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Abstract. We study monodromy of holomorphic motions and show the equiv-
alence of triviality of monodromy of holomorphic motions and extensions of
holomorphic motions to continuous motions of the Riemann sphere. We also
study liftings of holomorphic maps into certain Teichmüller spaces. We use
this “lifting property” to prove that, under the condition of trivial monodromy,
any holomorphic motion of a closed set in the Riemann sphere, over a hyper-
bolic Riemann surface, can be extended to a holomorphic motion of the sphere,
over the same parameter space. We conclude that this extension can be done
in a conformally natural way.

Introduction

Throughout this paper, we shall use the following notation: C for the complex

plane, Ĉ = C∪{∞} for the Riemann sphere, and Δ for the open unit disk {z ∈ C :
|z| < 1}.

The subject of holomorphic motions was introduced in the study of the dynamics
of rational maps; see [19]. Since its inception, an important topic has been the
question of extending holomorphic motions. The papers [5] and [26] contained
partial results. Subsequently, Slodkowski showed that any holomorphic motion of a

set in Ĉ, over Δ as the parameter space, can be extended to a holomorphic motion

of Ĉ over Δ; see [25]; also refer to the papers [6] and [12]. The paper [11] used a
group-equivariant version of Slodkowski’s theorem to prove results in Teichmüller
theory.

A natural question is to investigate holomorphic motions over more general pa-
rameter spaces. In Theorem 8.1 of [11], an explicit counterexample was given to
show that Slodkowski’s theorem does not, in general, hold when the parameter
space is a domain in C2. In [15], it was shown that Slodkowski’s theorem does
not hold for many higher-dimensional, simply connected parameter spaces; see also
Proposition 5.4 in [16]. This naturally leads us to consider the case when the pa-
rameter space is a hyperbolic Riemann surface. Theorem D of our paper answers
this question.
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A central topic is to study the question of obstructions to extending a holomor-
phic motion. More precisely, what are the analytic and topological obstructions to
the extension of holomorphic motions? These two questions are intimately linked
with Teichmüller spaces. The example in Proposition 5.4 of [16] studied the analytic
obstruction. It is related to the non-existence of holomorphic sections for Teich-
müller spaces; see the papers [8] and [9], and also [13]. The example (Theorem 1)
in [15] linked the question of extending holomorphic motions with Earle’s result in
[8]. In our present paper, we study the question of topological obstructions. This
is the essence of Theorem D.

The main purpose of our paper is to study necessary and sufficient topological
conditions for extending holomorphic motions. We study monodromy of a holo-

morphic motion φ of a finite set E in Ĉ, defined over a connected complex Banach
manifold V . We show the equivalence of the triviality of this monodromy and the

extendability of φ to a continuous motion of Ĉ over V . We then show that, if V is

a hyperbolic Riemann surface, and E is any set in Ĉ, then, under the condition of
trivial monodromy, any holomorphic motion of E extends to a holomorphic motion

of Ĉ over V .
The relationship between extending holomorphic motions and liftings of holo-

morphic maps into Teichmüller spaces of Ĉ with punctures, was first observed in
Section 7 of the paper [5]. In that paper, the parameter space is the open unit disk.
The main technique in our paper is to study the liftings of holomorphic maps from
a hyperbolic Riemann surface into such Teichmüller spaces. Theorem B gives the
general setting, and Theorem C is the key step in proving Theorem D, which is the
main result of this paper.

Our paper is organized as follows. In Section 1, we give all precise definitions and
discuss the useful facts that will be necessary in the proofs of the main theorems
of this paper. In Section 2, we give precise statements of the main theorems. In
Sections 3, 4, 5, and 6, we prove the main theorems.

1. Definitions and some facts

Definition 1.1. Let V be a connected complex manifold with a basepoint x0 and

let E be any subset of Ĉ. A holomorphic motion of E over V is a map φ : V ×E → Ĉ

that has the following three properties:

(1) φ(x0, z) = z for all z in E,

(2) the map φ(x, ·) : E → Ĉ is injective for each x in V , and

(3) the map φ(·, z) : V → Ĉ is holomorphic for each z in E.

We say that V is a parameter space of the holomorphic motion φ. We will always
assume that φ is a normalized holomorphic motion; i.e. 0, 1, and ∞ belong to E
and are fixed points of the map φ(x, ·) for every x in V . It is sometimes useful to
write φ(x, z) as φx(z).

If E is a proper subset of Ê and φ : V × E → Ĉ, φ̂ : V × Ê → Ĉ are two

holomorphic motions, we say that φ̂ extends φ if φ̂(x, z) = φ(x, z) for all (x, z) in
V × E.

Remark 1.2. Let V and W be connected complex manifolds with basepoints, and
let f be a basepoint preserving holomorphic map of W into V . If φ is a holomorphic
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motion of E over V its pullback by f is the holomorphic motion

(1.1) f∗(φ)(x, z) = φ(f(x), z) ∀(x, z) ∈ W × E,

of E over W .

Definition 1.3. Let V be a connected complex manifold with a basepoint. Let

G be a group of Möbius transformations, let E ⊂ Ĉ be G-invariant, which means,

g(E) = E for each g in G. A holomorphic motion φ : V ×E → Ĉ is G-equivariant
if for any x ∈ V, g ∈ G there is a Möbius transformation, denoted by θx(g), such
that

φ(x, g(z)) = (θx(g))(φ(x, z))

for all z in E.

It is well known that if φ : V × E → Ĉ is a holomorphic motion, where V is a
connected complex manifold with a basepoint x0, then φ extends to a holomorphic
motion of the closure E, over V ; see [19] and [3]. Hence, throughout this paper, we

will assume that E is a closed set in Ĉ (that contains the points 0, 1, and ∞).

Recall that a homeomorphism of Ĉ is called normalized if it fixes the points 0, 1,

and ∞. The blanket assumption that E is a closed set in Ĉ containing the points
0, 1, and ∞ holds.

Definition 1.4. Two normalized quasiconformal self-mappings f and g of Ĉ are
said to be E-equivalent if and only if f−1 ◦ g is isotopic to the identity rel E.
The Teichmüller space T (E) is the set of all E-equivalence classes of normalized

quasiconformal self-mappings of Ĉ.

Let M(C) be the open unit ball of the complex Banach space L∞(C). Each μ
in M(C) is the Beltrami coefficient of a unique normalized quasiconformal homeo-

morphism wμ of Ĉ onto itself. The basepoint of M(C) is the zero function.
We define the quotient map

PE : M(C) → T (E)

by setting PE(μ) equal to the E-equivalence class of wμ, written as [wμ]E . Clearly,
PE maps the basepoint of M(C) to the basepoint of T (E).

In his doctoral dissertation [18], G. Lieb proved that T (E) is a complex Banach
manifold such that the projection map PE : M(C) → T (E) is a holomorphic split
submersion; see [11] for the details.

Remark 1.5. Let E be a finite set. Its complement Ω = Ĉ\E is the Riemann sphere
with punctures at the points of E. Then, T (E) is biholomorphic to the classical
Teichmüller space Teich(Ω); see Example 3.1 in [20] for the proof. This canonical
identification will be very important in our paper. (The reader is referred to [14]
or [23] for standard facts in Teichmüller theory.)

Proposition 1.6. There is a continuous basepoint preserving map s from T (E) to
M(C) such that PE ◦ s is the identity map on T (E).

See [11], [16] for all details.

Definition 1.7. The map s from T (E) to M(C) is called the Douady-Earle section
of PE for the Teichmüller space T (E).
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Remark 1.8. When E is finite, T (E) is canonically identified with the classical

Teichmüller space Teich(Ĉ \ E), and hence s is the continuous section studied in
Lemma 5 in [7].

Definition 1.9. The universal holomorphic motion ΨE : T (E)×E → Ĉ is defined
as follows:

ΨE(PE(μ), z) = wμ(z) for μ ∈ M(C) and z ∈ E.

It is clear from the definition of PE that the map ΨE is well-defined. It is a
holomorphic motion because PE is a holomorphic split submersion and μ 	→ wμ(z)

is a holomorphic map from M(C) to Ĉ for every fixed z in Ĉ, by Theorem 11 in [2].
This holomorphic motion is “universal” in the following sense.

Theorem 1.10. Let φ : V × E → Ĉ be a holomorphic motion. If V is a simply
connected complex Banach manifold with a basepoint, there is a unique basepoint
preserving holomorphic map f : V → T (E) such that f∗(ΨE) = φ.

For a proof see Section 14 in [20].

Remark 1.11. Let φ : V ×E → Ĉ be a holomorphic motion, where V is a connected
complex Banach manifold with a basepoint x0. Suppose there exists a basepoint

preserving holomorphic map f : V → T (E) such that f∗(ΨE) = φ. Let f̃ : V →
M(C), where f̃ = s ◦ f . By Proposition 1.6, f̃ is a basepoint preserving continuous
map. Then, for all (x, z) ∈ V × E, we have

φ(x, z) = ΨE(f(x), z) = ΨE(PE(s(f(x))), z) = ws(f(x))(z) = w
˜f(x)(z).

Definition 1.12. Let W be a path-connected Hausdorff space with a basepoint x0.

A (normalized) continuous motion of Ĉ over W is a continuous map φ : W ×Ĉ → Ĉ

such that:

(a) φ(x0, z) = z for all z ∈ Ĉ and

(b) for each x in W , the map φ(x, ·) := φx(·) is a homeomorphism of Ĉ onto
itself that fixes the points 0, 1, and ∞.

In [21] the following was shown.

Theorem 1.13. Let φ : V × E → Ĉ be a holomorphic motion, where V is a
connected complex Banach manifold with a basepoint x0. Then the following are
equivalent:

(i) There is a continuous motion φ̃ : V × Ĉ → Ĉ that extends φ.
(ii) There exists a basepoint preserving holomorphic map F : V → T (E) such

that F ∗(ΨE) = φ.

The following corollary will be useful in this paper; see [21].

Corollary 1.14. If the holomorphic motion φ can be extended to a continuous

motion φ̃, then φ̃ can be chosen so that:

(i) the map φ̃x : Ĉ → Ĉ is quasiconformal for each x in V and
(ii) its Beltrami coefficient μx is a continuous function of x.

Let w be a normalized quasiconformal self-mapping of Ĉ, and let Ẽ = w(E).

By definition, the allowable map g from T (Ẽ) to T (E) maps the Ẽ-equivalence
class of f to the E-equivalence class of f ◦ w for every normalized quasiconformal

self-mapping f of Ĉ.
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Lemma 1.15. The allowable map g : T (Ẽ) → T (E) is biholomorphic. If μ is the

Beltrami coefficient of w, then g maps the basepoint of T (Ẽ) to the point PE(μ) in
T (E).

See §7.12 in [11] or §6.4 in [20] for a complete proof. The following lemma will
be useful in our paper.

Lemma 1.16. Let B be a path-connected topological space. Let f and g be two
continuous maps from B to T (E), satisfying:

(i) ΨE(f(t), z) = ΨE(g(t), z) for all z in E and
(ii) f(t0) = g(t0) for some t0.

Then, f(t) = g(t) for all t in B.

See §12 in [20] for the proof.
If f(t) = [wμ]E and g(t) = [wν ]E , condition (i) of the lemma means that wμ(z) =

wν(z) for all z in E.

If E is a subset of the closed set Ê and μ is in M(C), then the Ê-equivalence
class of wμ is contained in the E-equivalence class of wμ. Therefore, there is a
well-defined “forgetful map”

(1.2) p
̂E,E : T (Ê) 	→ T (E)

such that PE = p
̂E,E ◦ P

̂E . It is easy to see that this is a basepoint preserving

holomorphic split submersion.
The following is a consequence of Lemma 1.16. Here, ΨE is the universal holo-

morphic motion of E and Ψ
̂E is the universal holomorphic motion of Ê.

Proposition 1.17. Let V be a connected complex Banach manifold with basepoint,
and let f and g be basepoint preserving holomorphic maps from V into T (E) and

T (Ê), respectively. Then p
̂E,E ◦ g = f if and only if g∗(Ψ

̂E) extends f∗(ΨE).

See §13 in [20] for the proof. We say that the holomorphic map g lifts the
holomorphic map f .

We now discuss the concept of monodromy of a holomorphic motion. We closely

follow the discussion in §2 in [4]. Let φ : V ×E → Ĉ be a holomorphic motion, where

V is a connected complex Banach manifold with a basepoint x0. Let π : Ṽ → V be
a holomorphic universal covering, with the group of deck transformations Γ. We

choose a point x̃0 in Ṽ such that π(x̃0) = x0. Let π1(V, x0) denote the fundamental
group of V with basepoint x0.

Let Φ = π∗(φ). Then, Φ : Ṽ × E → Ĉ is a holomorphic motion of E over Ṽ
with x̃0 as the basepoint. By Remark 1.11, there exists a basepoint preserving

continuous map f̃ : Ṽ → M(C) such that

Φ(x, z) = w
˜f(x)(z)

for each x ∈ Ṽ and each z ∈ E.
For each z ∈ E and for each γ ∈ Γ, we have

w
˜f◦γ(x̃0)(z) = Φ(γ(x̃0), z) = φ(π ◦ γ(x̃0), z) = φ(x0, z) = z.

Therefore, w
˜f◦γ(x̃0) keeps every point of E fixed.

Lemma 1.18. The homotopy class of w
˜f◦γ(x̃0) relative to E does not depend on

the choice of the continuous map f̃ .
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See Lemma 2.12 in [4].
We now assume that E is a finite set containing n points, where n ≥ 4; as

usual, 0, 1, and ∞ are in E. Let φ : V × E → Ĉ be a holomorphic motion.

The map w
˜f◦γ(x̃0) is a quasiconformal self-map of the hyperbolic Riemann surface

XE := Ĉ \E. Therefore, it represents a mapping class of XE , and by Lemma 1.18,
we have a homomorphism ρφ : π1(V, x0) → Mod(0, n) given by

ρφ(c) = [w
˜f◦γ(x̃0)],

where Mod(0, n) is the mapping class group of the n-times punctured sphere, γ ∈ Γ
is the element corresponding to c ∈ π1(V, x0), and [w] denotes the mapping class
group of XE for w.

Definition 1.19. We call the homomorphism ρφ the monodromy of the holomor-
phic motion φ of the finite set E. The monodromy is called trivial if it maps every
element of π1(V, x0) to the identity of Mod(0, n).

2. Statements of the main theorems

In this section, we give the precise statements of the main theorems of our paper.

Theorem A. Let φ : V × E → Ĉ be a holomorphic motion of a finite set E,
containing the points 0, 1, and ∞, where V is a connected complex Banach manifold
with basepoint x0. The following are equivalent:

(i) There exists a continuous motion φ̃ : V × Ĉ → Ĉ, such that φ̃ extends φ.
(ii) The monodromy ρφ is trivial.

In the next theorem, let Ê = E∪{ζ}, where, E is a finite set containing 0, 1, and
∞, and ζ ∈ C \E. Let V be a connected complex Banach manifold with basepoint
x0.

Theorem B. Suppose every holomorphic map from V into T (E) lifts to a holo-

morphic map from V into T (Ê). Then, if φ : V ×E → Ĉ is a holomorphic motion

that has trivial monodromy, there exists a holomorphic motion φ̂ : V × Ê → Ĉ such

that φ̂ extends φ and also has trivial monodromy.

In the next two theorems, X is a hyperbolic Riemann surface with a basepoint

x0, and E is a closed set in Ĉ containing the points 0, 1, and ∞.
Let En = {0, 1,∞, ξ1, · · · , ξn}, where n ≥ 1, and En+1 = En ∪ {ξn+1}, where

ξn+1 ∈ Ĉ \ En. Let p : T (En+1) → T (En) denote the forgetful map in (1.2).

Let φn : X × En → Ĉ be a holomorphic motion that has trivial monodromy. We
will see in the proof of Theorem A that there exists a unique basepoint preserving
holomorphic map fn : X → T (En) such that f∗

n(ΨEn
) = φn. The following theorem

is a key result in our paper.

Theorem C. Let φn : X × En → Ĉ be a holomorphic motion. If the monodromy
of φn is trivial, there exists a basepoint preserving holomorphic map fn+1 : X →
T (En+1) such that p ◦ fn+1 = fn.

The following corollary is an immediate consequence. Here ΨEn+1
: T (En+1) ×

En+1 → Ĉ is the universal holomorphic motion of En+1.

Corollary 2.1. Let φn+1 := f∗
n+1(ΨEn+1

). Then φn+1 extends φn and has trivial
monodromy.
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Theorem D. Let φ : X × E → Ĉ be a holomorphic motion such that φ restricted

to X × E′ has trivial monodromy, or extends to a continuous motion of Ĉ (over
X), where E′ is any finite subset of E, containing the points 0, 1, and ∞. Then,

there exists a holomorphic motion φ̂ : X × Ĉ → Ĉ such that φ̂ extends φ.

Remark 2.2. H. Shiga [24] has recently announced a completely different approach
to a part of this theorem. Our methods are totally independent and more direct.
The crucial point in our approach is the lifting property as given in Theorem C.

3. Proof of Theorem A

Let π : Ṽ → V be a holomorphic universal covering with the group Γ of deck

transformations, so that, V = Ṽ /Γ, and π(x̃0) = x0.

Suppose φ can be extended to a continuous motion φ̃ of Ĉ over V . Then, by

Corollary 1.14, there exists a continuous map f : V → M(C) such that φ̃(x, z) =

wf(x)(z) for all (x, z) ∈ V × Ĉ. Let f̃ = f ◦ π. Then, for any c ∈ π1(V, x0) with
corresponding γ ∈ Γ, we have

ρφ(c) = [w
˜f◦γ(x̃0)] = [wf◦π◦γ(x̃0)] = [wf(x0)] = [Id].

This shows that the monodromy ρφ is trivial.

Let φ : V × E → Ĉ be a holomorphic motion with trivial monodromy. Let

φ
˜V := π∗(φ) be the holomorphic motion of E over Ṽ . By Theorem 1.10, there

exists a unique basepoint preserving holomorphic map f
˜V : Ṽ → T (E), such that

φ
˜V = f∗

˜V
(ΨE). For any element γ ∈ Γ, we also have f

˜V ◦ γ : Ṽ → T (E). Note that

(f
˜V ◦ γ)∗(ΨE)(x, z) = ΨE((f˜V ◦ γ)x, z) = φ

˜V (γ(x), z) = φ(π(γ(x)), z)

= φ(π(x), z) = φ
˜V (x, z) = (f

˜V )
∗(ΨE)(x, z).

By the triviality of the monodromy, we have f
˜V ◦ γ(x0) = f

˜V (x0) for all γ ∈ Γ.
Lemma 1.16 implies that f

˜V ◦ γ = f
˜V for all γ ∈ Γ. Thus, f

˜V defines a unique
basepoint preserving holomorphic map f : V → T (E) such that φ = f∗(ΨE). It

then follows from Theorem 1.13 that there exists a continuous motion of Ĉ over V
that extends φ. This completes the proof. �

4. Proof of Theorem B

Let φ : V ×E → Ĉ be a holomorphic motion such that it has trivial monodromy.
By the proof of Theorem A, there exists a basepoint preserving holomorphic map

f : V → T (E) such that φ = f∗(ΨE). Let p : T (Ê) → T (E) denote the forgetful
map defined in (1.2). By hypothesis, there exists a basepoint preserving holomor-

phic map f̂ : V → T (Ê) such that p◦f̂ = f . Let φ̂ := f̂∗(Ψ
̂E). By Proposition 1.17,

φ̂ extends φ. Note that, for x ∈ V , and z ∈ Ê, we have φ̂(x, z) = wα(x)(z), where

α = s
̂E ◦ f̂ and s

̂E is the continuous section of the projection P
̂E : M(C) → T (Ê);

see Remark 1.8.
Let π : Ṽ → V be the holomorphic universal cover, and π(x̃0) = x0. Then,

π∗(φ̂) : Ṽ × Ê → Ĉ is a holomorphic motion. Since Ṽ is simply connected, there

exists a basepoint preserving continuous map β : Ṽ → M(C) such that β∗(Ψ
̂E) =
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π∗(φ̂) (see Remark 1.11). That implies π∗(φ̂)(x, z) = wβ(x)(z). Recall that the
monodromy ρ : π1(V ) → Mod(0, n+ 1) is defined by

ρ(c) = [wβ◦γ(x0)]

for any c ∈ π1(V, x0) with the corresponding γ ∈ Γ. Furthermore, it is independent
of the choice of β. In particular, if we choose β = α ◦ π, we see that

ρ(c) = [wα◦π◦γ(x0)] = [wα(x0)] = [Id].

Note that π ◦ γ(x0) = x0. This implies that ρ is trivial. �

5. Proofs of Theorem C and Corollary 2.1

We recall the following result, due to S. Nag, that will be fundamental in our
paper; see [22].

Theorem 5.1. Given n > 0, choose a point (ζ1, · · ·, ζn) in the domain

Yn = {(z1, · · ·, zn) ∈ C
n : zi �= zj for i �= j and zi �= 0, 1 for all i = 1, · · ·, n}

and let En = {0, 1,∞, ζ1, · · ·, ζn}. Then, the map pn : T (En) → Yn defined by

pn([w
μ]En

) = (wμ(ζ1), · · ·, wμ(ζn)) for all μ ∈ M(C)

is a holomorphic universal covering.

Let En = {0, 1,∞, ζ1, · · ·, ζn} and En+1 = En ∪ {ζn+1}, where ζn+1 ∈ Ĉ \ En.
We have also a holomorphic universal covering pn+1 : T (En+1) → Yn+1, where

Yn+1={(z1, ···, zn+1) ∈ C
n+1 : zi �= zj for i �= j and zi �= 0, 1 for all i=1, ···, n+1}.

Let p : T (En+1) → T (En) denote the forgetful map defined in (1.2).
We need some preliminaries. The reader is referred to Lemmas 3.1–3.5 in [17]

for all details. Let C(C) denote the complex Banach space of bounded, continuous
functions φ on C with the norm

‖φ‖ = sup
z∈C

|φ(z)|.

In §3 of [17] we construct a continuous compact operator

K : C(C) → C(C).
By Lemma 3.2 in [17], there exists a constant C3 > 0 such that

‖K‖ ≤ C3 for all f ∈ C(C).
For ζn+1, let

B = {f ∈ C(C) : ‖f‖ ≤ |ζn+1|+ C3}.
It is a bounded convex subset in C(C). The continuous compact operator ζn+1 +K
maps B into itself. By Schauder fixed point theorem (see Theorem 2A on page 56
of [27]; also page 557 of [17]), ζn+1 + K has a fixed point in B. This says that we
can find a gn+1 ∈ B such that

gn+1(z) = ζn+1 +Kgn+1(z) for all z ∈ C.

The reader is referred to §3 of [17] for all details; especially page 557 of that paper.
By Lemma 3.5 of [17], the solution gn+1(z) is the unique fixed point of the operator
ζn+1 +K.

Suppose φn : X ×En → Ĉ is a holomorphic motion that has trivial monodromy.

By Theorem A, it can be extended to a continuous motion φ̃ : X × Ĉ → Ĉ. By
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Theorem 1.13, there exists a basepoint preserving holomorphic map fn : X →
T (En) such that f∗

n(ΨE) = φn.

Proof of Theorem C. Let

pn : T (En) → Yn and pn+1 : T (En+1) → Yn+1

be the two holomorphic coverings in Theorem 5.1.
Since X is a hyperbolic Riemann surface, its universal covering space is the open

unit disk Δ. Let π : Δ → X be the holomorphic universal cover. Let Γ be the
group of deck transformations such that X = Δ/Γ.

Define the holomorphic map

fΔ,n = fn ◦ π : Δ → T (En)

and for any given γ ∈ Γ, consider the holomorphic map

fΔ,n ◦ γ : Δ → T (En).

So we have two holomorphic maps

Fn = pn ◦ fΔ,n : Δ → Yn and Fn ◦ γ = pn ◦ (fΔ,n ◦ γ) : Δ → Yn.

Let us write

Fn = (h1, · · · , hn) and Fn ◦ γ = (h1 ◦ γ, · · · , hn ◦ γ).

Each hi (as well as hi ◦ γ) is holomorphic in Δ. In §3 of [10], we constructed a map
gi (as well as a map gi ◦ γ) by using hi (as well as hi ◦ γ) which is holomorphic
outside Δ and continuous on C. By using gi for all 1 ≤ i ≤ n, we constructed a
continuous compact operator

K = K(Fn) : C(C) → C(C)

in §3 of [10]. Similarly, by using gi ◦ γ for all 1 ≤ i ≤ n, we have a continuous
compact operator

Kγ = K(Fn ◦ γ) : C(C) → C(C).
The main point in §3 of [10] is that we can find the unique fixed point gn+1 for

ξn+1 +K and the unique fixed point gn+1,γ for ξn+1 +Kγ . That is,

(5.1) gn+1(z) = ξn+1 +Kgn+1(z)

and

(5.2) gn+1,γ(z) = ξn+1 +Kγgn+1,γ(z).

We also have

(5.3) gn+1 ◦ γ(z) = ξn+1 +Kγ(gn+1 ◦ γ(z)).

From gn+1 (as well as gn+1,γ), which is holomorphic outside Δ and continuous
in C, we get a holomorphic map hi (as well as hn+1,γ) in Δ for i = 1, · · · , n. Then
we form two holomorphic maps

(5.4) Fn+1 = (h1, · · · , hn, hn+1) : Δ → Yn+1

and

(5.5) Fn+1,γ = (h1 ◦ γ, · · · , hn ◦ γ, hn+1,γ) : Δ → Yn+1.
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Since Δ is simply connected and since pn+1 : T (En+1) → Yn+1 is the universal
cover, we can lift Fn+1 and Fn+1,γ to two holomorphic maps

fΔ,n+1 : Δ → T (En+1) and fΔ,n+1,γ : Δ → T (En+1)

such that pn+1 ◦ fΔ,n+1 = Fn+1 and pn+1 ◦ fΔ,n+1,γ = Fn+1,γ .
Under the assumption of the trivial monodromy, we know that fΔ,n = fΔ,n ◦ γ

(see the proof of Theorem A). That is, hi = hi ◦ γ and gi = gi ◦ γ for all 1 ≤ i ≤ n.
Thus Kγ = K. Since the fixed point is unique, we get

gn+1 ◦ γ = gn+1,γ = gn+1.

This implies that hn+1 ◦ γ = hn+1 and Fn+1 ◦ γ = Fn+1 and fΔ,n+1 ◦ γ = fΔ,n+1.
Since this holds for all γ ∈ Γ, the map fΔ,n+1 defines a holomorphic map fn+1 :
X → T (En+1) such that p ◦ fn+1 = fn. Therefore, fn+1 is a lift of fn. This
completes the proof. �

Proof of Corollary 2.1. This follows at once from Theorem C, Proposition 1.17,
and Theorem B. �

6. Proof of Theorem D

Let E be an arbitrary closed set in Ĉ such that 0, 1, and ∞ are in E, and let X
be a hyperbolic Riemann surface with a basepoint x0.

We will need the following result; see Theorem C in [4].

Theorem 6.1. Let φ : X ×E → Ĉ be a holomorphic motion. Suppose the restric-

tion of φ to X × E′ extends to a holomorphic motion φ̃ : X × Ĉ → Ĉ, whenever
{0, 1,∞} ⊂ E′ ⊂ E and E′ is finite. Then φ can be extended to a holomorphic

motion of Ĉ over X.

Proof of Theorem D. Let φ : X ×E → Ĉ be a holomorphic motion with the prop-
erty that φ restricted to X×E′ has trivial monodromy, where E′ is any finite subset
of E, containing 0, 1, and ∞.

Fix some E′ ⊂ E such that E′ contains the points 0, 1,∞ and φ restricted to
X × E′ has trivial mondromy. Let E0 = E′. Consider E1 = E0 ∪ {ζ1} for ζ1 �∈ E0.
Inductively, consider En+1 = En ∪ {ζn+1} for ζn+1 �∈ En for all n ≥ 0. Then we

eventually get a countable set E∞ =
⋃∞

n=0 En in Ĉ. We can assume that E∞ is

dense in Ĉ.
Define φ0 := φ restricted to X × E0. Using Theorem C and Corollary 2.1

inductively, we know that the holomorphic motion φn : X×En → Ĉ can be extended

to a holomorphic motion φn+1 : X × En+1 → Ĉ with trivial monodromy for all

n ≥ 0. Thus we can extend φ0 to a holomorphic motion φ∞ : X ×E∞ → Ĉ. Since

E∞ is dense in Ĉ, it can be further extended to a holomorphic motion φ̃ : X×Ĉ → Ĉ.
The conclusion now follows from Theorem 6.1. �

Remark 6.2. Let G be a group of Möbius transformations, such that the closed

set E is G-invariant. Let φ : X × E → Ĉ be a G-equivariant holomorphic motion;
see Definition 1.3. If φ has the property that φ restricted to X × E′ has trivial
monodromy, where E′ is any subset of E, containing the points 0, 1, and ∞, then

φ can be extended to a holomorphic motion φ̃ : X × Ĉ → Ĉ which is also G-
equivariant. The proof is very similar to the proof of Theorem 1 in [10] or of
Theorem B in [3].
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Remark 6.3. The question of liftings of holomorphic maps into complex manifolds
is a more general and fundamental question. In our paper, we have studied liftings
of holomorphic maps into Teichmüller spaces and their intimate relationship with
extending holomorphic motions. In future research, we plan to investigate whether
the tools and techniques in our paper can be extended to other kinds of Teichmüller
spaces.
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