof is similar to the one of Theorem 2.5. First,
by hypothesis, for every (s, x, θ) ∈]0, a[×]0, b[×R,

S(s, x, θ) =
a′

a
s and

d

ds
X(s, x, α+ τ (s, x)) = 0.

It leads to

Xs =

(φs)

2�(φ)Xθ.(22)
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Now, since (S,X,Θ) defines a contact map, there is a nowhere vanishing function
λ such that

a′

a

(ψs(S,X))−�(ψs(S,X))Xs + 2�(ψ(S,X))Θs = λ
(φs),(23)

�(ψs(S,X))Xx − 2�(ψ(S,X))Θx = λ�(φs),(24)

−�(ψs(S,X))Xθ + 2�(ψ(S,X))Θθ = 2λ�(φ).(25)

From (25), since �(φ) > 0, we find

λ =
�(ψ(S,X))

�(φ) Θθ −
�(ψs(S,X))

2�(φ) Xθ.

Replacing λ by its value in (23) and (24), and using (22), we have the following:

Θs =

(φs)

2�(φ)Θθ −
a′

a


(ψs(S,X))

2�(ψ(S,X))
,(26)

Θx =
�(ψs(S,X))

2�(ψ(S,X))
Xx +

�(φs)

2�(φ)
�(ψs(S,X))

2�(ψ(S,X))
Xθ −

�(φs)

2�(φ)Θθ.(27)

From now, to follow computations, as a rule, we decide to express all partial deriva-
tives of 
(φ), 
(ψ), �(φ), and �(ψ) with respect to s (we do it using Cauchy-
Riemann equations). Differentiating (26) and (27) with respect to θ, we find

Θθ,s =

(φs)

2�(φ)Θθ,θ − a′

a

(

(ψs,x(S,X))

2�(ψ(S,X))
− 
(ψs(S,X))�(ψx(S,X))

2(�(ψ(S,X)))2

)
Xθ,

Θθ,x =

(
�(ψs,x(S,X))

2�(ψ(S,X))
− �(ψs(S,X))�(ψx(S,X))

2(�(ψ(S,X)))2

)
XθXx

+
�(φs)

2�(φ)

(
�(ψs,x(S,X))

2�(ψ(S,X))
− �(ψs(S,X))�(ψx(S,X))

2(�(ψ(S,X)))2

)
(Xθ)

2

− �(φs)

2�(φ)Θθ,θ +
�(φs)

2�(φ)
�(ψs(S,X))

2�(ψ(S,X))
Xθ,θ +

�(ψs(S,X))

2�(ψ(S,X))
Xθ,x.

Using Cauchy-Riemann equations, we have

Θθ,s =

(φs)

2�(φ)Θθ,θ +
a′

a

(
�(ψs,s(S,X))

2�(ψ(S,X))
+

(
(ψs(S,X)))2

2(�(ψ(S,X)))2

)
Xθ,(28)

(29) Θθ,x =

(

(ψs,s(S,X))

2�(ψ(S,X))
− 
(ψs(S,X))�(ψs(S,X))

2(�(ψ(S,X)))2

)
XθXx

+
�(φs)

2�(φ)

(

(ψs,s(S,X))

2�(ψ(S,X))
− 
(ψs(S,X))�(ψs(S,X))

2(�(ψ(S,X)))

)
(Xθ)

2

+
�(ψs(S,X))

2�(ψ(S,X))
Xθ,x +

�(φs)

2�(φ)
�(ψs(S,X))

2�(ψ(S,X))
Xθ,θ −

�(φs)

2�(φ)Θθ,θ.
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Moreover, differentiating (22) with respect to x gives

Xx,s =

(

(φs,x)

2�(φ) − 
(φs)�(φx)

2(�(φ))2

)
Xθ +


(φs)

2�(φ)Xx,θ

and so,

Xx,s = −
(
�(φs,s)

2�(φ) +
(
(φs))

2

2(�(φ))2

)
Xθ +


(φs)

2�(φ)Xx,θ.(30)

Then, differentiating (22) with respect to θ:

Xθ,s =

(φs)

2�(φ)Xθ,θ.(31)

Now, we differentiate (26) with respect to x

Θx,s =

(

(φs,x)

2�(φ) − 
(φs)�(φx)

2(�(φ))2

)
Θθ +


(φs)

2�(φ)Θx,θ

− a′

a

(

(ψs,x(S,X))

2�(ψ(S,X))
− 
(ψs(S,X))�(ψx(S,X))

2(�(ψ(S,X)))2

)
Xx

leading to:

(32) Θx,s = −
(
�(φs,s)

2�(φ) +
(
(φs))

2

2(�(φ))2

)
Θθ +


(φs)

2�(φ)Θx,θ

+
a′

a

(
�(ψs,s(S,X))

2�(ψ(S,X))
+

(
(ψs(S,X)))2

2(�(ψ(S,X)))2

)
Xx.

Differentiate (27) with respect to s:

Θs,x =
a′

a

(
�(ψs,s(S,X))

2�(ψ(S,X))
− (�(ψs(S,X)))2

2(�(ψ(S,X)))2

)
Xx

+

(
�(ψs,x(S,X))

2�(ψ(S,X))
− �(ψs(S,X))�(ψx(S,X))

2(�(ψ(S,X)))2

)
XsXx +

�(ψs(S,X))

2�(ψ(S,X))
Xs,x

+
�(ψs(S,X))

2�(ψ(S,X))

(
�(φs,s)

2�(φ) − (�(φs))
2

2(�(φ))2

)
Xθ

+
�(φs)

2�(φ)

(
�(ψs,s(S,X))

2�(ψ(S,X))
− (�(ψs(S,X)))2

2(�(ψ(S,X)))2

)
Xθ

+
�(φs)

2�(φ)

(
�(ψs,x(S,X))

2�(ψ(S,X))
− �(ψs(S,X))�(ψx(S,X))

2(�(ψ(S,X)))2

)
XsXθ

+
�(φs)

2�(φ)
�(ψs(S,X))

2�(ψ(S,X))
Xs,θ −

(
�(φs,s)

2�(φ) − (�(φs))
2

2(�(φ))2

)
Θθ −

�(φs)

2�(φ)Θs,θ
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and replace Xs by its value from (22), Xs,x by (30), Xs,θ by (31), and Θs,θ by (28):

(33) Θs,x =
a′

a

(
�(ψs,s(S,X))

2�(ψ(S,X))
− (�(ψs(S,X)))2

2(�(ψ(S,X)))2

)
Xx

+

(φs)

2�(φ)

(

(ψs,s(S,X))

2�(ψ(S,X))
− 
(ψs(S,X))�(ψs(S,X))

2(�(ψ(S,X)))2

)
XxXθ

− �(ψs(S,X))

2�(ψ(S,X))

|φ′|2
2(�(φ))2Xθ +


(φs)

2�(φ)
�(ψs(S,X))

2�(ψ(S,X))
Xx,θ

+
a′

a

�(φs)

2�(φ)

(
�(ψs,s(S,X))

2�(ψ(S,X))
− (�(ψs(S,X)))2

2(�(ψ(S,X)))2

)
Xθ

+

(φs)�(φs)

4(�(φ))2

(

(ψs,s(S,X))

2�(ψ(S,X))
− 
(ψs(S,X))�(ψs(S,X))

2(�(ψ(S,X)))2

)
(Xθ)

2

+

(φs)�(φs)

4(�(φ))2
�(ψs(S,X))

2�(ψ(S,X))
Xθ,θ −

(
�(φs,s)

2�(φ) − (�(φs))
2

2(�(φ))2

)
Θθ

− 
(φs)�(φs)

4(�(φ))2 Θθ,θ −
a′

a

�(φs)

2�(φ)

(
�(ψs,s(S,X))

2�(ψ(S,X))
+

(
(ψs(S,X)))2

2(�(ψ(S,X)))2

)
Xθ,

where |h′|2 is the Jacobian determinant of h for any holomorphic function. Now,
since Θs,x = Θx,s the previous two are equal. Thus, using the value of Θx,θ found
in (29), we get

Θθ =
a′

a

|ψ′(S,X)|2(�(φ))2
|φ′|2(�(ψ(S,X)))2

(
Xx +

�(φs)

2�(φ)Xθ

)
+

�(ψs(S,X))

2�(ψ(S,X))
Xθ.(34)

Replacing in (26) we have

(35) Θs =
a′

a


(φs)

2�(φ)
|ψ′(S,X)|2(�(φ))2
|φ′|2(�(ψ(S,X)))2

(
Xx +

�(φs)

2�(φ)Xθ

)
+


(φs)

2�(φ)
�(ψs(S,X))

2�(ψ(S,X))
Xθ −

a′

a


(ψs(S,X))

2�(ψ(S,X))
.

By Proposition 3.5, we can write

|ψ′(S,X)|2(�(φ))2
|φ′|2(�(ψ(S,X)))2

= h(., X)

for a real valued function h :]0, b[×]0, b′[−→ R. We write h2 the partial derivative
of h with respect to the second variable. Now, differentiate (34) with respect to s:

Θs,θ =
a′

a
h2(., X)Xs

(
Xx +

�(φs)

2�(φ)Xθ

)
+

�(ψs(S,X))

2�(ψ(S,X))
Xs,θ

+
a′

a
h(., X)

(
Xs,x +

(
�(φs,s)

2�(φ) − (�(φs))
2

2(�(φ))2

)
Xθ +

�(φs)

2�(φ)Xs,θ

)
+

a′

a

(
�(ψs,s(S,X))

2�(ψ(S,X))
− (�(ψs(S,X)))2

2(�(ψ(S,X)))2

)
Xθ

+

(
�(ψs,x(S,X))

2�(ψ(S,X))
− �(ψs(S,X))�(ψx(S,X))

2(�(ψ(S,X)))2

)
XsXθ
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and use formulas for Xs and Xs,θ:

(36) Θs,θ =
a′

a
h2(., X)Xθ

(

(φs)

2�(φ)Xx +

(φs)�(φs)

4(�(φ))2 Xθ

)
+

a′

a
h(., X)

(

(φs)

2�(φ)Xx,θ −
|φ′|2

2(�(φ))2Xθ +

(φs)�(φs)

4(�(φ))2 Xθ,θ

)
+


(φs)

2�(φ)

(

(ψs,s(S,X))

2�(ψ(S,X))
+


(ψs(S,X))�(ψs(S,X))

2(�(ψ(S,X)))2

)
(Xθ)

2

+

(φs)

2�(φ)
�(ψs(S,X))

2�(ψ(S,X))
Xθ,θ +

a′

a

(
�(ψs,s(S,X))

2�(ψ(S,X))
− (�(ψs(S,X)))2

2(�(ψ(S,X)))2

)
Xθ.

Now, differentiating (35) with respect to θ leads to:

(37) Θθ,s =
a′

a
h2(., X)Xθ

(

(φs)

2�(φ)Xx +

(φs)�(φs)

4(�(φ))2 Xθ

)
+


(φs)

2�(φ)

(

(ψs,s(S,X))

2�(ψ(S,X))
− 
(ψs(S,X))�(ψs(S,X))

2(�(ψ(S,X)))2

)
(Xθ)

2

+
a′

a


(φs)

2�(φ)h(., X)

(
Xx,θ +

�(φs)

2�(φ)Xθ,θ

)
+


(φs)

2�(φ)
�(ψs(S,X))

2�(ψ(S,X))
Xθ,θ

+
a′

a

(
�(ψs,s(S,X))

2�(ψ(S,X))
+

(
(ψs(S,X)))2

2(�(ψ(S,X)))2

)
Xθ.

Finally, using the fact that Θs,θ = Θθ,s and the definition of h, we find

|ψ′(S,X)|2
(�(ψ(S,X)))2

Xθ = 0

which leads to
Xθ = 0.

�
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