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ASYMPTOTICS OF THE TRANSLATION FLOW ON

HOLOMORPHIC MAPS OUT OF THE POLY-PLANE

DMITRI GEKHTMAN

Abstract. We study the family of holomorphic maps from the polydisk to the
disk which restrict to the identity on the diagonal. In particular, we analyze
the asymptotics of the orbit of such a map under the conjugation action of a
unipotent subgroup of PSL2(R). We discuss an application of our results to
the study of the Carathéodory metric on Teichmüller space.

1. Introduction

Let H be the upper half-plane H = {λ ∈ C|Im(λ) > 0}. The poly-plane Hn =
H× · · · ×H is the n-fold product of H with itself.

Let D be the family of holomorphic functions f : Hn → H which restrict to the
identity on the diagonal, i.e., f(λ, . . . , λ) = λ for all λ ∈ H. Fix t ∈ R. If f is in D,
then so is the map ft defined by

(1) ft(z1, . . . , zn) = f(z1 − t, . . . , zn − t) + t.

The action (f, t) �→ ft is called the translation flow on D.
In this paper, we study the asymptotics of the translation flow. Suppose f ∈ D,

and let αj =
∂f
∂zj

(i, . . . , i) for j = 1, . . . , n. Our main result is that for “most” t ∈ R,

ft is “close” to the translation-invariant function g(z1, . . . , zn) =
∑n

j=1 αjzj . More
precisely, we prove the following.

Theorem 4.1. Let U be any open neighborhood of g in the compact-open topology.
Choose t uniformly at random in [−r, r]. The probability that ft is in U tends to 1
as r → ∞.

The motivation for this work comes from the study of the Kobayashi and
Carathéodory metrics on Teichmüller space (see Section 1.1). Let T denote the
Teichmüller space of a finite-type orientable surface. A Teichmüller disk τ : H → T
is a complex geodesic for the Kobayashi metric on T . It is an open problem to clas-
sify Teichmüller disks on which the Kobayashi and Carathéodory metrics coincide.
To say that the metrics agree on τ (H) means exactly that there is a holomorphic
retraction onto τ , i.e., a holomorphic Ψ : T → H so that Ψ ◦ τ = idH.

In recent work with Markovic [5], we classify holomorphic retracts in the Te-
ichmüller space of the five-times punctured sphere. Key to our argument is the
observation that certain Teichmüller disks τ factor as

H
Δ→ H

n E→ T ,
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where Δ is the diagonal mapping and E is a particular naturally defined holomorphic
embedding. If Ψ : T → H is a holomorphic retraction onto τ (H), then f = Ψ ◦ E :
H

n → H is a holomorphic retraction onto the diagonal, i.e., f is in D. In [5], we use
the properties of D developed in this paper to glean information about holomorphic
maps out of Teichmüller space.

The translation flow (1) should be viewed in the context of unipotent dynamics.
The translation flow on D extends to an action of Aut(H) ∼= PSL2(R) (see Section
5). Equation (1) gives the action of the unipotent subgroup

U =

{(
1 t
0 1

)∣∣∣∣t ∈ R

}
.

Analogously, there is a natural PSL2(R) action on the unit cotangent bundle T ∗
1 T

of Teichmüller space. The restriction of this action to U is called the horocycle
flow. Our methods in [5] are summarized as follows: First, use results on horocycle
flow in T ∗

1 T [11] to reduce to an appropriate class of Teichmüller disks. Next, use
translation flow in D and the results of this paper to analyze retractions onto disks
in that class.

Generalizing from the case of translations acting on holomorphic maps Hn → H,
it is natural to ask the following: Given two Hermitian symmetric spacesX1 andX2,
what can one say about the dynamics of subgroups of Aut(X1)×Aut(X2) acting on
subsets of the space of holomorphic functions O(X1, X2)? To our knowledge, there
is no previous work in the literature explicitly addressing this question. There
has, however, been much interest in the dynamics of linear operators acting on
holomorphic function spaces (see [2]). In Section 1.6 we use results [4], [6] on linear
dynamics to study the analogue of translation flow for maps C

k → C. In this
context, the flow is chaotic and behaves quite differently from the flow on maps
Hk → H.

The key tool in the proof of our main result is a multivariate version of the
Schwarz lemma (see Section 1.2). Our methods are inspired by Knese’s work [7] on
extremal maps Dn → D.

1.1. The Carathéodory and Kobayashi metrics on Teichmüller space. The
Carathéodory pseudometric dC on a complex manifold X assigns to two points
p, q ∈ X the distance

dC(p, q) ≡ sup
f

dH(f(p), f(q)),

where the supremum is taken over all holomorphic maps f : X → H, and dH is
the Poincaré metric. In other words, dC is the smallest pseudometric on X so that
every holomorphic map from X to H is length-decreasing.

The Kobayashi pseudometric dK on X is defined in terms of maps H → X. It
is the largest pseudometric on X so that every holomorphic map from H to X is
length-decreasing.

The Kobayashi and Carathéodory metrics on Hn are both given by

dHn(z, w) = max
j

dH(zj , wj).

In general, the Schwarz lemma implies dC ≤ dK for any complex manifold. How-
ever, it is usually difficult to determine if dC = dK for a given complex manifold
X.
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In [9], Markovic proves that dC and dK do not agree on the Teichmüller space of
a closed orientable surface of genus ≥ 2. Let T be the Teichmüller space of a finite-
type orientable surface. Given a rational Strebel differential φ with characteristic
annuli Π1, . . . ,Πn, Markovic defines a holomorphic map Eφ : Hn → T . The marked
surface Eφ(z1, . . . , zn) is constructed by applying the affine transformation x+iy �→
x+zjy to Πj . In particular, the restriction of Eφ to the diagonal is the Teichmüller
disk generated by φ. Let αj = (

∫
Πj

|φ|)/‖φ‖1. Markovic proves the following.

Proposition 1.1. If the metrics dC and dK agree on the Teichmüller disk generated
by φ, then there is a holomorphic function Ψ : T → H and a real constant T so
that f = Ψ ◦ Eφ satisfies

(A) f(λ, . . . , λ) = λ,

(B)
∂f

∂zj
(λ, . . . , λ) = αj ,

(C) f(z1 + T, z2 + T, . . . , zn + T ) = f(z1, z2, . . . , zn) + T

for all λ ∈ H, (z1, . . . , zn) ∈ Hn, j = 1, . . . , n.

Markovic then proves the following.

Proposition 1.2. For n = 2, the only holomorphic f : H2 → H satisfying condi-
tions (A),(B),(C) is f(z1, z2) = α1z1 + α2z2.

So if φ has exactly two characteristic annuli, there is a Ψ : T → H such that
Ψ ◦ Eφ = α1z1 + α2z2. This criterion is then used to show that dC and dK do not
agree on the Teichmüller disk generated by an L-shaped pillowcase with rational
edge lengths.

As a corollary of our main result Theorem 4.1, we obtain the generalization of
Proposition 1.2 to arbitrary n as follows.

Corollary 4.3. The only holomorphic f : Hn → H satisfying (A),(B),(C) is
f(z1, . . . , zn) =

∑n
j=1 αjzj.

Taken together, Proposition 1.1 and Corollary 4.3 yield the following criterion
for determining whether dC and dK agree on the Teichmüller disk generated by a
rational Strebel differential.

Proposition 1.3. Let φ be a rational Jenkins-Strebel differential, with characteris-
tic annuli Π1, . . . ,Πn. Suppose dC and dK agree on the Teichmüller disk generated
by φ. Then there exists a holomorphic map Φ : T → Hn such that

Φ ◦ Eφ(z1, . . . , zn) = α1z1 + · · ·+ αnzn,

where αj = (
∫
Πj

|φ|)/‖φ‖1.

Remark. Markovic showed that there are Teichmüller disks on which dC �= dK . On
the other hand, Kra [8] proved that dC = dK on every Teichmüller disk generated by
a holomorphic quadratic differential with no odd-order zeros. This raises a natural
question: For which quadratic differentials do the Carathéodory and Kobayashi
metrics on the corresponding disk agree? A natural conjecture is that the converse
of Kra’s result holds: dC = dK on a Teichmüller disk if and only if the generating
differential has no odd-order zeros. In a recent paper [5] we prove this conjecture
in the case of the five-times punctured sphere and twice-punctured torus. Key to
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the proof is the fact that Proposition 1.3 continues to hold without the rationality
assumption. This fact in turn hinges on the main result Theorem 4.1 of this paper.
(The weaker result Corollary 4.3 is insufficient to deal with the irrational case.)

1.2. The Schwarz lemma and extremal maps. Let D be the open unit disk
in the complex plane. The classical Schwarz lemma states that if f : D → D is
holomorphic, then

(2) (1− |z|)2 |f ′(z)| ≤ 1− |f(z)|2

for all z ∈ D. If equality holds in (2) for some z ∈ D, then it holds for all z. In this
case, f is a conformal automorphism of D.

The Schwarz lemma has the following generalization for holomorphic maps f
from the polydisk Dn = D× · · · × D to D (see page 179 of [10]):

(3)

n∑
j=1

(1− |zj |2)
∣∣∣∣ ∂f∂zj (z)

∣∣∣∣ ≤ 1− |f(z)|2

for every z = (z1, . . . , zn) ∈ Dn. To understand (3), we recall the following def-
initions: A balanced disk in D

n is a copy of D embedded in D
n by a map of the

form

Φ : z �→ (φ1(z), . . . , φn(z)) ,

where φi ∈ Aut(D). A balanced disk Φ is called extreme for f if the restriction f ◦Φ
is in Aut(D). The content of (3) is that the restriction of f to every balanced disk
satisfies the classical Schwarz lemma. Equality in (3) means that z is contained in
some extreme disk for f .

The extreme set X(f) is the union of the extreme disks of f . In other words,
X(f) is the set of points z ∈ D

n for which equality holds in (3). In [7], Knese
classifies maps f : Dn → D for which X(f) = Dn. Such maps are called everywhere
extremal, or simply extremal. Knese shows that extremal maps Dn → D form a
special class of rational functions parameterized by (n + 1) × (n + 1) symmetric
unitary matrices.

The upper half-plane H is conformally equivalent to D via the Cayley transform
z �→ i−z

i+z . For holomorphic maps f : Hn → H, the generalized Schwarz lemma
becomes

(4)
n∑

j=1

Im(zj)

∣∣∣∣ ∂f∂zj (z)
∣∣∣∣ ≤ Imf(z).

1.3. The families D, C. Consider the family D of holomorphic maps f : Hn → H

which restrict to the identity on the diagonal:

(5) f(λ, . . . , λ) = λ

for all λ ∈ H. D is a natural class to consider; it is the collection of maps Hn → H

with a distinguished extreme disk. After pre- and post-composing by biholomor-
phisms, any holomorphic map Hn → H with an extreme disk becomes an element
of D.

Differentiating both sides of (5) with respect to λ yields

n∑
j=1

∂f

∂zj
(λ, . . . , λ) = 1.
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But by the generalized Schwarz lemma (4),
n∑

j=1

∣∣∣∣ ∂f∂zj (λ, . . . , λ)
∣∣∣∣ ≤ 1.

So ∂f
∂zj

(λ, . . . , λ) ≥ 0 for all λ ∈ H and j = 1, . . . , n. By the open mapping theorem,

λ �→ ∂f
∂zj

(λ, . . . , λ) is constant. So f satisfies

∂f

∂zj
(λ, . . . , λ) = αj

for all λ ∈ H, for some collection of nonnegative constants αj summing to 1.
In the rest of the paper, we assume without loss of generality that αj = 1

n . To

reduce the general case to this one, suppose f ∈ D and ∂f
∂zj

(i, . . . , i) = αj . Define

g ∈ D by

g(z) =

n∑
j=1

(
1− αj

n− 1

)
zj .

Then

f̃ =
1

n
f +

n− 1

n
g

is in D and satisfies ∂f̃
∂zj

(i, . . . , i) = 1
n . Since g is invariant under the translation

flow, it suffices to consider the translation orbit of f̃ .
With these considerations in mind, we define C to be the family of holomorphic

maps Hn → H satisfying

(A) f(λ, . . . , λ) = λ,

(B)
∂f

∂zj
(λ, . . . , λ) =

1

n

for all λ ∈ H and j = 1, . . . , n.
When convenient, we view C as the family of maps Dn → D satisfying the same

conditions. (Conjugation by the Cayley transform H → D preserves (A), (B).)

Remark. Conditions (A) and (B) hold for all λ ∈ H iff they both hold for some
λ ∈ H.

1.4. Extremal maps in dimension 2. In [7], Knese showed that extremal maps
g : D2 → D satisfying g(0, 0) = 0 are all of form

g(z, w) = μ
az + bw − zw

1− bz − aw
,

where |μ| = |a| + |b| = 1. Imposing f(λ, λ) = λ and ∂f
∂z (λ, λ) =

∂f
∂w (λ, λ) = 1

2 , we
find that the extremal elements of C are the functions of form

gν(z, w) =
ν( z2 + w

2 )− zw

ν − ( z2 + w
2 )

with ν ∈ ∂D.
A direct computation shows that, for any γ ∈ Aut(D),

γ · gν = gγ(ν),

where (γ · gν)(z1, z2) = γgν(γ
−1z1, γ

−1z2). Thus, the set of extremals in C is in
Aut(D)−equivariant bijection with ∂D.
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Remark. The situation for n > 2 is more complicated; one can show using Knese’s
classification of extremals that the extremals in C constitute a manifold of dimension
n(n−1)

2 .

Conjugating by the Cayley transform, we get a description of the extremal maps
H

2 → H in C. They are the functions of form

hr(z, w) =
r( z2 + w

2 )− zw

r − ( z2 + w
2 )

with r ∈ ∂H = R ∪ {∞}. In particular,

h∞(z, w) =
z

2
+

w

2
.

One can check that the extreme disks for h∞ are precisely those of form {(z, az + b)
|z ∈ H}, where a > 0 and b ∈ R. It follows, more generally, that the extreme disks
for hr are those of form {(z, φ(z)) |z ∈ H}, with φ ∈ Stab(r).

Example 1.4. In [7], Knese constructed a holomorphic map D
2 → D which has

two extreme disks, yet is not everywhere extremal. Below, we give an example of
a map H2 → H which is extremal on every disk of the form {(z, az)|z ∈ H} with
a > 0, yet is not everywhere extremal.

Given r, s ∈ ∂H, Stab(r) ∩ Stab(s) is the set of isometries preserving the hy-
perbolic geodesic with endpoints r, s. For example, Stab(0) ∩ Stab(∞) consists of
isometries preserving the positive imaginary axis; these are of form z �→ az with
a > 0. So the disks Da = {(z, az)|z ∈ H} are extreme for both h∞(z, w) = z+w

2

and h0(z, w) =
2zw
z+w . In fact, the Da are extreme for any convex combination

f t = th∞ + (1− t)h0

with t ∈ (0, 1). Indeed,

f t(z, az) =

(
t
1 + a

2
+ (1− t)

2a2

1 + a

)
z.

So the extreme setX(f t) contains a set of real dimension 3. Yet f t is not everywhere
extremal, as f t �= hr for any r ∈ ∂H.

1.5. Translation flow in dimension 2. In dimension 2, C can be parameterized
explicitly using Nevanlinna-Pick interpolation on the bidisk. The maps D

2 → D

belonging to C are precisely those of form

(6) f(z, w) =
1

2
(z + w) +

1

4
(z − w)2

Θ(z, w)

1− 1
2 (z + w)Θ(z, w)

,

where Θ is any holomorphic map from D2 to the closed disk D. (See page 189 of
[1].)

To parameterize maps H2 → H in C, we conjugate (6) by the Cayley transform.
We get the same general form with Θ any holomorphic map from H2 to the closure
H of H in the Riemann sphere. Substituting Θ = − 1

Φ , (6) becomes

(7) f(z, w) =
z+w
2 · Φ(z, w) + zw

Φ(z, w) + z+w
2

,

The extremal map hr corresponds to Φ ≡ −r. In particular, h∞(z, w) = z+w
2

correponds to Φ ≡ ∞.
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Applying translation flow to (7) yields

(8) f(z − t, w − t) + t =
z+w
2 · [Φ(z − t, w − t)− t] + zw

[Φ(z − t, w − t)− t] + z+w
2

.

One can show that for randomly chosen real t, |Φ(z − t, w − t)− t| is very large,
so that (8) is very close to z+w

2 . This yields a proof of Theorem 4.1 in dimension 2.

1.6. Translation flow for maps Ck → C. Let D′ denote the space of holomorphic
maps f : Ck → C satisfying f(z, . . . , z) = z for all z ∈ C. Define translation flow
on D′ by the same formula

ft(z1, . . . , zk) = f(z1 − t, . . . , zk − t) + t

as the flow on D.
The main results of this paper state that translation flow on D is “unchaotic”.

Theorem 4.1 asserts that the orbit any f ∈ D is concentrated at a single point, while
Corollary 4.3 states that the periodic points lie in a finite-dimensional subspace of
D. In stark contrast, the flow on D′ has orbits which equidistribute; moreover, the
set of periodic points is dense. This contrast should be viewed in light of the fact
that, unlike D, the space D′ is not compact.

Proposition 1.5. There is a probability measure μ on D′ which is ergodic with
respect to translation flow and whose support is the entire space D′. In particular,
a dense set of f ∈ D′ have μ-equidistributed orbits under translation flow.

Remark. Another way of stating the main result Theorem 4.1 is that any ergodic
probability measure for translation flow on D is a delta measure supported at a
point g ∈ D of form g(z) =

∑
j αjzj (see Proposition 4.2).

Proposition 1.6. The set of periodic points for the translation flow on D′ is dense.

Propositions 1.5 and 1.6 follow easily from the following results on linear dynam-
ics.

Proposition 1.7 (Bonilla, Grosse-Erdmann [4]). Let L be any continuous linear
operator on O(Cn) which commutes with the differential operators ∂

∂z1
, . . . , ∂

∂zn
.

Then L is ergodic with respect to a full-support probability measure.

Proposition 1.8 (Godefroy, Shapiro [6]). Under the hypotheses of Proposition 1.7,
L has a dense set of periodic points.

Proof of Propositions 1.5 and 1.6. Let S : D′ → D′ be the time-one translation
f �→ f1. It suffices to show that S has a dense set of periodic points and an ergodic
probability measure μ with full support. (To obtain the desired flow-invariant
measure, average μ over the flow from time 0 to time 1.)

Propositions 1.7, 1.8 apply to the operator L on O(Cn) defined by

Lφ(z1, . . . , zn) = φ(z1 − 1, . . . , zn − 1).

It thus suffices to exhibit a continuous surjection

O(Cn) → D′

intertwining the actions of L and S.
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To this end, define g ∈ O(Ck) by g(z1, . . . , zn) =
1
n

∑
j zj , and let 1 ∈ Cn denote

the vector with all entries equal to 1. The map F : O(Cn) → D′ associating to each
φ ∈ O(Cn) the function

f(z) = φ(z)− φ(g(z)1) + g(z)

is the desired surjection. It is easy to check F intertwines the actions of L and S.
Moreover, the map D′ → O(Cn) sending f ∈ D′ to φ(z) = f(z) − g(z) is a right
inverse for F . �

1.7. Outline. The rest of the paper will focus on the proof of our main result,
Theorem 4.1. The key observation is that g(z) = 1

n

∑n
j=1 zj is an everywhere

extremal map from Hn to H.
In Section 2, we show that extremals in C are extreme points of C, in the sense

of convex analysis. More precisely, we prove the following.

Proposition 2.3. If g ∈ C is extremal and μ is a Borel probability measure on C
such that ∫

C
f(z)dμ(f) = g(z) ∀z ∈ H

n,

then μ is the Dirac measure δg concentrated at the point g ∈ C.

Then in Section 3 we show that the average of any f ∈ C over the translation
flow is g(z) = 1

n

∑n
j=1 zj . That is, we prove the following.

Proposition 3.1. Let f ∈ C. For each t ∈ R, define ft(z1, . . . , zn) = f(z1 −
t, . . . , zn−t)+t. Then 1

2r

∫ r

−r
ft(z)dt converges locally uniformly to g(z) as r → ∞.

In Section 4, we prove the main result. To apply Proposition 2.3, we consider
the measure μr on C obtained by pushing forward the uniform probability measure
on [−r, r] via the map t �→ ft. The desired result is that μr → δg as r → ∞.
Propositions 2.3, 3.1 imply that δg is the only accumulation point of {μr}r>0. The
main result then follows by the Banach-Alaoglu theorem.

In Section 5, we rephrase our results in a more invariant form, in terms of the
conjugation action of PSL2(R) on D. In Section 6, we establish a rigidity result
used in the proof of Proposition 3.1, and in the appendix, we discuss generalizations
of the classical polarization principle.

2. Convexity and extreme points

Let C be the family of holomorphic maps Hn → H satisfying

(A) f(λ, . . . , λ) = λ,

(B)
∂f

∂zj
(λ, . . . , λ) =

1

n

for all λ ∈ H and j = 1, . . . , n.
Recall that an extremal map g : Hn → H is a holomorphic function satisfying

n∑
j=1

Im(zj)

∣∣∣∣ ∂g∂zj
(z)

∣∣∣∣ = Img(z)

for all z = (z1, . . . , zn) ∈ Hn.
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Observe that C is a convex subset of the holomorphic functions on Hn. Our
next result is that every extremal in C is an extreme point in the sense of convex
analysis.

Proposition 2.1. Suppose g ∈ C is extremal. If g = tf1 + (1 − t)f2, with fi ∈ C
and t ∈ (0, 1), then f1 = f2 = g.

Proof. We have

t Im(f1) + (1− t)Im(f2) =

n∑
j=1

Im(zj)

∣∣∣∣t∂f1∂zj
+ (1− t)

∂f2
∂zj

∣∣∣∣(9)

≤
n∑

j=1

Im(zj)

[
t

∣∣∣∣∂f1∂zj

∣∣∣∣+ (1− t)

∣∣∣∣∂f2∂zj

∣∣∣∣
]

≤ t Im(f1) + (1− t)Im(f2),

where in the first line we’ve used that g is extremal, and in the third we’ve applied
(4) to f1, f2. Thus,∣∣∣∣t∂f1∂zj

(z) + (1− t)
∂f2
∂zj

(z)

∣∣∣∣ = t

∣∣∣∣∂f1∂zj
(z)

∣∣∣∣+ (1− t)

∣∣∣∣∂f2∂zj
(z)

∣∣∣∣
for j = 1, . . . , n and all z ∈ H

n.
So (

∂f1
∂zj

)(
∂g

∂zj

)−1

≥ 0,

whenever ∂g
∂zj

�= 0, and similarly for f2. Let U ⊂ Hn be the complement of the zero

set of ∂g
∂zj

. By (B), ∂g
∂zj

is not identically zero, so U is a dense connected subset of

Hn. The open mapping theorem now implies that
(

∂f1
∂zj

)(
∂g
∂zj

)−1

is a nonnegative

constant on U . Again by (B),

∂f1
∂zj

=
∂g

∂zj

on U and, thus, on all of Hn. Since the first derivatives of f1 and g are the same,
f1 and g differ by a constant. By (A), f1 = g. Similarly, f2 = g. �

The last result implies that if a finite convex combination

g =
∑
k

tkfk

of elements of C is extremal, then the fk are all equal to g. We will show, more
generally, that if μ is a Borel probability measure on C such that

g =

∫
C
fdμ(f)

is extremal, then μ = δg. Before we consider Borel measures on the space C, we
need to understand the space’s basic topological properties.

Proposition 2.2. The family C is compact and metrizable in the compact-open
topology.
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Proof. Metrizability is standard: Choose a compact exhaustion K1,K2, . . . of H
n,

and set dj(f, g) = supz∈Kj
|f(z)− g(z)|. Then the metric

d(f, g) =

∞∑
j=1

2−j dj(f, g)

1 + dj(f, g)

induces the compact-open topology.
To prove compactness, we need to show that C is precompact and closed in

O(Hn). By the definition of the Carathéodory metric, any holomorphic map H
n →

H decreases Carathéodory distance. Thus, every f ∈ C satisfies

dH(f(z1, . . . , zn), i) ≤ dHn ((z1, . . . , zn), (i, . . . , i)) .

The right side of the inequality is continuous in the zj . So C is locally uniformly
bounded and thus precompact. The inequality also implies that any accumula-
tion point of C has image contained in H. Furthermore, (A) and (B) are closed
conditions. Thus, C is closed in O(Hn). �

Let μ be a Borel probability measure on C. For each z ∈ H
n, the evaluation map

f �→ f(z) is a continuous function on the compact space C. So the evaluation map
is μ-integrable. We denote its integral by

∫
C f(z)dμ(f).

Proposition 2.3. Suppose g ∈ C is extremal. Let μ be a Borel probability measure
on C. Suppose

∫
C f(z)dμ(f) = g(z) for all z ∈ Hn. Then μ is δg, the Dirac measure

concentrated at g.

Proof. Though this result can be derived as a formal consequence of Proposition
2.1, we prefer to give a direct proof.

The proof is similar to that of Proposition 2.1. To establish the analog of equality
(9), we need to differentiate

∫
C f(z)dμ(f) under the integral sign; Proposition 2.2

implies that the family { ∂f
∂zj

|f ∈ C} is locally uniformly bounded, which justifies

switching
∫
and ∂

∂zj
.

Let U be the complement of the zero set of ∂g
∂zj

. Fix z ∈ U . Arguing as before,

we get

(10)

(
∂f

∂zj
(z)

)(
∂g

∂zj
(z)

)−1

≥ 0,

for μ-almost-every f . A countable intersection of full-measure subsets of C has full
measure. Thus, for μ-a.e. f , (10) holds at all z ∈ U with rational coordinates. By
continuity, μ-a.e. f satisfies (10) on U . We conclude that μ-a.e. f is equal to g.
This means that μ = δg. �

3. Averaging over translations

Let f : Hn → H be a holomorphic map. For each t ∈ R, we define

ft(z1, . . . , zn) = f(z1 − t, . . . , zn − t) + t.

The action (f, t) �→ ft is the translation flow on O(Hn). The family C is invariant
under the translation flow.

For each f ∈ C and r > 0, we define the average Ar[f ] ∈ C by

Ar[f ](z) =
1

2r

∫ r

−r

ft(z)dt.
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One might expect that averaging f ∈ C over the entire flow yields an invariant
element. This is indeed the case.

Proposition 3.1. For each f ∈ C, Ar[f ] converges locally uniformly to g(z) =
1
n

∑n
j=1 zj as r → ∞.

Proof. Fix z ∈ Hn. By Proposition 2.2, there is a C(z) > 0 so that

(11) |f(z)| < C(z)

for all f ∈ C.
Fix s ∈ R. We use (11) to compare Ar[f ] and the translate (Ar[f ])s:

|Ar[f ](z)− (Ar[f ])s (z)| =
1

2r

∣∣∣∣
∫ −r+s

−r

ft(z)dt−
∫ r+s

r

ft(z)dt

∣∣∣∣
≤ s

r
C(z).

Thus, any limit point of the family {Ar[f ]}r>0 along a sequence with r → ∞ is
invariant under all translations. But, as we will show in Proposition 6.2, the only
translation-invariant element of C is g. Since C is sequentially compact, we get the
desired result. �

4. The main result

We now use Propositions 2.3, 3.1 and the Banach-Alaoglu theorem to prove the
main result.

Theorem 4.1. Suppose f : Hn → H is holomorphic and satisfies f(λ, . . . , λ) = λ

for all λ ∈ H. Let αj = ∂f
∂zj

(i, . . . , i), and define g(z) =
∑n

j=1 αjzj . Fix ε > 0,

and let U be any open neighborhood of g in the compact-open topology. Then for
sufficiently large r, the set {t ∈ [− r

2 ,
r
2 ]|ft ∈ U} has measure at least (1− ε)r.

Proof. We may assume without loss of generality that αj = 1
n for j = 1, . . . , n.

So f ∈ C. Let μr be the pushforward to C of the uniform probability measure on
[−r, r], via the continuous map t �→ ft. Then the desired result is equivalent to the
assertion that μr → δg weakly as r → ∞.

By the Banach-Alaoglu theorem, the space of Borel probability measures on the
compact metric space C is sequentially compact. It thus suffices to show that any
limit point μ of {μr}r>0 along a sequence with r → ∞ is δg. Proposition 3.1 says
that

∫
C h(z)dμr(h) → g(z), as r → ∞. So μ satisfies∫

C
h(z)dμ(h) = g(z)

for all z ∈ Hn. By Proposition 2.3, μ = δg. This completes the proof. �

The Birkhoff ergodic theorem yields the following restatement of the main result.

Proposition 4.2. The only invariant measure for translation flow on C is the delta
measure δg.

Remark. We do not know if limt→∞ ft = g for all f ∈ C.

As a corollary to the main result, we obtain the generalization of Proposition 1.2
to maps Hn → H.
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Corollary 4.3. Suppose f : Hn → H is holomorphic and satisfies f(λ, . . . , λ) = λ
for all λ ∈ H. Suppose in addition that f(z1 + T, . . . , zn + T ) = f(z1, . . . , zn) + T
for some T > 0 and all (z1, . . . , zn) ∈ H

n. Then f is equal to the function g(z) =∑n
j=1 αjzj, where αj =

∂f
∂zj

(i, . . . , i).

Proof. Assume WLOG αj = 1
n . The hypothesis on f means that it is a periodic

point of the translation flow, with period T . Thus, μT = limr→∞ μr = δg. Since
t �→ ft is continuous, it follows that ft = g for all t ∈ [−T, T ]. In particular, f = g,
as claimed. �

5. Unipotent subgroups acting on D
In this section, we restate our results in terms of the action of Aut(H) on D.
The group Aut(H) ∼= PSL2(R) acts on D by conjugation: An element γ ∈

PSL2(R) sends f ∈ D to the function γ · f given by

(γ · f)(z1, . . . , zn) = γf(γ−1z1, . . . , γ
−1zn).

By the chain rule, γ ·f has the same first partials at (i, . . . , i) as f . So C is invariant
under the action.

An element of PSL2(R) is called unipotent (or parabolic) if it fixes exactly one
point in ∂H. A unipotent subgroup of PSL2(R) is a nontrivial one-parameter sub-
group whose nonidentity elements are unipotent. Every unipotent subgroup is
conjugate to the group of translations z �→ z + t.

The following generalization of our results is immediate.

Theorem 5.1. Let D be the family of holomorphic maps Hn → H which restrict to
the identity on the diagonal. Let f ∈ D. For each j, λ �→ ∂f

∂zj
(λ, . . . , λ) is identically

equal to some nonnegative constant αj.
Let {γt} ⊂ PSL2(R) be a unipotent subgroup. There is a unique γ1-invariant

holomorphic g ∈ D satisfying ∂g
∂zj

(λ, . . . , λ) = αj for all λ ∈ H and j = 1, . . . , n.

Let μr be the pushforward to D of the uniform measure on [−r, r], by the map
t �→ γt · f . Then μr → δg weakly as r → ∞.

Remark. Theorem 5.1 holds exactly as stated with H replaced by D.

6. A rigidity result

Below, we establish the rigidity result we used in the proof of Proposition 3.1,
namely that any f ∈ D which is invariant under all translations is a convex combi-
nation of the coordinate functions.

First, we need a lemma.

Lemma 6.1. Let φ : C → R be a harmonic function with φ(0) = ∂φ
∂x (0) =

∂φ
∂y (0) =

0. Suppose there is a C > 0 so that φ(z) ≥ −C|z| for all z ∈ C. Then φ is
identically zero.

Proof. The idea is to use the Poisson integral formula to show that φ has sublinear
growth.

Write φ = φ+ − φ−, where φ+(z) = max{0, φ(z)}, and φ−(z) = max{0,−φ(z)}.
Fix r > 0, and set

A =

∫ 1

0

φ+(re
2πiθ)dθ, B =

∫ 1

0

φ−(re
2πiθ)dθ.
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By the mean value property, A−B = φ(0) = 0. We compute∫ 1

0

|φ(re2πiθ)|dθ = A+B

= 2B

= 2

∫ 1

0

φ−(re
2πiθ)dθ

≤ 2Cr,

where in the last inequality, we’ve used φ(z) ≥ −C|z|. Now, for any z with |z| = r
2 ,

the Poisson integral formula for the ball Br(0) yields

|φ(z)| =
∣∣∣∣∣
∫ 1

0

r2 −
(
r
2

)2
r |z − re2πiθ|φ(re

2πiθ)dθ

∣∣∣∣∣ ≤ sup
θ∈[0,2π]

(
3r

4 |z − re2πiθ|

)
·
∫ 1

0

|φ(re2πiθ)|dθ

≤ 3Cr.

Since r was arbitrary, we have |φ(z)| ≤ 6C|z| for all z. Since φ is harmonic and
has sublinear growth, φ is affine, that is, φ(x+ iy) = ax+by+c for some a, b, c ∈ C.
(Indeed, the higher derivatives of φ at 0 vanish, as we can see by differentiating
Poisson’s formula on Br(0) under the integral and letting r tend to infinity.) By
assumption, φ and its first derivatives vanish at the origin, so φ is identically 0. �

We now prove the main result of this section.

Proposition 6.2. Fix positive constants αj with
∑n

j=1 αj = 1. Let f : Hn → H be
a holomorphic function satisfying

(A) f(λ, . . . , λ) = λ

for all λ ∈ H.

(B)
∂f

∂zj
(λ, . . . , λ) = αj

for all λ ∈ H and j = 1, . . . , n.

(C) f(z1 + t, . . . , zn + t) = f(z1, . . . , zn) + t

for all (z1, . . . , zn) ∈ Hn and all t ∈ R. Then f is the function f(z1, . . . , zn) =∑n
j=1 αjzj.

Proof. As usual, we assume αj =
1
n . The idea is to first show that f is of form

1

n

n∑
j=1

zj +H(z2 − z1, z3 − z2, . . . , zn − zn−1)

for some holomorphic H : Cn−1 → C. Then we use Lemma 6.1 to show that H ≡ 0.
Let

g(z1, . . . , zn) = f(z1, . . . , zn)−
1

n

n∑
j=1

zj .

In terms of g, conditions (A), (B), (C) become

(A′) g(λ, . . . , λ) = 0.

(B′)
∂g

∂zj
(λ, . . . , λ) = 0.

(C′) g(z1 + t, . . . , zn + t) = g(z1, . . . , zn), for all t ∈ R.
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Condition C′ implies that

(12) g(z1 + c, . . . , zn + c) = g(z1, . . . , zn)

for all complex c with Im(c) > −minj Im(zj). Indeed, fixing z1, . . . , zn ∈ H, the
holomorphic function c �→ g(z1 + c, . . . , zn + c)− g(z1, . . . , zn) vanishes on the real
axis and, thus, on the whole domain.

Now, write g(z1, . . . , zn) = h(a, d1, . . . , dn−1), where

a =
1

n

n∑
j=1

zj and dj = zj+1 − zj for j = 1, . . . , n− 1,

and h is holomorphic on the image Ω of Hn under the coordinate change.
For each a ∈ H, let

Ω(a) = {(d1, . . . , dn) ∈ C
n−1 | (a, d1, . . . , dn) ∈ Ω}.

Define ha : Ω(a) → C by

ha(d1, . . . , dn−1) = h(a, d1, . . . , dn−1).

For each a ∈ H, Ω(a) is a convex open set containing the origin. Moreover,
Ω(ta) = tΩ(a) for t > 0. It follows that Ω(it1) ⊂ Ω(it2) for 0 < t1 < t2, and
that

⋃
t>0 Ω(it) = Cn−1.

Now, (12) implies hit1(d1, . . . , dn−1)=hit2(d1, . . . , dn−1) whenever (d1, . . . , dn−1)
∈ Ω(it1) and t1 < t2. Since

⋃
t>0 Ω(it) = Cn−1, there is a holomorphic H : Cn−1 →

C so that hit = H|Ω(it). Again by (12), hx+iy = hiy for all x+ iy ∈ H. So

ha = H|Ω(a) ∀a ∈ H.

It thus suffices to show that H is identically 0.
Recall that

f =
1

n

n∑
j=1

zj + g(z1, . . . , zn) = a+ h(a, d1, . . . , dn−1).

Since f maps into H, ha maps Ω(a) into the strip {z | Im(z) > −Im(a)}. Thus, H
maps each Ω(it) to {Im(z) > −t}.

Recall that Ω(i) is open and contains 0. So Ω(i) contains an open Euclidean ball
Br(0) centered at the origin. Then Brt(0) ⊂ Ω(it), so H(Brt) ⊂ {Im(z) > −t} for

all t > 0. Thus, if
(∑

|dj |2
)1/2

= rt, then

Im [H(d1, . . . , dn−1)] ≥ −t.

In other words, we have

(13) Im [H(d1, . . . , dn−1)] ≥ −
(∑

|dj |2
)1/2

r

for all (d1, . . . , dn−1) ∈ Cn−1.
Condition (A′) implies h(a, 0, . . . , 0) = 0, so

(14) H(0, . . . , 0) = 0.

Finally, condition (B′) and the chain rule imply that the derivatives ∂h
∂dj

(a, 0, . . . , 0)

are 0, so that

(15)
∂H

∂dj
(0, . . . , 0) = 0 ∀j.
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We reduce to Lemma 6.1. Fix arbitrary (d1, . . . , dn−1) with
∑

j |dj |2 = 1. By

(13), (14), and (15) the harmonic function

φ(z) = Im [H(d1z, . . . , dn−1z)]

satisfies the conditions of the lemma with C = 1
r . We conclude that Im(H), and

thus H, are identically 0. �

7. Appendix: Polarization

Markovic’s proof in [9] of Proposition 1.2 uses the classical polarization principle.
The proof generalizes almost verbatim to a proof of the corresponding result for
maps Hn → H (Corollary 4.3), but the polarization principle must be replaced by
the following fact.

Proposition 7.1. Let V be the real vector subspace of Cn consisting of points of the
form (r+t1i, . . . , r+tni) with r and t1, . . . , tn real and

∑n
j=1 tj = 0. Let U ⊂ Cn be

a domain such that U ∩ V is nonempty. If h : U → C is holomorphic and vanishes
on U ∩ V , then h is identically 0 on U .

(The polarization principle is the n = 2 case of the above result.) We will prove
Proposition 7.1 as a corollary of the following well-known proposition.

Proposition 7.2. Let U ⊂ Cn be a domain, and let M ⊂ U be a nonempty smooth
submanifold. Suppose for each p ∈ M that TpM and i (TpM) together span Cn. Let
h : U → C be a holomorphic function which vanishes on M . Then h is identically
0 on U .

Proof. Let p ∈ M , and consider the differential dhp : Cn → C. Since f vanishes on
M , dhp vanishes on TpM . Since dhp is complex-linear, it vanishes also on i (TpM).
But since TpM + i (TpM) = Cn, dhp = 0. Since p was arbitrary, we conclude the

first partial derivatives ∂h
∂zj

vanish on M . Applying the same argument to ∂h
∂zj

, we

find that the second partials ∂2h
∂zk∂zj

also vanish on M . Continuing inductively, we

find that all higher derivatives vanish on M . Since h is analytic, it follows that h
is identically 0 on U . �

Proof of Proposition 7.1. If p ∈ U ∩V , TpV identifies naturally with V . The vector
space V has (real) dimension n, and V ∩ iV = {0}, so Cn = V ⊕ iV . So Proposition
7.2 applies, with M = U ∩ V . �
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