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GENERIC 2-PARAMETER PERTURBATIONS OF PARABOLIC

SINGULAR POINTS OF VECTOR FIELDS IN C

MARTIN KLIMEŠ AND CHRISTIANE ROUSSEAU

Abstract. We describe the equivalence classes of germs of generic 2-parameter
families of complex vector fields ż = ωε(z) on C unfolding a singular parabolic
point of multiplicity k + 1: ω0 = zk+1 + o(zk+1). The equivalence is under
conjugacy by holomorphic change of coordinate and parameter. As a prepara-
tory step, we present the bifurcation diagram of the family of vector fields
ż = zk+1 + ε1z + ε0 over CP1. This presentation is done using the new tools
of periodgon and star domain. We then provide a description of the modulus
space and (almost) unique normal forms for the equivalence classes of germs.

1. Introduction

Natural local bifurcations of analytic vector fields over C occur at multiple sin-
gular points. If a singular point has multiplicity k+1, hence codimension k, it has
a universal unfolding in a k-parameter family. A normal form has been given by
Kostov [Ko] for such vector fields, namely

ż =
zk+1 + εk−1z

k−1 + · · ·+ ε1z + ε0
1 +A(ε)zk

and the almost uniqueness of this normal form was shown in Theorem 3.5 of [RT],
thus showing that the parameters of the normal form are canonical.

But what happens if the codimension k singularity occurs inside a family de-
pending on m < k parameters? The paper [CR] completely settles the generic
situation in the case m = 1. It occurs that, modulo a change of coordinates, the
singular points are always located at the vertices of a regular polygon: this induces
a circular ordering on the singular points zj and their eigenvalues λj . This in turn
induces a circular order (in the inverse direction) on the periods of the singular
points (given by νj = 2πi

λj
). The general study of [CR] starts with studying the

family of vector fields ż = zk+1 − ε as a model for what can occur in a generic
1-parameter unfolding. This family has a pole of order k − 1 at infinity with 2k
separatrices. In this particular case, the bifurcation diagram is determined by the
periodgon, a regular polygon, the sides of which are the periods at the singular
points. When the parameter rotates, so does the periodgon and the bifurcations of
homoclinic loop through ∞ (coalescence of two separatrices) occur precisely when
two vertices of the periodgon lie on the same horizontal line. Although the period-
gon is no more closed when one considers the general case of a 1-parameter generic
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family, the argument could be adapted to describe the bifurcations in this case as
well.

The present paper is the first step in addressing the same question for generic 2-
parameter deformations. We consider the 2-parameter family of polynomial vector
fields

(1.1) ż = Pε(z) = zk+1 + ε1z + ε0, ε = (ε1, ε0) ∈ C
2,

and describe the bifurcation diagram of its real dynamics. This family is the small-
est family unifying the two naturally occurring 1-parameter unfoldings of the par-
abolic singular point ż = zk+1, namely

(1.2) ż = zk+1 + ε0

and

(1.3) ż = zk+1 + ε1z.

In (1.2) the singular points form the vertices of a regular (k+1)-gon, while in (1.3)
there is a fixed singular point at the origin surrounded by k singular points at the
vertices of a regular k-gon.

Note that for k large, the polynomial Pε(z) has few nonzero monomials, and
hence is a fewnomial in the sense of Khovanskĭı [Kh]. One characteristic of the
fewnomials is that the arguments of their roots are relatively equidistributed in
[0, 2π]. This was observed when m = 1 since the roots were the vertices of a regular
polygon. A weaker version is observed here: except for k slits in parameter space
we have a circular order on the roots, and the roots remain in sectors when the
parameter varies. When the discriminant vanishes at some nonzero ε, then exactly
two singular points coalesce in a parabolic point.

The bifurcation diagram of the real phase portrait of (1.1) has a conic structure
provided by rescaling of the vector field. It is therefore sufficient to describe only
its intersection with a sphere S3 = {‖ε‖ = 1}, where

(1.4) ‖ε‖ =
( |ε0|

k

) 1
k+1 +

( |ε1|
k+1

) 1
k .

The sphere S3 = {‖ε‖ = 1} can be parameterized by three real coordinates: one
radial coordinate s ∈ [0, 1], and two angular coordinates θ, α ∈ [0, 2π],

ε0 = ksk+1ei(θ−(k+1)α), ε1 = −(k + 1)(1− s)ke−ikα, ‖ε‖ = 1.

The parameter smeasures the migration of the center singular point outwards when
moving from (1.3) to (1.2). When moving from s = 0 to s = 1, the movement of the
outer singular points is very smooth so as to create the exact needed space for the
inner singular point moving outwards. The parameter θ determines the direction in
which the center singular point will move outwards. The parameter α is a rotation
parameter. It plays no role in the relative position of the singular points, but it is
responsible for the bifurcations of homoclinic loops through the pole at infinity.

The geometry of the bifurcation diagram restricted to the sphere ‖ε‖ = 1 is that
of a generalized Hopf fibration in projecting S3 over the 2-sphere S2 parametrized
by s, θ. In a standard Hopf fibration the tori are foliated by torus knots of type
(1, 1), while here we have torus knots of type (k+1, k), as explained in Section 2.4.

Together with the bifurcation of parabolic points, the homoclinic bifurcations
through ∞ are the only bifurcations occurring in the family. To describe the bifur-
cations of homoclinic loops though infinity we use an approach similar to [CR]. We
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slit the parameter space along the set where
(
ε0
k

)k
/
(−ε1
k+1

)k+1 ∈ [0, 1], i.e., where

θ ∈ 2π
k Z and s ∈ [0, 1

2 ], which links the family (1.3) to the discriminantal locus

ΣΔ = {
(
ε0
k

)k
=
(−ε1
k+1

)k+1}. Along these slits the central singular point of (1.3)
migrates exactly in the direction of an outer singular point. Outside of these slits,
not only are the roots circularly ordered by their argument, but furthermore their
associated periods are the sides of a polygon on the Riemann surface of the rec-
tifying chart tε(z) =

∫ z

∞
dz

Pε(z)
that we conjecture to have no self-intersection, the

periodgon (or polygon of the periods). The homoclinic orbits through ∞ that ap-
pear in the family occur precisely when two vertices of the periodgon lie on the same
horizontal line and the segment in between them is in the interior of the periodgon.
The conjecture on the existence of no self-intersection is supported by numerical
evidence. We also explain how to complete the description in case the conjecture
would not be satisfied.

The parameters s, θ determine the shape of the periodgon, which rotates when α
varies. The periodgon is degenerate to a segment when s = 0. When s increases, it
starts inflating, first into a nonconvex shape. The sides rotate almost monotonically
and their sizes adjust so that the periodgon becomes convex and approaches the
regular shape at s = 1. For a parameter that lies on one of the slits in the param-
eter space, there exist two different limit periodgons, obtained as limits when the
parameter approaches the slit from one side or the other.

The periodgon approach to the study of polynomial vector fields is a new tech-
nique, initially coming from Chéritat, first used in [CR], and whose development in
a general situation is an original contribution of this paper.

As a second part we derive an almost unique normal form for germs of generic
�-parameter families unfolding a parabolic point of codimension k, which provides
a classification theorem for such germs. We then discuss briefly the bifurcation
diagram for this normal form in the case � = 2. This bifurcation diagram is essen-
tially the same as the bifurcation diagram of (1.1) when restricted to a disk Dr,
where any trajectory that escapes the disk plays the same role as a separatrix of
∞. Instead of codimension 1 bifurcation sets of homoclinic loops we observe thin
open regions in parameter space where dividing trajectories exist. They split the
disk in disjoint parts, each containing some singular point(s). On the boundary of
these regions some trajectories have double tangencies with the boundary of Dr.

2. Parameter space of the family (1.1)

2.1. Symmetries of the family. We consider the action of the transformation:

(2.1) (z, t, ε1, ε0) �→ (Z, T, η1, η0) = (Az,A−kt, Akε1, A
k+1ε0)

on the vector field dz
dt = Pε(z) in (1.1) with t ∈ R, changing it to dZ

dT = Pη(Z). We
will use the particular cases:

• A = r ∈ R+. This rescaling allows one to suppose that (η1, η0) ∈ S3 =
{‖η‖ = 1}.

• A = e
2πim

k . This gives invariance of the vector field under rotations of order
k, modulo reparametrization.

• A = e
πi(2m+1)

k . This gives invariance under rotations of order 2k, modulo
reparametrization and reversing of time.
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Proposition 2.1.

(1) Let Pε and Pε′ be of the form (1.1) for ε = (ε1, ε0) and ε′ = (ε′1, ε
′
0). If

(2.2)

{
ε′1 = ε1,

ε′0 = e
2m
k πiε0, m ∈ Z2k,

then the vector fields Pε and Pε′ are conjugate under the change (z, t) �→
(σ(z), t), where σ(z) is the image of z under the reflection with respect to
the line e

m
k πi

R.
(2) In particular, when ε1 ∈ R and arg(ε0) = πm

k , m ∈ Z2k, then the system

is symmetric with respect to the line e
imπ
k R, i.e., the system is invariant

under z �→ σ(z), where σ(z) is the image of z under the reflection with
respect to the line.

Proof. For real t, the reflection σ : z �→ Z = e
2m
k πiz sends the vector field (1.1) to

dZ

dt
= Zk+1 + ε1Z + e

2m
k πiε0. �

Proposition 2.2.

(1) Let Pε and Pε′ be of the form (1.1) for ε = (ε1, ε0) and ε′ = (ε′1, ε
′
0). If

(2.3)

{
ε′1 = −ε1,

ε′0 = −e
(2m+1)

k πiε0, m ∈ Z2k,

then Pε and Pε′ are conjugate under the change (z, t) �→ (σ(z),−t), where

σ(z) is the image of z under the reflection with respect to the line e
2m+1

2k πi
R.

(2) In particular, when ε1 ∈ iR and arg(ε0) =
π
2 + 2m+1

2k π, m ∈ Z2k, then the

system is reversible with respect to the line e
2m+1

2k πi
R, i.e., invariant under

(z, t) �→ (σ(z),−t), where σ(z) is the image of z under the reflection with
respect to the line.

Proof. For real t, the reflection σ : z �→ Z = e
2m+1

k πiz and the time reversal
t �→ T = −t sends the vector field (1.1) to

dZ

dT
= Zk+1 − ε1Z − e

2m+1
k πiε0. �

2.2. Bifurcation of parabolic points. The discriminant of Pε(z) = zk+1+ε1z+ε0
is given by

Δ(ε1, ε0) = (−1)�
k+1
2 �kk(k + 1)k+1

[(
ε0
k

)k − (− ε1
k+1

)k+1
]
.(2.4)

It vanishes if and only if

ε1 = −(k + 1)ak, ε0 = kak+1 for some a ∈ C,

in which case z = a is a generic parabolic point (double root) of Pε(z). This is the
only bifurcation of multiple singular points in the family (1.1).
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Figure 1. The nested tori of the Hopf fibration. The red circle
corresponds to s = 1, and the blue line (viewed as a circle of infinite
radius with a point at infinity) to s = 0.

2.3. Normalizations. In view of the symmetries of the family a natural “norm”
for the parameter is given by (1.4). If ε �= 0, we can scale z so that ‖ε‖ = 1 in
(1.1). Then it is natural to write |ε1| = (k + 1)(1 − s)k and |ε0| = ksk+1, with
s ∈ [0, 1]. The two extreme values s = 0 and s = 1 correspond to the 1-parameter
vector fields ż = zk+1 + ε1z and ż = zk+1 + ε0. In the latter there are k + 1
singular points at the vertices of a regular (k + 1)-gon, while in the former there
are k singular points at the vertices of a regular k-gon and one singular point at
the middle. Moving s from 0 to 1 is the transition from one to the other. The
two other natural parameters are the arguments of ε0 and ε1. But both act on the
position of the singular points. Hence we would rather choose one parameter θ that
will control the relative position of singular points, and one parameter α that will
be a rotational parameter, namely we write the system in the form:

(2.5) ż = zk+1 − (k + 1)(1− s)ke−ikαz + ksk+1ei(θ−(k+1)α).

This corresponds to arg ε1 = −kα + π and arg ε0 = θ − (k + 1)α. We consider
θ ∈ [−2π, 0]. From the form of the constant term it will be natural to consider
α ∈ [0, 2π]. Using s and θ as polar coordinates, we will describe the dynamics over
the disk |eiθs| ≤ 1, with cuts along the segments s ∈ [0, 1

2 ], θ = 2mπ
k , for m ∈ Zk,

joining the origin to the parabolic situation.

2.4. Geometry of the parameter space. The parameter space is the 3-sphere
S3 = {‖ε‖ = 1} which is a quotient of [0, 1] × (S1)2, on which we use coordinates
(s, θ, α):

(2.6) ε0 = ksk+1ei(θ−(k+1)α), ε1 = −(k + 1)(1− s)ke−ikα, ‖ε‖ = 1.

The quotient consists of identifying

(s, θ, α) ∼ (s, θ + 2π, α) ∼ (s, θ, α+ 2π) ∼ (s, θ + 2π
k , α+ 2π

k ),

(0, θ, α) ∼ (0, 0, α) ∼ (0, 0, α+ 2π
k ),

(1, θ, α) ∼ (1, 0, α− θ
k+1) ∼ (1, 0, α− θ

k+1 + 2π
k+1 )

(2.7)

for all s, θ, α. We naturally find a generalized version of the Hopf fibration of S3

over S2 (see Figure 1) given by the projection (s, θ, α) �→ (s, θ mod 2π
k ), with S2
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(a) k = 2 (b) k = 4

Figure 2. The knots corresponding to s, θ constant and α ∈ [0, 2kπ].

Figure 3. The pole at infinity and its 2k separatrices.

being the quotient of [0, 1] × S
1 by identifying (s, θ) ∼ (s, θ + 2π

k ) for all s, θ, and
(0, θ) ∼ (0, 0), (1, θ) ∼ (1, 0) for all θ. Here s ∈ (0, 1) parametrizes a family of
tori in S3, where each torus is filled by a family of (k + 1, k)-torus knots, each
knot corresponding to constant (s, θ) = (s0, θ0) and being parametrized by α (see
Figure 2). For s = 0, the torus degenerates to a circle parametrized by α and
covered k times, and for s = 1, the torus degenerates to a circle parameterized by
α and covered k + 1 times.

The only bifurcations are homoclinic connections of two separatrices of ∞, and
the bifurcation of parabolic point. The former, of real codimension 1, will be stud-
ied by introducing the periodgon below. The latter, of real codimension 2, will
be studied in Section 6.3. Several bifurcations can occur simultaneously, yielding
higher order bifurcations. The boundaries of the surfaces of homoclinic connec-
tions in parameter space occur along the higher order bifurcations, including the
parabolic point bifurcation.

3. Polynomial vector fields in C and their phase portrait

The topological organization of the real trajectories of a polynomial vector field
is completely determined by the pole at infinity of order k−1 and its 2k separatrices
(see Figure 3). It has been described by Douady and Sentenac [DS] in the generic
case, and by Branner and Dias [BD] in the general case.
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Let ż = P (z) be a polynomial vector field of degree k + 1, with k ≥ 1, and let
the multi-valued map

(3.1) t(z) =

∫ z

∞

dz

Pε(z)

be its time coordinate (rectifying coordinate).

Definition 3.1.

(1) The separatrix graph of the vector field is the union of the singular points
and of the 2k separatrices of ∞ (which is a pole of order k − 1 if k ≥ 2).
The 2k sectors at ∞ are called ends.

(2) The connected components of the complement of the separatrix graph in
C are called zones. Inside a zone either all orbits are periodic of the same
period (center zone), or all trajectories have the same α-limit and the same
ω-limit which are singular points. If the α- and ω-limit are distinct, the zone
is called an αω-zone, otherwise it is called a sepal zone, and the common
limit is a multiple singular point (parabolic equilibrium).

(3) The skeleton graph of the vector field is the oriented graph whose vertices
are the singular points, and whose edges are the αω- and the sepal zones,
joining the α-limit point of the zone to the ω-limit point. Sepal zones
correspond to loops.

(4) A polynomial vector field ż = P (z) of degree ≥ 2 is called structurally stable
if all its singular points are simple and it has no homoclinic connection
through ∞.

Proposition 3.2 ([DS,BD]).

• The image in the t-space of an αω-zone is a horizontal strip of height given
by the imaginary part of the transverse time

(3.2) τ =

∫
γ

dz

P (z)
,

over a curve γ from ∞ to ∞ inside the zone, transverse to the foliation,
and with appropriate orientation so that �τ > 0.1

• The image in the t-space of a center zone with a center at a point zj is a
vertical half-strip H+/νjZ if νj > 0, resp. H−/νjZ if νj < 0, of width given
by the period of zj:

νj =
2πi

P ′(zj)
.

• The image in the t-space of a sepal zone is an upper/lower half-plane H±.
• The skeleton graph has no cycles other than loops. It is connected if and
only if there are no homoclinic loops through infinity. When there is at least
one homoclinic loop we say that the skeleton graph is broken. The vector
field is structurally stable if and only if the skeleton graph is a tree with
k + 1 vertices and k edges.

1In a generic situation, the zone has two “ends” at ∞ and the homotopy type of the transverse
curve γ from one “end” at ∞ to another is unique. However, in a nongeneric situation, if the
boundary of the zone contains a homoclinic separatrix, then the zone has more than two “ends”
at ∞ and a pair of them has to be selected (see [BD]). The height is independent of the two chosen
ends.
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For the reader familiar with the work of Douady and Sentenac we add the fol-
lowing definition which makes the link with their work.

Definition 3.3. If the vector field is structurally stable, then the skeleton graph
is (equivalent to) the combinatorial invariant of Douady–Sentenac. In fact, for
structurally stable vector fields each zone is an αω-zone and has exactly two ends
at ∞. Therefore the vector field defines a pairing on the set of ends, indexed by Z2k,
that is a noncrossing involution on Z2k, i.e., each pair of ends can be connected by
a curve such that the curves are noncrossing (e.g., the transverse curves inside the
zones). The skeleton graph is the adjacency graph of the cellular decomposition of
C by the transverse curves (cf. [DS]) and it determines the noncrossing involution
up to the action of even cyclic rotations on Z2k. The analytic invariant of Douady-
Sentenac is given by the k-tuple of transversal times τ ∈ H+ (3.2) assigned to the
edges of the skeleton graph (i.e., to the zones).

3.1. The periodgon and the star domain. Let zj be an equilibrium point of
the vector field ż = P (z), and let

νj = 2πi Reszj
dz

P (z)

be the period of the rectifying map t (3.1) around zj . If zj is a simple equilibrium,
then νj =

2πi
P ′(zj)

, and the point zj is a center for the rotated vector field

(3.3) ż = ei arg νjP (z).

Definition 3.4.

(1) If zj is a simple equilibrium point, then the periodic zone of (3.3) around
zj is called the periodic domain of zj . The boundary of the periodic do-
main consists of one or several homoclinic separatrices of (3.3), called the
homoclinic loops of zj .

(2) If zj is a multiple equilibrium point (parabolic equilibrium), then we call
the parabolic domain of zj the union of all the sepal zones of zj in all the
rotated vector fields (see Figure 6(b))

(3.4) ż = eiβP (z), β ∈ R.

The boundary of the parabolic domain consists of one or several homoclinic
separatrices of (3.4) with different β’s, called the homoclinic loops of zj .

In a generic situation the periodic domain of a simple equilibrium has a single
end at ∞ of sectoral opening π

k and is bounded by a single homoclinic loop.

Definition 3.5 (Cuts).

(1) Let zj be a simple equilibrium, and νj �= 0 its period. We define a cut Dj

between zj and ∞ as a separatrix of the vector field

(3.5) ż = ei(arg νj−π
2 )P (z)

that is contained inside the periodic zone. If the zone has only one end at
∞, then the cut Dj is uniquely defined, otherwise there is one possible cut
Dj for each end at ∞ of the periodic domain and one of them is chosen.

(2) Let zj be a multiple equilibrium. We define a cut Dj between zj and ∞
as a separatrix of the vector field (3.4) for some chosen β incoming to zj
that is contained inside the parabolic domain. In the case of the vector
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(a) (b)

Figure 4. The periodic domains of the same vector field with six
simple equilibria (k = 5), two of which are centers. The boundary
of the disk corresponds to a polar blow-up of the pole z = ∞, and
the position of the 2k separatrices is marked. Different choices of
the cuts (red dotted lines) lead to different periodgons (bottom
figure).

field (1.1), the period νj of the parabolic point will be always nonzero (it
is given in (6.1)), and we will choose β = arg νj − π

2 (see Figure 6(b)).

Lemma 3.6. The periodic and parabolic domains of different equilibria are disjoint.
Therefore, the cuts are pairwise disjoint. The homoclinic loops of different zj are
either disjoint or they agree up to orientation.

Proof. The second statement follows from the first, which is a simple fact from the
theory of rotated vector fields [Du, Theorem 4]. Indeed, if for example the periodic
domain of a point zj would intersect the periodic domain of another point zl, then
some periodic trajectory of (3.3) around zj would intersect a periodic trajectory of
zl. But the vector field (3.3) has a constant angle (equal to arg νl − arg νj) with
the periodic trajectories of zl, which are compact and closed, therefore none of
the trajectories of (3.3) can cross a periodic trajectory of zl twice (similarly, if a
parabolic domain is involved). �

Definition 3.7 (Periodgon). LetDj be the selected cuts of the equilibria zj labeled
in their counterclockwise order by j ∈ Zk+1.

(1) We define a period curve as the lifting on the Riemann surface of t(z) (3.1)
of the curve that follows the homoclinic loops that form the boundaries of
the domains of zk, zk−1, . . . , z0. Since the sum of all the periods vanishes,
the period curve is a closed negatively oriented curve. If all the equilib-
ria are simple, then the projection of the period curve in the t-plane is a
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(a) The parabolic (in the cen-
ter) and periodic domains of
the singular points and their
cuts

(b) The associated periodgon

Figure 5. The “side” corresponding to the period νj (the dotted
arrow in (b)) of a multiple equilibrium zj may be the sum of several
consecutive segments between other vertices of the periodgon, not
necessarily aligned.

(possibly self-intersecting) polygonal curve with edges νk, νk−1, . . . , ν0 and
vertices νk, νk + νk−1, . . . , νk + . . . + ν0 = 0. If a multiple equilibrium
zj is involved, depending on the number of homoclinic loops bounding the
parabolic domain, then the “side” corresponding to the period νj may be
the sum of several consecutive segments between other vertices of the pe-
riodgon, not necessarily aligned (see Figure 5). In the case of system (1.1)
with a double equilibrium, ε �= 0, the parabolic domain will be bounded by
a single homoclinic loop and the corresponding side of the periodgon will
consist of a single segment only (see Figure 6(b) and (c)).

(2) We define a periodgon of P (z) as the interior of a period curve on the
Riemann surface.

Proposition 3.8. The periodgon is well-defined and compact. The map z �→ t(z)
is an isomorphism between the complement in C of the union of the closures of the
periodic and parabolic domains of all equilibria zj and the interior of the periodgon.
The vertices of the periodgon are all distinct on the Riemann surface.

Proof. The curve following along the boundaries of the periodic/parabolic domains
one-by-one in positive direction is retractable, hence the corresponding period curve
on the Riemann surface of t(z) is closed. The different points z = ∞ around the
path of this curve correspond to the vertices of the periodgon. The complement
of the union of all the domains is bounded by this curve which encircles it in the
negative direction. Since the point z = ∞ is a pole of order k− 1 ≥ 0 of the vector
field and can be reached in finite time, the periodgon is compact. �

Remark 3.9.

(1) If some equilibrium point has more than one end at ∞, several periodgons
may be defined with different order of sides depending on how the cuts are
chosen (see Figure 4).
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(a) The vector field (2.5)
with a parabolic point for
k = 4 and (s, θ, α) =

( 1
2
, 0, 0)

(b) The parabolic and pe-
riodic domains of the sin-
gular points and their cuts

(c) The associated
periodgon and the
star domain

Figure 6. In the case of the vector field (2.5) with (s, θ, α) =
( 12 , 0, 0), the parabolic domain (b) of the parabolic point is the
union of the two sepal zones of the rotated vector field with α = π

2k .

(2) If a homoclinic loop on the boundary of the periodic/parabolic domain of
one point lies also on the boundary of the periodic domain of another point
(except with opposite orientation), then this loop is followed both forwards
and backwards (see Figure 4).

(3) The counterclockwise circular order of the cuts Dj induces a circular order
on the singular points zj . This circular order may be different from the
one given by the arguments of the zj . In our 2-dimensional family (1.1)
we conjecture that these orders are the same. This conjecture is suggested
by numerical simulations and we prove the conjecture in several regions of
parameter space.

Proposition 3.10. If the periodic domain of some simple equilibrium point zj has
mj ≥ 1 ends at ∞, then there are mj − 1 other vertices lying on the side νj of the
periodgon, dividing it into mj segments, corresponding to the mj homoclinic loops
on the boundary of the periodic domain (see Figure 4). The mj different choices
for the cut from zj correspond to different cyclic permutations of the mj segments.

Proof. The complement of the periodic domain of zj has mj components, each
bounded by one homoclinic loop. The homoclinic loops of the equilibrium points
in each component are obviously contained inside the corresponding component,
and the curve consisting of these loops and of the homoclinic loops of zj bounding
the component is retractable. Therefore the sides of the periodgon corresponding
to the points in each component of the complement are successive and their sum
is equal to the opposite of the time along the corresponding homoclinic loop of zj ,
which is a positive fraction of the period νj . �

Proposition 3.11. If all the equilibria are simple, then the sum of the interior
angles in the periodgon is equal to (k−1)π, i.e., the turning number of the periodgon
is equal to -1 (the orientation of the periodgon is negative). Note that the angles
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Figure 7. Example of a star domain and its periodgon on the
Riemann surface of t(z) with a few sample trajectories of the vector
field (in color).

are considered on the Riemann surface of t(z) and therefore we cannot exclude that
some may be greater than 2π.

Proof. Suppose first that we are in the generic situation where the periodic domain
of each singularity has a single end at ∞, hence with a sectoral opening π

k . The
interior angle of the periodgon between νj and νj+1 is then equal to k times the
sectoral opening of the complementary region between the two ends of the periodic
domains. The sum of the sectoral openings of the complementary regions is 2π −
(k + 1)πk = k−1

k π. The periodgon in a nongeneric situation is a degenerate limit of
generic ones, and the result remains true under the right inerpretation of what the
interior angles are. �
Definition 3.12 (Star domain). The cut plane C�

⋃
j Dj is simply connected, and

we define the star domain as the closure of its connected image on the Riemann
surface of t(z) (3.1).

Proposition 3.13. Suppose that all the equilibria are simple; then the star domain
is obtained by gluing to each side νj of the periodgon a perpendicular infinite half-
strip of width |νj | on the exterior of the periodgon, i.e., on the left side of νj (see
Figure 7). The cut plane C�

⋃
j Dj is isomorphic through the map z �→ t(z) to the

interior of the star domain and each cut Dj is mapped to the pair of rays bounding
the half-strip in the star domain attached to a side νj of the periodgon, which are
identified by the period shift by νj.

Proof. The cut plane is connected and simply connected and the reparametrization
by the time t(z) is well defined on it with values on its Riemann surface. Because
the Riemann surface of the time is ramified at the images of ∞, the branches of the
star do not intersect. The cut plane is the union of the open cut periodic domains of
the equilibria, of the homoclinic loops and of the open complement. The homoclinic
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Figure 8. The regular periodgon and the associated star domain
when ε1 = 0.

loops are mapped to the period curve and the open complement is mapped onto
the interior of the periodgon (Proposition 3.8). The images of the cuts Dj are two
parallel rays at a distance |νj | from each other starting from the two ends of the
side νj of the periodgon and perpendicular to it, and the image of the cut periodic
domain of zj is the half-strip in between the two rays. �
Example 3.14 ([CR]). Consider P (z) = zk+1 + ε0, ε0 �= 0, whose roots zj =

e
2πij
k+1 z0, z0 = (−ε0)

1
k+1 are located at the vertices of a regular (k + 1)-gon. The

period of zj is νj = − 2πi
(k+1)ε0

zj , and the line zjR is invariant for the vector field

(3.5). The associated cuts are the straight segments Dj = [zj ,+∞ei arg zj ], and the
periodgon is a regular (k + 1)-gon with sides νk, . . . , ν0 and vertices at νk, νk +
νk−1, . . . , νk + . . .+ ν0 = 0 (see Figure 8).

Proposition 3.15. The vector field ż = P (z) posseses a homoclinic separatrix if
and only if two vertices of the periodgon lie on the same horizontal line and the
straight segment between them lies inside the closed periodgon (sides included).

Proof. A homoclinic separatrix of the vector field corresponds in the rectifying
chart t(z) to a horizontal segment joining two images of z = ∞. By the same
reasoning as in the proof of Lemma 3.6, a homoclinic separatrix cannot enter a pe-
riodic/parabolic domain of any point. Therefore it is either a side of the periodgon,
or it is contained in the complement of the closure of all the periodic domains and
hence some diagonal of the periodgon. �
3.1.1. Family of rotated vector fields. Given a vector field ż = P (z), it is natural to
consider the associated family of rotated vector fields (3.4).

Remark 3.16. For our family ż = Pε(z), with ε given in (2.6), which we denote
as ż = P(s,θ,α)(z) (2.5), the conjugate family through z �→ Z = eiαz (with same

periodgon!) becomes Ż = e−ikαP(s,θ,0)(Z), i.e., of the form (3.4) with β = −kα.

The great advantage of the star domain description of the vector field over the
zone decomposition of Douady–Sentenac is that, with varying β (or α in the case of
(2.5)) the shape of the star domain stays the same while the domain rotates by β
(or −kα). This allows visualizing all the homoclinic orbits that arise in the family
(3.4) as segments of argument −β+πZ joining pairs of vertices inside the periodgon
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of (3.4) for β = 0. In particular, if the periodgon is strictly convex (all the interior
angles are less than π), then there are exactly k(k + 1) homoclinic separatrices
that occur in the family for β ∈ [0, 2π), while there are less if the periodgon is not
strictly convex.

3.1.2. Bifurcations of the shape of the periodgon. When P = Pε depends contin-
uously on a parameter ε, we have a uniform description of the dynamics on any
domain in parameter space where the star domain can be continuously defined.
(Such a domain cannot contain ε = 0, but this is no problem because of the conical
structure of the family.) We define the bifurcation locus of the periodgon (and hence
of the star domain) as the set of parameters where the shape of the star domain
changes discontinuously.

Proposition 3.17. The bifurcation locus of the periodgon of ż = Pε(z) is the
union Σ = ΣΔ ∪ Σ0, where

(1) ΣΔ is the discriminantal locus, i.e., the set of ε for which Pε(z) has a
multiple root;

(2) Σ0 is the set of ε /∈ ΣΔ for which one of the roots of Pε(z) has multiple
homoclinic loops.

When ε ∈ Σ0 there are several periodgons as described in Proposition 3.10.

Proof. The periods νj depend continuously on the parameter. A bifurcation of the
periodgon occurs when either νj → ∞, i.e., when the discriminant vanishes, or
when the order of the sides of the periodgon changes. This happens either when
ε ∈ ΣΔ, or when the period domain of some equilibrium zj has several ends at ∞,
yielding several possibilities for the cut Dj . �

4. The bifurcation diagram of (1.1)

4.1. The slit domain. From now on, let ż = Pε(z) be the vector field (1.1), and
let (s, θ, α) be the reduced parameters on the real 3-sphere S3 corresponding to
‖ε‖ = 1 (see Section 2.4).

We conjecture that the star domain depends continuously on the parameters
provided we slit S3 along the segments between s = 0 and s = 1

2 , θ ∈ 2π
k Z. This

conjecture will be further discussed below.

Conjecture 4.1. The bifurcation locus of the periodgon of the family (2.5) with
parameters (s, θ, α) is the set

Σ = {(s, θ, α) : s ∈ [0, 1
2 ], θ ∈ π

kZ}.

In case the conjecture were not true, the shape of the periodgon and star domain
could undergo bifurcations elsewhere. Then, it would suffice to split the parameter
space into a union of regions on which the star domain is continuously defined, and
then to describe the dynamics over each region.

Definition 4.2 (The slit domain). Let s ∈ [0, 1], θ ∈ [0, 2π], α ∈ [0, 2π] be the
coordinates (2.6) covering the parameter space restricted on the sphere ‖ε‖ = 1.
In order to get a uniform description of the periodgon, we need to cut the disk
|seiθ| ≤ 1 in radial coordinates (s, θ) along the rays s ∈ [0, 1/2], θ = 2mπ

k (see
Figure 9). And we will consider the closure D of this slit disk: the slits will be
covered twice depending on whether we approach them with θ > 2mπ

k or θ < 2mπ
k .
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Figure 9. The slit domain D in (s, θ)-space.

On each of the slits s ∈ [0, 1/2], θ = 2m
k π±, we define the periodgon and the star

domain by taking its limit.

4.2. The bifurcation diagram of ż = Pε(z). We can now characterize homo-
clinic separatrices of the vector field as horizontal segments between vertices in the
periodgon, and characterize all the bifurcations of the separatrices.

Theorem 4.3. The bifurcation diagram of the vector field (1.1) is formed of

(1) Codimension 1 bifurcations: each bifurcation of codimension 1 consists of
the coalescence of one attracting and one repelling separatrix of ∞ in a
homoclinic loop.

(2) Codimension 2 bifurcations: these are
(a) Bifurcations of parabolic points when s = 1

2 and θ = 2�π
k : the bifurca-

tion is of codimension 2 when α �= (2m+1)π
2k . In this case three adjacent

separatrices of ∞ end in the parabolic point (see Figures 10 (a) and
(c) and 21).

(b) Simultaneous occurrence of two homoclinic loops: we call them double
homoclinic loops (see Figure 11). Such loops occur in particular when
two segments joining vertices of the periodgon are parallel or when
three vertices of the periodgon are aligned.

(c) When the system is reversible, i.e., θ = �π
k , α = (2m+1)π

2k , and s �= 0,
simultaneous occurrence of N ≥ 2 homoclinic loops. When � is even,
then N = 
k

2 � + 1 for s ∈ (0, 12 ) and N = 
k
2 � for s ∈ ( 12 , 1]. When �

is odd, then N = 
k+1
2 � (see Figures 12, 13, and 14).

(d) Simultaneous occurrence of k + 1 centers separated by k homoclinic

loops when s = 0 and α = (2m+1)π
2k .

(e) For k ≥ 5, homoclinic loops appearing at a potential bifurcation of
the periodgon other then the one on the slits, described precisely in
Section 6.6. These will however not occur under the Conjecture 4.1.

(3) Codimension 3 bifurcations of parabolic point when s = 1
2 , θ = 2�π

k , and

α = (2m+1)π
2k . In that case only two adjacent separatrices of ∞ end in the

parabolic point and
⌊
k
2

⌋
homoclinic separatrices occur.

(4) Codimension 4 bifurcations
(a) The bifurcation at ε = 0.
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(a) (b) α = π
2k

(c) α = π
2k

Figure 10. For k = 4, the bifurcation of the separatrices at the
parabolic point when α = π

2k .

(a) Nonadjacent homoclinic loops (b) Adjacent homoclinic loops

Figure 11. Bifurcations of double homoclinic loops: the bifur-
cation diagram includes other homoclinic loops when the two ho-
moclinic loops are adjacent. Case (a) occurs when two segments
joining vertices of the periodgon are parallel, while case (b) occurs
when three vertices of the periodgon are aligned.

The boundaries of the surfaces of homoclinic bifurcations inside the compact pa-
rameter space are formed of curves of codimension 2 bifurcations of parabolic point
and curves of double homoclinic loops, as well as some points of codimension 3
bifurcations.

Proof. Bifurcations of the real phase portrait of the vector field (2.5) happen
through either an occurrence of a homoclinic orbit (codimension 1) or multiple
homoclinic orbits (codimension ≥ 2), or through an occurrence of a multiple equi-
librium (codimension 2), or a combination of both (codimension ≥ 3). Propo-
sition 3.15 gives an easy description of the homoclinic loops: a homoclinic loop
occurs precisely when two vertices of the periodgon lie on a horizontal line and
the corresponding segment is contained inside the periodgon (which may be non-
convex). Multiple homoclinic loops correspond to multiple horizontal segments
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(a) s = 0 (b) s close to 0 (c) s = 1

Figure 12. Simultaneous homoclinic loops for k = 6, θ = −π
6 ,

and α = π
12 .

(a) s = 0 (b) s close to 0 (c) 0 < s < 1
2

(d) 1
2
< s < 1 (e) s = 1

Figure 13. Simultaneous homoclinic loops for k = 6, θ = 0, and
α = π

12 . Note the passage through the parabolic point between (c)
and (d).
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(a) θ = 0−, s < 1
2

(b) θ = 0, s > 1
2

(c) θ = π
k

(d) θ = 0−, s < 1
2

(e) θ = 0, s > 1
2

(f) θ = π
k

Figure 14. The periodgon for α = 0, θ = πl
k , k odd, resp., even.

After a rotation by (2m+1)π
2 , i.e., for α = (2m+1)π

2k , the fat red lines
will correspond to homoclinic orbits. Cases (a) and (d) are for
(s, θ) below the slit.

between vertices of the periodgon. The shape of the periodgon is completely de-
termined by s and θ and the periodgon rotates by −kα when α varies. Therefore
the bifurcations of homoclinic loops are completely determined by the shape of the
periodgon. Because of the symmetries it is sufficient to describe the periodgon for
α = 0 and θ ∈ [−π

k , 0]. The exact shape of the periodgon is still conjectural for
some regions in parameter space. While we conjecture that its projection on C

has no self-intersection on the interior of the slit domain in parameter space, we
could only prove in Section 6 that at most two kinds of simple self-intersections
can occur, leading to the corresponding codimension 2 bifurcations of case (2)(e).
These bifurcations are precisely described in Section 6.6.

A complete description of the surfaces of homoclinic bifurcations in the case
k = 2 can be found in [R2]. �

5. The regularity of the singular points

In this section we first analyze the position of the singular points during the
transition from (1.2) to (1.3) when s varies in [0, 1] depending on the value of θ. A
natural domain for doing this will be the slit disk |seiθ| ≤ 1. We will then apply
this to the analysis of the regularity of the periodgon in Section 6.

Let z0(s, θ, α), . . . , zk(s, θ, α) be the singular points of (2.5) depending continu-
ously on the parameters, such that for s = 1

zj(1, θ, α) = k
1

k+1 e
iθ+πi(2j−1)

k+1 −iα, j ∈ Zk+1.
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Hence

zj(s, θ − 2π
k , α) = zj+1(s, θ, α).

The following proposition shows that z0(s, θ, α), . . . , zk(s, θ, α) are ordered by their
argument for all (s, θ) from the closure of the slit disk.

Note that, up to a rotation by a β = α + 2�
k π for some � ∈ Z, that is, up to a

transformation (2.1) with A = eiβ, it is sufficient to consider the singular points of
(2.5) with α = 0, θ ∈ [−π

k ,
π
k ]:

(5.1) ż = zk+1 − (k + 1)(1− s)kz + ksk+1eiθ.

After a reflection (z, t) → (z̄, t̄), we can restrict the parameters from the closure of
the slit disk to the following fundamental sector :

(5.2) s ∈ [0, 1] and θ ∈ [−π
k , 0], α = 0.

Proposition 5.1. We consider (5.1) with θ ∈ [−π
k , 0] and s ∈ [0, 1].

(1) The singular points z0(s, θ, 0), . . . , zk+1(s, θ, 0) have distinct arguments for
all s ∈ [0, 1], unless θ = 0, in which case the two roots z0(s, 0, 0) and
z1(s, 0, 0) both have zero argument for s ≤ 1

2 .

(2) If zj(s, θ, 0) /∈ eiθR, then the absolute value of arg(e−iθzj(s, θ, 0)) ∈ (−π, π)
increases monotonically with s.

(3) This implies that

z0(0, θ, 0) = 0 and zj(0, θ, 0) = (k + 1)
1
k e

2πi(j−1)
k , j = 1, . . . , k,

and the roots are caught for all s ∈ [0, 1] in the following disjoint sectors:

arg z0(s, θ, 0) ∈ [ θ−π
k+1 , θ],

arg zj(s, θ, 0) ∈
[
2π(j−1)

k , θ+(2j−1)π
k+1

]
for 1 ≤ j ≤ k+1

2 ,

arg zj(s, θ, 0) ∈
[
θ+(2j−1)π

k+1 , 2π(j−1)
k

]
for k+2

2 ≤ j ≤ k.

(4) For θ = 0, the two roots z0(s, 0, 0) and z1(s, 0, 0) are real for s ∈ [0, 1
2 ]

and merge for s = 1
2 . For s > 1

2 , they then split apart in the imaginary
direction.

Proof.

(1) Let us suppose that the distinct points zj(s, θ, 0) and z�(s, θ, 0) have the
same argument for some value s: zj(s, θ, 0) = rje

iφ and z�(s, θ, 0) = r�e
iφ.

Then (rk+1
j − rk+1

� )eikφ − (k + 1)(1− s)k(rj − rk) = 0. Hence, necessarily

eikφ = 1. Replacing in ż|z=zj(s,θ,0) = 0 yields (rk+1
j −(k+1)(1−s)krj)e

iφ+

ksk+1eiθ = 0, and hence eiθ = ±eiφ = ±1. Since θ ∈ [−π/k, 0], then
necessarily θ = 0. Hence φ = 0, π if k is even and φ = 0 if k is odd. Using
Descartes’ rule of signs, there are at most three real roots. There is one
negative root for k even and none for k odd. As for the positive roots, there
are two (resp., zero) positive roots for s ≤ 1

2 (resp., s > 1
2 ).

(2) Denote P (z) :=zk+1−(k+1)(1−s)kz+ksk+1eiθ. Differentiating P (zj(s, θ, 0))
= 0 with respect to s gives

(5.3) λj
dzj
ds

+ k(k + 1)
(
(1− s)k−1zj + skeiθ

)
= 0,
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where

(5.4) λj = P ′(zj) = (k+1)
(
zkj −(1−s)k

)
= k(k+1)

(
(1−s)k−sk+1 eiθ

zj

)
if zj �= 0.

Let xj = e−iθzj ; then

dxj

ds
·
(

sk+1

xj
− (1− s)k

)
= (1− s)k−1xj + sk

and

(1− s)
dxj

ds
= −xj +

skxj

sk+1 − (1− s)kxj

= −xj + skxj
sk+1 − (1− s)kx̄j

|sk+1 − (1− s)kxj |2
.

(5.5)

Therefore arg xj increases with s if and only if �(xj) > 0, i.e., if 0 <
arg xj < π, and the argument arg xj decreases if −π < arg xj < 0, and
stays constant if xj ∈ R.

(3) Follows from (2).
(4) For θ = 0, s = 1

2 , zj(
1
2 , 0, 0) =

1
2 , j = 0, 1, and the vector field (5.3) has a

parabolic singularity at z = 1
2 . Letting w = z − 1

2 and s′ = s − 1
2 yields

ẇ = k(k+1)
2k

w2 + k(k+1)
2k−1 s′ +O(s′w) +O(w3) +O(s′

2
), yielding that the two

singular points split in the real (resp., imaginary) direction when s′ < 0
(resp., s′ > 0). �

Lemma 5.2. Let zj(s, θ, 0) and z�(s, θ, 0) be two distinct singular points of (5.1).
Then, for s ∈ (0, 1), |zj | = |z�| if and only if eikθ ∈ R and zj and z� are symmetric
with respect to the line eiθR.

Proof. If |zj | = |z�| and zj and z� are roots of (5.1), then |(k + 1)(1 − s)kzj −
ksk+1eiθ| = |(k + 1)(1− s)kz� − ksk+1eiθ|. If s(1− s) �= 0, then this means that zj

and z� lie on an intersection of two circles with centers at 0 and ksk+1eiθ

(k+1)(1−s)k
, whence

they are symmetric with respect to the line eiθR. Let xj = e−iθzj , x� = e−iθz�,

x� = x̄j ; then eikθ(xk+1
j − x̄k+1

j ) = (k+1)(1−s)k(xj− x̄j), from which eikθ ∈ R. �

Corollary 5.3. The order of magnitude of the |zj | cannot change on the interior
of the fundamental sector (5.2).

Proposition 5.4.

(1) Let �θ(z) := �(e−iθz) be the signed projection of a point z on the oriented
line eiθR. For (s, θ) in the interior of the slit disk,

|zj(s, θ, 0)| ≤ |z�(s, θ, 0)| if and only if �θ(zj(1, θ, 0)) ≥ �θ(zl(1, θ, 0)).

(2) The magnitude |zj(s, θ, 0)| decreases with θ if �θ(zj) > 0 and increases with
θ if �θ(zj) < 0.

(3) In particular, the order of |zj | by their magnitude on the interior of the
fundamental sector θ ∈ (−π

k , 0), is the same given by

|z0(s,−π
k , α)| < |z0(s, θ, α)| < |z0(s, 0, α)|

≤ |z1(s, 0, α)| < |z1(s, θ, α)| < |z1(s,−π
k , α)|

= |zk(s,−π
k , α)| < |zk(s, θ, α)| < |zk(s, 0, α)|

= |z2(s, 0, α)| < |z2(s, θ, α)| < |z2(s,−π
k , α)|

= |zk−1(s,−π
k , α)| < . . . .
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Proof.

(1) By Lemma 5.2 the order of |zj(s, θ, 0)| by their magnitude for θ /∈ π
kZ is

the same for all s ∈ (0, 1), and can be computed from the derivatives of zj
with respect to s at s = 1 where all |zj | are equal. From (5.5)

(1− s)
d|zj |2
ds

+ |zj |2 = 2sk|zj |2
sk+1 − (1− s)k�θ(zj)

|sk+1 − (1− s)ke−iθzj |2

=
2|zj |2
sk+2

[
sk+1 + (1− s)k�θ(zj) + O((1− s)2k)

]
,

and the statement follows. Finally note that it holds also for θ = 2mπ
k ,

s ∈ ( 12 , 1), and for θ = (2m−1)π
k , s ∈ (0, 1).

(2) The derivative of xj = e−iθzj with respect to θ is

(5.6)
dxj

dθ
= −ixj −

ixjs
k+1

(k + 1)[(1− s)kxj − sk+1]
,

therefore

d|xj |2
dθ

= −2|xj |2
sk+1(1− s)k�xj

(k + 1)|(1− s)kxj − sk+1|2 . �

6. The regularity of the periodgon

6.1. The ad hoc periodgon. The homoclinic loops of each simple singular point
(see Section 3.1) depend continuously on the parameter and can change their loca-
tion only when the parameter crosses the bifurcation locus Σ (see Proposition 3.17).
In terms of the periodgon, the crossing of Σ corresponds to either a vertex of the
periodgon crossing an edge, or two sides becoming infinite. As studied in [CR], we
know that for s = 1 the edges of the periodgon are given in the clockwise order
by νk, νk−1, . . . , ν1, ν0 (see Example 3.14). We will consider the polygon formed
this way for all (s, θ) in the interior of the slit disk, and we will call it the ad hoc
periodgon. If we show that this polygon has no self-intersection, then this will mean
that it is indeed the intrinsic periodgon defined in Definition 3.7. We will be able
to show that this is the case on the boundary of the slit disk (the proof is only
numerical along the slits s ∈ [0, 1

2 ], θ = 2πm
k ). Hence if the ad hoc periodgon were

to have self-intersection, then this would only occur in isolated islands.

Conjecture 6.1. It it conjectured that the ad hoc periodgon has no self-intersection
when s �= 0 and (s, θ) /∈ (0, 12 ) ×

2π
k Z. This is equivalent to Conjecture 4.1. In

particular this means that the (intrinsic) periodgon of Definition 3.7 is the same as
the ad hoc periodgon.

Proposition 6.2. The intrinsic periodgon and ad hoc periodgon (see Figure 28)
have the following properties:

(1) For fixed s and θ, when eiα rotates, the periodgon keeps a fixed shape and
rotates at rate eikα.

(2) It is a regular (k + 1)-gon when s = 1 (see Figures 15(e) and 16(e)).
(3) It is degenerate when s = 0, with k equal sides in the direction eikαiR+ and

one side (k times larger) in the opposite direction (See Figures 15(a) and
16(a)).

(4) When θ = 2m−1
k π, the periodgon is symmetric with respect to the axis eikαR

(see Figure 15), which passes through the center of the side νm.
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(5) When θ = 2m
k π and s ∈ [ 12 , 1], the periodgon is symmetric with respect

to the axis eikαR (see Figure 16(d)), which passes through the vertex in
between the sides νm and νm+1, m ∈ Zk+1.

(6) Its only self-intersection on θ = 2mπ
k and s ∈ (0, 12 ) comes from the align-

ment of νm and νm+1.
On the slit, s ∈ [0, 1

2 ) and θ = 2m
k π±, the periodgon has two consec-

utive sides νm(s, 2mk π−, α) = νm+1(s,
2m
k π+, α) and νm+1(s,

2m
k π−, α) =

νm(s, 2mk π+, α), m ∈ Zk+1, aligned and of opposite orientation, i.e., one is
a part of the other (see Figure 16(b)) and the periodgon has no other self-
intersection. There are two different configurations depending on which
side of the slit we are. The length of these consecutive sides becomes in-

finite when s → 1
2

−
, however their sum νm + νm+1 remains bounded and

continuous, and is equal at the limit to (6.1). The rest of the periodgon,
consisting of the consecutive sides νm−1, νm−2, . . . , νm−k, m ∈ Zk+1, is
symmetric with respect to the axis eikαR.

(7) For s = 1
2 and θ = 0, the degenerate ad hoc periodgon has one side less,

the sides νm, νm+1 being replaced by

(6.1) νpar = Reszm=zm+1

2πi

Pε(z)
= −eikα

4πi(k − 1)

3k(k + 1)
2k,

and it has no self-intersection. The periodgon is symmetric with respect to
the axis eikαR, and all its sides except for νpar have positive projection on
eikα+

π
2 R+ (Figure 16(c)).

Proof.

(1) This comes from Remark 3.16.
(2) See Example 3.14.
(3) When α = 0, P ′

ε(zj) = (k + 1)k for j �= 0 and P ′
ε(0) = −(k + 1).

(4) The symmetry of the ad hoc periodgon comes from the symmetry of the

vector field with respect to the invariant line e
2m−1

k πiR for θ = 2m−1
k π, α =

0 (see Proposition 2.1). The intrinsic periodgon and the ad hoc periodgon
are the same for these parameters: indeed they are the same for s = 1
and if there were a bifurcation of the intrinsic periodgon, it would happen
through one of its vertices crossing its side (Proposition 3.10), however this
cannot happen because the symmetry would force this to happen through
a merging of vertices which is impossible (Proposition 3.8).

(5) Same kind of argument as in the previous case.
(6) When s ∈ [0, 1

2 ), θ = 0±, and α = 0, Pε has two real positive roots 0 ≤
z0(s, 0

−, 0) = z1(s, 0
+, 0) < 1

2 < z1(s, 0
−, 0) = z0(s, 0

+, 0) with periods
oriented in the opposite direction. The rest of the ad hoc periodgon is
symmetric because the vector field is. The only way that the intrinsic
periodgon could bifurcate and differ from the ad hoc periodgon would be
by changing the order of the two periods ν0(s, 0

−, 0) = ν1(s, 0
+, 0) and

ν1(s, 0
−, 0) = ν0(s, 0

+, 0). In fact the periodic domain of ν0(s, 0
−, 0) =

ν1(s, 0
+, 0) has two ends at ∞ and the choice where the cut is made is such

that it would depend continuously on θ → 0±.
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(a)s=0 (b) (c) (d) (e) s=1

Figure 15. The periodgon for k = 4, θ = π
k , α = 0, and increasing

values of s ∈ [0, 1]. The ad hoc periodgon is symmetric.

(a) s=0 (b) 0<s< 1
2

(c) s= 1
2

(d) 1
2
< s<1 (e) s=1

Figure 16. The periodgon for k = 4, θ = 0−, α = 0, and increas-
ing values of s ∈ [0, 1]. The ad hoc periodgon is degenerate with
one side less for s = 1

2 . For s ∈ (0, 12 ), the periodgons for θ = 0−

and θ = 0+ on the two sides of the slit are symmetric one to the
other with respect to the real axis.

(7) For s = 1
2 , θ = 0, and α = 0, all zj , j > 1 are repelling. Indeed, z0 =

z1 = 1
2 , yielding by Proposition 5.4 that all zj , j ≥ 2, satisfy |zj | > 1

2 . The

corresponding eigenvalues λj = k(k + 1)
(

1
2k

− 1
2k+1zj

)
then have positive

real part. The imaginary part of λj has the inverse sign of that of zj .
This yields that for the zj in the upper (resp., lower) half-plane, then the
corresponding period is oriented to the inner of the first (resp., second
quadrant). If zj ∈ R

−, then its period is in iR+. This prevents any self-
intersection.

The period νpar = 2πiRes
z= eiα

2

dz
P

( 1
2
,0,α)

(z) is calculated using the factor-

ization (6.5). �
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(a) k = 2 (b) k = 3 (c) k = 4 (d) k ≥ 5

Figure 17. A subdomain of D where the ad hoc periodgon is
nonconvex. (It is conjectured that the ad hoc periodgon is convex
elsewhere.)

6.2. Nonconvexity of the periodgon. In the neighborhood of the parabolic
situation (s, θ) = ( 12 ,

2πm
k ), the two very large periods νm and νm+1, m ∈ Zk+1,

can have arbitrary arguments. Hence, there is no hope that the ad hoc periodgon
would be convex.

Proposition 6.3. For k = 2, the ad hoc periodgon is always convex. For k = 3, 4,
the ad hoc periodgon is nonconvex on some flower shape subdomain of D, with petals
around each slit of sectoral opening π

3 for k = 3, and π
2 for k = 4, as in Figure 17

(b),(c), while it is convex on the rays θ = (2m+1)π
k , s ∈ (0, 1]. For k ≥ 5 the ad hoc

periodgon is nonconvex on some open set containing s < s∗ for some s∗ > 0 as in
Figure 17 (d).

Proof. We can suppose that α = 0, θ ∈ [−π
k , 0]. The eigenvalues at zj , j �= 0, are

given by

(6.2) λj = P ′
ε(zj) = k(k + 1)

[
(1− s)k − sk+1

xj

]
,

where xj = e−iθzj . The vector field in the x-variable is

(6.3) ẋ = e−ikθx− (k + 1)(1− s)kx+ ksk+1.

For k = 2, the ad hoc periodgon is a triangle.
For k = 3, 4, the ad hoc periodgon is convex on s = 1 and depends continuously

on decreasing s. Let us show that it is also convex on the ray θ = −π
k . It suffices

to prove that no two adjacent sides of the ad hoc periodgon can become aligned
for some value of s ∈ (0, 1). For k = 3, (6.3) has two real singular points, x0 ∈ R

+,
x2 ∈ R− and two complex conjugate ones x1, x3. The conclusion follows from the
fact that λ0, λ2 ∈ R and λ1, λ3 /∈ R. For k = 4, (6.3) has five singular points
x0, . . . , x4 with increasing arguments, x0 ∈ R+, x1 = x4, and x2 = x3. From
Proposition 5.4 |x0| < |x1| = |x4| < |x2| = |x3|. Since λ0 ∈ R while λ1 = λ4, λ2 =
λ3 /∈ R, and �λ2 = �λ3 < 0, it suffices to show that λ1, λ2 cannot be aligned.

But
∣∣∣ sk+1

x1

∣∣∣ > ∣∣∣ sk+1

x2

∣∣∣ and �x1 > 0, �x2 < 0, therefore the eigenvalues λ1, λ2 cannot

indeed be aligned (see Figure 18).
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Figure 18. For k = 4, the eigenvalues λ1 and λ2 are never aligned.

Let us show that for k ≥ 5 and small s the ad hoc periodgon is nonconvex. If s
is infinitesimally small, then for j, l �= 0

arg λj > arg λl ⇔ either �(−1
xj

) > �(−1
xl

),

or �(−1
xj

) = �(−1
xl

) �= 0, arg(−1
xj

) > arg(−1
xl
),

⇔ either �(xj) > �(xl),

or �(xj) = �(xl) �= 0, arg(xj) < arg(xl),

(6.4)

using that |xj | ∼ |xl|, where the arguments are taken in (−π, π). In particular, if
k ≥ 5, then �(x2) > �(x1) and arg λ1 < arg λ2, hence arg ν1 > arg ν2, and the ad
hoc periodgon is nonconvex.

The same is true if k = 4 and θ ∈ (−π
4 , 0], and if k = 3 and θ ∈ (−π

6 , 0]. �

Conjecture 6.4. The only region of nonconvexity of the ad hoc periodgon is that
described in Proposition 6.3 and Figure 17.

6.3. The parabolic situation. When the discriminant vanishes, the system has
the form

(6.5)
ż = zk+1 − (k + 1)

(
eiα

2

)k
z + k

(
eiα

2

)k+1

=
(
z − eiα

2

)2(
zk−1 + 2zk−2 eiα

2 + . . .+ k
(
eiα

2

)k−1)
.

The position of the singular points is given by the image through a rotation of the
position of the singular points of the vector field

(6.6) ż = zk+1 − (k + 1) 1
2k
z + k 1

2k+1 .

Remark 6.5. There is numerical evidence that the periodgon is convex at the par-
abolic situation for s = 1

2 and θ = 0 (see Figure 19).

Proposition 6.6. For α ∈
(

(2m−1)π
2k , (2m+1)π

2k

)
, m ∈ Z2k, the sepal zones of the

parabolic point cover two neighboring sectors (ends) at infinity corresponding to

arg z ∈
(

(m−1)π
k , mπ

k

)
and arg z ∈

(
mπ
k , (m+1)π

k

)
(see Figure 21). This changes

when α ∈ π
2k+

π
kZ where the system is reversible (see Figure 21(i)). This bifurcation

is located on the adherence of (nonparabolic) homoclinic loop bifurcations.

Proof. It suffices to start at α = 0. There the system is symmetric and the real
line is invariant with the parabolic point at z = 1

2 being the only singular point on

R+. The half-line {z ∈ R : z > 1
2} is one separatrix from the parabolic point.
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(a) k = 4 (b) k = 8 (c) k = 11

Figure 19. Numerical evidence suggests that the periodgon is
convex at the parabolic point.

Figure 20. The star domain in t-space for α = 0 near the para-
bolic situation (s, θ) = ( 12 , 0).

The other singular points are repelling. Indeed they satisfy |zj | > 1
2 , from which

it follows that �(λj) > 0 for j ≥ 2 (see (6.2)). Hence all repelling separatrices
of ∞ have their ω-limit at the parabolic point as in Figure 21(a). At α = π

2k we
get two periodic zones as in Figure 21(i): indeed the system is reversible with the
symmetry axis exp(− πi

2k )R. Since the system is rotational, no other bifurcation can
have occurred in between because of the monotonic movement of the separatrices.
The symmetries are used for the other values of α. �

6.4. Towards the proof of Conjecture 6.1.

Theorem 6.7. For θ ∈ [−π
k , 0], the ad hoc periodgon has no self-intersection in

the following cases:

(1) k = 2 and k = 3;
(2) s small nonzero and θ �= 0;
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(a) α = 0 (b) (c)

(d) (e) (f)

(g) (h) (i) α = π
2k

Figure 21. The system (6.5) for k = 4 and increasing α in [0, π/2k].

(3) s is sufficiently large so that �θzj(s, θ, 0) ≤ sk+1

(1−s)k
for all j: in that case

the ad hoc periodgon is convex;

(4) on an open neighborhood of θ = π(2m+1)
k , s ∈ (0, 1); and of θ = 2mπ

k ,

s ∈ [ 12 , 1) in the slit disk (see Figure 20).

Proof.

(1) For k = 2, the ad hoc periodgon is a triangle. The case k = 3 is treated in
Lemma 6.8.

(2) This case follows from the values of the
d arg νj

ds = −d arg λj

ds near s = 0
using the formula in Proposition 6.12 below. Indeed, near s = 0, then

x0 = k
k+1

sk+1

(1−s)k
+ O(s(k+1)2) and therefore d arg ν0

ds = O(sk(k+1)−1), while

xj = (k+1)
1
k e2πi

j−1
k −iθ +O(s), which yields

d arg νj

ds = −sk(k+1)−
2
k�xj +

O(sk+1) = −sk(k + 1)−
1
k sin(2π j−1

k − θ) + O(sk+1). Hence the νj move
in the first (resp., second quadrant) when �xj > 0 (resp., �xj < 0). The
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result follows since the growth of variation of | arg(νj)| for j > 0 is much
larger than of | arg(ν0)|.

(3) We know that for s = 1 the periodgon and the ad hoc periodgon agree
and are convex. We show that this stays true also, when (s, θ) is in the
same connected component as the set s = 1 of the parameter region where

�θzj(s, θ, 0) < sk+1

(1−s)k
for all j. Indeed, in order to break convexity two

consecutive eigenvalues λj and λj+1 would have to become aligned, either
in opposite directions, which is impossible unless j = 0, or in the same
direction. In the second case we can suppose that �λj ,�λj+1 > 0 for
example, i.e., that �xj ,�xj+1 > 0, and we know that |xj | ≤ |xj+1| by
Proposition 5.4, i.e., |λj − k(k + 1)(1 − s)k| ≥ |λj+1 − k(k + 1)(1 − s)k|
using (6.2). If λj+1 were aligned with λj (see Figure 22), this would mean
that the ray λjR

+ would need to have two intersections with the circle
{λ ∈ C : |λ− k(k + 1)(1− s)k| = |λj − k(k+ 1)(1− s)k|}, and λj+1 would
lie on the chord between the two intersections. Therefore λj would have to
lie inside the disk with diameter given by the segment [0, k(k + 1)(1− s)k]
(the blue disk in Figure 22), namely {λ ∈ C : �( 1λ ) >

1
k(k+1)(1−s)k

}, which
is equivalent to �(xj) >

sk+1

(1−s)k
, a contradiction.

(4) The ad hoc periodgon has no self-intersection on θ = π(2m+1)
k , s ∈ (0, 1)

(resp., θ = 2mπ
k , s ∈ ( 12 , 1)), as was shown in the proof of Proposition 6.2

using the fact that the system is symmetric for α = 0. By continuity
it is true also in an open neighborhood. Near the parabolic bifurcation
θ = 2mπ

k , s = 1
2 , we know that the only self-intersection can come from the

alignment of ν0 and ν1, which happens exactly on the slits. To see this, write

eikθ
(

s
1−s

)k(k+1)
= 1+ δ, δ ∈ (C, 0), near the point of parabolic bifurcation.

Then (s, θ) depend analytically on δ, and denoting X := (1−s)kz
sk+1eiθ

, we have

(1+ δ)Xk+1 − (k+1)X + k = 0, which has two bifurcating roots Xj = 1±√
−2δ

k(k+1)+O(δ), j = 0, 1, depending analytically on
√
δ, that are exchanged

by δ �→ e2πiδ. The associated eigenvalues λj = k(k + 1)(1 − s)k
[
1 − 1

Xj

]
,

j = 0, 1, are aligned if and only if they are both aligned with the vector
Λ := λ0λ1

λ0+λ1
�= 0, which depends analytically on δ, since for δ → 0, 2π

Λ →
νpar �= 0 (6.1). Therefore there is a unique half-curve emanating from
δ = 0 on which the alignment happens, and we already know from the real
symmetry that this curve is the ray δ ∈ R

− (see Figure 20). �

Lemma 6.8. For k = 3 the ad hoc periodgon has no self-intersection outside of
the cuts s ∈ [0, 1

2 ], θ = 2πm
k .

Proof. The ad hoc periodgon has no self-intersection near s = 1. The only way the
ad hoc periodgon could bifurcate to a self-intersection would be by passing through
a situation in which two successive sides are aligned and oriented in opposite direc-
tions.

Suppose that for α = 0 and some s, θ, one has λj , λl ∈ eiβR for a pair of indices
j, l and some β ∈ R. If eiβ ∈ R, then xj , xl ∈ R and therefore eikθ ∈ R. When
eikθ = −1, or when eikθ = 1 and s > 1

2 , we know that in the case k = 3 the
periodgon is convex, therefore there is no self-crossing.



GENERIC 2-PARAMETER PERTURBATIONS 169

Figure 22. The proof of Theorem 6.7: if the eigenvalues λj and
λj+1 are aligned, then one of them must lie in the blue disk.

Hence we now consider the case eiβ /∈ R. Denoting ρ = 1 − sk+1

(1−s)kx
, i.e., λ =

k(k + 1)(1 − s)kρ, which yields x = sk+1

(1−s)k(1−ρ)
, and replacing in Pε(e

iθx) = 0 we

have

(k + 1)(1− ρ)k − k(1− ρ)k+1 − eikθ
(

s
1−s

)k(k+1)
= 0,

i.e.,
k∑

n=1

(−1)nn (k+1)...(k+1−n)
(n+1)! ρn+1 = eikθ

(
s

1−s

)k(k+1) − 1,

which for k = 3 is

(6.7) −6ρ2 + 8ρ3 − 3ρ4 = ei3θ
(

s
1−s

)12 − 1.

Subtracting the equation (6.7) for ρl from that for ρj we have

−6t1 + 8t2e
iβ − 3t3e

2iβ = 0,

where tn :=
ρn+1
j −ρn+1

l

ρj−ρl
e−inβ ∈ R since ρj , ρl ∈ eiβR. Since eiβ /∈ R, the set of

solutions (t1, t2, t3) of the above equation is a 1-dimensional real vector space given
by

(6.8) t2 = 3
2 cosβ · t1, t3 = 2t1.

On the other hand, (t1, t2, t3) are symmetric polynomials of ρje
−iβ , ρle

−iβ and
satisfy an algebraic relation t3 = 2t1t2 − t31, which can be rewritten as

(6.9) cosβ = 1
3 (t1 +

2
t1
), 1 ≤ |t1| ≤ 2.

Using that ρj + ρ� = t1e
iβ and ρjρ� = (t21 − t2)e

i2β we get

ρj,l =
1
2

(
t1 ±

√
4t2 − 3t21

)
· eiβ ;

therefore using (6.8) we can express ρj , ρl as functions of t1

ρj,l =
1
2

(
t1 ±

√
4− t21

)
· 1
3

(
t1 +

2
t1

+ i
√
5− t21 − 4

t21

)
,

or the complex conjugate of it. We see that ρj , ρl have opposite directions for

1 < t1 <
√
2, and have the same direction for

√
2 < t1 < 2. When t1 =

√
2,

then ρj = 4
3 ± i

√
2
3 , ρl = 0, which by (6.7) means that (s, θ) = ( 12 , 0), and xl =

1
2 ,



170 M. KLIMEŠ AND C. ROUSSEAU

xj = − 1
2 ± i

√
2
2 . Therefore for −π

3 < θ < 0, (j, l) = (2, 0) for 1 < t1 <
√
2 (since

the directions are opposite), and (j, l) = (2, 1) for
√
2 < t1 < 2. Neither of the two

situations creates a self-intersection of the periodgon: the first one because the two
sides of the periodgon are not adjacent, and hence parallel, the second one because
the two sides becoming aligned have the same direction. �

As a further step towards a proof of Conjecture 6.1, we can give numerical
evidence that the ad hoc periodgon has no self-intersection in the neighborhood of
each cut θ = 2πm

k , using the following proposition.

Proposition 6.9. (1) On the cut θ = 0 and s ∈ (0, 12 ),

d arg(λj)

dθ
=

sk+1
(
ksk+1 − (k + 1)(1− s)kzj

)
(k + 1)(sk+1 − (1− s)kzj)2

, j = 0, 1.

(2) If

(6.10)
d arg(λ0)

dθ
− d arg(λ1)

dθ
> 0

on the cut θ = 2πm
k and s ∈ (0, 12 ), then the ad hoc periodgon has no

self-intersection in the neighborhood of the cut.
(3) The condition (6.10) is satisfied near s = 0 and near s = 1

2 .

Proof.

(1) Using the formulas (5.4) and (5.6) we calculate

(6.11)
d log λj

dθ
= −isk+1 (k + 1)(1− s)kxj − ksk+1

(k + 1)
(
(1− s)kxj − sk+1

)2 ,
and use that z0 and z1 are real positive on the cut.

(2) When θ = 0 and s ∈ (0, 12 ), the only self-intersection of the ad hoc periodgon
comes from the fact that ν0 and ν1 are aligned (see Figure 16(b)). When
moving to θ < 0, we have that arg(ν0) < −π

2 and arg(ν1) <
π
2 . The ad hoc

periodgon will have no self-intersection below the cut if π
2 > arg(−ν0) >

arg(ν1) > 0 for small θ < 0, i.e., if d
dθ

(
arg(ν0)−arg(ν1)

)
< 0 along the cut,

which is equivalent to (6.10).
(3) The condition (6.10) is satisfied near s = 0 by Theorem 6.7 case (2). On

the cut near s = 1
2 , we let s = 1

2 − u2, u > 0. Then z0 = 1
2 −

√
2u+O(u2)

and z0 = 1
2+

√
2u+O(u2), yielding that d arg(λ0)

dθ − d arg(λ1)
dθ = 1√

2u
+O(1) >

0. �

Remark 6.10. The numerical evidence for (6.10) comes from plotting the curve(
d arg(λ0

dθ − d arg(λ1

dθ

)∣∣∣
θ=0

as a function of s ∈ (0, 1
2 ) (see Figure 23).

6.4.1. Shape of the periodgon. The sides of the ad hoc periodgon are the vectors
νj . The end of νj+1 is attached to the origin of νj (indices are mod k + 1). The
orientation of its sides makes the ad hoc periodgon negatively oriented.

The eigenvalues zj , j > 0, given in (6.2) have values as in Figure 24 with xj =
zje

−iθ. Each eigenvalue is the sum of the two terms k(k + 1)(1− s)k and

vj = −k(k + 1) s
k+1

xj
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0.1 0.2 0.3 0.4 0.5

0.02

0.04

0.06

0.08

0.10

Figure 23. Graph of sk+1
(

d arg(λ0)
dθ − d arg(λ1)

dθ

)∣∣∣
θ=0

as a function

of s ∈ (0, 12 ) for k = 4, 6, 8, 10 (the larger k, the flatter the curve).

(A change of coordinate z = sk+1Z has been introduced together
with a multiplication by the factor sk+1 in order to control the
numerical problems near s = 0 because of the small denominator.)

(see Figure 24.) Note that this expression is valid for j = 0 also up to s = 0 since
x0(s) = e−iθz0(s) =

k
k+1s

k+1+o(sk+1). Taking the arguments of xj in [−π, π], then

the terms vj have decreasing arguments in [−π, π] when j increases from 0 to k.
Also if arg xj and arg xj′ have the same sign, then | arg xj | < | arg xj′ | ⇒ |vj | < |vj′ |.

Hence, the eigenvalues can be divided into four subsets (see Figure 26):

• The subset I of eigenvalues for which arg vj ∈ [−π
2 ,

π
2 ], i.e., �λj ≥

k(k + 1)(1 − s)k: then the arguments of the eigenvalues are ordered as
the arguments of the vj . Since k ≥ 3, I contains at least two eigenvalues,
one with positive argument and one with negative argument. The corre-
sponding part of the ad hoc periodgon is convex. Indeed the sign of the
argument of λj is the same as that of the argument of vj . Moreover, if
arg vj > arg v′j > 0, since |vj | > |vj′ |, then arg λj > arg λj′ (see Figure 25).
The same is true for the negative arguments. The corresponding part of the
ad hoc periodgon starts at the bottom with an orientation in the second
quadrant and ends on the top with an orientation in the first quadrant.

• The subset II of eigenvalues for which | arg λj | ≥ π
2 , i.e., �λj ≤ 0: then the

arguments of the eigenvalues are ordered as the arguments of the vj . The
corresponding part of the ad hoc periodgon is convex. There are two cases:
either it contains only λ0, in which case this unique side is oriented in the
third quadrant, or it contains at least two sides in which case it starts at
the top with an orientation in the fourth quadrant and ends at the bottom
with an orientation in the third quadrant.

• The intermediate region III with 0 < arg λj < π
2 and π

2 < arg vj < π, i.e.,

0 < �λj < k(k + 1)(1 − s)k, �λj > 0. The corresponding part of the ad
hoc periodgon has sides oriented in the second quadrant.

• The intermediate region IV with −π
2 < arg λj < 0 and −π ≤ arg vj < −π

2 ,

i.e., 0 < �λj < k(k + 1)(1 − s)k, �λj ≤ 0. The corresponding part of the
ad hoc periodgon has sides oriented in the first quadrant.

If �(xl) > 0, i.e., if νl is of type II, III, or IV, then from Proposition 5.4 we can
deduce that

if l < k+1
2 , then �λ1 < �λ2 < . . . < �λl,

if l > k+1
2 , then �λk < �λk−1 < . . . < �λl.
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(a) s small (b)

(c) (d) s close to 1

Figure 24. For k = 8, the eigenvalues λj (in black) given in
(6.2), for increasing values of s: they are given as the sums of
the horizontal vector k(k + 1)(1 − s)k (in blue) and the vectors

vj = −k(k + 1) s
k+1

xj
(in red).

(a) Region I (b) Region II

Figure 25. The arguments of the eigenvalues λj are in the same
order as the arguments of the vj in regions I and II.
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(a) ad hoc periodgon (b) self-intersecting ad hoc

periodgon

Figure 26. The parts of the ad hoc periodgon corresponding to
regions I, II, III, IV are in red, blue, green, and orange, respectively.
In (b) a potential self-intersection of a side in the group II oriented
in the 3rd quadrant with a side in the group IV.

This means that the union of the sides of the ad hoc periodgon that belong to
each of the groups I-IV is connected (the set of indices j for which λj is of given
type is a segment in Zk+1) (see Figure 26 (a)). Putting all the pieces together,
yields the following.

Proposition 6.11. The only potential self-intersection of the ad hoc periodgon
could be between a side in the group II oriented in the 3rd quadrant and sides in
the group IV (see Figure 26 (b)), or between a a side in the group II oriented in
the 4th quadrant and sides in the group III.

6.5. The regular movements of the sides of the periodgon. At s = 0 the
periodgon is flat with one long side and k small sides in the opposite direction, while
it is regular at s = 1. It seems that the sides of the periodgon are monotonically
rotating when s increases from 0 to 1 (see Figures 27 and 28). We have been able
to prove this for some regions of parameter space. This is done in the following
proposition.

Proposition 6.12.

d arg λj

ds
= (1− s)k−1s3k+2�(xj) ·

(k + 1)
∣∣ (1−s)k

sk+1 xj

∣∣2 − 2k�
( (1−s)k

sk+1 xj

)
+ k − 1∣∣(1− s)kxj − sk+1

∣∣4 ,

d log |λj |
dθ

= −(1− s)ks3k+3�(xj) ·
(k + 1)

∣∣ (1−s)k

sk+1 xj

∣∣2 − 2k�
( (1−s)k

sk+1 xj

)
+ k − 1

(k + 1)
∣∣(1− s)kxj − sk+1

∣∣4 ,



174 M. KLIMEŠ AND C. ROUSSEAU

(a) (b) (c) (d) (e) (f)

Figure 27. The periodgon for k = 4, α = 0, θ = −π/6, and in-
creasing s from 0 to 1. The rightmost side is the one corresponding
to the root z0(s).

(a) (b) (c) (d) (e) (f)

Figure 28. The periodgon for k = 10, α = 0, θ = −π/15, and
increasing s ∈ (0, 1]. The rightmost side is the one corresponding
to the root z0(s).

where xj = e−iθzj . In particular if either �(xj) ≤ 0, or if s ∈ (0, 1
2 ], θ ∈ (−π

k , 0)

and j �= 0, then
d arg λj

ds and −d log |λj |
dθ have the sign of �(xj).

Proof. Using the formulas (5.4), (5.5) and (5.6) we calculate

(6.12)

(1− s)
d logλj

ds
= −k − sk

(k + 1)(1− s)kxj − ksk+1(
(1− s)kxj − sk+1

)2 ,

d log λj

dθ
= −isk+1 (k + 1)(1− s)kxj − ksk+1

(k + 1)
(
(1− s)kxj − sk+1

)2 ,
from which the formulas follow.

Denoting

Q(X) := (k + 1)X2 − 2kX + (k − 1) =
(
(k + 1)X − (k − 1)

)(
X − 1

)
,

then Q(X) > 0 for positive X with X /∈
[ (k−1)
(k+1) , 1

]
. We have

(k + 1)
∣∣ (1−s)k

sk+1 xj

∣∣2 − 2k�
( (1−s)k

sk+1 xj

)
+ k − 1 ≥ Q(

∣∣ (1−s)k

sk+1 xj

∣∣) > 0,

since |xj | > 1
2 for j > 0 and s < 1

2 . Indeed, for s = 0 we have |xj | = (k+1)1/k > 1
2 ,

so suppose that |xj | = 1
2 for some (s, θ). Then, on the one hand, |(k+1)(1−s)kxj−
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Figure 29. The bifurcation diagram when λ0 and λ1 become
collinear (of inverse orientation). (The other separatrices of in-
finity have not been drawn.) This bifurcation occurs also when
the system is reversible. But there are other homoclinic loops at
the same time.

ksk+1| = 2−(k+1). On the other hand, if s < 1
2 then |(k + 1)(1− s)kxj − ksk+1| ≥

(k + 1)2−(k+1) − k2−(k+1) = 2−(k+1). The equality is possible only when xj = 1
2

and s = 1
2 . �

6.6. The potential homoclinic bifurcations of case (2)(e) in Theorem 4.3.
In order to complete the proof of Theorem 4.3 (especially the part (3)(b)) we discuss
here the potential (but conjectured not to occur) bifurcations of codimension 3 that
can occur if the ad hoc periodgon has self-intersections elsewhere than when s = 0
or θ = 0 and s ∈ (0, 12 ). The ad hoc periodgon has no self-intersection for s small,

for s close to 1, in the neighborhood of θ = (2m+1)π
k , and close to θ = 2mπ

k , s ∈ [ 12 , 1].
There are only two kinds of generic bifurcations that can bring a self-intersection:

(1) either λ0 and λ1 become collinear (of inverse orientation);
(2) or a vertex of the periodgon crosses another side (from the group II, see

Proposition 6.11).

The bifurcation diagram of case (1) is given in Figure 29 when arg(λ0)−arg(λ1)
crosses π transversely. It represents the bifurcation diagram of θ = 0, s ∈ (0, 12 )
when one varies the parameters θ and α.

The bifurcation diagram of case (2) is given in Figure 30 in case the vertex crosses
the side transversely.

7. Normal form of generic �-parameter perturbations

of a vector field with a parabolic point of codimension k

In this section we treat the more general case of a generic �-parameter pertur-
bation of a parabolic point of codimension k for � ≤ k.
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(a) The periodgon (b) The bifurcation diagram

Figure 30. The bifurcation diagram when one vertex crosses an-
other side of the periodgon. The singular points are separated in
three groups: one group inside each loop, and z0 outside the two
loops.

Definition 7.1. Let ż = ωε =
∑

n≥0 cn(ε)z
n be an �-parameter unfolding of a

vector field having a parabolic singularity ż = ω0(z) = zk+1 + O(zk+2), k ≥ 1 of
codimension k. The unfolding is generic if

(7.1)

∣∣∣∣∂(c�−1, . . . , c1, c0)

∂(ε�−1, . . . , ε1, ε0)

∣∣∣∣ �= 0.

We describe here a normal form inspired from Kostov [Ko] and show its essential
uniqueness and the rigidity of its parameter. Such a normal form appears also
indirectly in Proposition 5.14 of [Ri], but with no discussion of uniqueness and
canonical parameter.

Theorem 7.2. Let ωε be a generic �-parameter unfolding of a vector field having
a parabolic singularity ω0(z) = zk+1 +O(zk+2), k ≥ 1.

(1) There exists a change of coordinate and parameter (z, ε) �→ (z̃, ε̃) to a nor-
mal form

(7.2) ˙̃z = Pε̃(z̃)/(1 +A(ε̃)z̃k),

where

(7.3) Pε̃(z̃) = z̃k+1 + bk−1(ε̃)z̃
k−1 + · · ·+ b1(ε̃)z̃+ b0(ε̃), bj(ε̃) = ε̃j for j ≤ �− 1,

with bi(0) = 0 for all i, and where A(ε̃) is analytic and equal to the sum of
the inverses of the eigenvalues at the small zero points of ωε.
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(2) This normal form is almost unique: let ˙̃z = Pε̃(z̃)/(1 + A(ε̃)z̃k) and let
˙̂z = P̂ε̂(ẑ)/(1 + Â(ε̂)ẑk) be two �-parameter families of vector fields as in
(1). Suppose that the two families are locally conjugate through a change of
coordinate and parameter (z̃, ε̃) �→ (ẑ, ε̂) = (ϕ(z̃, ε̃), h(ε̃)). Then there exist
μ and T ∈ C{ε̂} such that μk = 1 and

(7.4)

{
h(ε̃) = (μ−(�−2)ε̃�−1, . . . , ε̃1, με̃0),

ϕε̃(z̃) := ϕ(z̃, ε̃) = Φ
T (ε̃)
ε̃ (μz̃) ,

where Φ
T (ε̃)
ε̃ is the flow of ˙̃z = Pε̃(z̃)/(1 + A(ε̃)z̃k) at time T (ε̃). Moreover,

A(ε̃) = Â(h(ε̃)) and Pε̃(z̃) = P̂h(ε̃)(μz̃) hold for ε̃ near 0.
In particular, the parameters are canonical in this normal form.

Proof.

(1) Let us suppose that the �-parameter family of vector fields

ωε(z) =
∑
n≥0

cn(ε)z
n

satisfies (7.1). It can be enlarged to a generic k-parameter family ż =

ω̂η(z) = ωε(z)+
∑k−1

j=� εjz
j with the multi-parameter η=(εk−1, . . . , ε2, ε1, ε0).

Kostov’s Theorem states that there exists a change of coordinate and pa-
rameters to a normal form

ω̃a = P̃a(z̃)/(1 + Ã(a)z̃k)

with a new multi-parameter a = (ak−1, . . . , a1, a0) and P̃a(z̃) = z̃k+1 +
ak−1z̃

k−1 + · · · + a1z̃ + a0. This new family is again generic. Indeed the
coefficients a0, . . . , a�−1 are symmetric functions of the singularities with
same order of magnitude as before the change of coordinate and parameters.
Hence the restriction of the change of coordinate and parameters to εk−1 =
· · · = ε� = 0 provides the required change to the normal form. We end
up with a reparametrization letting ε̃j = aj(0, . . . , 0, ε�−1, . . . , ε0) for j =
0, . . . , �− 1.

(2) For the uniqueness we use a method of infinite descent as in the proofs of
Theorem 3.5 in [RT] and Theorem 3.36 of [CR]. Since the proof is completely
similar, we will be brief on the details. Before starting the infinite descent,
we must reduce the problem.
First reduction. We first consider the case ε̃ = 0, for which the theorem
follows from a mere calculation. Then ϕ′

0(0) = μ, where μk = 1. We change
(z̃, ε̃1, ε̃0) �→

(
μz̃, μ−(�−2)ε̃�−1, . . . , ε̃1, με̃0

)
in the first vector field, so as to

limit ourselves to the case ϕ′
0(0) = 1.

Second reduction. It is easily checked that the flow Φt
0 of ˙̃z = z̃k+1/(1+

A(0)z̃k) at time t has the form

(7.5) Φt
0(z̃) = z̃(1 + gt(z̃

k)) = z̃ + tz̃k+1 + tO(z̃2k+1).

Let Φt
ε̃ be the flow of the first equation at time t, let

ψε̃(t, z̃) = Φt
ε̃ ◦ ϕε̃(z̃),

and let

K(ε̃, t) =
(

∂
∂z̃

)k+1
ψε̃(t, 0).
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We want to find a solution T (ε̃) to K(ε̃, T (ε̃)) = 0 by the implicit function
theorem, and then change

z̃ �→ Φ
T (ε̃)
ε̃ z̃

in the first system. We know that there exists t0 such that K(0, t0) = 0

because of the form of Φt
0 in (7.5). Moreover, K(0, t) = ϕ

(k+1)
0 (0)+t(k+1)!,

yielding ∂K
∂t (0, 0) = (k+1)! �= 0. Hence there exists a unique analytic germ

T (ε̃) such that K(ε̃, T (ε̃)) ≡ 0 and T (0) = t0.
The infinite descent. After the two reductions, we can suppose that

ϕ0 = id and that ϕ
(k+1)
ε (0) ≡ 0. We now show that ϕε = Id and h(ε̃) = ε̃.

Note that A ≡ Ã ◦ h since the sum of the residues at the singular points is
invariant. Let⎧⎪⎨⎪⎩

P̃ε̃(z̃) = z̃k+1 + bk−1(ε̃)z̃
k−1 + · · ·+ b1(ε̃)z̃ + b0(ε̃),

P̂ε̂(ẑ) = ẑk+1 + ck−1(ε̃)ẑ
k−1 + · · ·+ c1(ε̃)ẑ + c0(ε̃),

ẑ = ϕε̃(z̃) = z̃ +
∑

j≥0 fj(ε̃)z̃
j ,

where all bj , cj , fj ∈ C{ε̃} (note that we really wish the cj to depend on ε̃,
which we can do since ε̂ = h(ε̃)), and we simply write bj instead of bj(ε̃),
etc., for the functions bj , cj , fj and h. We introduce the principal ideal
I = 〈ε̃〉 in C{ε̃}, and show by induction that bj − cj , fj ∈ In for all j and
for all n ∈ N∗, from which it will follow that they are identically zero. Note
that h− ε̃ = (c�−1 − b�−1, . . . , c1 − b1, c0 − b0).

The conjugacy condition is

(1 +Az̃k)

⎛⎜⎝
⎛⎝z̃ +

∑
j≥0

fj z̃
j

⎞⎠k+1

+ · · ·+ c1

⎛⎝z̃ +
∑
j≥0

fj z̃
j

⎞⎠+ c0

⎞⎟⎠
−

⎛⎜⎝1 +A

⎛⎝z̃ +
∑
j≥0

fj z̃
j

⎞⎠k
⎞⎟⎠(z̃k+1 + · · ·+ b1z̃ + b0

)⎛⎝1 +
∑
j≥1

jfj z̃
j−1

⎞⎠ = 0,

(7.6)

which we simply write as
∑

j≥0 gj z̃
j = 0. Hence we want to show that all

gj must be identically 0. The gj are quite complicated but they have a very
simple structure of linear terms and this is what we will exploit.

• From the two reductions, it is clear that bj , cj , fj ∈ I. This is our
starting point.

• The only linear terms in the equations gj = 0 for j = 0, . . . , k − 1, are
bj − cj . Hence bj − cj ∈ I2.

• The equations gk+j = 0 with 0 ≤ j ≤ k yield fj ∈ I2, since the only
linear terms are A(cj−bj)+(k+1−j)fj = 0 when j < k and Af0+fk
when j = k.

• Remember that fk+1 ≡ 0 because of the reduction.
• The equations g� = 0 with � > 2k + 1 yield f�−k ∈ I2, since the only
linear terms in g� are −(�− 2k − 1)(f�−k +Af�−2k).

• Hence, all bj − cj , fj ∈ I2.
• We now suppose that bj − cj , fj ∈ In, and we want to show that there
are in In+1.
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• The equations gj = 0 for j = 0, . . . k − 1, yield bj − cj ∈ In+1.
• The equations gk+j = 0 with 0 ≤ j ≤ k yield fj ∈ In+1.
• The equations g� = 0 with � > 2k + 1 yield f�−k ∈ In+1.
• Hence, all bj − cj , fj ∈ In+1.

This concludes the proof. �

This gives us a classification theorem.

Theorem 7.3. Let � ∈ {1, . . . , k}. Then two germs ω1,ε and ω2,η of generic �-
parameter unfolding of a vector field having a parabolic singularity ω0(z) = zk+1 +
O(zk+2), k ≥ 1 are conjugate if and only if their normal forms (7.2) are conjugate
under

(z̃1, ε̃) �→ (z̃2, η̃) =
(
μz̃1, (μ

−(�−2)ε̃�−1, . . . , ε̃1, με̃0)
)

for some μ such that μk = 1.

8. Bifurcation diagram of a generic 2-parameter perturbation

of a vector field with a parabolic point of codimension k

In this section we study the bifurcation diagram of the vector field

(8.1) ż = Pε(z)/(1 +A(ε)zk),

where

(8.2) Pε(z) = zk+1 + bk−1(ε)z
k−1 + · · ·+ b2(ε)z

2 + ε1z + ε0,

depending on the multi-parameter ε = (ε1, ε0), over a small disk Dr for small values
of the parameter. Close to |z| = r the vector field looks like in Figure 31. It is
natural to write ε as

ε =
(
−(k + 1)ζk(1− s)ke−ikα, kζk+1sk+1ei(θ−(k+1)α)

)
,

with s ∈ [0, 1], θ ∈ [−2π, 0], α ∈ [0, 2π] and ζ ∈ [0, ρ) for some small ρ, and to add
to the quotient relations (2.7) the relation

(8.3) (ζ, s, α, θ)|ζ=0 ∼ (ζ, 0, 0, 0)|ζ=0

for all s, θ, α. The new (fourth) parameter ζ = ‖ε‖ takes into account that the
bifurcation diagram is no more exactly a cone, although it has a conical structure.

An alternative useful way of looking at the problem is to rescale (z, t) �→ (Z, T ) =
( zζ , ζ

kt), which brings the system to a system of the form

(8.4)
dZ

dT
= Q(Z) +O(ζ),

where

Q(Z) = Zk+1 − (k + 1)(1− s)ke−ikαZ + ksk+1ei(θ−(k+1)α),

i.e., a small perturbation of the system (2.5) studied in Section 2. There is a price
to pay: the system has to be studied on the disk D r

ζ
whose size grows to infinity.
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Figure 31. The phase portrait near |z| = r for sufficiently small
r and sufficiently small ε so that the singular points stay inside Dr

at some distance from the boundary.

8.1. Holomorphic vector fields in a disk.

Definition 8.1 (Zone decomposition). Let ż = ω(z) be a holomorphic vector field
in an open disk Dr of radius r.

(1) A separating trajectory of the vector field in Dr is a trajectory which either
leaves or enters the disk. A separating trajectory that both enters and
leaves the disk is called a dividing trajectory. The separating trajectories
play the same role inside the disk as the separatrices for polynomial vector
fields in C = D∞, while dividing trajectories play the role of homoclinic
separatrices.

(2) A connected component of the complement of all the separating trajectories
in the disk is called a zone. It consists of trajectories that stay in the disk
all the time. As in Definition 3.1 a zone can be either periodic, or an αω-
zone, or a sepal. A boundary of a zone consists of trajectories tangent to
the boundary ∂Dr.

(3) The skeleton graph is now defined in the same way as in Definition 3.1. If
there is a dividing trajectory in the disk, then the skeleton graph is broken.

Remark 8.2. The skeleton graph may be connected inside DR but broken inside
Dr, 0 < r < R ≤ +∞.

For a holomorphic vector field in Dr, the sum of the periods of the singular points
in the disk is in general nonzero and the polygon of periods does not close anymore.
But one can nevertheless extend the definitions of periodgon and star domain to
this context.

Definition 8.3 (Generalized periodgon and star domain). Let ż = ω(z) be a
holomorphic vector field in an open disk Dr of radius r, and suppose that all the
singular points in Dr are simple.

(1) The periodic domain in Dr of a singular point zj is the union of pe-
riodic trajectories surrounding zj inside Dr for the rotated vector field
ż = ei arg νjω(z). The boundary is a periodic trajectory around zj , and
which is tangent to ∂Dr.

(2) Inside the periodic domain for Dr of a singular point zj we consider a cut
from zj to the tangency point of the boundary of the periodic domain with
∂Dr which is orthogonal to the periodic trajectories.
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Figure 32. The star domain and the generalized periodgon of a
vector field in Dr. The black segments represent the periods.

(3) The rectifying chart

t(z) =

∫ z

z∞

dz

ω(z)
,

with z∞ ∈ ∂Dr, is well defined on the cut disk.
(4) The generalized periodgon for Dr is the image in the Riemann surface of

t(z) of the complement in Dr of the union of all periodic domains of the
singular points in Dr (see Figure 32).

(5) The star shape domain is the image in the Riemann surface of t(z) of the
disk with the cuts (see Figure 32). It is obtained by gluing to each side νj
of the generalized periodgon a perpendicular half-strip of the same width.

Note that on Figure 32 the size of the disk Dr controls the size of the “holes”
close to the vertices.

For the vector field (8.1) with small ζ = ‖ε‖, the shape of each hole is close to
that of a disk of radius 1

k r
−k. The width of the branches grows like ζ−k. The

parameters s, θ control the general shape of the star domain up to homotheties: by
general shape we mean that there are small errors of order o(ζ−k). For fixed s, ζ, θ
the general shape of the star domain rotates with angular speed kα.

8.2. Bifurcation of the skeleton graph inside the disk. The normal form
(8.1) is only local. Hence it does not make sense anymore to speak of homoclinic
bifurcations through infinity. The same is of course true for the particular case
of the system (1.1) when we restrict it to a disk. But there remains something.
Indeed, each time there was a homoclinic loop through infinity, this would break
the skeleton graph, because of the existence of many dividing trajectories inside the
disk. When we restrict the system to a disk, the skeleton graph is broken inside the
disk for a region of parameter values with nonempty interior, which is a thickening
of the former homoclinic bifurcation diagram. It consists of the parameter values
for which there exist dividing trajectories in the disk, and it has nonempty interior.
The Douady-Sentenac combinatorial invariant (equivalent to the skeleton graph
and its attachment to the boundary of Dr) changes type when one crosses this
parameter region. On the boundaries of the parameter region some trajectories
have double tangency with |z| = r (see Figure 33).
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(a) (b) (c)

Figure 33. The structurally stable breaking of the skeleton graph
inside the disk Dr in (b) between two double tangencies with the
boundary occurring in (a) and (c) is illustrated here for the system
(6.5) (which has a parabolic point) with k = 4 and increasing α.
In (b) there is an open set of dividing trajectories.

(a) (b) (c)

Figure 34. The star domain in t-space. When α is increasing the
skeleton graph inside the disk is broken in (b) between the two
limit positions corresponding to double tangencies.

The tool to describe this bifurcation for the vector field (1.1) is the generalized
periodgon and the star domain of Definition 8.3 (see Figure 34).

8.3. Bifurcation of the singular points. The singular points are located at the
zeros of Pε(z). The discriminant is

Δ(ε1, ε0) = C
[(

ε0
k

)k − (− ε1
k+1

)k+1
]
+ o(‖ ε ‖k(k+1))

= Cζk(k+1)e−ik(k+1)α
[
sk(k+1)eikθ − (1− s)k(k+1)

]
+ o(ζk(k+1)),

where C = (−1)�
k+1
2 �kk(k + 1)k+1. Hence it is the closure of a 2-dimensional real

surface close to (s, θ) = ( 12 , 0) inside the 4-dimensional parameter space. (Remem-

ber that (s, θ+ 2mπ
k , α+ 2mπ

k ) ∼ (s, θ, α) by (2.7).) This surface cuts each topological
sphere ζ = cst �= 0 along a (k + 1, k) torus knot. When Δ = 0 and ζ �= 0, there is
exactly one parabolic point of multiplicity 2. The closure contains ζ = 0 on which
the parabolic point has multiplicity k + 1.
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8.4. The slit domain in parameter space. Part of this section is numerical. To
see how to slit the parameter space we use the description (8.4) (but we still denote
the variable by z). Indeed, for system (1.1) the slits θ = 2πm

k , s ∈ [0, 1
2 ), correspond

to parameter values where z0 and z1 have eigenvalues in opposite directions.
By symmetry, let us again concentrate on θ = 0 in (8.4). Since z0 and z1

are isolated for s ∈ [0, 1
2 ) they depend analytically on the parameters. Numerical

evidence is provided in Remark 6.10 that
(

d arg(λ0)
dθ − d arg(λ1)

dθ

)
|θ=0 < 0. Hence, by

the implicit function theorem there exists for small ζ a surface θ = Θ0(s, ζ, α) on
which arg(λ1) + arg(λ0) = π, which is the natural cut in parameter space. When
we limit s to a compact subinterval s ∈ [0, s0] for s0 ∈ (0, 12 ), then the cut can
be defined for all |ζ| < δ for some positive δ. In order to define it uniformly over
s ∈ [0, 1

2 ] we need to cover a neighborhood of (s, θ) = ( 12 , 0). For that purpose we
use that the vector field (8.4) can be brought in the neighborhood of the parabolic
point (s, θ) = ( 12 , 0) (modulo a reparametrization) to the form

Ẇ = (W 2 − δ)(1 + h(W, δ, η)),

where δ is the discriminant, η represents the remaining parameters and h(W, δ, η) =

O(|W, δ, η|). Then the eigenvalues are given by λ± = ±2
√
δ(1+ h(±

√
δ, δ, η)). The

cut we want to define should correspond to λ+ = Cλ− for some C ∈ R−. Moreover
1
λ+

+ 1
λ−

= A(δ, η) = a + O(δ, η), where a =
νpar

2πi = −eikα 2(k−1)
3k(k+1)2

k �= 0 by (6.1).

Hence along the cut we should have that both 1
λ+

and 1
λ−

should be aligned with

A(δ, η), which is satisfied as soon as λ− is aligned with 1
A(δ,η) , i.e., as soon as

arg(δ) = 2 arg
(

1
A(δ,η)(1+h(−

√
δ,δ,η))

)
. This can be solved by the implicit function

theorem for arg(δ) as a function of |δ| and η.

9. Perspectives

9.1. Analytic classification of polynomial vector fields on CP1. The defini-
tion of the periodgon given in Section 3.1 is valid for any polynomial vector field
on CP

1. From it, we can recover the Douady-Sentenac combinatorial and analytic
invariants. Hence the periodgon provides an analytic invariant for polynomial vec-
tor fields on CP1 under affine conjugacies. We will explore this new invariant in a
forthcoming publication.
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[CR] A. Chéritat and C. Rousseau, Generic 1-parameter perturbations of a vector field with a
singular point of codimension k, preprint 2017, https://arxiv.org/abs/1701.03276.

[Du] G. F. D. Duff, Limit-cycles and rotated vector fields, Ann. of Math. (2) 57 (1953), 15–31,
DOI 10.2307/1969724. MR0053301

[DS] A. Douady and S. Sentenac, Champs de vecteurs polynomiaux sur C, preprint, Paris 2005.
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