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IMMERSIONS AND TRANSLATION STRUCTURES I:

THE SPACE OF STRUCTURES ON THE POINTED DISK

W. PATRICK HOOPER

Abstract. We define a moduli space of translation structures on the open
topological disk with a basepoint and endow it with a locally-compact metriz-
able topology. We call this the immersive topology, because it is defined using
the concept of immersions: continuous maps between subsets of translation
surfaces that respect the basepoints and the translation structures. Immer-
sions induce a partial ordering on the moduli space, and we prove the ordering
is nearly a complete lattice in the sense of order theory; the space is only miss-
ing a minimal element. Subsequent articles will uncover more structure and
develop a topology on the space of all translation structures.

Introduction

A translation structure on a surface Σ is an atlas of charts to the plane so that the
transition functions are translations. It is a classical observation that by varying
the geometry of translation structures on a surface of genus g the structures can
naturally converge to a translation structure on a surface of lower genus. Recent
interest in studying dynamical and geometric properties of translation structures on
surfaces of infinite genus has led to the need to take limits of sequences of translation
surfaces whose genus is growing or limits of sequences of surfaces of infinite type
whose topological type changes in the limit. In this and subsequent articles in this
series, we provide a rigorous foundation for formulating such topological statements
by considering the space of all translation structures (which simultaneously includes
translation structures on surfaces of all topological types). This series of articles
will include at least three articles:

I. In the current article, we define the immersive topology on the space of
translation structures on the open disk Δ with basepoint x0. We show this
topology is locally compact and metrizable.

II. In the second article [13], we prove that the immersive topology on struc-
tures on the disk makes natural geometric and dynamical maps between
translation structures on the pointed disk continuous. We also provide a
practical method of proving convergence in this topology. This second ar-
ticle is still a work in progress, but many of the results can also be found
in the earlier preprint [10].
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III. In the third article [14], we will topologize the space of all translation struc-
tures on all surfaces with basepoint. Using the observation that the disk is
homeomorphic to the universal cover of any translation surface admitting a
translation structure, we push the topology on structures on the disk down
to a topology on the space of all structures. This article will be an updated
version of the preprint [9].

Annotated table of contents

We provide an annotated table of contents in order to describe the structure of
this document and summarize the main results of the paper. Note that §2 and §3
contain important definitions and concepts and should be read before setting further
into the paper. You can get a sense of what is done in each section through the
annotations below. Sections 4 and later are structured so that the most important
results are stated in the introduction of the section, with proofs and less important
results appearing later in the section.

§1: Connections and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 237
We motivate this work by reviewing the classical theory of translation sur-
faces and discussing more recent research on translation surfaces of infinite
type.

§2: The set of translation structures on the disk . . . . . . . . . page 239
This section describes the main objects of interest for the paper at a set-
theoretic level. These are the set M̃ of isomorphism classes of translation
structures on the pointed disk and the canonical (set-theoretic) disk bundle

Ẽ over M̃. The fiber in Ẽ over a point of M̃ is naturally a pointed topolog-
ical disk equipped with a translation structure in the isomorphism class of
the image in M̃. We call these fibers planar surfaces; they are equivalent
to but conceptually easier to work with than the isomorphism classes of
translation structures on the disk (see Proposition 4).

§3: Immersions and a topology on the moduli space . . . . . . . . page 241
An immersion between two planar surfaces is a map respecting basepoints
which act as a translation in local coordinates. Whenever an immersion
exists, it is unique, and we say a planar surface P immerses in a planar
surface Q. An embedding is an injective immersion. The notion of immer-
sion and embedding yields partial orders on M̃. We use these ideas to
define the immersive topologies on M̃ and Ẽ .

§4: The Hausdorff property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 244
We develop a basic toolkit for working with immersions and embedding
between planar surfaces. These tools will be used throughout the paper.
We use these basic tools to prove that the immersive topologies on M̃ and
Ẽ are Hausdorff.

§5: Fusing planar surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 245
The partial order defined by existence of immersions is nearly a complete
lattice (in the sense of order theory): for any non-empty collection of planar
surfaces, there is a minimal (in the sense of the partial order) planar surface
in which every surface in the collection immerses. We call this minimal
planar surface the fusion of the collection. By adding a minimal element
O to the space of planar surfaces, we obtain a complete lattice. That is,
for any non-empty collection in M̃ ∪ {O} there is a maximal element of
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M̃ ∪ {O} which immerses in everything in the collection. We call this the
core of the collection.

§6: New open sets and second-countability . . . . . . . . . . . . . . . . . . page 252
We introduce a tool for working with the topology. Namely, we study
subsets of planar surfaces which are finite unions of rectangles. We use this
to develop further intuition into the topologies. We find new natural open
sets in M̃, and prove that the immersive topologies on M̃ and Ẽ have a
countable basis.

§7: Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 259
Since M̃ and Ẽ are Hausdorff and second-countable, many topological state-
ments can be proved by considering sequences. To this end, we give neces-
sary and sufficient conditions for sequences in these spaces to converge.

§8: Continuity of immersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
We explain that immersions and embeddings between two planar surfaces
are jointly continuous in the choice of two planar surfaces constituting the
domain and range of the immersion.

§9: Compact subsets and metrizability . . . . . . . . . . . . . . . . . . . . . . . page 263
We prove that the only way a sequence of planar surfaces can fail to have a
convergent subsequence is if the sequence of radii of the maximal Euclidean
ball about the basepoints in the surfaces tends to zero. We use this fact
to show that the immersive topologies on M̃ and Ẽ are locally compact
and metrizable. As an ingredient in the proof, we show sequences of planar
surfaces which are increasing in the sense of immersions converge to the
fusion of the sequence.

Appendix A: Comparison to McMullen’s geometric topology . . . . . . . .page 266
We contrast the immersive topology with McMullen’s geometric topology.

1. Connections and motivation

We have taken some pains to distinguish translation structures (as defined above),
from the notion of translation surface. A translation surface can be thought of as a
pair (X,ω) consisting of a Riemann surface X with a non-zero holomorphic 1-form
ω on X. The 1-form ω can be integrated to obtain charts to the plane, which
are canonical up to postcomposition by translation. These charts are local home-
omorphisms away from the set Z ⊂ X of zeros of ω, where cone singularities with
cone angles in 2πZ appear. A translation surface (X,ω) gives rise to a translation
structure on X � Z.

Our understanding of translation surfaces has developed extensively since the
pioneering work of Masur, Rauzy, Veech, and others in the late 1970s and early
1980s. The field has attracted researchers from diverse fields in mathematics in-
cluding Teichmüller theory, algebraic geometry, and dynamical systems. Indeed,
the interplay between these subjects has driven great progress in the field since its
inception, and the field continues to be vibrant today.

We briefly discuss some well-established ideas relating to the study of the space
of translation surfaces of genus g ≥ 1, and to the convergence of a sequence of
translation surfaces. For more detail see the survey articles [30, §6], [22, §2], and
[34, §3.3]. Consider the moduli space of all translation surfaces of fixed genus.
The collection of surfaces in this space with a fixed number of cone singularities
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with fixed cone angles is called a stratum of translation surfaces. There is a well-
studied way to place local coordinates on a stratum given via period coordinates.
These coordinates give the stratum the structure of an orbifold with a locally affine
structure. Of course, the cone singularities of a sequence of translation surfaces
in a stratum can collide in the limit. In this case, there can still be a limiting
translation surface but it lies outside the stratum. We can take such a limit by
viewing the space of translation surfaces of genus g as identified with the collection
of pairs (X,ω), where X is a Riemann surface and ω is a holomorphic 1-form. As
such the space of translation surface of genus g has the structure of a vector bundle
over the moduli space Mg of Riemann surfaces of genus g. Sequences of translation
surfaces of genus g can still leave this space. For instance, a separating subsurface
such as a cylinder could collapse to a point under a sequence. In order to take
limits of such sequences, one can consider the Deligne-Mumford compactification
of Mg, and make appropriate considerations for corresponding degenerations of
holomorphic 1-forms. See [22, Definition 4.7].

This work is primarily motivated by growing interest in the geometry and dy-
namics of translation surfaces of infinite topological type. Many works share a
common interest in topological aspects of the space of all translation surfaces, e.g.,
to take limits of a sequence or to consider a continuously varying family. Examples
of papers in which these ideas appear include [3], [15], and [11] for instance. This
sequence of papers will provide a firm foundation for making such statements.

To provide context, it is worth noting that even elementary questions about a
single translation structure on an infinite type surface can be difficult to answer.
Bowman and Valdez define the singularities of a translation structure to be points
in the metric completion and study their structure (and the structure of so-called
“linear approaches” to the singularities) [2]. It is not yet clear how the structure
of singularities relates to the topology and geometry of the surface, a topic also
investigated in [28], and [4].

It is becoming increasingly clear that many of the techniques in the subject
of translation surfaces are applicable to the study of infinite translation surfaces.
For instance, there is widespread interest in infinite abelian branched covers of
translation surfaces. Example articles include [5], [7], [17], [18], [19], [26], [27],
and [29]. More relevantly, there is some work to suggest that many methods in
use are applicable to infinite translation surfaces which do not arise from covering
constructions. In the finite genus case, Masur’s criterion [21] says that if the orbit
of a translation surface under the Teichmüller flow recurs, then the vertical straight
line flow is uniquely ergodic. It would be nice to have such a statement in the case
where surfaces have infinite genus but finite area. There has been partial progress.
The article [12] concludes ergodic theoretic results such as unique ergodicity about
certain special surfaces from a notion of recurrence in the spirit of Masur’s criterion.
In [32], a criterion was described for ergodicity of the straight line flow in translation
surfaces of infinite topological type but finite area in terms of a rate of degeneration
of a certain geometric quantity under the Teichmüller flow (showing that a topology
on moduli space may not be necessary for ergodic theoretic results).

Problems in Teichmüller theory and 3-manifold topology prompted McMullen to
place a geometric topology on the space of all Riemann surfaces with base frames
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paired with a quadratic differential; see [24, Appendix] and [23, §2.3]. Our ap-
proach has slightly different aims and results in a slightly different topology; see
the discussion in the appendix.

Finally, the unfolding construction in polygonal billiards (due to [6] and [33])
works in the case where the polygon’s angles are irrational multiples of π. We
intend to use the topology to prove Conjecture 1.6 of [16]. The main method
of proof involves stretching these surfaces under a divergent sequence of maps in
GL(2,R) and passing to limit surfaces.

2. The set of translation structures on the disk

2.1. Translation structures. Let Σ denote an oriented topological surface. A
translation structure on Σ is a (G,X)-structure on Σ in the sense of Thurston
(see, e.g., [31]) where G is the group of translations acting on X = R2, i.e., an
atlas of charts {(Uj , φj) : j ∈ J } to the plane so that the transition maps are
locally restrictions of translations. Here, we insist that each chart φj : Uj → R

2 be
orientation preserving.

Two translation structures on an oriented surface Σ are the same if the union
of the two atlases still determines a translation structure. We say the translation
structures {(Uj , φj) : j ∈ J } on Σ1 and {(Vk, ψk) : k ∈ K} on Σ2 are translation
isomorphic if there is an orientation preserving homeomorphism h : Σ1 → Σ2 so
that the structure determined by {

(
h(Uj), φj ◦ h−1

)
: j ∈ J } is the same as the

structure determined by {(Vk, ψk) : k ∈ K}. The homeomorphism h is called a
translation isomorphism from the first structure to the second.

Remark 1. We do not allow cone singularities in our translation structures. A trans-
lation structure may be obtained from a translation surface with cone singularities
by removing the singular points from the underlying topological surface.

2.2. Translation structures on the pointed disk. Let Δ1 and Δ2 be oriented
open topological 2-dimensional disks with basepoints x1 and x2, respectively. We
say translation structures on these two disks are isomorphic if there is a translation
isomorphism from the first structure to the second which respects basepoints. We
call a translation isomorphism which respects basepoints an isomorphism.

Note that a translation structure on Δ1 is always isomorphic to a translation
structure on Δ2; simply push the structure forward under an orientation preserving
homeomorphism Δ1 → Δ2.

Remark 2 (Examples of structures on the disk). We briefly state the main construc-
tion of interest to us. If a surface Σ admits a translation structure with a selected
basepoint, then its universal cover is a topological disk with basepoint. We can
then lift the translation structure to the disk. This can be done, for instance, for
translation surfaces homeomorphic to a closed surface with the cone singularities
removed; see Remark 1. There are other translation structures on the pointed disk
as well. Any open topological disk in the plane containing the origin 0 admits a
natural translation structure. This also works more generally: an open topologi-
cal disk containing the basepoint in a surface with a translation structure gives a
translation structure on the disk.

2.3. The set-theoretic moduli space. Throughout this paper, Δ denotes a fixed
choice of an oriented open topological 2-dimensional disk with basepoint x0 ∈ Δ.
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Let {(Uj , φj) : j ∈ J } be an atlas of charts determining a translation structure on
Δ. Because Δ is simply connected, by analytic continuation there is a unique map
φ : Δ → R

2 so that

(1) φ(x0) = 0, where 0 = (0, 0) ∈ R2.
(2) For each j ∈ J , the map φ|Uj

agrees with φj up to postcomposition with a
translation.

This map φ is a local homeomorphism called the developing map in the language of
(G,X) structures. See [31, §3.4]. Observe that the single chart (Δ, φ) determines a
translation surface structure on Δ which is the same as the original structure. Con-
versely, each orientation preserving local homeomorphism φ : Δ → R

2 determines
a translation structure: the one determined by the atlas {(Δ, φ)}.

We will say a pointed local homeomorphism (from (Δ, x0) to (R2,0)) is an ori-
entation preserving local homeomorphism φ : Δ → R2 so that φ(x0) = 0. We use
PLH to denote the collection of all such maps. Observe that our developing maps
lie in PLH, and PLH is naturally identified with the collection of all translation
structures on (Δ, x0) modulo sameness.

Let Homeo+(Δ, x0) denote the group of orientation preserving homeomorphisms
Δ → Δ which fix the basepoint x0. Note that the translation structures on Δ
determined by φ and ψ in PLH are isomorphic if and only if there is an h ∈
Homeo+(Δ, x0) so that ψ = φ ◦ h−1. Thus, the (set-theoretic) moduli space of all
translation structures on (Δ, x0) modulo isomorphism is given by

M̃ = PLH/Homeo+(Δ, x0).

We use the notation [φ] to indicate the Homeo+(Δ, x0)-equivalence class of φ ∈
PLH.

Remark 3 (Quotient topology). One can endow PLH with the compact-open topol-

ogy and M̃ with the resulting quotient topology. This is not what we do in this
paper, because the resulting topology is not Hausdorff. The open unit disk and the
plane can be considered to be points in M̃, and every open set containing the unit
disk in the quotient topology also contains the plane.

2.4. The disk bundle over moduli space. The group Homeo+(Δ, x0) naturally
acts on PLH×Δ by

(φ, y) �→
(
φ ◦ h−1, h(y)

)
for h ∈ Homeo+(Δ, x0).

The canonical disk bundle over M̃ is given by

Ẽ =
(
PLH×Δ

)
/Homeo+(Δ, x0).

We denote the Homeo+(Δ, x0)-equivalence class of (φ, y) by [φ, y] ∈ Ẽ .
Because of the description of the Homeo+(Δ, x0)-action, there is a canonical

map

(1) Dev : Ẽ → R
2; [φ, y] �→ φ(y).

We call this map the (bundle-wide) developing map. There is also a natural pro-

jection from Ẽ onto the moduli space M̃ given by

π̃ : Ẽ → M̃; [φ, y] �→ [φ].
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2.5. Structures on the fibers. We will call each fiber π̃−1([φ]) a planar surface.
Observe that the choice of a representative φ ∈ [φ] yields an identification of the
planar surface π̃−1([φ]) with Δ:

(2) iφ : Δ → π̃−1([φ]); y �→ [φ, y].

We endow the fiber π̃−1([φ]) with the topology and orientation which make iφ and
orientation preserving homeomorphism and note that the selected orientation and
topology is independent of the choice of φ ∈ [φ]. The map iφ can also be used
to push the basepoint x0 ∈ Δ onto the planar surface. We treat [φ, x0] as the
basepoint of the planar surface, and note that this point is also independent of
the choice of φ. Finally, we note that the restriction of the developing map to the
fiber is an orientation preserving local homeomorphism to the plane which sends
the basepoint [φ, x0] to 0. This endows the fiber π̃−1([φ]) with the structure of a
translation surface (using an atlas consisting of only the developing map restricted
to the fiber). The translation structure on the fiber π̃−1([φ]) with basepoint [φ, x0]
is isomorphic to those in the pointed translation structures in the equivalence class
[φ].

These ideas lead to the following result.

Proposition 4. Any translation structure on an oriented open 2-dimensional topo-
logical disk with basepoint is isomorphic to a unique planar surface.

Notational Convention 5. We follow some conventions to simplify notation by ef-
fectively removing the need to discuss equivalence classes. Formally, the planar
surfaces are parametrized by equivalence classes [φ] ∈ M̃ via P = π̃−1([φ]). We

will identify the objects P and [φ], and thus we can more simply write P ∈ M̃.
We will typically denote the basepoint of P by oP ; as noted above oP = [φ, x0].
We will denote points of P by letters such as p, q ∈ P . Note that points of P are
also points of Ẽ . But, we will rarely refer to a point p ∈ Ẽ without referring to the
planar surface P = π̃(p) ∈ M̃ which contains p. Therefore, we will redundantly

refer to points of Ẽ as pairs (P, p) where P is a planar surface and p ∈ P is a point
in this surface (i.e., P = π̃(p)).

3. Immersions and a topology on the moduli space

3.1. Definition of immersion. Let P be a planar surface, following the discussion
in §2 including Convention 5. We define PC(P ) to be the collection of all path-
connected subsets of P which contain the basepoint oP ∈ P .

Let P and Q be planar surfaces, and choose A ∈ PC(P ) and B ∈ PC(Q). We say
“A immerses into B” and write “A � B” if there is a continuous map ι : A → B
which acts as a translation in local coordinates so that ι(oP ) = oQ. We call the map
ι an immersion (respecting the translation structures). We will write “A 	� B” to
indicate that A does not immerse in B, and will write “∃ι : A � B” as shorthand
for the phrase “there exists an immersion ι from A to B”.

Example 6. If one takes a finite genus translation surface with singularities re-
moved, the developing map applied to the universal cover is an immersion of this
cover into the plane.

An embedding is an injective immersion. If such a map exists between an A ∈
PC(P ) and B ∈ PC(Q), we say “A embeds in B” and write “A ↪→ B”. We follow
notational conventions as for immersions.
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Next we make some basic observations about immersions.

Proposition 7 (Uniqueness of immersions). For A ∈ PC(P ) and B ∈ PC(Q),
there is at most one immersion from A into B.

Proof. Suppose ι1 and ι2 are immersions from A to B. We will show that ι1(a) =
ι2(a) for all a ∈ A. The set of a satisfying this equation is open (because both ι1
and ι2 are local translations) and closed (because of continuity of the maps). Also
it holds at oP ∈ A by definition of immersion. Since A is path connected, it must
hold in all of A. �

An isomorphism between A ∈ PC(P ) and B ∈ PC(Q) is an immersion of A into
B which is also a homeomorphism. Compositions and inverses of isomorphisms are
still isomorphisms. This implies that the notion of isomorphism gives an equiv-
alence relation on

⋃
P∈M̃ PC(P ) and we use PC to denote the collection of such

isomorphism classes. Observe that if A and A′ are isomorphic and B and B′ are
isomorphic, then A � B if and only if A′ � B′. Therefore, the notion of im-
merses gives a relation on the collection PC of isomorphism classes of elements of⋃

P∈M̃ PC(P ).

Remark 8. We will abuse notation by typically ignoring the distinction between an
A ∈ PC(P ) and its equivalence class in PC. If A ∈ PC, then a point in A would

formally be an isomorphism class of pairs (A, a) much as in our definition of Ẽ . We
are not interested in giving more structure to PC, so we will ignore this issue.

Corollary 9 (Partial ordering). The notions of immerses (�) and embeds (↪→)
viewed as relations on PC are partial orderings. Both notions restrict to partial
orderings on M̃.

Proof. Let A,B,C ∈ PC. The identity map is an embedding A ↪→ A, so � and ↪→
are reflective. If A � B and B � C, then the composition of immersions gives an
immersion A � C, so � is transitive. Furthermore, if both maps are injective, then
so is the composition, so ↪→ is transitive. We must show that A � B and B � A
implies A and B are isomorphic. Let ι1 : A � B and ι2 : B � A. Then ι2 ◦ ι1 is
an immersion of A into itself. Since the identity map on A is also an immersion of
A into itself, by the uniqueness of immersions, ι2 ◦ ι1 = idA. Similarly, ι1 ◦ ι2 =
idB . The immersions are inverses of one another, and hence are homeomorphisms.
Furthermore, the fact that the maps respect the basepoints implies that they are
isomorphisms. This also holds for embeddings since embeddings are a special case
of immersions. �

Proposition 10. Let P and Q be planar surfaces and let A ∈ PC(P ) and B ∈
PC(P ). A continuous function f : A → B satisfying f(oP ) = oQ is an immersion
if and only if Dev(P, a) = Dev

(
Q, f(a)

)
for all a ∈ A.

As a consequence of this, we see that the developing map is well-defined when
restricted to an A ∈ PC. That is, if A ∈ PC(P ) and B ∈ PC(Q) are isomorphic,
then the isomorphism does not affect the image under the developing map.

Proof. Clearly if Dev(P, a) = Dev
(
Q, f(a)

)
holds for all a ∈ A, then f is a local

translation and so is an immersion. Conversely suppose f is an immersion. Note
that the developing map of a planar surface Dev|P : P → R2 is an immersion
if R2 is considered to be a planar surface with basepoint 0. Since compositions



IMMERSIONS AND TRANSLATION STRUCTURES I 243

of immersions are immersions, we know Dev ◦ f is an immersion of A into R2.
Therefore, this map agrees with the restriction of Dev to A. �

3.2. The topology on moduli space. We will specify the topology on the moduli
space of all planar surfaces, M̃, by specifying a subbasis for the topology. That is,
we will be concerned with the coarsest topology which makes a collection of sets
open.

Let P ∈ M̃ be a planar surface and let K ∈ PC(P ) be a compact subset of P .

We define the following subsets of the moduli space M̃:

(3) M̃�(K) = {Q ∈ M̃ : K � Q} and M̃↪→(K) = {Q ∈ M̃ : K ↪→ Q}.
Sets of this form will be open in our topology. However, they are insufficient to
form a subbasis for a Hausdorff topology, because they fail to isolate points. For
instance, the plane (interpreted as a planar surface) lies in each set M̃�(K). Also,

any set of the form M̃↪→(K) which contains the unit disk also contains the plane.
Let P be a planar surface, and let U ∈ PC(P ) be open as a subset of P . We

define:

(4) M̃��(U) = {Q ∈ M̃ : U 	� Q} and M̃�↪→(U) = {Q ∈ M̃ : U 	↪→ Q}.
These sets will also be open in our topology.

We would like to describe a subbasis for our topology which consists of sets which
are fairly easy to work with. So, for any planar surface P , we will distinguish two
natural subsets of PC(P ). We define Disk(P ) to be those sets in PC(P ) which are
homeomorphic to a closed 2-dimensional disk and contain the basepoint oP in their
interior. We define Disk(P ) to be the set of sets in PC(P ) which are homeomorphic
to an open 2-dimensional disk and contain the basepoint.

Definition 11. The immersive topology on M̃ is the coarsest topology so that sets
of either of the two forms below are open:

(1) sets of the form M̃�(K), where K ∈ Disk(P ) for some P ∈ M̃;

(2) sets of the form M̃�↪→(U), where U ∈ Disk(P ) for some P ∈ M̃.

It will follow that the other types of sets mentioned above are also open; see §6.

3.3. The topology on the canonical disk bundle. We recall that in Convention
5 we have identified the canonical disk bundle Ẽ with the collection of pairs (P, p),
where P is a planar surface and p ∈ P .

Let P be a planar surface, and let K ∈ PC(P ) be a compact subset of P with
interior K◦. Let U ⊂ K◦ be an open set (not necessarily connected or containing

the basepoint). Define the following subset of Ẽ :

(5) Ẽ�(K,U) = {(Q, q) ∈ Ẽ : ∃ι : K � Q and q ∈ ι(U)}.

The immersive topology on Ẽ is the coarsest topology so that the projection π̃ :
Ẽ → M̃ is continuous and so that for each P ∈ M̃ and each K ∈ Disk(P ) and each

open U ⊂ K◦, the set Ẽ�(K,U) is open.
The following results follow quickly from the following definition.

Proposition 12. Let P be a planar surface. Then P inherits a topology by viewing
P as a subset of Ẽ with the immersive topology. This topology is the same as the
topology coming from viewing P as homeomorphic to a topological disk as in §2.5.
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Proof. Let T be the first topology on P mentioned. Then open sets in T are of the
form ι(U) where ι : K → P is an immersion of a compact set. Since immersions
are local homeomorphisms, ι(U) is always open in the disk topology. On the other
hand if V is an open set in the disk topology on P and v ∈ V , then we can find a
compact set K ⊂ P containing v in its interior, and we we can let U = K◦ ∩ V .
Then the intersection of Ẽ�(K,U) with P is precisely U . Since this can be done
for any v ∈ V , this shows V is open in T . �

Sets Ẽ�(K,U) are open even if the condition that K be a closed disk is removed.

Proposition 13. For every compact K in some P , and every U ⊂ K◦, we have
Ẽ�(K,U) is open.

Proof. Let (Q, q) ∈ Ẽ�(K,U). Then there is an immersion ι : K � Q and q ∈ ι(U).

Choose D ∈ Disk(Q) so that ι(K) ⊂ D◦. Then Ẽ�
(
D, ι(U)

)
is open by definition

and contains (Q, q). We claim that Ẽ�
(
D, ι(U)

)
⊂ Ẽ�(K,U) which will prove

that Ẽ�(K,U) is open. Let (R, r) ∈ Ẽ�
(
D, ι(U)

)
. Then there is an immersion

j : D � R and r ∈ j ◦ ι(U). By composition we have an immersion j ◦ ι : K � R

and since r ∈ j ◦ ι(U) we know (R, r) ∈ Ẽ�(K,U). �

4. The Hausdorff property

We prove the following lemma.

Lemma 14. The immersive topologies on M̃ and Ẽ are Hausdorff topologies.

4.1. Basic properties of immersions. We collect some basic properties of im-
mersions and embeddings.

Proposition 15. Let P and Q be planar surfaces and B ∈ PC(Q). Suppose that
〈Aj ∈ PC(P )〉j∈N is an increasing sequence of open subsets, i.e., Aj ⊂ Aj+1 for all
j ∈ N. Let U =

⋃
j∈N

Aj ∈ PC(P ). Then:

• If Aj � B for all j ∈ N, then U � B.
• If Aj ↪→ B for all j ∈ N, then U ↪→ B.

Proof. Suppose ∃ιj : Aj � B for all j ∈ N. The fact that these immersions are
unique implies that for all j < k and all p ∈ Aj , we have ιj(p) = ιk(p), since
ιj = ιk|Aj

. Therefore, we may define a limiting map ι : U → B by ι(p) = ιj(p)
whenever p ∈ Aj . The preceding argument indicates that this map is well-defined.
We must check that it is an immersion. Because the Aj are open, continuity of
each ιj implies continuity of ι. Similarly, ι acts as a translation in local coordinates
by restricting locally within some Aj . The embedding case also requires checking
injectivity. To prove this from the fact that each ιj is injective, choose any distinct
p, q ∈ U . Then p, q ∈ ιj(Aj) for some j. Then by definition of ι and injectivity of
ιj ,

ι(p) = ιj(p) 	= ιj(q) = ι(q). �

4.2. Subsets homeomorphic to disks. In order to work with disks in planar
surfaces, we will utilize some structure coming from Schoenflies’ theorem.

Theorem 16 (Schoenflies). Let C be a simple closed curve in the open topological
disk Δ. Then, there is a homeomorphism h : Δ → R2 so that h(C) is the unit circle
in R2.
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We translate this theorem into our setting as follows.

Corollary 17. Let P be a planar surface and K ∈ Disk(P ). Then, there is a
homeomorphism h : P → R2 so that h(K) is the closed unit ball and h(oP ) = 0.

We use this to impart the following structure.

Proposition 18. Let P be a planar surface. For each set K ∈ Disk(P ), there is a
family of sets {Kt ∈ Disk(P ) : t > 0} so that the following statements hold:

(1) K1 = K.
(2)

⋂
t Kt = {oP }.

(3) P =
⋃

t K
◦
t .

(4) For each t > 0, K◦
t =

⋃
t′<t K

◦
t′ .

(5) For each t > 0, Kt =
⋂

t′>t Kt′ .
(6) There is a continuous surjective function α : R/2πZ× [0,∞) → P , which is

injective except that α(R/2πZ×{0}) = {oP } and satisfies α(R/2πZ×{t}) =
∂Kt.

Proof. Let h : P → R
2 be the homeomorphism guaranteed to exist by Corollary

17. The family given by Kt = h−1
(
{v ∈ R2 : ‖v‖ ≤ t}

)
satisfies the proposition.

The function α can be taken to be the pull back of polar coordinates on R2. �

We will call any family of sets {Kt ∈ Disk(P ) : t > 0} formed as above a
closed disk family in the planar surface P . Closed disk families give a natural way
to understand immersions and the failure to immerse, and we use them throughout
the paper. The next subsection uses them to prove our convergence criteria.

4.3. Proofs of the Hausdorff property.

Proof that the immersive topology on M̃ is Hausdorff. Let P,Q ∈ M̃ be distinct
planar surfaces. Then by Corollary 9, either P 	� Q or Q 	� P . Without loss
of generality, assume P 	� Q. Let {Kt} be a closed disk family for P . If each
K◦

t � Q, then P � Q by Proposition 15. Therefore, there is a t so that K◦
t 	� Q.

We conclude that P ∈ M̃�(Kt) and Q ∈ M̃��(K◦
t ). These open sets are disjoint

since if Kt � R, then restriction gives an immersion K◦
t � R. �

Proof that the immersive topology on Ẽ is Hausdorff. Suppose (P, p) and (Q, q) are

distinct points in Ẽ . We will find open sets separating these points. If P and Q are
distinct planar surfaces, then we can use the Hausdorff property of the embedding
topology on M̃ to separate P and Q by open sets. The preimages of these open
sets under π̃ are open in Ẽ and separate our points.

Otherwise, we have P = Q, and q ∈ P . In this case, the points can be separated
since the induced topology on the planar surface P is the same as the topology of
an open topological disk; see Proposition 12. �

5. Fusing planar surfaces

By Corollary 9 the notion of immersion places a partial ordering on the space M̃
of planar surfaces. We will now describe some of the order structure. If P � Q we
think of Q as larger than P . The content of the following is that every collection
of planar surfaces has a least upper bound.
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Figure 1. An example of fusing two planar surfaces.

Theorem 19 (Fusion Theorem). Let P denote any non-empty collection of planar
surfaces. Then there is a unique planar surface R which satisfies the following
statements:

(I) For each P ∈ P, P � R.
(II) For all planar surfaces Q, if P � Q for all P ∈ P, then R � Q.

We say that the planar surface R from the above theorem is the fusion of P
and write R =

�
P. If P is a finite collection, such as P = {P1, P2, P3}, we write

P1 � P2 � P3 for the fusion. See Figure 1 for an example of this operation.
We will now look at greatest lower bounds. Unfortunately, there is no minimal

element in M̃. We can fix this by adding a new element; define M̄ = M̃ ∪ {O}
and extend the partial order � by saying O � P for all P ∈ M̄ and P � O if and
only if P = O. Now O is the minimal element of M̄. All subcollections of M̄ have
greatest lower bounds.

Corollary 20 (Core corollary). Let P ⊂ M̄ be non-empty. Then, there is a unique
R ∈ M̄ which satisfies the following statements:

(I’) For each P ∈ P, R � P .
(II’) If Q ∈ M̄ and Q � P for all P ∈ P, then Q � R.

The proof is a standard observation in order theory, but we give it for complete-
ness. This and the result above indicate that M̄ is a complete lattice in the sense
of order theory. See [1] or [8] for background on complete lattices.

Proof. First we address uniqueness. Suppose R1 and R2 satisfy both statements.
Then by (I’), R1 � P and R2 � P for all P ∈ P. Then by (II’), R1 � R2 and
R2 � R1. We conclude that R1 = R2 since � is a partial order.

Consider the collection S = {S ∈ M̃ : S � P for all P ∈ P}. If this collection
is empty, then we can take R = O. The statements (I’) and (II’) are clearly satisfied.

If S 	= ∅, then let R =
�
S. We will now prove that (I’) is satisfied. Fix

P ∈ P. Observe that S � P for all S ∈ S. Therefore R � P by statement (II)
of the Fusion Theorem. We now prove that (II’) is satisfied. Suppose Q ∈ M̄ and
suppose Q � P for every P ∈ P. Then Q ∈ S. So Q � R by statement (I) of the
Fusion Theorem. �

We call the R ∈ M̄ produced in the above corollary the core of the collection P,
and denote this by R =

�
P.
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Figure 2. Trivial structures on the thrice punctured sphere and
once punctured genus two surface.

5.1. Trivial structures. Let Σ be a connected oriented topological surface with
basepoint x0. We will say that a trivial structure on a surface is an atlas of orienta-
tion preserving local homeomorphisms (charts) to the plane so that the transition
functions are restrictions of the identity map on the plane and so that the image
of the basepoint x0 is always mapped to 0 ∈ R2. We emphasize that in a trivial
structure, the underlying topological surface Σ need not be a topological disk.

We give some examples of trivial surfaces to orient the reader. Any connected
open subset of R2 containing the origin 0 is a trivial surface, where it suffices to
take the identity map as the sole chart in the atlas. (See Figure 2.) Considering the
developing map as the sole chart for a planar surface yields a trivial structure on
any planar surface. A trivial structure is a special type of translation structure, i.e.,
for every translation structure there is at most one corresponding trivial structure.
Furthermore, a translation structure on a surface S admits a compatible trivial
structure if and only if the holonomy map π1(S) → R2 has trivial image. So, in
particular, given any translation structure on a surface, there is a compatible trivial
structure on its universal abelian cover.

We will see that trivial structures generalize but share a lot of properties of
translation structures on disks. Fix a translation structure on a pointed topological
surface Σ. Because the transition functions are the identity map, the image of a
point y ∈ Σ under a chart is independent of the choice of the chart. It follows
that a trivial structure on a surface can be specified by a single chart, a single
orientation preserving local homeomorphism φ : Σ → R2 so that φ(x0) = 0 (which
generalizes the developing map for a translation structure on a disk). Two such local
homeomorphisms φ and ψ are said to yield isomorphic trivial structures if there is
an orientation preserving homeomorphism h : Σ → Σ so that h(x0) = x0 and φ ◦
h−1 = ψ. The homeomorphism h is called an isomorphism between the structures.
The (set-theoretic) moduli space of trivial structures on (Σ, x0) is the collection
isomorphism-equivalence classes of trivial structures on (Σ, x0). We can construct
a canonical Σ-bundle over the moduli space of trivial structures on (Σ, x0), as for
translation structures on the disk. We say that a trivial surface (homeomorphic
to (Σ, x0)) is a fiber of the projection from the bundle to the moduli space. We
endow the trivial surfaces with a pointed trivial structure in the canonical way.
This choice makes the trivial structure on the fiber an element of the isomorphism
class described by the image in moduli space.
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The collection of all trivial surfaces is the collection of fibers of such projections
taken over all homeomorphism-equivalence classes of pointed surfaces (Σ, x0). The
developing map Dev is well-defined on the union of all trivial surfaces, and the
restriction to a single trivial surface is a local homeomorphism to R2 which carries
the basepoint to 0.

The notions of immersion and embedding carry over trivially to subsets of trivial
surfaces. In particular, we note that if P and Q are trivial surfaces, then P � Q
and Q � P implies that P = Q.

5.2. The Fusion Theorem. The main goal of this section is to prove the following
theorem.

Theorem 21 (Generalized Fusion Theorem). Let P denote any non-empty collec-
tion of trivial surfaces. Then there is a unique trivial surface R which satisfies the
following statements:

(I) For each P ∈ P, P � R.
(II) For all planar surfaces Q, if P � Q for all P ∈ P, then R � Q.

We call R the fusion of the surfaces in P, and use notation for R as described
under the statement of Theorem 19.

We note that M̃ is by definition the (set-theoretic) moduli space of trivial struc-

tures on the pointed disk (Δ, x0). As such M̃ is a subset of the (set-theoretic)
moduli space of trivial structures on all pointed surfaces as defined in §5.1. There-
fore, we can deduce our original Fusion Theorem (Theorem 19) from the Generalized
Fusion Theorem using the following.

Proposition 22. If P is a collection of trivial surfaces homeomorphic to disks,
then so is

�
P.

Proof. Suppose to the contrary that R =
�
P is not simply connected. Let R̃ be the

universal cover of R and let π : R̃ → R be the covering. We will prove that R̃ also
satisfies statements (I) and (II) of the Fusion Theorem, contradicting uniqueness

unless R̃ = R.
Since each P ∈ P is simply connected, the immersion P � R lifts to an im-

mersions P � R̃. Thus (I) is satisfied by R̃. Now suppose that P � S for all

P ∈ P. By statement (II) for R, we know R � S. The covering map R̃ → R

is an immersion, so by composition with the covering map, R̃ � S. Thus, (II) is
satisfied. �

For the rest of the section we will work on proving the Generalized Fusion The-
orem, and we will only study trivial surfaces. We prove this theorem in a series of
steps starting with uniqueness (assuming existence).

Proof of uniqueness in the Generalized Fusion Theorem. Suppose there are two
trivial surfaces R1 and R2 which satisfy statements (I) and (II) of the theorem.
Then by statement (I), for each j ∈ {1, 2} and each P ∈ P, we have P � Rj . Then
by statement (II), we have R1 � R2 and R2 � R1. So R1 = R2 by Corollary 9,
which may be seen to hold for trivial surfaces. (The same proof works as for planar
surfaces.) �
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5.3. Construction of the fusion. We construct the fusion of P as a quotient of
the disjoint union

⊔
P∈P P . We make this a topological space by making each open

set in any P ∈ P open in the disjoint union.
The bundle-wide developing map Dev is defined on the union of all trivial sur-

faces, so by restriction, it is also defined on the disjoint union
⊔

P∈P P .
Let ∼ be an equivalence relation on

⊔
P∈P P . Make the following choices:

• Let P1 and P2 be a pair of (not necessarily distinct) surfaces in P.
• Let r1 ∈ P1 and r2 ∈ P2 be so that r1 ∼ r2.
• Let γ1 : [0, 1] → P1 and γ2 : [0, 1] → P2 be paths so that γ1(0) = r1,
γ2(0) = r2 and

Dev ◦ γ1(t) = Dev ◦ γ2(t) for all t ∈ [0, 1].

We say that ∼ is path invariant if for every choice made as above, we have γ1(1) ∼
γ2(1).

Theorem 23 (Constructive Fusion Theorem). Let ∼ be the smallest path invariant
equivalence relation on

⊔
P∈P P so that for each pair of surfaces P and Q in P, we

have oP ∼ oQ. Then,
⊔

P∈P P/ ∼ is isomorphic to the fusion of P. Here, the local

homeomorphism from
⊔

P∈P P/ ∼ to R2 is provided by the developing map, which
descends to this quotient.

We establish a corollary to the Constructive Fusion Theorem, which reveals some
structure of the fusion of infinitely many surfaces which is unapparent in the original
Fusion Theorem.

Corollary 24. Let P be an infinite collection of trivial surfaces. Let R =
�
P. For

P ∈ P, let ιP : P � R be the immersion guaranteed by statement (I) of the Fusion
Theorem. Let p be a point in P ∈ P, and let q be a point in Q ∈ P, and suppose
that ιP (p) = ιQ(q). Then there is a finite subcollection F ⊂ P containing P and Q
so that the immersions jP : P �

�
F and jQ : Q �

�
F satisfy jP (p) = jQ(q).

Proof. Let ∼ be the equivalence relation from the Constructive Fusion Theorem.
We think of equivalence relations on

⊔
P∈P P as subsets of (

⊔
P∈P P )2. We will

construct an increasing sequence of equivalence relations ∼n on
⊔

P∈P P so that⋃
n ∼n=∼. Then, the finiteness result follows if the finiteness result is proved for

each ∼n.
We define ∼n inductively in the integers n ≥ 0 beginning with ∼0. Let p, q ∈⊔

P∈P P . We define p ∼0 q if p = q or if p and q are both basepoints of surfaces in
P. This can be seen to be an equivalence relation. Now suppose that ∼n is defined
and let p ∈ P ∈ P and q ∈ Q ∈ P be points in

⊔
P∈P P . We say p is n+1-related to

q (denoted p ≡n+1 q) if there are curves γ1 : [0, 1] → P and γ2 : [0, 1] → Q so that
γ1(0) ∼n γ2(0), γ1(1) = p, γ2(1) = q and Dev ◦ γ1(t) = Dev ◦ γ2(t) for all t ∈ [0, 1].
Observe that ∼n⊂≡n+1. We define ∼n+1 to be the smallest equivalence relation
containing ≡n+1. Since ≡n+1 is reflexive and symmetric, we can concretely say
that p ∼n+1 q if p ≡n+1 q or if there is a finite collection p1, p2, . . . , pk ∈

⊔
P∈P P

so that the following holds:

(6) p ≡n+1 p1 ≡n+1 p2 ≡n+1 . . . ≡n+1 pk ≡n+1 q.

Observe that by definition of ∼ we have
⋃

n ∼n=∼.
We now prove our finiteness statement by induction. Let p ∈ P ∈ P and

q ∈ Q ∈ P. If p and q are the same point, then P = Q, we can take F = {P} so



250 W. PATRICK HOOPER

that P =
�
F , and the identity map P � P sends p and q to the same point. If p

and q are basepoints of P and Q, respectively, then the immersions P � (P � Q)
and Q � (P � Q) carry these points to the basepoint of P � Q by definition of
immersion. This proves the finiteness statement for ∼0.

Now suppose ∼n satisfies the finiteness statement, and suppose that p ≡n+1 q.
Then, there must be curves γ1 : [0, 1] → P and γ2 : [0, 1] → Q as above. Then
γ1(0) ∼n γ2(0), so there is a finite collection F ⊂ P containing P and Q so that the
immersions ιP : P �

�
F and ιQ : P �

�
F satisfy ιP ◦γ1(0) = ιQ◦γ2(0). Then by

the Constructive Fusion Theorem applied to
�
F , we see that ιP ◦γ1(1) = ιQ◦γ2(1)

as well. This proves the finiteness statement for ≡n+1.
Now suppose that ≡n+1 satisfies the finiteness statement, and suppose that

p ∼n+1 q. Then there are points p1, p2, . . . , pk ∈
⊔

P∈P P satisfying equation (6).
Let p0 = p and pk+1 = q. Let Pj ∈ P be the surface containing pj for each j.
Then for all j ∈ {0, . . . , k}, there is a finite collection Fj so that the immersions

ιj : Pj �
�
Fj and ι′j : Pj+1 �

�
Fj satisfy ιj(pj) = ι′j(pj+1). Let F =

⋃k
j=0 Fj .

Then, there are immersions jj :
�
Fj �

�
F for all j. The immersions Pj �

�
F

can be given by jj ◦ ιj for j ≤ k and by jj−1 ◦ ι′j−1 for j ≥ 1. It follows that the
image of pj inside

�
F is independent of j ∈ {0, . . . , k + 1}. �

5.4. The fusion is a trivial surface. We will begin by proving that the quotient
space described in the Constructive Fusion Theorem is really a trivial surface.

Lemma 25. Let ∼ be the equivalence relation from the Constructive Fusion Theo-
rem. Then, the quotient

⊔
P∈P P/ ∼ has the structure of a trivial surface with the

associated immersion to R2 given by

φ([r]) = Dev(r) for all r ∈ P ∈ P.

We will devote the remainder of the section to the proof of this fact. We now
describe our plan. We will check that φ is a well-defined map. Then we will prove
that φ is a local homeomorphism. This demonstrates that

⊔
P∈P P/ ∼ is locally

modeled on R2. Finally, we will show that
⊔

P∈P P/ ∼ is Hausdorff. This proves
that it is a surface, and φ gives this surface a trivial planar structure.

Proof that φ is well-defined. The basepoint of
⊔

P∈P P/ ∼ is given by the equiva-
lence class [oP ] for some (any) P ∈ P. We note that the developing map sends oP
to zero. By induction, we can see that the points we are forced to identify by path
invariance (see the definition above Theorem 23) also have the same image under
the developing map. Therefore, φ is well-defined. �

In order to prove the remainder of the lemma, it is useful to use the following.

Proposition 26. Let r1 ∈ P1 for some P1 ∈ P. Let B ⊂ P1 be an open metric ball
of radius ε about r1 with ε taken to be so small that the developing map restricted
to B gives a homeomorphism to a ball of radius ε in the plane. Let

U = {r2 ∈
⊔
P∈P

P : r2 ∼ b for some b ∈ B}.

Then, U is open in
⊔

P∈P P , and so by definition B′ = {[b] : b ∈ B} is open in⊔
P∈P P/ ∼ .
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Proof. We remind the reader of the topology we placed on
⊔

P∈P P . We need to
show that U ∩ P2 is open in P2 for all P2 ∈ P. Let r2 ∈ U ∩ P2. Then, r2 ∼ b for
some b ∈ B. Since the image under the developing map is an ∼-invariant, we have

|Dev(r1)−Dev(r2)| = |Dev(r1)−Dev(b)| < ε,

because b lies in the ball B of radius ε about r1. Choose ε′ > 0 small enough so
that the following hold:

(1) The developing map restricted to the open ε′-ball about r2 is a homeomor-
phism to a ball in the plane of radius ε′.

(2) The ε′-ball about b is a subset of the ball B.

Let D denote the open ball of radius ε′ about r2 in P2. Let r3 ∈ D. Then by (1)
there is a path γ1 of length less than ε′ joining r2 to r3. Similarly, there is a path
γ2 starting at b and contained in B so that Dev ◦ γ1 = Dev ◦ γ2. This path stays
within B by (2). Thus U ∩ P2 is open as desired. �

Proof that φ is a local homeomorphism. Choose any [r1] ∈
⊔

P∈P P/ ∼, and choose
r1 ∈ [r1]. Let U be as in the above proposition. Then the set B′ at the end of the
proposition is an open set containing [r1]. Furthermore, since each point in B′ has
a unique representative in B, we know that φ|B′ is one-to-one and onto its image,
which is an open ball in R2.

We must prove that φ|B′ is continuous. This also follows from the proposition.
Let v be a point in φ(B′), and let [r2] = φ−1(v). We can choose the representative
r2 ∈ [r2] ∩B. Then the neighborhood of radius ε− |Dev(r1)−Dev(r2)| about r2 is
isometric to a Euclidean ball. Applying the proposition to this choice of center r2
and radius produces an open set containing r2 and contained in B′.

The fact that (φ|B′)−1 is continuous is a tautology, because of the topology we
placed on

⊔
P∈P P . Recall that the union of equivalence classes in B′ is open. Call

this union U as in the lemma above. Now let C ′ ⊂ B′ be a smaller open set. This
by definition means that its union of equivalence classes V ′ ⊂ U ′ is open. That is,
V ′ ∩ P is open for each P ∈ P. Moreover by definition of φ, we have

φ|B′(C ′) = Dev(V ′) =
⋃
P∈P

Dev|P (V ′ ∩ P ).

But, the image of any open set in a trivial surface under the developing map is
open in R2, and any union of open sets is open. �

Proof that
⊔

P∈P P/ ∼ is Hausdorff. Let [r1], [r2] ∈
⊔

P∈P P/ ∼ be distinct. We
will separate these points by open sets. First suppose that φ([r1]) 	= φ([r2]). Then
by constructing neighborhoods around each of [r1] and [r2] using Proposition 26
with radius less than or equal to 1

2 |φ([r1])− φ([r2])| produces open sets which can
be discerned to be disjoint because their images under φ are disjoint.

Now suppose that [r1] and [r2] are distinct but that φ([r1]) = φ([r2]). Choose
representatives r1 ∈ [r1] and r2 ∈ [r2]. Suppose r1 ∈ P1 and r2 ∈ P2. Let
B1 ⊂ P1 and B2 ⊂ P2 be open metric balls about r1 and r2, respectively, which
are each isometric to a Euclidean metric ball. These balls determine open sets
B′

1, B
′
2 ⊂

⊔
P∈P P/ ∼ by Proposition 26. We claim that they are disjoint. Suppose

not. Then, there is an [r3] ∈ B′
1 ∩B′

2. By the proposition, we can then find points
b1 ∈ B1 ∩ [r3] and b2 ∈ B2 ∩ [r3]. Since b1 ∼ b2, they have the same image under
Dev. Parameterize the line segments joining b1 to r1 within B1 and joining b2 to r2
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within B2 in the same way. Then, path invariance guarantees that r1 ∼ r2. This
contradicts the distinctness of [r1] and [r2]. �

5.5. Proof of the Fusion Theorem. We now prove the Constructive Fusion
Theorem. Note that this immediately implies the Generalized Fusion Theorem
(Theorem 21), and the original version of the Fusion Theorem (Theorem 19) follows
from Proposition 22.

Proof of Theorem 23. Let P ∈ P. Let R =
⊔

P∈P P/ ∼, where ∼ is the equivalence
relation described in the theorem. We will prove that R has the properties described
in the Fusion Theorem.

Statement (I) of Theorem 21 simply requires proving that the natural maps
P → R respect the basepoints, respect the developing maps, and are local home-
omorphisms. Basepoints are respected by construction. By definition of φ, the
developing map is respected. This proves that the natural map P → R is an im-
mersion. Finally, the fact that P → R is a local homeomorphism follows from the
fact that the developing maps are respected and are local homeomorphisms.

Statement (II) of Theorem 21 reduces to a statement about equivalence relations.
Suppose P � S for all P ∈ P. Let j :

⊔
P∈P P → S be the simultaneous immersion

of all planar surfaces P ∈ P into S. Then, we define an equivalence relation on⊔
P∈P P by p ≈ q for p ∈ P ∈ P and q ∈ Q ∈ P if j(p) = j(q). Then all basepoints

are equivalent and ≈ is path invariant. Since ∼ is the smallest such relation, each
∼-equivalence class is contained in an ≈-equivalence class. This gives a canonical
map R → S. By construction, it is an immersion. �

6. New open sets and second-countability

In this section, we will study subsets of planar surfaces which are unions of
rectangles. Analyzing such sets will enable us to prove two important results about
the immersive topology.

Theorem 27 (Open sets in M̃). Let P be a planar surface. If K ∈ PC(P ) is

compact, then both M̃�(K) and M̃↪→(K) are open in the immersive topology on

M̃. If U ∈ PC(P ) is open, then both M̃��(U) and M̃�↪→(U) are open.

Theorem 28. The immersive topologies on M̃ and Ẽ are second-countable, that
is, they admit a countable basis.

We remark that Propositions 38 and 39 will give explicit countable subbases for
these topologies. (By general principles, the induced bases are then also countable.)

6.1. Definition of rectangular union. A closed rectangle in the plane is a subset
of R2 of the form

[a, b]× [c, d] = {(x, y) ∈ R
2 : a ≤ x ≤ b and c ≤ y ≤ d},

where a < b and c < d. Similarly, an open rectangle is a set of the form (a, b)×(c, d).
We call such a rectangle rational if a, b, c, and d are rational numbers.

Let P be a planar surface. We call R ⊂ P a closed (resp., open) rectangle if
Dev(R) is a closed (resp., open) rectangle and the restriction Dev|R : R → Dev(R)
is a homeomorphism. We say R is rational if Dev(R) is.

A closed (resp., open) rectangular union is a finite union of closed (resp., open)
rectangles in a planar surface which is connected and whose boundary is a disjoint
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collection of curves. We call a rectangular union rational if it can be constructed
as a finite union of rational rectangles.

Proposition 29. The closure of an open rectangular union with compact closure
is a closed rectangular union. The interior of a closed rectangular union is an open
rectangular union.

Proof. Let P be a planar surface. Suppose {Ri ⊂ P} is a finite collection of open
rectangles whose union is an open rectangular union U with compact closure. Then
Ū =

⋃
i R̄i is a closed rectangular union.

Now suppose R = {Ri ⊂ P} is a collection of closed rectangles whose union
is a closed rectangular union K. Then

⋃
i R

◦
i may not be as large as K◦. We

will construct a larger finite collection of closed rectangles R′ ⊃ R so that K◦ =⋃
R∈R′ R◦. We will describe an algorithm for constructing R′ by adding rectangles

beginning with R′ = R. Let Λ = K◦ �
⋃

i R
◦
i . A point p ∈ Λ is either a vertex of

a rectangle in R or lies in the interior of an edge of such a rectangle. If p ∈ Λ is a
vertex, then it has a neighborhood which lies in K◦, so we can add a small rectangle
to R which contains p and is contained entirely in K◦. We add such a rectangle
to R′ for each vertex in Λ. Now suppose p ∈ Λ is not a vertex. Then, it must lie
in the common boundary of two rectangles R1 and R2 lying on opposite sides of a
line whose edges intersect in an interval. We can construct a closed rectangle, R0,
which is contained in R1 ∪R2 and contains the overlap R1 ∩R2. See below:

We add such a rectangle to R′ for all pairs of rectangles in R which intersect in an
interval. The resulting R′ has the desired property. �

Proposition 30. An open rectangular union is homeomorphic to a finitely punc-
tured disk.

Proof. By definition, an open rectangular union is a connected surface in a topolog-
ical disk. So, it is homeomorphic to a punctured disk, but the number of punctures
may be infinite. So, it suffices to prove that an open rectangular union has finite
Euler characteristic.

We will show that a union of open rectangles, i.e., an arbitrary union of open
rectangles in a planar surface, has finite Euler characteristic. We define the com-
plexity of such a union to be the smallest number of rectangles necessary to write
the set as a union of rectangles. In fact, we will prove that if a union of rectangles
U has complexity less than n, then |χ(U)| < 2n. For n = 0, χ(U) = 0, and for
n = 1, χ(U) = 1. These provide a base case, and we proceed by induction in n.
Suppose the statement |χ(U)| < 2n for all U of complexity n. Let U ′ be a union of
complexity n+ 1. Then U ′ = U ∪ R, where U has complexity n and R is another
open rectangle. By the inclusion-exclusion principle,

(7) χ(U ∪R) = χ(U) + χ(R)− χ(U ∩R) = χ(U)− χ(U ∩R) + 1.
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Note that the intersection of two open rectangles in a planar surface is either empty
or another open rectangle. In particular, U ∩ R is either empty or a union of
rectangles of complexity no more than n. By inductive hypothesis, |χ(U)| < 2n

and |χ(U ∩R)| < 2n. So by equation (7),

|χ(U ∪R)| ≤ |χ(U)|+ |χ(U ∩R)|+ 1 ≤ (2n − 1) + (2n − 1) + 1 < 2n+1. �

6.2. A finiteness condition. Let P and Q be planar surfaces. Let A ∈ PC(P )
and B ∈ PC(Q). We say A and B are isomorphic if A � B and B � A. This
defines an equivalence relation on

PC =
⋃

P∈M̃

PC(P ).

We note that sets of the form M̃�(K), M̃↪→(K), M̃��(U), and M̃�↪→(U) only
depend on the isomorphism classes of K and U .

We state our main finiteness result for convex sets rather than rectangles because
it will be useful in later sections.

Proposition 31. Let A1, . . . , An be a collection of convex subsets of the plane which
are either all open or all closed. There are only finitely many isomorphism classes
of U ∈ PC which are the union of sets of the form Ãi ⊂ U so that Ai = Dev(Ãi)
for all i.

The reason this proposition will be useful is that our topology on M̃ was defined
in terms of a subbasis, and finite intersections of elements of the subbasis are still
open but typically not elements of the subbasis. We will eventually be taking
intersections of sets of the form M̃�(K) and M̃�↪→(U) over finite collections of
isomorphism classes in order to prove Theorem 27.

Proof. Fix A1, . . . , An. Let U =
⋃n

i=1 Ãi be such a union. Suppose U lives in the
planar surface P with basepoint oP . We associate U to two pieces of information.
First there is a subset S(U) ⊂ {1, . . . , n} consisting of those i so that oP ∈ Ãi. Also,
we can associate to U a subgraph G(U) of the complete graph Kn with vertex set
{1, . . . , n}. We define this subgraph by the condition that there is an edge between

distinct i, j ∈ {1, . . . , n} if Ãi ∩ Ãj 	= ∅. Assume this intersection is non-empty. By
convexity of Ai and Aj , it follows that Ai∩Aj is convex and so connected. Because

the lifts Dev|−1
Ai

: Ai → P and Dev|−1
Aj

: Aj → P agree at one point, they must agree

at all points of Ai ∩ Aj by analytic continuation. Therefore, we can recover U up
to isomorphism from S(U) and G(U). Consider the disjoint union

⊔
i Ai. Inclusion

of each Ai into R2 gives a natural map π :
⊔

i Ai → R2. Define the equivalence
relation ∼ on the disjoint union by p ∈ Ai is equivalent to q ∈ Aj if π(p) = π(q) and
the edge īj lies in G(U). There is a natural identification between U and

⊔
i Ai/ ∼

which picks out the isomorphism class of U . The collection of points p ∈ Ai with
i ∈ S(U) and Dev(p) = 0 is an equivalence class of

⊔
i Ai/ ∼. This corresponds to

the basepoint of U .
Let U1 and U2 be unions coming from the same choices of convex sets A1, . . . , An.

We remark that there is an immersion ι : U1 → U2 if and only if S(U1) ⊂ S(U2)
and G(U1) is a subgraph of G(U2). Viewing

U1 =
⊔
i

Ai/ ∼1 and U2 =
⊔
i

Ai/ ∼2,



IMMERSIONS AND TRANSLATION STRUCTURES I 255

we observe that these conditions imply that the identity map
⊔

i Ai →
⊔

i Ai induces
a well-defined map from U1 → U2. This is the needed immersion.

It follows that the collection of unions satisfying the proposition is finite: There
are no more than the number of pairs

(
S(U),G(U)

)
, where S(U) ⊂ {1, . . . , n} and

G(U) is a subgraph of Kn. �
Corollary 32. Let U be an open (resp., closed) subset of a planar surface which
is a finite union of open (resp., closed) convex sets. Then there are only finitely
many images of U under immersions up to isomorphism.

Proof. Let U =
⋃n

i=1 Ãi be a union of convex sets in a planar surface P . Let

Ai = Dev(Ãi). Given an immersion ι : U � Q, we have ι(U) =
⋃n

i=1 ι(Ãi). This
writes ι(U) as a union of lifts of the sets Ai ⊂ R

2 for i = 1, . . . , n. There are only
finitely many possibilities for ι(U) by Proposition 31. �
Corollary 33. There are only countably many isomorphism classes of (open or
closed) rational rectangular unions in PC.

Proof. This follows from the proposition above, because there are only countably
many finite collections of rational rectangles in the plane. �
6.3. Rectilinear curves. We will say a closed curve γ : R/LZ → R2 is rectilinear
if there are 0 = t0 < t1 < . . . < t2k = L so that the derivative satisfies

γ′(t) =

{
(±1, 0) if tj < t < tj+1 with j even,

(0,±1) if tj < t < tj+1 with j odd.

We say the rectilinear curve γ is rational if the points γ(tj) are rational.

Our topology on M̃ was defined using a subbasis consisting of elements of the
form M̃�(K) and M̃�↪→(U) where K and U are disks, and so we will need to study
rectangular unions which are also topological disks. Such disks are bounded by
rectilinear curves, and we will use an understanding of rectilinear curves to deduce
certain finiteness results.

Lemma 34. Let γ be a closed immersed rectilinear curve in R2. Then, lifts of γ to
simple closed curves in planar surfaces bound at most finitely many isomorphism
classes of disks, and each such disk is a rectangular union. Furthermore, if γ is
rational, then so is each rectangular union.

Proof. Consider the rectilinear curve γ in R2. If it bounds an immersed disk, then
γ can be oriented so that the winding number around any point in the plane is
non-negative. By rectilinearity, we can divide the bounded components of R2 � γ
into rectangles. Furthermore, if γ is rational, these rectangles can be chosen all
to be rational. Let R be the collection of such closed rectangles with multiplicity
corresponding to the winding number.

Each immersed disk bounded by γ can be assembled by identifying boundary
edges of rectangles in R. In particular by Proposition 31, there are only finitely
many immersed disks with boundary γ. Furthermore, from this construction we
see that each such disk is a rectangular union. If γ was rational, then the disk is a
rational rectangular union. �
Corollary 35. Let P be a planar surface and let K ∈ PC(P ) be a closed rectangular
union. Then, there is a smallest D ∈ Disk(P ) so that K ⊂ D. Furthermore, D is
a rectangular union.
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Proof. By definition of rectangular union, ∂K is a union of disjoint simple closed
curves, each of which bounds a disk in P . Let A be the unique unbounded com-
ponent of P �K. Then A can only touch one boundary component of P , so A is
homeomorphic to an annulus, and ∂A ⊂ P consists of this one component. The
developed image Dev(∂A) is a rectilinear curve. So, it bounds a rectangular union
in Disk(P ) by the lemma above. �

If K ∈ PC(P ) is a closed rectangular union, then we call the disk D provided by
the corollary the smallest closed disk containing K. Similarly, any open set U in a
planar surface which is homeomorphic to a finitely punctured disk is contained in a
smallest open disk obtained by filling in the compact components of the compliment.

Corollary 36. Let P be a planar surface and U ⊂ P be an open subset containing
the basepoint and homeomorphic to a finitely punctured disk. If Q ∈ M̃ and there
is an embedding e : U ↪→ Q, let D(Q) ⊂ Q denote the smallest open disk containing
e(U). Then the set

{D(Q) : Q ∈ M̃ and U ↪→ Q}
contains only finitely many different isomorphism classes.

Proof. Orient the boundary components of U so that traveling around ∂U leaves U
on the left. For each boundary component choose a smooth simple closed curve in
U homotopic to the boundary component with the same orientation. This allows us
to distinguish the boundary component which does not bound a compact subset of
P , namely the one whose associated curve has turning number 1. (The other curves
have turning number −1 since they bound a disk with the wrong orientation.)

Now we can choose a closed curve γ̃ in U which is homotopic to the distinguished
boundary component so that γ = Dev|P ◦γ̃ is a rectilinear curve. Let V ⊂ M̃ denote
the collection isomorphism classes of planar surfaces bounded by lifts of γ. The set
V is finite by Lemma 34.

Now suppose that R is a planar surface and there is an embedding e : U ↪→ R.
Let V be the open disk bounded by e(γ̃). The isomorphism class of V lies in V .
The set e(U) ∪ V is the smallest open disk containing e(U). Furthermore this disk
is uniquely determined by the isomorphism class V . To see this suppose that R′ is
another planar surface, e′ : U ↪→ R′ is an embedding, V ′ is the open disk bounded
by e(γ̃) and V and V ′ are isomorphic. Let f : V → V ′ denote this isomorphism.
Define the map

g : e(U) ∪ V → e′(U) ∪ V ′; x �→
{
e′ ◦ e−1(x) if x ∈ e(U),

f(x) if x ∈ V .

This map is ambiguous on V ∩ e(U), but this set is a path-connected open set and
the maps e′ ◦ e−1 and f restricted to this set are both embeddings so they agree.
Furthermore, g is an immersion because it is an immersion locally. We similarly
get a map from e′(U)∪V ′ → e(U)∪V , showing that these two sets are isomorphic.
This proves that the isomorphism class of the smallest open disk containing an
embedded image of U is uniquely determined by V as defined above and taken
from the finite set V . �
6.4. Constructing rectangular unions.

Theorem 37. Let P be a planar surface, and let K1, U ∈ PC(P ) with K1 compact,
U open and K1 ⊂ U . Then, there is a closed rational rectangular union K2 ∈ PC(P )
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so that K1 ⊂ K◦
2 and K2 ⊂ U . Furthermore, if U is homeomorphic to an open

disk, then we can arrange that K2 ∈ Disk(P ).

Proof. We will deal with the last sentence later in the proof, for now we will produce
a K2 ∈ PC(P ). For every p ∈ K1, choose a closed rational rectangle Rp so that
p ∈ Rp ⊂ U . Then {R◦

p : p ∈ K1} is an open cover of K1. By compactness,
there is a finite subcover. Let {R1, . . . , Rn} be the corresponding collection of
closed rectangles. Let K2 =

⋃n
i=1 Ri. This set is path connected and contains the

basepoint because K1 does. Also by construction, we have K1 ⊂ K◦
2 and K2 ⊂ U .

It may not be true that K2 is a rectangular union because ∂K2 could fail to
be bounded by disjoint curves. This can only happen if some rectangles share
a common vertex but are situated diagonally across from each other as depicted
below.

We can fix this problem by adding a rectangle centered at the common vertex which
is small enough to be contained in U and only intersect the edges of rectangles in
the set {R1, . . . , Rn} in edges which contain the common vertex.

Now suppose that U is a topological disk. Replacing the K2 constructed above
by the smallest closed disk containing K2 gives the last statement. See Corollary
35. �

6.5. Open sets in M̃. In this subsection we prove Theorem 27, namely that sets
of the form M̃�(K), M̃↪→(K), M̃��(U), and M̃�↪→(U) are open in M̃.

Proof of Theorem 27. We prove Theorem 27 using the definition of the immersive
topology. That is, we only assume sets of the form M̃�(K) and M̃�↪→(U) are open
when K and U are closed and open topological disks, respectively.

Let P be a planar surface, and let K ∈ PC(P ) be compact. We will show that

M̃�(K) is open. Choose Q ∈ M̃�(K). Then by definition, there is an immersion
ι : K � Q. Let K1 = ι(K). By choosing a closed disk family in Q, we can find a
K3 ∈ Disk(Q) so that K1 ⊂ K◦

3 . Then Theorem 37 guarantees that there is a closed
rational rectangular union K2 ∈ Disk(Q) so that K1 ⊂ K◦

2 and K2 ⊂ K◦
3 . Since

M̃�(K2) is open, it suffices to prove that M̃�(K2) ⊂ M̃�(K). Let R ∈ M̃�(K2).
Then, there is an immersion j : K2 � R. The composition j ◦ ι : K � R is the
immersion needed to prove that R ∈ M̃�(K).

Let P be a planar surface, and let U ∈ PC(P ) be open. We will show that

M̃�↪→(U) is open. ChooseQ ∈ M̃�↪→(U). Choose an exhaustion of U by an increasing
sequence of compact sets Dn ∈ PC(P ) whose interiors D◦

n lie in PC(P ) so that each
Dn ⊂ D◦

n+1. By Proposition 15, if each D◦
n embeds in Q, then U would embed

in Q. So there is an a > 0 so that Da 	↪→ Q. By Theorem 37, there is a closed
rectangular union K2 so that Da ⊂ K◦

2 and K2 ⊂ D◦
a+1. Because D◦

a ⊂ K◦
2 ⊂ U ,

we have

Q ∈ M̃�↪→(D◦
a) ⊂ M̃�↪→(K◦

2 ) ⊂ M̃�↪→(U).
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It suffices to show that M̃�↪→(K◦
2 ) is open. Let D be the collection of all isomorphism

classes of smallest open disks containing embedded images of K◦
2 . This set is finite

by Proposition 30 together with Corollary 36. If K◦
2 embeds in a planar surface R,

then there is an element D ∈ D which also embeds. It follows that

M̃�↪→(K◦
2 ) =

⋂
D∈D

M̃�↪→(D),

which is open by definition of the topology.
Let P be a planar surface and U ∈ PC(P ) be open. We will now show that

M̃��(U) is open. Choose Q ∈ M̃��(U). By the same reasoning as above, we can

find an closed rectangular union K2 ∈ Disk(P ) so that K◦
2 ⊂ U and K◦

2 	� Q.

Furthermore, M̃��(K◦
2 ) ⊂ M̃��(U). Let V be the collection of all immersed images

of K◦
2 . The set V is finite by Corollary 32. From the above paragraph, we know

that M̃�↪→(V ) is open for every V ∈ V . Thus,

M̃��(K◦
2 ) =

⋂
V ∈V

M̃�↪→(V )

is open.
Finally, let P be a planar surface, and let K ∈ PC(P ) be compact. We will show

that M̃↪→(K) is open. Choose any Q ∈ M̃↪→(K). Then there is an embedding
e : K ↪→ Q. Let K1 = e(K). Choose K3 ∈ Disk(Q) so that K1 ⊂ K◦

3 . Then we can
find a K2 ∈ Disk(Q) which is a closed rectangular union and satisfies K1 ⊂ K◦

2 and
K2 ⊂ K◦

3 . Let L be the collection of all immersed images of K◦
2 up to isomorphism.

This collection is finite by Corollary 32. Let L0 be L with the equivalence class of
K◦

2 itself removed. Then if L ∈ L0, the immersion K◦
2 � L is not an embedding.

Let R be a planar surface. Suppose that there is an immersion ι : K2 � R and that
for each L ∈ L0, we have L 	↪→ R. Note that by restriction of ι, we have K◦

2 � R.
Then by definition of L0, our immersion K◦

2 � R must actually be an embedding.
So, by restriction, ι|K1

: K1 ↪→ R, and by composition ι ◦ e : K ↪→ R. It follows
that

Q ∈ M̃�(K2) ∩
⋂

L∈L0

M̃�↪→(L) ⊂ M̃↪→(K).

This provides an open neighborhood of Q contained in M̃↪→(K). �

6.6. Countable subbases.

Proposition 38 (Explicit second-countability). The subsets of the following two

forms give a countable subbasis for the topology on M̃:

• sets of the form M̃�(K) where K ∈ PC is an isomorphism class of a
closed rational rectangular union;

• sets of the form M̃�↪→(U) where U ∈ PC is an isomorphism class of an
open rational rectangular union.

Proof. Countability follows from Corollary 33.
The sets listed are clearly open by Theorem 27. We must prove that they form a

subbasis for the topology. We will show that the sets in the subbasis used to define
the immersive topology in Definition 11 are open in the topology T ′ generated by
the sets listed in this proposition.

Let P be a planar surface and let K ∈ Disk(P ). We will show M̃�(K) is

open in T ′. Let Q ∈ M̃�(K). Then there is an immersion ι : K � Q. Let
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K1 = ι(K). Using a closed disk family, we can find a K3 ∈ Disk(Q) so that
K1 ⊂ K◦

3 . Then, Theorem 37 guarantees that there is a closed rational rectangular

union K2 ∈ Disk(Q) so that K1 ⊂ K◦
2 and K2 ⊂ K◦

3 . Observe that Q ∈ M̃�(K2)

and M̃�(K2) ⊂ M̃�(K). It follows that M̃�(K) is open in T ′.

Let P be a planar surface and let U ∈ Disk(P ). We will show that M̃�↪→(U) is

open in T ′. Let Q ∈ M̃�↪→(U). Then U 	↪→ Q. Since U is an open disk, we can
think of it as a planar surface. Choose a closed disk family {Kt : t > 0} for U .
By Proposition 15, there is an a > 0 so that K◦

a 	↪→ Q. Let K ∈ Disk(P ) be a

rectangular union satisfying Ka ⊂ K◦ and K ⊂ K◦
a+1. We have Q ∈ M̃�↪→(K◦)

and M̃�↪→(K◦) ⊂ M̃�↪→(U). So, M̃�↪→(U) is open in T ′. �

Proposition 39 (Explicit second-countability of Ẽ). A countable subbasis for the

immersion topology on Ẽ is given by the union of the collection of preimages under
π̃ of the subbasis provided by Proposition 38 together with the collection sets of
the form Ẽ�(K,U) where K ∈ PC is an isomorphism class of a closed rational
rectangular union and U ⊂ K◦ is an open rational rectangle.

Proof. The potential subbasis described is clearly a countable collection of open
sets. We must show that it generates the topology. By Proposition 38, the map π̃
is continuous in the generated topology. To conclude the proof, we must show that
Ẽ�(D,V ) is open for an arbitraryD ∈ Disk(P ) and arbitrary U ⊂ D◦ open. Choose

a (Q, q) ∈ Ẽ�(D,V ). Then there is an immersion ι : D � Q and q ∈ ι(V ). By
taking a closed disk family in Q and applying Theorem 37, we can produce a closed
rational rectangular union K ∈ Disk(Q) so that ι(D) ⊂ K◦. Also since q ∈ ι(V )
and ι(V ) is open, we can find an open rational rectangle U so that q ∈ U ⊂ ι(V ).

Then, (Q, q) ∈ Ẽ�(K,U). We also claim that Ẽ�(K,U) ⊂ Ẽ�(D,V ). Suppose

(R, r) ∈ Ẽ�(K,U). Then, there is an immersion j : K � R and r ∈ j(U). By
composition, we have an immersion j ◦ ι : D � R. Furthermore, since U ⊂ ι(V ),
we have r ∈ j(U) ⊂ j ◦ ι(V ). �

7. Sequences

We have shown that the topologies on M̃ and Ẽ are second-countable. We recall
that a map f : X → Y between second-countable spaces is continuous if and only
if it is sequentially continuous; see [25, Theorem 30.1]. Therefore, we will begin
to use sequences to verify the continuity of maps. We use this section to describe
criteria for convergence and consequences of convergence in M̃ and Ẽ .

Proposition 40 (Criterion for convergence in M̃). Let P ∈ M̃ be a planar sur-
face and let 〈Pn〉n∈N be a sequence of planar surfaces. Suppose the following two
statements hold:

(A) If D ∈ Disk(P ), then D � Pn for all but finitely many n.
(B) If Q is a planar surface, and Q ↪→ Pn for infinitely many n, then Q � P .

Then, 〈Pn〉 converges to P in the immersive topology on M̃.

Example 41. Let Pn be the universal cover of C � Rn, where Rn denotes the
set nth roots of unity, and where we take the basepoint of Pn to be a lift of zero
in C. Then Pn naturally has a translation structure obtained by pullback under
the covering map. We will observe that Pn tends to the open unit disk P in the
immersive topology. We will check statements of Proposition 40. First of all observe
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that there are embeddings εn : P � Pn for all n. By restricting this embedding we
see any closed disk in P immerses in every Pn. To see (B) suppose Q is a planar
surface which embeds in infinitely many Pn. Then, Q can be viewed as a subset of
some Pn. It suffices to show that Q is entirely contained in the image εn(P ), since
in this case ε−1

n restricted to Q is an embedding into P . Suppose Q is not contained
in εn(P ), we see Q intersects the boundary of εn(P ). Let � be the arc length of this
interval of intersection viewed as a subset of the unit circle. Choose M ∈ N so that
for m > M , the roots of unity separate the unit circle into intervals of length less
than �. Then for m > M some root of unity lies in the immersed image of Q in the
plane. Therefore, Q 	� C � Rm and thus Q 	� Pm for m > M . This contradicts
the assumption that Q embeds in infinitely many Pm.

The following is a direct consequence of Theorem 27, so we will not include a
proof.

Corollary 42 (Necessary conditions for convergence in M̃). Suppose 〈Pn∈M̃〉n∈N

is a sequence of planar surfaces converging to P ∈ M̃. Then, the following two
statements are satisfied:

(A’) Suppose K ∈ PC is compact. Then K � P implies K � Pn for n suffi-
ciently large, and K ↪→ P implies K ↪→ Pn for n sufficiently large.

(B’) Suppose U ∈ PC is open. Then U � Pn for infinitely many n implies
U � P , and, U ↪→ Pn for infinitely many n implies U ↪→ P .

Recall the definition of Ẽ�(K,U) in (5). The following provides a criterion for

convergence in Ẽ .
Proposition 43 (Convergence in Ẽ). Suppose Pn ∈ M̃ is a sequence converging to

P ∈ M̃ in the immersive topology. Let dn denote the Euclidean path metric on P .
Let pn ∈ Pn and p ∈ P be a choice of points on these surfaces. Then the following
are equivalent:

(1) (Pn, pn) converges to (P, p) in the immersive topology on Ẽ.
(2) There is a compact set K ∈ PC(P ) which contains p and an N so that there

is an immersion ιn : K � Pn defined for n > N so that dn
(
pn, ιn(p)

)
→ 0

as n → ∞.
(3) For every compact set K ∈ PC(P ) containing p, there is an N and an

embedding en : K ↪→ Pn defined for n > N so that dn
(
pn, en(p)

)
→ 0 as

n → ∞.

Example 44 (Example 41 continued). Let Pn, P , and εn be as in Example 41.
Choose pn ∈ Pn for all n. We claim that (Pn, pn) converges if there is an N such
that pn ∈ εn(Pn) for n > N and ε−1

n (pn) converges to some point p ∈ P . In this case
(Pn, pn) → (P, p). Considering the second statement of Proposition 43, it suffices
to choose K to be a closed ball about the origin which contains p in its interior,
and consider the second statement for a sequence of values of U where U is an
open metric ball about p with radii tending to zero. (Using the definition of the
immersive topology, it can be observed that in fact we have given a characterization
of convergence of (Pn, pn) to (P, p) for some p ∈ P .)

We note the following consequence.

Corollary 45. Suppose that the sequence Pn ∈ M̃ converges to P ∈ M̃. Then
for any p ∈ P , there is an N and a sequence pn ∈ Pn defined for n > N with
Dev(Pn, pn) = Dev(P, p) so that (Pn, pn) converges to (P, p) in Ẽ.
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7.1. Proofs. The following is the proof of our convergence criterion for M̃.

Proof of Proposition 40. We will suppose statements (A) and (B) of the proposition

are satisfied and prove that for any closed disk K, P ∈ M̃�(K) implies that Pn ∈
M̃�(K) for all but finitely many n, and that for any open disk U , P ∈ M̃�↪→(U)

implies Pn ∈ M̃�↪→(U) for all but finitely many n.

Let K be a closed disk in a planar surface Q and suppose that P ∈ M̃�(K).
Then there is an immersion ι : K � P . By taking a closed disk family in P , we can
find a closed disk D in that family so that ι(K) ⊂ D. From (A), we get immersions
ιn : D � Pn for all but finitely many n. Whenever ιn is defined, the composition
ιn ◦ ι is an immersion K � Pn. This proves Pn ∈ M̃�(K) for all but finitely many
n.

Now suppose that U is an open disk in a planar surface Q and that P ∈ M̃�↪→(U).

Then, U 	↪→ P . Suppose it is not true that Pn ∈ M̃�↪→(U) for all but finitely many n.
Then there is an increasing sequence of integers 〈nk〉 and embeddings ek : U ↪→ Pnk

.
Since U is an open disk, it is isomorphic to a planar surface which we abuse notation
by also denoting U . So, by (B) applied to U , we know that there is an immersion
ι : U � P . Suppose it is not an embedding. Then there are points u, v ∈ U so
that ι(u) = ι(v). Let K ⊂ U be a closed disk in Q containing both u and v. Then
ι(K) is compact. As in the prior paragraph, we can find a closed disk D so that
ι(K) ⊂ D. Then, by (A) we get immersions ιn : D � Pn for all but finitely many
n. In particular, for sufficiently large k, we have ιnk

◦ ι|K : K � Pnk
. But we also

get such an immersion as a restriction of an embedding, ek|K : K ↪→ Pnk
. Since

immersions are unique, it follows that ek|K = ιnk
◦ ι|K . Therefore, ι|K must be

injective, which contradicts the statement above that ι(u) = ι(v). �

We now prove our equivalences for convergent sequences in Ẽ .

Proof of Proposition 43. First we show (1) implies (3). Suppose (Pn, pn) → (P, p).
Fix a K ∈ PC(P ) containing p. Since P → P and K ↪→ P , we know that for n
sufficiently large there is an embedding en : K ↪→ Pn; see Corollary 42. We claim
dn

(
pn, en(p)

)
→ 0. Choose an ε > 0. Choose a compact disk D ⊂ P so that K ⊂ D

and so that p ∈ D◦. Then we can choose an open ball B about p of radius less than
ε so that U ⊂ D◦. Since (P, p) ∈ Ẽ�(D,U), we know that there is an N so that

(Pn, pn) ∈ Ẽ�(D,U) for n > N . But then there is an immersion ιn : D � Pn so
that pn ∈ ιn(U). But since U is an small ball about p, we know that this implies
that dn

(
pn, ιn(p)

)
< ε. Finally, since immersions are unique, we know ιn = en on

K, so the same holds with en(p) replacing ιn(p).
Clearly (3) implies (2). We will finish the proof by showing that (2) implies

(1). Let K, N and ιn be as in (2). By definition of the immersive topology, we
need to show that for every closed disk D ∈ PC and every open U ⊂ D◦ so that
(P, p) ∈ Ẽ�(D,U), we have (Pn, pn) ∈ Ẽ�(D,U) for n sufficiently large. Fix D and

U and suppose (P, p) ∈ Ẽ�(D,U) so that there is an immersion j : D � P and
p ∈ j(U). Since j(U) is open, there is an ε > 0 so that the open ε ball about p is
contained in j(U). Choose a closed disk K ′ ∈ P so large that it contains both K
and j(D). Then since Pn → P , we know that there is an N ′ > N and immersions
ι′n : K ′ → Pn for n > N ′. Observe that the image ι′n ◦ j(U) contains an ε-ball
about ι′n(p) because ι

′
n is a local translation and j(U) contains such a ball about p.

By uniqueness of immersions we know ι′n|K = ιn, and in particular ιn(p) = ι′n(p).
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By hypothesis, there is an N ′′ > N ′ so that for n > N ′′ we have dn
(
pn, ιn(p)

)
< ε

which then implies pn ∈ ι′n ◦j(U) by prior remarks. Observe that when n > N ′′, we
have that ι′n ◦ j|D is an immersion of D into Pn and pn ∈ ι′n ◦ j(U) so that n > N ′′

implies (Pn, pn) ∈ Ẽ�(D,U) as desired. �

Proof of Corollary 45. Let K ⊂ P be a closed disk containing p in its interior. Let
ιn : K → Pn be immersions guaranteed to exist for n sufficiently large because
Pn → P and M̃�(K) is open. Let pn = ιn(p). Then we see by definition that

(Pn, pn) ∈ Ẽ�(K,U) whenever ιn is defined and when p lies in the open subset
U ⊂ K◦. The developing map comment is true because Dev is invariant under
immersions. �

8. Continuity of immersions

The following explains that immersions and embeddings are jointly continuous
in choice of the domain and range, and that the natural domains for these maps
are closed.

Theorem 46. The sets

{(P,Q) ∈ M̃ × M̃ : P � Q} and {(P,Q) ∈ M̃ × M̃ : P ↪→ Q}
are closed in M̃ × M̃. The function

I :
{(

(P, p), Q
)
∈ Ẽ × M̃ : P � Q

}
→ Ẽ

which sends
(
(P, p), Q

)
to the image of p under the immersion P � Q has a closed

domain and is continuous.

Proof of Theorem 46. We begin with dealing with the first sentence in the case
of embeddings. Suppose {Pn} and {Qn} are sequences of planar surfaces each of
which converges to P and Q, respectively, and Pn ↪→ Qn for all n. We need to show
P ↪→ Q. It suffices to show that any closed disk D in P embeds in Q by Proposition
15. Let K ⊂ P be a closed disk containing D in its interior. Observe that K
embeds in all but finitely many Pn since M̃↪→(K) is open. Then by composition

with Pn ↪→ Qn, K ↪→ Qn for infinitely many n. Since M̃�↪→(K◦) is open, we see
that K◦ embeds in Q, and thus so does D.

For the case of immersions we need rectangular unions. Suppose Pn → P ,
Qn → Q and each Pn � Qn. We will show P � Q. Again it suffices to show
that every open disk D with compact closure in P immerses in Q. Let D ⊂ P
be such a disk, and let V ⊂ P be an open rectangular union containing D which
is a topological disk with compact closure V̄ . Since M̃↪→(V̄ ) is open by Theorem
27, there are embeddings en : V̄ ↪→ Pn for n sufficiently large. By composing with
immersions Pn � Qn, we see V � Qn for all but finitely many n. By Corollary
32, there are only finitely many such images of V up to isomorphism. Let W be
an isomorphism class which appears infinitely many times. By Theorem 27, the set
M̃�↪→(W ) is open, so it must be that W ↪→ Q. Note that since V � W we have
D � W . Thus D � Q, which completes the proof that P � Q.

We note that the domain of I is the preimage of {(P,Q) : P � Q} under π̃× id

where π̃ : Ẽ → M̃ is the projection. Thus the domain of I is closed.
Now let

(
(Pn, pn), Qn

)
be a sequence in the domain of I which converges to(

(P, p), Q
)
∈ Ẽ × M̃. So there are immersions ιn : Pn � Qn, and there is an
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immersion ι : P � Q by remarks above. We need to show that
(
Qn, ιn(pn)

)
→

(Q, ι(p)
)
. Choose K ⊂ P compact and containing p in its interior. It follows

that there is an ε > 0 so that K◦ contains an ε-ball about p. By Proposition 43
we know that for n sufficiently large there is an embedding en : K ↪→ Pn and
dPn

(
pn, en(p)

)
→ 0 as n → ∞. When this distance is less than ε, we know that

(8) dPn

(
e−1
n (pn), p

)
= dPn

(
pn, en(p)

)
,

so the quantity at left also tends to zero. Let K ′ = ι(K) which is compact. Since
we know Qn → Q, for n sufficiently large there is an embedding fn : ι(K) ↪→ Qn.
Observe that fn ◦ ι : K � Qn. Since immersions non-strictly contract distances,
by applying this immersion we see

dQn

(
fn ◦ ι ◦ e−1

n (pn), fn ◦ ι(p)
)
→ 0 as n → ∞.

Now observe that both fn ◦ ι ◦ e−1
n and ιn|ι(K) give immersions of ι(K) � Qn so

they are equal. It therefore follows that dQn

(
ιn(pn), fn◦ι(p)

)
→ 0 as n → ∞. Then

by Proposition 43 it follows that
(
Qn, ιn(pn)

)
→

(
Q, ι(p)

)
as desired. �

9. Compact subsets and metrizability

In this section, we prove the following theorem and establish consequences such
as metrizability of M̃ and Ẽ .
Theorem 47. Let P be a planar surface. The set of surfaces

M̃� M̃��(P ) = {Q ∈ M̃ : P � Q}
is compact.

It follows the only way a sequence 〈Pn〉 of planar surfaces can leave every compact

set of M̃ is if the radius of largest open Euclidean metric ball we can immerse in
Pn centered at the basepoint tends to zero as n → ∞.

We establish two important consequences of this result.

Corollary 48 (Local compactness). Both M̃ and Ẽ are locally compact in the sense
that every point in these spaces has a compact neighborhood.

Corollary 49 (Metrizability). The spaces M̃ and Ẽ are metrizable.

9.1. Direct limits. For the proof of Theorem 47, we need to know that an �-
increasing sequence converges.

Proposition 50 (Direct limit). Suppose 〈Pn ∈ M̃〉n≥1 is a sequence satisfying

P1 � P2 � P3 � . . . .

Then, the sequence converges to
�
{Pn}.

Proof. Let 〈Pn〉n≥1 be a sequence of planar surfaces as stated in the proposition.
Then for each m,n with m ≤ n, there is an immersion ιm,n : Pm � Pn. Let
P∞ =

�
{Pn}. By the Fusion Theorem, there are immersions jn : Pn → P∞. To

prove that the sequence 〈Pn〉 converges to P∞, we apply the convergence criterion
of Proposition 40.

Let K ∈ Disk(P∞). The set K is compact, and we will apply a compactness

argument to say that there is an M and a lift K̃ ⊂ PM containing the basepoint
of PM so that jM |K̃ is a homeomorphism from K̃ onto K which respects the base-
points. Then, the inverse of this restriction (jM |K̃)−1 is the needed immersion of
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K into PM . We can then immerse K into all PN with N > M by composing with
ιM,N . This will prove the first statement needed from Proposition 40.

First we claim that P∞ =
⋃

n jn(Pn). To see this, let Q =
⋃

n jn(Pn) which is
a path connected open subset of P∞ containing the basepoint. Then the universal
cover Q̃ is a planar surface. Observe that jn lifts to an immersion j̃n : Pn → Q̃
for each n. But then by statement (II) of Theorem 21 we have P∞ � Q̃ since

P∞ =
�
{Pn}. The universal covering map Q̃ → Q ⊂ P∞ gives an immersion

Q̃ � P∞. Since Q̃ � P∞ and P∞ � Q̃ we see Q̃ = P∞ as planar surfaces,
and that the immersion Q̃ → P∞ coming from the covering map of Q actually an
isomorphism of planar surfaces. Since Q is the image of this immersion, we see
Q = P∞ as claimed.

We will now construct K̃. As P∞ =
⋃

n jn(Pn), for each x ∈ K, there is an

n(x) ≥ 1 and a p(x) ∈ Pn(x) so that jn(x)
(
p(x)

)
= x. For the basepoint of P∞

in K, we take n(x) = 1 and p(x) to be the basepoint of P1. For each x, let
Bx ⊂ Pn(x) be an open metric ball about p(x) so that Dev|Bx

is a homeomorphism
onto a ball in the plane with the same radius. Then the collection of images
{jn(x)(Bx) : x ∈ K} is an open cover of K. So there is a finite subcover indexed
by the subset {x1, . . . , xk} ⊂ K. We add the basepoint of P∞ to this set and call
it x0. Consider the collection

I =
{
(i, j) ∈ {0, . . . , k}2 : jn(xi)(Bxi

) ∩ jn(xj)(Bxj
) 	= ∅

}
.

Then for each (i, j) ∈ I, we can choose points y ∈ Bxi
and z ∈ Bxj

so that
jn(xi)(y) = jn(xj)(z). By Corollary 24, there is a finite subset F ⊂ {Pn} containing
Pn(xi) and Pn(xj) so that the immersions Pn(xi) �

�
F and Pn(xj) �

�
F send

y and z to the same point. Because we are working with a directed sequence, we
just have

�
F = PN(i,j) where N(i, j) is the maximal index of a planar surface in

F . So, there is an N = N(i, j) so that ιm(xi),N (y) = ιm(xj),N (z). Then, because
jn(xi)(Bxi

) ∩ jn(xj)(Bxj
) is path connected, the map jN(i,j) restricted to

ιn(xi),N(i,j)(Bxi
) ∪ ιn(xj),N(i,j)(Bxj

)

is injective. We have defined N(i, j) for all (i, j) ∈ I. Let M = max(i,j)∈I N(i, j).
Then jM restricted to

k⋃
i=0

ιn(xi),M (Bxi
)

is injective. Then, because jM is a local homeomorphism, this restriction is a
homeomorphism onto its image. The image contains K. We conclude that we can
set K̃ equal to the preimage of K under this restriction of jM . This verifies the
existence of K̃ and proves that the first statement of Proposition 40 holds.

Now we consider the second statement of Proposition 40. Suppose that Q is a
planar surface, and there is an immersion k : Q � Pn for some n. Then, jn◦k : Q �
P∞. This proves the second statement needed from Proposition 40, and concludes
the proof that Pn → P∞. �

9.2. Proofs.

Proof of Theorem 47. Let P be a planar surface. We will prove M̃ � M̃��(P )

is compact. Since M̃ is second-countable, so is the subspace M̃ � M̃��(P ). In
the presence of second-countability, compactness is implied by sequentially com-
pactness, i.e., that every sequence in M̃ � M̃��(P ) has a convergent subsequence
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[20, Chapter 11, Theorem 1.10]. So, let 〈Qn〉n≥0 be a sequence in M̃ � M̃��(P ).
We will provide an algorithm which produces a convergent subsequence 〈Qnk

〉k≥0

converging to some limit R ∈ M̃� M̃��(P ).
Recall that there are only countably many open rational rectangular unions

which are homeomorphic to open disks. See Corollary 33. Let 〈Pm ∈ M̃〉m≥1 be
a sequence which enumerates all of these rectangular unions. We will construct a
subsequence 〈Pmk

〉 of 〈Pm〉 while simultaneously producing 〈Qnk
〉.

Our algorithm is really an inductive sequence of the following definitions.

(1) Set R0 = P .
(2) Set m0, n0 = 0 and k = 1.
(3) Set I0 = {n : n ≥ 1}.
(4) For each successive integer m ≥ 1, if Pm � Qn for infinitely many n ∈ Ik,

then perform the following steps:
(a) Set mk = m.
(b) Set Rk = Rk−1 � Pmk

.
(c) Set nk = min{n ∈ Ik−1 : Pmk

� Qn}.
(d) Set Ik = {n ∈ Ik−1 : Pmk

� Qn and n > nk}.
(e) Increment k. (Reassign k to be k + 1.)

Observe that by definition of the fusion, Rk−1 � Rk for all k ≥ 1. So by taking a
direct limit, we can define R = limk→∞ Rk; see Proposition 50. We make several
further remarks about this construction:

(R1) For each k and each l ≥ k, Pmk
� Qnl

. (Proof: This holds when k = l by
definition of mk and nk. It holds when l > k, because each such nl lies in
Ik.)

(R2) We have Rk = P � Pm1
� . . . � Pmk

.
(R3) For each k and each l ≥ k, Rk � Qnl

. (Proof: By (R1), each Pmj
� Qnl

for j ≤ k. So by the Fusion Theorem and (R2), Rk � Qnl
.)

We claim that the subsequence 〈Qnl
〉 also converges to R. To prove this, we will

use the convergence criterion of Proposition 40. First suppose that K ∈ Disk(R).
We will prove that K � Qnl

for l sufficiently large. Since 〈Rk〉 converges to R,
there is an L so that K � Rl for l > L. So by composing these immersions with
the immersions given by remark (R3), we see K � Qnl

for l > L.
Now let U be a planar surface. We will show that if U immerses in infinitely

many Qnk
, then U � R. By Proposition 15, it suffices to prove that every compact

disk K ∈ Disk(U) immerses in R. Fix K ∈ Disk(U). By Theorem 37, there is an
open rational rectangular union in Disk(U) which contains K. By definition of Pm,
there is an m so that Pm is isomorphic to this union. In particular Pm � U . Since
U � Qnk

for infinitely many k, it must be true that Pm immerses in infinitely many
Qnk

. It follows that Pm = Pmk
for some k. Then, by the definition of the fusion,

Pmk
� Rk. Because Rk � R, we know Pmk

� R. Finally, because K � Pmk
, we

know that K � R. �

Proof of Corollary 48. To see M̃ is locally compact, choose P ∈ M̃. Let K be a
closed disk in P . Then

U = {Q ∈ M̃ : K◦ � Q}
is a compact and contains the neighborhood M̃�(K) of P .

Since M̃ is locally compact, so is M̃×R2. We will show that the map Ẽ → M̃×R2

defined by (P, p) �→
(
P,Dev(p)

)
is a local homeomorphism. Local compactness
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of Ẽ follows because we can pullback compact neighborhoods. The map is clearly
continuous since both π̃ and Dev are continuous. It is locally continuously invertible
because any (P, p) lies in a set of the form Ẽ�(K,U) where U is so small that Dev|U
is a homeomorphism onto its image. So, we can recover a point (Q, q) ∈ Ẽ�(K,U)
from its image

(
Q,Dev(q)

)
by selecting u ∈ U to be the unique point so that

Dev(u) = Dev(q). Then there is an immersion ι : K � Q and ι(u) = q. Continuity
of this local inverse is then provided by Theorem 46. �

Proof of Corollary 49. Since M̃ and Ẽ are locally compact and Hausdorff, they are
regular [25, Exercise 32.3]. Since they are second-countable and regular, they are
metrizable by Urysohn’s Metrization Theorem [25, Theorem 34.1]. �

Appendix A. Comparison to McMullen’s geometric topology

McMullen has established a geometric topology on the space of all Riemann
surfaces equipped with a base-frame paired with a holomorphic quadratic differ-
ential where the Riemann surface is allowed to be of arbitrary topological type
[24, Appendix]. In brief, McMullen first provides a geometric topology on the
space of all Riemann surfaces with a base-frame (a choice of a tangent vector at
some basepoint) by identifying such surfaces with a quotient of a simply connected
rotationally symmetric domain (disk, plane, or sphere) in the Riemann sphere by
a subgroup of PSL(2,C). This identification is done via the unique uniformiza-
tion carrying a lift v to the universal cover to the tangent vector 1 at the origin.
Then given a triple (X, v, q) where (X, v) is a Riemann surface with a base-frame
and q is a holomorphic quadratic differential, McMullen considers the lift of q to
a holomorphic quadratic differential q̃ on the universal cover as identified with the
domain mentioned above. Such differentials then correspond to the choice of a
holomorphic function on the domain satisfying q̃ = φ(z)dz2. The space of pairs
(X, q) is then topologized in such a way so that sequences converge if the underly-
ing Riemann surfaces converge and the functions φ constructed as above converge
uniformly on compact sets. See [24, Appendix] for a detailed description of the
geometric topology.

McMullen’s topology differs from the topology here in a philosophical way. The
immersive topology introduced here is intended to be a “geometric topology for
the flat structure” and was designed to impose the minimal amount of structure
necessary for making certain elementary geometric arguments (through the use of
immersions and embeddings). In contrast, McMullen’s geometric topology makes
convergence of underlying Riemann surfaces necessary for convergence of flat struc-
tures.

We will demonstrate in this section that our approach gives a less strict notion
of convergence. However, it will follow from work in subsequent papers on the
immersive topology that this topology agrees with McMullen’s geometric topology
on natural subspaces such as on the closures of strata of finite genus translation
surfaces.

Observe there are differences in the spaces being topologized by the geometric
topology and the immersive topology. The geometric topology works with qua-
dratic differentials with zeros, while our topology only applies to surfaces with a
translation structure and no singularities. So, we hope to compare the immersive
topology on the space of all translation surfaces with the geometric topology ap-
plied to an appropriate subset. Unfortunately, our planar surfaces involve only the
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choice of a basepoint, so there is freedom in the choice of a triple (X, v, q) repre-
senting a planar surface P corresponding to the choice of a non-zero vector in the
tangent plane at the basepoint. This is a minor point, but must be dealt with to
make a precise statement relating the topologies. We show the following.

Theorem 51. There is a sequence of planar surfaces Pn which is convergent in
the immersive topology so that for any sequence (Xn, vn, qn) translation equivalent
to Pn, no subsequence of (Xn, vn, qn) converges to a representation of a flat surface
in the geometric topology.

Remark 52. As a consequence of this theorem, in the geometric topology the space
of flat surfaces with a lower bound on the injectivity radius is not compact. This
property holds for the immersive topology by Theorem 47.

Our construction utilizes the following elementary observation in complex anal-
ysis.

Proposition 53. Suppose P is a planar surface uniformized by the plane, and
p ∈ P is a point distinct from the basepoint. Let P̃ be the universal cover of P � p.
Then P̃ is also uniformized by the plane.

Essentially the uniformizing map of P̃ can be expressed as the uniformizing map
for P precomposed with the exponential map. We will not provide a formal proof.

Proof of Theorem 51. First we produce the sequence Pn inductively. Choose a
countable dense subset {zi : i = 0, 1, 2, . . .} of the unit circle. For each n ≥ 0, let
Dn be the closed unit disk with {zi : 0 ≤ i < n} removed. Define D−1 to be the
closed unit disk. Let P0 be the plane viewed as a planar surface. Observe that there
is an embedding of the closed unit disk, ε0 : D−1 ↪→ P0. Now we will begin our
induction. Assume that Pn is uniformized by the plane, and there is an embedding
εn : Dn−1 ↪→ Pn. Define pn = εn(zn). Then let Pn+1 be the universal cover of
Pn � {pn}. By the proposition above, Pn+1 is also uniformized by the plane. By
restriction we see that Dn ↪→ Pn. Since Dn is simply connected this embedding
lifts to an embedding εn+1 : Dn ↪→ Pn+1. This defines the sequence Pn.

We will now verify convergence in the immersive topology. Let Ei be the union
of the open unit disk and the singleton {zi}. Observe that by construction Ei 	↪→ Pi.
In fact, Ei 	↪→ Pn for n ≥ i. This may be seen by induction; each Pn+1 immerses
in Pn by construction since Pn+1 is a covering of Pn with a point removed. So, if
there was an embedding of Ei into Pn for n ≥ i, then composing with a finite list
of immersions would give an immersion of Ei into Pi, but such an immersion must
be an embedding which is a contradiction. It then follows that as planar surfaces
Pn converges to the unit disk in the immersive topology, since no open disk larger
than the open unit disk can be immersed in infinitely many Pn; compare Example
41.

Now we will consider the behavior of the sequence in the geometric topology.
Select for each Pn a uniformizing map hn : C → Pn carrying 0 to the basepoint
of Pn. (This involves a choice for each n.) Let fn : C → C be Dev ◦ hn. Let
qn = f ′

n(z)
2dz2. Suppose after passing to a subsequence, (C, v, qnk

) converges
(where v is the tangent vector 1 based at zero). The limit is then of the form
(C, v, q) for some quadratic differential q on C and we know by definition of the
topology that q = φ(z)dz2 and f ′

nk
(z)2 converges to φ uniformly on compact sets.

By passing to another subsequence (because of the square), we can assume that



268 W. PATRICK HOOPER

fnk
(z) converges to a holomorphic function f : C → C satisfying f(0) = 0 uniformly

on compact sets.
Now assume that the limiting differential represents a surface. Then, in partic-

ular, f is not identically zero, and so f misses at most one point of the plane. In
particular, there is a z ∈ C so that |f(z)| > 1. Then |fnk

(z)| > 1 for k sufficiently
large. Consider the embedding εnk

: Dnk−1 ↪→ Pn and recall that εnk
cannot be

extended to a larger subset of the closed disk. Let Γk be the intersection of Dnk−1

with the unit circle, which consists of nk−1 arcs of the unit circle running between
the points {zi : 0 ≤ i < nk − 1}. Let Ck = f−1

nk
◦ εnk

(Γk), which consists of nk − 1

disjoint arcs in C which extend to closed arcs in the Riemann sphere Ĉ initiating
and terminating at ∞. For k sufficiently large, one of these arcs, say ck ⊂ Ck,
separates 0 from z since |fnk

(z)| > 1. Choose a large closed ball about the origin
B ⊂ C so that z lies in the interior of B. Then by passing to a subsequence, we can
assume that the intersections ck ∩B converge in the Hausdorff topology on closed
subsets of B to some closed subset c ⊂ B. Each of ck ∩B has some definite length
since ck separates 0 from z. The length of the associated arc γk ⊂ Γk of Dnk−1 can
be computed in terms of f ′

nk
as

(9)

∫
ck

|f ′
nk
(z)|dz.

Because of our choice of points {zi} dense in the circle, the length of γk tends to
zero, so these integrals tend to zero. Let w ∈ c ⊂ B. If |f(w)| > 0, then there
would be an ε > 0 and a definite neighborhood W about w so that |fnk

(w′)| > ε
for w′ ∈ W and k large enough, but this contradicts the convergence of (9) to
zero. Therefore, f is identically zero on c, but this violates the fact that non-zero
holomorphic functions have isolated zeros. �
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