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A MODEL OF THE TEICHMÜLLER SPACE OF GENUS-ZERO

BORDERED SURFACES BY PERIOD MAPS

DAVID RADNELL, ERIC SCHIPPERS, AND WOLFGANG STAUBACH

Abstract. We consider Riemann surfaces Σ with n borders homeomorphic to
S1 and no handles. Using generalized Grunsky operators, we define a period
mapping from the infinite-dimensional Teichmüller space of surfaces of this
type into the unit ball in the linear space of operators on an n-fold direct
sum of Bergman spaces of the disk. We show that this period mapping is
holomorphic and injective.

1. Introduction

1.1. Introduction. The classical period mapping takes compact Riemann surfaces
of genus g into the Siegel upper half-plane, which consists of symmetric g × g
matrices with positive-definite imaginary part. It is a classical fact that this map
is holomorphic [10].

S. Nag [11] and S. Nag and D. Sullivan [12] constructed a period mapping of the
universal Teichmüller space T (D+), where D+ = {z : |z| < 1}. This period map
takes the infinite-dimensional Teichmüller space into the Siegel disk of bounded
operators T on the Dirichlet space of the disk satisfying ‖T‖ < 1. This is an
alternate formulation of the Siegel upper half-plane of operators with positive-
definite imaginary part. L. Takhtajan and L.-P. Teo [23] later showed, remarkably,
that the period mapping is in fact the Grunsky operator of univalent function theory
[5, 13], and gave the first complete proof that the period mapping is holomorphic.

In this paper, we generalize the period mapping to the case of the Teichmüller
space of genus-zero surfaces with n closed non-overlapping disks removed. The pe-
riod mapping takes the Teichmüller space of this type into the direct product of the
Teichmüller space of genus-zero surfaces with n punctures and a space of bounded
operators on an n-fold sum of Bergman spaces of the disk. The portion mapping
into the Teichmüller space of punctured surfaces can of course be represented by
period matrices using the classical method.

Our construction uses a generalized Grunsky operator, which was shown by
the authors to be bounded by one [18], and thus lies in a kind of Siegel disk.
We show that this mapping is holomorphic. The separation of the period map-
ping into a finite-dimensional part, involving compact surfaces with punctures,
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and an infinite-dimensional part, consisting of bounded operators on direct sums
of Bergman spaces, relies on a fiber structure of Teichmüller space discovered by
D. Radnell and E. Schippers [17]. Holomorphicity of this fibration, and a resulting
new set of complex coordinates [17], plays a key role in our proof of holomorphicity
of the period map. The demonstration of this was accomplished using a variational
technique of Radnell [14] which was obtained by modifying that of F. Gardiner and
M. Schiffer [6, 10].

The period mapping of compact surfaces is known classically to be one of several
non-trivially equivalent ways of placing a complex structure on Teichmüller space.
Our construction extends this to another infinite-dimensional setting; namely, we
show that the generalized period mapping defines a complex structure on the
Teichmüller space of genus zero surfaces with boundary. Furthermore, it relates
the complex structure to vector spaces of holomorphic objects on the surface, just
as the classical period mapping relates the complex structure to the vector space
of holomorphic one-forms. More explicitly, by [18, Theorem 4.1], the conformally
invariant Dirichlet space of holomorphic functions on Σ is the graph of the gener-
alized period mapping. We expect that these results extend to the case of non-zero
genus. Further algebraic and geometric properties of the period mapping remain
to be explored.

1.2. Bergman spaces of one-forms. We establish some notation for Bergman
spaces. Let Ω be a domain in C. Define A2(Ω)harm to be the set of harmonic
one-forms α on Ω which are L2 in the sense that

‖α‖2 =
i

2

∫∫
Ω

α ∧ α < ∞.

We will call this the harmonic Bergman space. It has a natural inner product
given by

(1.1) (α, β) =
i

2

∫∫
Ω

α ∧ β.

The subset of A2(Ω)harm consisting of holomorphic one-forms is the Bergman
space which is denoted by A2(Ω). We will represent one-forms in the Bergman
space by functions. That is, if α is a one-form in A2(Ω), then in Ω\{∞} it has a
unique expression h(z) dz. In a neighborhood of ∞, using the chart w �→ 1/w, α
has the expression α = −w−2h(1/w) dw.

The condition that α = h(z) dz ∈ L2 can then be expressed as follows. For some
r > 1, set U = {z : |z| < r} and V = {z : |z| > 1/r} ∪ {∞}. Then α is in A2(Ω)
if and only if

(1.2)

∫∫
Ω∩U

|h(z)|2dAz < ∞ and

∫∫
1/(Ω∩V )

|w−2h(1/w)|2dAw < ∞.

Here we use dAz as an abbreviation for (dz̄ ∧ dz)/2i, and 1/D means {z ∈ C :
1/z ∈ D}. If both conditions are satisfied, then

i

2

∫∫
Ω

α ∧ α =

∫∫
Ω\{∞}

|h(z)|2dAz.

We will abbreviate the expression for the right-hand integral by∫∫
Ω

|h(z)|2dAz,

although the reader should keep in mind the implicit condition on h at ∞.
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If Ω is simply connected, then every α ∈ A2(Ω)harm has a unique decomposition

α = h(z) dz + g(z) dz̄ for some holomorphic functions g and h in A2(Ω). That is,

A2(Ω)harm = A2(Ω)⊕A2(Ω).

It is easily checked that this decomposition is orthogonal with respect to the inner
product (1.1). Thus we have that

‖h(z)dz + g(z)dz̄‖2 =

∫∫
Ω

(
|h(z)|2 + |g(z)|2

)
dAz.

We will also consider the space of exact one-forms in the harmonic or holomorphic
Bergman space, which we denote by

A2
e(Ω) = {α ∈ A2(Ω) : α = dH for some holomorphic H}

and similarly for A2
e(Ω)harm. In A2

e(Ω), if we express α = h(z) dz, there is some
holomorphic function H with domain Ω such that H ′(z) = h(z). Holomorphic-
ity on Ω means that H is holomorphic on Ω ∩ U and H(1/z) is holomorphic on
1/(Ω∩ V ). If ∞ ∈ Ω, this implies in particular that H has a finite limit as z → ∞;
equivalently, H is continuous in the sphere topology. Note that the decomposition
of A2(Ω)harm restricts to a decomposition A2

e(Ω)harm = A2
e(Ω)⊕ A2

e(Ω), when Ω is
simply connected.

Up to constants, the exact Bergman spaces are thus each isometric with a Dirich-
let space. The harmonic Dirichlet space D(Ω)harm is the space of harmonic functions
H such that

(1.3)
i

2

∫∫
Ω

dH ∧ dH < ∞.

The Dirichlet space of holomorphic functions is denoted by D(Ω). For p ∈ Ω,
Dp(Ω)harm denotes the subset of D(Ω)harm whose elements vanish at p, and similarly
for Dp(Ω). For simply connected domains Ω, the elements of the harmonic Dirichlet

space have a decomposition H = F +G, where F and G are holomorphic, so that
we can write

Dp(Ω)harm = Dp(Ω)⊕Dp(Ω).

Note that in D(Ω)harm the decomposition is not unique because constants are both
holomorphic and antiholomorphic. We have the isometry

(1.4)
d : Dp(Ω)harm −→ A2

e(Ω)harm

H �−→ dH.

The decompositions of Dp(Ω)harm and A2
e(Ω)harm commute with this isometry.

Let f : D1 → D2 be a biholomorphism between two domains D1, D2 in C. We
have a pull-back operator defined by

Ĉf : A2(D2)harm −→ A2(D1)harm

h(z) dz + g(z) dz̄ �−→ h ◦ f(z) · f ′(z) dz + g ◦ f(z) · f ′(z) dz̄.

Clearly Ĉf is an isometry, and it also restricts to an isometry from A2
e(D2)harm to

A2
e(D1)harm. Furthermore, it restricts to an isometry from A2(D2) to A2(D1) and

from A2
e(D2) to A2

e(D1).
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The composition operator

Cf : Dp(D2)harm −→ Df(p)(D1)harm

H �−→ H ◦ f
is also an isometry, and we have that

d ◦ Cf = Ĉf ◦ d,
which incidentally motivates the notation Ĉf .

Remark 1.1 (Notation). Throughout the paper, operators without hats act on func-
tions and operators with hats act on one-forms. We shall also denote the closure
of a set A by Acl, and its interior by Aint.

In the remainder of this paper, we will usually identify the elements α = h(z) dz
of the holomorphic Bergman space with the function h(z), except when emphasizing
the fact that the elements are one-forms. The function is always written as a
function of the standard coordinate z in C ⊂ C rather than as a function of a
coordinate at ∞.

We will not be directly working with Dirichlet spaces in this paper. They will
be used only to apply results of the authors [18] for Dirichlet spaces to Bergman
spaces, through the use of the isometry (1.4). These results involve a “reflection” of
harmonic Dirichlet functions in quasidisks, obtained by extending to the boundary
of the quasidisks, and then extending them to the complementary quasidisk. One
may summarize the situation as follows: in the present paper, the use of one-forms
creates a clearer geometric picture, whereas in the paper [18], the use of functions
created a clearer analytic picture.

2. Grunsky map for multiply-connected domains

2.1. The generalized Faber and Grunsky operators. In this section we define
certain generalizations of a Faber operator and the Grunsky operator to multiple
maps with non-overlapping images. First we define the Faber operator and Grun-
sky operator associated with a single conformal map. For the concept of a Faber
operator see P. Suetin [22]; for the Grunsky operator see for example [2, 5, 13].

Let Γ be a Jordan curve not containing ∞, let Ω+ be the bounded component
of the complement of Γ in C, and let Ω− be the other complementary component.
Let

D
+ = {z : |z| < 1} and D

− = {z : |z| > 1} ∪ {∞}.
Let f : D+ → Ω+ be a conformal map. Following [18, 19], we define the operators

P (Ω±) : Dharm(Ω
+) −→ D(Ω±)

by

[P (Ω±)h](z) = ± lim
r↗1

1

2πi

∫
f(Cr)

h(ζ)

ζ − z
dζ, z ∈ Ω±,

where Cr is the circle {w : |w| = r} traced counterclockwise. Furthermore, define
the map (the Faber operator)

If : D∞(D−) −→ D∞(Ω−)

h �−→ P (Ω−)Cf−1Rh,

where R : D∞(D−) → D0(D
+) is given by Rh(z) = h(1/z̄).
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The limiting integral is necessary since Jordan curves are of course not in general
rectifiable. The operators P (Ω±) were shown to be well-defined maps which are
bounded with respect to the Dirichlet seminorm (1.3). It was also shown in [19] that
the Faber operator is an isomorphism precisely for quasicircles. This remarkable
result is originally due to Y. Shen [21], with a somewhat different formulation of
the operator; closely related results for convergence of Faber series on quasidisks
were obtained by A. Çavuş [3].

We now consider the multiply-connected case. The following notation will be in
force for the remainder of the paper. Let Σ ⊂ C be a multiply-connected domain,
which is bounded by n non-overlapping quasicircles Γi, i = 1, . . . , n. We assume
that ∞ ∈ Σ. This normalization is a matter of convenience, and will be removed
shortly. Let Ω+

i denote the component of the complement of Γi in C which does
not intersect Σ, and let Ω−

i denote the other component of the complement of Γi.
For each i, Ω−

i contains Σ; in fact

Σ =

n⋂
i=1

Ω−
i .

We will also fix points pi ∈ Ω+
i for i = 1, . . . , n.

For i = 1, . . . , n, fix conformal maps fi : D+ → Ω+
i such that fi(0) = pi. Let

f = (f1, . . . , fn). In [18] the following generalized Faber operator was defined:

If :

n⊕
D∞(D−) −→ D∞(Σ)

(h1, . . . , hn) �−→
n∑

i=1

Ifihi.

It was shown in [18] that this is an isomorphism. The generalized Grunsky operator
was also defined:

Gr(f) =
(
P0(D

+)Cf1 If , . . . ,P0(D
+)Cfn If

)
:

n⊕
D∞(D−) −→

n⊕
D0(D

+),

where

[P0(D
+)H](z) = [P (D+)H](z)− [P (D+)H](0).

The blocks of this matrix (taking the ith component to the jth component of the
direct sum) are denoted Grji. Note that this block depends only on fi and fj but
for notational convenience we mostly write Grji instead of Grji(fi, fj). Further
technical work was required to make sense of the composition Cfj If ; this was
accomplished in [18] and publications cited therein. Essentially, one may think of
the composition operator as acting on boundary values of harmonic functions. In
this paper, we will derive an equivalent integral formula and work directly with
that.

Generalized Grunsky operators for non-overlapping mappings were considered by
J. A. Hummel [8]. They are also considered in Takhtajan and Teo [23] in the case
of a pair of non-overlapping maps whose images fill the sphere minus a quasicircle
(that is, for a conformal welding pair).

We would like to use the equivalent form of the generalized Grunsky operator
on exact one-forms rather than functions. Let

⊕nd = (d, . . . , d) :
n⊕

D0(D
+) −→

n⊕
A2(D+)
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and similarly define

⊕nd−1 :

n⊕
A2(D−) −→

n⊕
D∞(D−).

Thus we may define

Îf = d ◦ If ◦ ⊕n d−1 :

n⊕
A2(D−) −→ A2

e(Σ)

and

(2.1) Ĝr(f) = ⊕nd ◦Gr(f) ◦ ⊕nd−1 :
n⊕

A2(D−) −→
n⊕

A2(D+)

with the blocks Ĝrji(fj , fi) similarly being defined as the block components of

Ĝr(f). We will abbreviate these blocks as Ĝrji. In the rest of the paper, we will
use the Pythagorean norm on the direct sum

⊕n
A2(D−),

‖(h1, . . . , hn)‖2⊕n A2(D−) =

n∑
k=1

‖hk‖2A2(D−),

and similarly for
⊕

A2(D+).

Remark 2.1. It can be shown that the graph of the Grunsky operator in D∞(D+)⊕
D0(D

−) is the pull-back of the Dirichlet space D∞(Σ) under (Cf1 , . . . , Cfn) [18]. It
follows immediately from the fact that If is an isomorphism that Îf is also an

isomorphism. Using this fact we can interpret the graph of Ĝr(f) as the pull-

back of A2
e(Σ) under

(
Ĉf1 , . . . , Ĉfn

)
, so long as we interpret Ĉfi Îf as d Cfi If d−1.

Although we will not make use of this fact in our proofs, it is an important point
for interpretation of the results of this paper.

Theorem 2.2 ([18]). Let Σ ⊆ C be a domain containing ∞, bounded by n non-
intersecting quasicircles Γi, i = 1, . . . , n. Let Ω+

i and Ω−
i be the bounded and un-

bounded components of the complement of the quasicircle Γi, and let f = (f1, . . . , fn)

for conformal maps fi : D
+ → Ω+

i , i = 1, . . . , n. The Grunsky operator Ĝr(f) sat-

isfies ‖Ĝr(f)‖⊕n A2(D−)→
⊕n A2(D+) < 1.

Proof. By a result of [18], the operator norm of Gr is strictly bounded by one. The
claim thus follows from the fact that d : D∞(D−) → A2(D−) and d : D0(D

+) →
A2(D+) are isometries. �

2.2. Holomorphicity of Ĝr(f) as a function of f . Here we show that the

operator Ĝr(f) is holomorphic as a function of f = (f1, . . . , fn). To do this,

certain integral expressions for the components of Ĝr(f) are required. First we
define the antiholomorphic reflection

R̂ : A2(D−) −→ A2(D+)

h(z) dz �−→ −z̄−2h(1/z̄) dz̄.

This is an anti-isometry by change of variables.

Theorem 2.3. Let Σ, Ω±
i , pi, and fi be as above for i = 1, . . . , n. We have that

for any i ∈ {1, . . . , n} and α(z) = h(z) dz ∈ A2(D−)

Ĝriih(z) =
1

π

∫∫
D+

[
1

(ζ − z)2
− f ′

i(ζ)f
′
i(z)

(fi(ζ)− fi(z))2

]
R̂h(ζ) dAζ.
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Furthermore, for any i, j ∈ {1, . . . , n} such that i �= j we have

Ĝrjih(z) =
1

π

∫∫
D+

f ′
i(ζ)f

′
j(z)

(fi(ζ)− fj(z))2
R̂h(ζ)dAζ .

Proof. The first claim is [20, Theorem 4.13], and the second follows by differenti-
ating [18, Theorem 4.5]. Differentiating under the integral sign is justified by the
fact that the integrand is absolutely convergent, locally uniformly in z. To see this,
observe that since |fi(ζ)−fj(z)| ≥ M for ζ, z ∈ D

+, the Cauchy-Schwarz inequality
yields that for any compact set K ⊂ D+ and for all z ∈ K one has

(2.2)

1

π

∫∫
D+

∣∣∣∣ f ′
i(ζ)f

′
j(z)

(fi(ζ)− fj(z))2
R̂h(ζ)

∣∣∣∣dAζ ≤
|f ′

j(z)|
M2

‖f ′
i‖A2(D+)‖R̂h‖

A2(D+)

≤
‖f ′

j‖L∞(K)

M2
‖f ′

i‖A2(D+)‖h‖A2(D−),

where we have also used the fact that R̂ is an isometry. Since fi(D
+) has finite

area the claim follows. �

Remark 2.4. Since R̂h ∈ A2(D+), we could consider the Grunsky operator as a
conjugate complex linear operator on A2(D+); see for example S. Bergman and
M. Schiffer [2]. Inserting the reflection in the circle is natural in our interpretation
of the Grunsky operator [20], and conveniently makes the operator complex linear
on A2(D−).

The integral kernels in Theorem 2.3 are Möbius invariant, as we now show. For
any i, j ∈ {1, . . . , n} (allowing i = j), it is easily seen that

(T ◦ fi)′(ζ) · (T ◦ fj)′(z)
(T ◦ fi(ζ)− T ◦ fj(z))2

=
f ′
i(ζ)f

′
j(z)

(fi(ζ)− fj(z))2

for Möbius transformations T of the form T (z) = cz and T (z) = z + b, b ∈ C,
c ∈ C\{0}. For T (z) = 1/z, we compute

(1/fi)
′(ζ) · (1/fj)′(z)

(1/fi(ζ)− 1/fj(z))
2 =

f ′
i(ζ)f

′
j(z)

(fi(ζ)− fj(z))2
.

Since the group of Möbius transformations is generated by these three types of
transformations, the claim follows.

Thus, we can define the operator Ĝr(f) for f = (f1, . . . , fn) even when one
of the quasidisks fi(D) contains ∞ in its closure by composing f with a Möbius
transformation (equivalently, by using the integral expression as a definition). Note

that this also shows that the integral kernel of any block Ĝrji is non-singular on
D+ ×D+, regardless of whether ∞ is in the image of fj or fi. With this extension
of the definition to general f , we have now shown the following.

Theorem 2.5. Let Σ be an open subset of C, bounded by n non-overlapping qua-
sicircles Γi. Let Ω±

i , pi, and fi be as in Theorem 2.2 for i = 1, . . . , n. For any
Möbius transformation T , denoting (T ◦ f1, . . . , T ◦ fn) by T ◦ f , we have

Ĝr(T ◦ f) = Ĝr(f).

Furthermore the operator norm of Ĝr(f) is strictly less than one.
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Remark 2.6. The operators Îf and Ĉfi
also extend to the case that ∞ /∈ Σ, so

that the interpretation of Ĝr(f) of Remark 2.1 continues to hold. Since this is not
necessary for the proof of the main theorem (and indeed is fairly routine) we omit
it.

We now require some definitions and results of Radnell and Schippers on non-
overlapping maps into Riemann surfaces with punctures [16]. Punctured Riemann
surfaces will be denoted with a superscript P . Let

A∞
1 (D+) =

{
ψ : D+ → C : ψ holomorphic, ‖ψ‖A∞

1 (D+) < ∞
}
,

where

‖ψ‖A∞
1 (D+) = sup

z∈D+

(1− |z|2)|ψ(z)|.

Let Oqc denote the set of injective conformal maps g : D+ → C such that g(0) = 0
and g is quasiconformally extendible to a map from C to C. The map

χ : Oqc −→ C⊕ A∞
1 (D+)

g �−→ (g′(0), g′′/g′)
(2.3)

is a bijection onto an open subset of the Banach space C⊕A∞
1 (D+) with respect to

the direct sum norm by [16, Theorem 3.1]. Thus Oqc inherits a complex structure
by pull-back. We also let

Oqc(n) = {g = (g1, . . . , gn) : gi ∈ Oqc for i = 1, . . . , n}
which also has a complex structure obtained by taking the direct sum of n copies
of C⊕ A∞

1 (D+), again with the direct sum norm. Finally,

Definition 2.7 ([16]). Let ΣP be a compact Riemann surface with punctures
p1, . . . , pn. We define Oqc(ΣP ) to be the set of n-tuples f = (f1, . . . , fn) of injec-
tive conformal maps fi : D+ → ΣP such that for i = 1, . . . , n the map fi has a
quasiconformal extension to an open neighborhood of the closure of D+, fi(0) = pi,
and fi(D

+)cl ∩ fj(D
+)cl is empty whenever i �= j. We call f ∈ Oqc(ΣP ) a rigging

of ΣP .

In this article we are concerned with the special case that ΣP = C\{p1, . . . , pn}.

Remark 2.8. Holomorphic maps and quasiconformal maps between punctured sur-
faces have unique holomorphic or quasiconformal continuations respectively to the
compactifications. We will not distinguish notationally between these maps and
their extensions. A punctured surface can be equivalently represented as a com-
pact surface with marked points.

Remark 2.9. The following fact plays an important role ahead. In [16] we showed
that Oqc(ΣP ) has a natural complex structure in general. The local coordinates
simplify in the special case that ΣP is the sphere with n punctures C\{p1, . . . , pn}.
By [16, Corollary 3.5], if we choose compact sets Ki such that pi is in K int

i for each
i, then

V = {(f1, . . . , fn) ∈ Oqc(ΣP ) : fi(D)
cl ⊂ K int

i , i = 1, . . . , n}
is open in Oqc(ΣP ). Letting

W = {(f1 − p1, . . . , fn − pn) : (f1, . . . , fn) ∈ V } ⊆ Oqc(n)
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and applying [16, Theorem 3.11] with coordinates ζi(z) = z − pi the map

G : W −→ V

(g1, . . . , gn) �−→ (g1 + p1, . . . , gn + pn)(2.4)

is a biholomorphism.

Let

(2.5) B(n) =

{
T :

n⊕
A2(D−) −→

n⊕
A2(D+) : ‖T‖ < ∞

}
.

Recall that we are using the Pythagorean norm on
⊕n A2(D±).

Remark 2.10. In addressing holomorphic dependence of the Grunsky operator on
the rigging f below, we will need the following elementary observation. Let

T :

n⊕
A2(D−) −→

n⊕
A2(D+)

be a linear operator and let Tjk : A2(D−) → A2(D+) be its blocks. Using the in-

equality sup1≤k≤n |ak| ≤
√∑n

k=1 |ak|2 ≤
∑n

k=1 |ak|, we obtain for h = (h1, . . . , hn)
the inequality

‖T‖ ≤ sup
h∈

⊕n A2(D−)
‖h‖≤1

n∑
k=1

∥∥∥∥∥∥
n∑

j=1

Tjkhj

∥∥∥∥∥∥
A2(D+)

≤ sup
h∈

⊕n A2(D−)
‖hj‖≤1,j=1,...,n

n∑
k=1

n∑
j=1

‖Tjkhj‖A2(D+) .

Thus, consider a family T (t) of operators in B(n) depending on a complex pa-
rameter t. To show that T (t) is Gâteaux holomorphic at t = 0, it is enough to show
that

lim
t→0

∥∥t−1 (Tjk(t)− Tjk(0)− tBjk)
∥∥ = 0

for some B :
⊕n

A2(D−) →
⊕n

A2(D+) with blocks Bjk.

Theorem 2.11. Fix distinct points p1, . . . , pn ∈ C and let Ki be non-intersecting
compact sets such that pi are in K int

i for i = 1, . . . , n. Let N = N1×· · ·×Nn, where
Ni ⊆ C are open neighborhoods of 0 such that the sets Ki + zi are non-intersecting
for all (z1, . . . , zn) ∈ N . Let W = {(g1, . . . , gn) ∈ Oqc(n) : gi(D)

cl + pi ⊂ K int
i }.

The map

H : W ×N −→ B(n)

(g1, . . . , gn, a1, . . . , an) �−→ Ĝr(g1 + a1 + p1, . . . , gn + an + pn)

is holomorphic.

Proof. By [4, p. 198] it is enough to show that H is locally bounded and Gâteaux

holomorphic. By Theorem 2.2 Ĝr(f) is bounded, so only Gâteaux holomorphicity
remains. By Hartogs’ theorem in the Banach space setting [9] it is enough to prove
holomorphicity on W and N separately. Since W is a subset of Oqc(n) =

⊕n Oqc

we further reduce the problem to proving holomorphicity on the individual copies
of Oqc. Recall that the complex structure on Oqc is given by the pull-back of
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the complex structure on C ⊕ A∞
1 (D+) under g �→ (g′(0), g′′/g′) (see equation

(2.3)). So holomorphicity onW has been finally reduced to Gâteaux holomorphicity
separately on C and A∞

1 (D+).

Note that Remark 2.10 yields that the holomorphicity of Ĝr(f) follows from the

holomorphicity of its blocks Ĝrkl for k, l = 1, . . . , n. Recall that the block Ĝrkl(f)
is only a function of fk and fl.

We first look at the diagonal components Ĝrii. For fixed a1, . . . , an ∈ N , holo-

morphic dependence of Ĝrii on A∞
1 (D+) is due to Takhtajan and Teo [23, Theorem

B.1, p. 109] (note that there they use the integral formula of Theorem 2.3 as the

definition of the operator). Let fi = gi + ai + pi. Since Ĝrii is invariant under

fi �→ cfi for c �= 0 it is independent of g′(0) = f ′(0), and so Ĝrii is holomorphic on

C. For holomorphicity on N , one needs only to observe that Ĝrii is independent of
(a1, . . . , an) ∈ N .

Now we prove that the off-diagonal components of Ĝr(f) are holomorphic.
First we fix (a1, . . . , an) ∈ N and prove Gâteaux holomorphicity on W . Fix
j ∈ {1, . . . , n}. We will prove Gâteaux holomorphicity on the jth copy of Oqc.

This requires only looking at the blocks Ĝrji and Ĝrij for i �= j.
Fix (g01 , . . . , g

0
n) ∈ W, and consider the complex lines (q(t), ψt) ∈ C ⊕ A∞

1 (D+),
where ψt = (g0j )

′′/(g0j )
′+tφ for some φ ∈ A∞

1 (D+) and q(t) = (g0j )
′(0)+c t for some

c ∈ C. Now define the curve gtj ∈ Oqc to be the solution of the differential equation

(gtj)
′′/(gtj)

′ = ψt with initial conditions gtj(0) = 0 and (gtj)
′(0) = q(t). That is, the

curve gtj corresponds to the above complex line under the map χ defined in (2.3).

Since χ(Oqc) ⊆ C ⊕ A∞
1 (D+) is open, there is an r > 0 such that gtj ∈ Oqc for all

|t| < r.
Let f0

i = g0i + ai + pi for i = 1, . . . , n and let f t
j = gtj + ai + pi. Using Theorem

2.3, we now prove Gâteaux holomorphicity by proving that for all i �= j, t �→ Ĝr
t

ji

and t �→ Ĝr
t

ij are holomorphic in a neighborhood of t = 0 in C, where

Ĝr
t

jih(z) = Ĝrji(f
t
j , f

0
i )h(z) =

1

π

∫∫
D+

(f0
i )

′(ζ)(f t
j )

′(z)

(f0
i (ζ)− f t

j (z))
2
R̂h(ζ) dAζ

and

Ĝr
t

ijh(z) = Ĝrij(f
0
i , f

t
j )h(z) =

1

π

∫∫
D+

(f t
j )

′(ζ)(f0
i )

′(z)

(f t
j (ζ)− f0

i (z))
2
R̂h(ζ) dAζ.

Let Lt
1(z, ζ) :=

(f0
i )

′(ζ)(ft
j )

′(z)

(f0
i (ζ)−ft

j (z))
2 and Lt

2(z, ζ) :=
(ft

j )
′(ζ)(f0

i )
′(z)

(ft
j (ζ)−f0

i (z))
2 .

To prove the holomorphicity of Ĝr
t

ji we observe that, for fixed z, ζ ∈ D
+, Lt

1(z, ζ)
is a holomorphic function of t in a neighborhood of 0. This follows from the fact
that f t

j (z) is holomorphic in t for fixed z (by construction; see [16, p. 287] for an
explicit expression). Now choose δ > 0 so that δ < r. Then using Cauchy’s integral
formula we have for all |t| < δ

Lt
1(z, ζ)− L0

1(z, ζ)− t
d

dt

∣∣∣∣
t=0

Lt
1(z, ζ)

=
t2

2πi

∮
|s|=δ

Ls
1(z, ζ)

s2(s− t)
ds.



42 DAVID RADNELL, ERIC SCHIPPERS, AND WOLFGANG STAUBACH

Setting u(z) = R̂h and using the equality above together with the fact that R̂
is an isometry, we obtain∥∥∥∥∥∥ Ĝr

t

ji − Ĝr
0

ji

t
− d

dt

∣∣∣∣
t=0

Ĝr
t

ji

∥∥∥∥∥∥
A2(D−)→A2(D+)

= sup
‖h‖A2(D−)=1

∥∥∥∥∥∥
⎛⎝ Ĝr

t

ji(f)− Ĝr
0

ji(f)

t
− d

dt

∣∣∣∣
t=0

Ĝr
t

ji(f)

⎞⎠h

∥∥∥∥∥∥
A2(D+)

=
|t|
2π2

sup
‖u‖A2(D+)=1

⎛⎜⎝∫∫
D+

∣∣∣∣∣∣
∫∫
D+

(∮
|s|=δ

Ls
1(z, ζ)

s2(s− t)
ds

)
u(ζ) dAζ

∣∣∣∣∣∣
2

dAz

⎞⎟⎠
1/2

.

To reduce expression size, temporarily let

I(u; s, z) =

∫∫
D+

Ls
1(z, ζ) u(ζ) dAζ .

By Fubini’s theorem and the Cauchy-Schwarz inequality (in the contour integral),
we see that∥∥∥∥∥∥ Ĝr

t

ji − Ĝr
0

ji

t
− d

dt

∣∣∣∣
t=0

Ĝr
t

ji

∥∥∥∥∥∥
A2(D−)→A2(D+)

=
|t|
2π2

sup
‖u‖A2(D+)=1

⎛⎝∫∫
D+

∣∣∣∣∣
∮
|s|=δ

I(u; s, z)

s2(s− t)
ds

∣∣∣∣∣
2

dAz

⎞⎠1/2

≤ |t|
2π2

sup
‖u‖A2(D+)=1

(∫∫
D+

(∮
|s|=δ

|ds|
|s|4|s− t|2

)(∮
|s|=δ

|I(u; s, z)|2 |ds|
)
dAz

)1/2

≤ |t|
2π2

(∮
|s|=δ

|ds|
|s|4|s− t|2

)1/2

sup
‖u‖A2(D+)=1

(∮
|s|=δ

‖I(u; s, z)‖2L2(D+) |ds|
)1/2

.

Now we claim that for |s| = δ the operator with kernel Ls
1(z, ζ) is bounded on

L2(D+), with a norm that depends only on δ. To see this we observe that f0
j (D

+)

and f0
i (D

+) have disjoint closures; furthermore, on any holomorphic curve through
f0
j we can ensure that the closures of the images remain in fixed disjoint sets for
sufficiently small t [16, Corollary 3.5]. As a consequence, for |s| = δ there is a
constant Aδ > 0 such that |f0

i (ζ)− fs
j (z)| > Aδ. Furthermore the image of f0

i and

fs
j (for fixed s) are both bounded, so ‖f0

i
′‖A2(D+) and ‖fs

j
′‖A2(D+) (for fixed s)

are bounded. Again applying [16, Corollary 3.5] the image of fs
j is contained in a

disk in C of radius independent of s so the bound for ‖fs
j
′‖A2(D+) can be chosen

uniformly in s. Therefore, there exist constants Bδ > 0 and Cδ > 0 such that

(2.6)

⎧⎨⎩
∫∫
D+

∫∫
D+

|Ls
1(z, ζ)|

2
dAz dAζ

⎫⎬⎭
1/2

≤ Bδ‖(f0
i )

′‖A2(D+)‖(fs
j )

′‖A2(D+) ≤ Cδ.
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Now since the operator-norm of the integral operator with kernel Ls
1(z, ζ) (as a

bounded linear operator from L2(D+) to itself) is bounded by the left-hand side of
(2.6), the claim follows.

Finally for |t| < δ, applying the previous two estimates, we obtain∥∥∥∥∥∥ Ĝr
t

ji − Ĝr
0

ji

t
− d

dt

∣∣∣∣
t=0

Ĝr
t

ji

∥∥∥∥∥∥
A2(D−)→A2(D+)

≤ Cδ|t|
(∮

|s|=δ

|ds|
|s|4|s− t|2

∮
|s|=δ

sup
‖u‖A2(D+)=1

‖u‖2A2(D+)|ds|
)1/2

≤ C ′
δ|t|
(∮

|s|=δ

2πδ|ds|
|s|4|s− t|2

)1/2

≤ C ′′
δ

|t|
δ − |t| ,

which can be made as small as we like, provided t is chosen small enough. This

establishes the Gâteaux holomorphicity of Ĝr
t

ji in the first component of W×N . In
the second component, the proof above can be used in the same way: the integral
kernel is holomorphic in aj under f

0
j �→ f0

j +aj , so one only needs to establish local

boundedness. By the hypotheses on N , |f0
i (ζ) − f0

j (z)| is still uniformly bounded
and the integral estimate (2.6) continues to hold. Proceeding as above we obtain
holomorphicity in the second component.

The proof of holomorphicity of Ĝr
t

ij is the same as the above, except that one

replaces the L2(D+) boundedness of the integral operator with kernel Lt
1(z, ζ) with

L2 boundedness of the integral operator with kernel Lt
2(z, ζ). This ends the proof

of the theorem. �

3. Period map

3.1. Fibration of the Teichmüller space of bordered surfaces. In this section
we recall some definitions of Teichmüller space and rigged Teichmüller space. We
require some results of Radnell and Schippers [17] on a fibration of Teichmüller
space of surfaces with n borders over the Teichmüller space of surfaces with n
punctures, which play a central role in the formulation of the period mapping and
proof of its holomorphicity.

We say that a Riemann surface is a bordered surface of type (g, n) if it is a
Riemann surface of genus g with n boundary curves homeomorphic to S1. More
precisely, we assume that the double of the Riemann surface ΣD is of genus 2g+n−1
and the ideal boundary ∂Σ consists of n closed analytic curves in ΣD each of which is
homeomorphic to S

1 with respect to the topology inherited from ΣD. We note that
such a Riemann surface Σ is a bordered surface in the sense of Ahlfors and Sario [1].
That is, there is an atlas of charts including boundary charts of the following form.
Any point of the boundary is contained in a relatively open subset U of the closure
Σ∪∂Σ such that there is a biholomorphism φ : U → V , where V is a relatively open
subset of the upper half-plane H = {z ∈ C : Im(z) ≥ 0} and φ(U ∩ ∂Σ) is an open
interval on Im(z) = 0. We assume that the transition functions φ1 ◦φ−1

2 of any pair
of charts are biholomorphic on their domain of definition. In the case that both are
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boundary charts, this means that maps φ1 ◦ φ−1
2 have biholomorphic extensions to

an open set in C containing the original domain of definition of φ1 ◦ φ−1
2 .

A quasiconformal map f : Σ → Σ1 between bordered Riemann surfaces of type
(g, n) must have an extension to the ideal boundary ∂Σ. We will not distinguish
this extension notationally from the map on Σ. We say that quasiconformal maps
f : Σ → Σ and g : Σ → Σ are homotopic rel boundary if they are homotopic via a
homotopy H : [0, 1] × Σ → Σ such that H(t, z) = f(z) = g(z) for all z ∈ ∂Σ and
t ∈ [0, 1].

We now define the Teichmüller space of such a Riemann surface.

Definition 3.1. Let Σ be a Riemann surface whose universal cover is the unit disk.
The Teichmüller space of Σ is

T (Σ) = {(Σ, f,Σ1)}/ ∼,

where f : Σ → Σ1 is quasiconformal and (Σ, f1,Σ1) ∼ (Σ, f2,Σ2) if and only if there
is a biholomorphism σ : Σ1 → Σ2 such that f−1

2 ◦σ ◦f1 is homotopic to the identity
rel boundary. Denote the equivalence class of a triple (Σ, f,Σ1) by [Σ, f,Σ1].

In [14] Radnell defined a “rigged Teichmüller space” of a punctured surface,
which was shown by Radnell and Schippers [15] to be intermediate between the
Teichmüller space of a bordered surface and that of the compact surface obtained
by sewing disks on the boundary. The rigged Teichmüller space and its relation to
the usual Teichmüller space are instrumental in the proof of the main theorem.

Definition 3.2. Let ΣP
0 be a compact surface with punctures p1, . . . , pn. The

rigged Teichmüller space of ΣP
0 is

T̃ (ΣP
0 ) = {(ΣP

0 , F1,Σ
P
1 ,f) : F1 : ΣP

0 → ΣP
1 quasiconformal, f ∈ Oqc(ΣP

1 )}/ ∼,

where ∼ is an equivalence relation defined by (ΣP
0 , F1,Σ

P
1 ,f) ∼ (ΣP

0 , F2,Σ
P
2 , g)

whenever there is a conformal map σ : ΣP
1 → ΣP

2 preserving the punctures and
their order such that F−1

2 ◦ σ ◦ F1 is homotopic to the identity (in such a way that
the homotopy is constant on the punctures) and gi = σ ◦ fi for all i = 1, . . . , n.

There is in general a holomorphic fibration of the Teichmüller space of a bordered
surface over the rigged Teichmüller space of a punctured surface. We need this in
the special case that Σ0 is C minus disks. Fix disks Di = {z : |z − pi| < ri},
i = 1, . . . , n, such that Dcl

i ∩Dcl
j is empty whenever i �= j. Set Σ0 = C\

⋃n
i=1 D

cl
i

and ΣP
0 = C\{p1, . . . , pn}. Finally, fix τ = (τ1, . . . , τn), where for each i the map

τi : D
+ → Di is a conformal bijection such that τi(0) = pi.

Now let [Σ0, F1,Σ1] ∈ T (Σ0). Let μ(F1) be the Beltrami differential of F1 on
Σ0. Extend μ(F1) to a Beltrami differential on ΣP

0 by setting

μP (z) =

{
μ(F1)(z) for z ∈ Σ0,

0 for z ∈ C\Σ0.

Let FP
1 : ΣP

0 → C be a quasiconformal map with dilatation μP . Since FP
1 is

quasiconformal it has a unique continuous (in fact quasiconformal) extension to C;
we will use the same notation for the extension.

We now define the fibration maps

P : T (Σ0) −→ T̃ (ΣP
0 )

[Σ0, F1,Σ1] �−→
[
ΣP

0 , F
P
1 ,ΣP

1 ,
(
FP
1 ◦ τ1, . . . , FP

1 ◦ τn
)]
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and

F : T̃ (ΣP
0 ) −→ T (ΣP )

[ΣP
0 , F

P
1 ,ΣP

1 ,f ] �−→ [ΣP
0 , F

P
1 ,ΣP

1 ].

We also require some results on the modular group; proofs and details can be
found in [15]. The modular group PModI(Σ0) consists of the set of quasiconformal
self-maps of Σ0 which are the identity on ∂Σ0, modulo homotopy rel boundary.
The “P” in “PMod” stands for “pure”, which signifies that the self-maps fix the
ordering of the boundary components. Given a quasiconformal ρ : Σ0 → Σ0 fixing
the boundary, denote its equivalence class by [ρ]. The modular group PModI(Σ0)
acts on T (Σ0) via

[ρ]∗[Σ0, F1,Σ1] = [Σ0, F1 ◦ ρ−1,Σ1].

Let DB be the subgroup of PModI generated by Dehn twists around the bound-
ary curves of Σ0. It was proven in [15, Theorem 5.6] that

Theorem 3.3. P(u) = P(v) if and only if there is a [ρ] ∈ DB such that [ρ]∗u = v.

Furthermore by [15, Corollary 6.2, Corollary 5.1]

Theorem 3.4. F and P are holomorphic.

Finally, we need one further result. Its statement is technical, but it is quite
powerful for proving holomorphicity in situations which involve conformal welding,
either implicitly or explicitly. Here, welding is implicit in the extension of the
Beltrami differentials by 0 to the caps. The general result can be found in [17]; we
specialize to the situation that ΣP

0 is a punctured sphere. Some conditions relating
to the normalization are added, which do not follow directly from the statement of
the theorem in [17]. For this reason we include a brief proof.

Theorem 3.5. Fix n > 3. Let ΣP
0 = C\{p1, . . . , pn} for points p1, . . . , pn ∈ C.

Let d be the dimension of T (ΣP
0 ). Fix any u = [ΣP

0 , F
P
∗ ,ΣP

∗ ] ∈ T (ΣP
0 ) and let

(ΣP
0 , F

P
∗ ,ΣP

∗ ) be the unique representative such that ΣP
∗ is a sphere with punctures

(q1, q2, q3, . . . , qn), where qi = pi for i = 1, 2, 3. Let f = (f1, . . . , fn) ∈ Oqc(ΣP
∗ ) be

a rigging on ΣP
∗ , let Ki be compact, non-overlapping sets on ΣP

∗ containing pi in
their interiors, and let V be as in Remark 2.9.

There is an open set N ⊆ Cd containing 0 and a map ν : N × C → C such that

(1) νε fixes p1, p2, and p3 (where νε(z) = ν(ε, z)),
(2) for fixed ε, ν(ε, z) is quasiconformal on C and holomorphic on

⋃n
i=1 Ki

(that is, one-to-one and meromorphic),
(3) ν(ε, z) is holomorphic in ε for any fixed z, and
(4) denoting νε(z) = ν(ε, z), the map ε �→ [Σ0, νε ◦ FP

∗ , νε(Σ
P
∗ )] is a local bi-

holomorphic coordinate system on T (ΣP
0 ) onto a neighborhood of u.

Furthermore, for this map νε,

(5) the map

Ψ : N × V −→ T̃ (ΣP
0 )

(ε,f) �−→ [ΣP
0 , νε ◦ FP

∗ , νε(Σ
P
∗ ), νε ◦ f ]

is a local biholomorphic coordinate system on T̃ (ΣP
0 ).
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Proof. By a result of F. Gardiner [6] (see also [10, Theorem 4.3.2]) there is a quasi-
conformal map νε on ΣP

∗ which is quasiconformal on C and holomorphic on
⋃n

i=1 Ki

such that ε → [ΣP
∗ , νε, νε(Σ

P
∗ )] form holomorphic coordinates for T (ΣP

∗ ) in a neigh-
borhood of [ΣP

∗ , Id,Σ
P
∗ ]. Note that in Gardiner’s construction the Beltrami differ-

ential of νε is given explicitly and depends holomorphically on ε; we will require this
fact ahead. Since change of base point in Teichmüller space is biholomorphic, we
obtain that ε �→ [Σ0, νε ◦FP

∗ , νε(Σ
P
∗ )] are coordinates on T (ΣP ) for a neighborhood

of [Σ0, F
P
∗ ,ΣP

∗ ] ([17, Theorem 2.17 and text immediately following]). Thus we have
that (2) and (4) hold. Claim (5) is stated explicitly and proved in [17, proof of
Theorem 4.1]. Note that there the map Ψ is labelled H.

Since νε(Σ
P
∗ ) is quasiconformally equivalent to a punctured sphere, by the uni-

formization theorem it is biholomorphic to the punctured sphere. Thus we may
normalize νε so that νε is a map of the punctured sphere which fixes qi = pi for
i = 1, 2, 3. Thus we obtain property (1), and the normalization obviously does not
affect property (2). Since the normalization preserves the equivalence class in both

T (ΣP ) and T̃ (ΣP ), the maps in properties (4) and (5) are unchanged and thus (4)
and (5) continue to hold.

Finally, recall that the dilatation of νε depends holomorphically on ε; property
(3) thus is a classical property of solutions to the Beltrami equation with holomor-
phically varying dilatation [10, Theorem 1.2.11, p. 38]. �

3.2. Representation of Teichmüller space by Grunsky matrices. We return
to the problem of defining the period mapping. Assume that n > 3 and recall the

definitions of Ĝr and B(n) from equations (2.1) and (2.5), respectively. We define

Π̃ : T̃ (ΣP
0 ) −→ T (ΣP

0 )×B(n)(
ΣP

0 , F
P
1 ,ΣP

1 ,f
)
�−→

([
ΣP

0 , F
P
1 ,ΣP

1

]
, Ĝr(f)

)
.

(3.1)

To see that this is well-defined, observe that if

(ΣP
0 , F

P
1 ,ΣP

1 ,f1) ∼ (ΣP
0 , F

P
2 ,ΣP

2 ,f2),

then there is a Möbius transformation σ : C → C taking the punctures of ΣP
1 to

those of ΣP
2 and such that f2 = σ ◦ f1. Thus [ΣP

0 , F
P
1 ,ΣP

1 ] = [ΣP
0 , F

P
2 ,ΣP

2 ] by the

definition of Teichmüller equivalence, and Ĝr(f1) = Ĝr(f2) by Theorem 2.5. Thus

Π̃ is well-defined.
Define also Π = Π̃ ◦ P. In that case Π is given by

Π : T (Σ0) −→ T (ΣP
0 )×B(n)

[Σ0, F1,Σ1] �−→
([

ΣP
0 , F

P
1 ,ΣP

1

]
, Ĝr(f)

)
,

(3.2)

where

f =
(
FP
1 ◦ τ1, . . . , FP

1 ◦ τn
)

and FP
1 is determined from F1 via extending the Beltrami differential of F1 by zero

on the caps, as specified in the previous section. Since P is well-defined [15] and Π̃
is well-defined, so is Π. Denote the two components of Π by Π1 : T (Σ0) → T (ΣP

0 )

and Π2 : T (Σ0) → B(n), and similarly for Π̃.
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If n = 1, n = 2, or n = 3, the Teichmüller space of ΣP
0 reduces to a point. In

those cases, we define Π and Π̃ as maps into B(n):

Π̃ : T̃ (ΣP
0 ) −→ B(n)(

ΣP
0 , F

P
1 ,ΣP

1 ,f
)
�−→ Ĝr(f)

(3.3)

and

Π : T (Σ0) −→ B(n)

[Σ0, F1,Σ1] �−→ Ĝr(f).
(3.4)

The case that n = 1 was considered and shown to be holomorphic by Takhtajan
and Teo [23].

Remark 3.6. In the cases that n is equal to 1, 2, or 3, the equivalence relation on

T̃ (ΣP
0 ) says that two elements

(
ΣP

0 , F
P
1 ,ΣP

1 ,f
)
and

(
ΣP

0 , F
P
2 ,ΣP

2 , g
)
are equivalent

if and only if there is some conformal map σ : ΣP
1 → ΣP

2 such that σ ◦ fi = gi for
i = 1, . . . , n.

Remark 3.7. It is clear that Π and Π̃ depend on τ .

In order to prove the main theorem, we require a technical lemma. Recall that
the complex structure on Oqc is induced by C⊕A∞

1 (D+).

Lemma 3.8. Let E be an open subset of C containing 0, and let Δ be an open
subset of C. Let M : Δ× E → C be a map which is holomorphic in both variables
and injective in the second variable, and let Mε(z) = M(ε, z). Let ψ ∈ Oqc satisfy

ψ(D+)
cl ⊆ E. Then the map Q : Δ �→ Oqc defined by Q(ε) = Mε ◦ψ is holomorphic

(in ε).

Proof. Define A(f) = f ′′/f ′. We need to show that for fixed ψ, A(Mε ◦ ψ) and
(Mε ◦ ψ)′(0) are holomorphic in ε. The second claim follows from the fact that the
z-derivatives of all orders of Mε are holomorphic in ε for fixed z.

To prove holomorphicity of ε �→ A(Mε ◦ ψ), it is enough to show weak holo-
morphicity and local boundedness in the A∞

1 (D+) norm [7]; that is, to show local
boundedness and that for some set of separating continuous functionals {α} in the
dual of A∞

1 (D+), α ◦ A(Mε ◦ ψ) is holomorphic for all α. Let ez be the point
evaluation function ezψ = ψ(z). These are continuous on A∞

1 (D+) and obviously
separating on any open set. Since

(3.5) A(Mε ◦ ψ) = A(Mε) ◦ ψ · ψ′ +A(ψ),

clearly ez(A(Mε ◦ f)) is holomorphic in ε.

Next, let F ⊆ E be a simply connected open set such that ψ(D+)
cl ⊂ F . Let

λF (z)
2 denote the hyperbolic line element on F (that is, λF (z) = |g′(z)|/(1−|g(z)|2)

for any biholomorphism g : F → D
+). Since ψ(D+)cl is compactly contained in

F , 1/λF (ψ(z)) is bounded below on D+. Thus by the Schwarz lemma, there is a
constant C such that

(3.6) (1− |z|2)|ψ′(z)| ≤ 1

λF (ψ(z))
≤ C

for all z ∈ D+.
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It remains to show that A(Mε ◦ψ) is locally bounded. Equality (3.5) yields that
for any fixed ε

(3.7) ‖A(Mε ◦ ψ)‖A∞
1 (D+) ≤ sup

z∈D+

|A(Mε) ◦ ψ(z)| sup
z∈D+

(1− |z|2)|ψ′(z)|

+ sup
z∈D+

(1− |z|2)|A(ψ)(z)|.

Since A(Mε) is jointly holomorphic in ε and z and ψ(D)
cl ⊆ E for any fixed ε0,

there is a compact set D containing ε0 such that |A(Mε)| is bounded on ψ(D+) by
a constant independent of ε ∈ D. Using (3.6) and the fact that A(ψ) is in A∞

1 (D+)
we obtain that A(Mε ◦ ψ) is locally bounded, which completes the proof. �

We now prove the main theorem.

Theorem 3.9. Π and Π̃ are holomorphic.

Proof. Since P and Π̃1 = F are holomorphic by Theorem 3.4, it suffices to show
that Π̃2 is holomorphic.

Fix an arbitrary point [Σ0, F
P
∗ ,ΣP

∗ ,f
0] ∈ T̃ (Σ0). We will show that Π̃ is

holomorphic at this point. Choose the representative ΣP
∗ = C\{p1, . . . , pn}, and

f0 = (f0
1 , . . . , f

0
n) ∈ Oqc(ΣP

∗ ). Let Ki, W , V , and G be as in Remark 2.9 and
choose N as in Theorem 2.11. If n > 3, by Theorem 3.5 and Remark 2.9 it is

enough to show that Π̃2 ◦Ψ ◦ (Id×G) is holomorphic, where Id is the identity on
N . In the cases that n = 2 or n = 3, it automatically reduces to this. The explicit
formula is

Π̃2 ◦Ψ ◦ (Id×G) (ε, g1, . . . , gn) = Ĝr(νε(g1 + p1), . . . , νε(gn + pn)).

By Hartog’s theorem [9] it is enough to show separate holomorphicity in ε and
in Oqc(n).

First we fix ε = 0. In this case, we have that

Π̃2 ◦Ψ ◦ (Id×G) (0, g1, . . . , gn) = Ĝr(g1 + p1, . . . , gn + pn).

This is holomorphic in Oqc(n) by applying Theorem 2.11 with fixed (a1, . . . , an).
Now fix (g01 , . . . , g

0
n) = G−1(f0) = (f0

1 − p1, . . . , f
0
n − pn) and vary ε. In this case

we have
Π̃2 ◦Ψ ◦ (Id×G) (ε, g01 , . . . , g

0
n) = Ĝr(νε(f

0
1 ), . . . , νε(f

0
n)).

If we set ν̂i(ε, z) = νε(z)− νε(pi), then we can write

Ĝr(νε(f
0
1 ), . . . , νε(f

0
n)) = H(ν̂1(ε, f

0
1 ), . . . , ν̂n(ε, f

0
n), νε(p1), . . . , νε(pn)),

whereH is defined in Theorem 2.11. Now by Theorem 3.5 ε �→ νε(pi) is holomorphic
in ε, and by Lemma 3.8 combined with Hartogs’ theorem on separate holomorphicity
in finitely many variables, the map from N to Oqc given by

ε �−→ ν̂i(ε, f
0
i )

is holomorphic. This together with Theorem 2.11 shows that Π̃2 ◦ Ψ ◦ (Id×G) is
holomorphic at (0, f0

1 , . . . , f
0
n). Since the point was arbitrary this completes the

proof. �
The next theorem shows that the map Π̃ is injective, and Π is nearly so.

Theorem 3.10. Π̃(u) = Π̃(v) if and only if u = v. Π(u) = Π(v) if and only if
there is a [ρ] ∈ DB such that ρ∗u = v.
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Proof. The second claim follows from the first by Theorem 3.3 and the fact that
Π̃ ◦ P = Π.

Now assume that Π̃(p) = ([ΣP
0 , F

P
1 ,ΣP

1 ], S). For S = Ĝr(f) ∈ B(n), the kernel

functions of the block operators Ĝrij are uniquely determined by S for all i, j. To
see this, one need only apply the operator to the Bergman kernel for A2(D+) in

place of R̂h in Theorem 2.3.
The proof proceeds in cases, depending on whether n = 1, n = 2, or n ≥ 3. If

n = 1, as already observed, the function

1

(ζ − z)2
− f ′

1(ζ)f
′
1(z)

(f1(ζ)− f1(z))2

is uniquely determined by S. Now letting ζ → z, identity (3.7) in Bergman-Schiffer’s
paper [2] yields that this quantity tends to one-sixth of the Schwarzian derivative
of f1. Thus the Schwarzian of f1 is uniquely determined by S, and therefore f1
is uniquely determined up to post-composition by a Möbius transformation. The
claim now follows from Remark 3.6.

Now assume that n = 2, and that Π̃(u) = ([ΣP
0 , F

P
1 ,ΣP

1 ], S) is given. Let
(ΣP

0 , F
P
1 ,ΣP

1 ,f) be any representative of u, where f = (f1, f2). By post-composing
ΣP

1 , F
P
1 , f1, and f2 simultaneously by a Möbius transformation σ, we can assume

that f1 and f2 are normalized so that f1(0) = 0, f ′
1(0) = 1, and f2(0) = 1 (any

fixed value will do). If it can be shown that this uniquely determines f1 and f2,

then by Remark 3.6 it will follow that Π̃(u) = Π̃(v) ⇒ u = v.
By the first paragraph of the proof, we have that the kernel function of Gr12(f),

(3.8)
f ′
1(ζ)f

′
2(z)

(f1(ζ)− f2(z))2
,

is uniquely determined by Π̃(u). Setting ζ = z = 0 yields that f ′
2(0) is uniquely

determined. Differentiating (3.8) with respect to z, we see that

(3.9)
f ′
1(ζ)f

′′
2 (z) (f1(ζ)− f2(z)) + 2f ′

1(ζ)f
′
2(z)

2

(f1(ζ)− f2(z))3

is uniquely determined, and setting ζ = z = 0, one can also determine f ′′
2 (0)

uniquely. The same argument applied to Gr21(f) shows that f ′′
1 (0) is determined

uniquely, and applying the considerations in the first paragraph to Gr11(f) and

Gr22(f) shows that the Schwarzians of f1 and f2 are determined by Π̃(u). Since we
have determined fi(0), f

′
i(0), f

′′
i (0) for i = 1, 2, the fi’s are uniquely determined

and the claim follows.
Now we consider the case that n ≥ 3; again assume Π̃(u) = ([ΣP

0 , F
P
1 ,ΣP

1 ], S)
is given and (ΣP

0 , F
P
1 ,ΣP

1 ,f) is any representative of p. By post-composing ΣP
1 ,

FP
1 , and f simultaneously by a Möbius transformation σ, we can assume that f1,

f2, and f3 are normalized so that f1(0) = 0, f2(0) = 1, and f3(0) = −1 (again,
any fixed values will do). If k ≥ 3, then the remaining values of the points fk(0)
for k �= 1, 2, 3 are uniquely determined by the values of FP

1 (pk). This is because
these values are determined by the Teichmüller equivalence class [ΣP

0 , F
P
1 ,ΣP

1 ] up to
post-composition by σ, and σ is uniquely determined by the normalizations above.
As in the n = 2 case, by Remark 3.6 it is enough to show that f1, . . . , fn are now
uniquely determined.
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Arguing as in the n = 2 case, for any i �= j, Π̃(u) uniquely determines

f ′
i(ζ)f

′
j(z)

(fi(ζ)− fj(z))2
.

Again setting ζ = z = 0, we see that for i �= j, all pairwise products f ′
i(0)f

′
j(0)

are uniquely determined. By an easy algebraic argument, fixing any three pairwise
distinct values i, j, and k, the resulting three products f ′

i(0)f
′
j(0), f

′
j(0)f

′
k(0), and

f ′
k(0)f

′
i(0) uniquely determine f ′

i(0), f
′
j(0), and f ′

k(0). Since i, j, k are arbitrary we
have shown that f ′

i(0) is determined uniquely for i = 1, . . . , n.

By differentiating the kernels Ĝrij twice with respect to z and setting ζ = z = 0
as in the n = 2 case, we uniquely determine f ′′

i (0) for all i = 1, . . . , n. Also once
again, we have that Grii uniquely determines the Schwarzian of fi for all i. Thus
the fi’s are uniquely determined, and this completes the proof. �

Remark 3.11. One can of course compose the map Π by the classical period map
on T (ΣP ) to obtain a full embedding of T (Σ) by a period mapping.
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