
CONFORMAL GEOMETRY AND DYNAMICS
An Electronic Journal of the American Mathematical Society
Volume 23, Pages 52–104 (April 26, 2019)
https://doi.org/10.1090/ecgd/333

CONFORMAL TILINGS II: LOCAL ISOMORPHISM,

HIERARCHY, AND CONFORMAL TYPE

PHILIP L. BOWERS AND KENNETH STEPHENSON

Abstract. This is the second in a series of papers on conformal tilings. The
overriding themes here are local isomorphisms, hierarchical structures, and the
conformal “type” problem. Conformal tilings were introduced by the authors
in 1997 with a conformally regular pentagonal tiling of the plane. This and
even more intricate hierarchical patterns arise when tilings are repeatedly sub-
divided. Deploying a notion of expansion complexes, we build two-way infinite
combinatorial hierarchies and then study the associated conformal tilings. For
certain subdivision rules the combinatorial hierarchical properties are faith-

fully mirrored in their concrete conformal realizations. Examples illustrate
the theory throughout the paper. In particular, we study parabolic confor-
mal hierarchies that display periodicities realized by Möbius transformations,
motivating higher level hierarchies that will emerge in the next paper of this
series.

Introduction

We continue the development of conformal tilings begun in earnest in [7]. These
form a new class of planar tilings that arise by placing a natural conformal structure
on combinatorial decompositions of the plane. While still in its infancy, the theory
clearly takes inspiration from the traditional theory of aperiodic hierarchical tilings,
which has garnered much attention since at least the introduction of the Penrose
tilings in the 1970s. Traditional tiling matured in the 1990s and has enjoyed intense
development since; [2, 3, 13–15, 19, 20, 23, 24]. Much of this theory depends on
combinatorial arguments, bereft of the influence of Euclidean geometry, and thus
has become one of the two main influences upon our work.

The second main influence, well removed from the intricacies of the traditional
aperiodic tiling theory, is Cannon, Floyd, and Parry’s articulation of finite subdivi-
sion rules in a series of papers over the last two decades. This targets the Cannon
Conjecture, that every negatively curved group with 2-sphere Gromov boundary is,
essentially, a cocompact Kleinian group. See, e.g., [8, 10, 11].

The authors have a long history of interaction with Cannon, Floyd, and Parry,
beginning with our introduction of expansion complexes in [5]. The general con-
struction was developed a bit by Cannon, Floyd, and Parry, but the theory remained
largely unexplored until Maria Ramirez-Solano’s dissertation [21]. She brought so-
phisticated tools of traditional aperiodic tiling to dissect the pentagonal tiling of [5].
The present work can be thought of as a more general development inspired by
Ramirez-Solano’s work. With our backgrounds in geometric topology, conformal
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geometry, and function theory, we have chosen a unified development that we hope
is accessible to readers uninitiated in the traditional theory and apologize for any
oversights in credit to the tiling community.

The authors intend a series of papers that carries one from the basic definitions of
individual conformal tilings through increasingly sophisiticated layers of structure
within families of conformal tilings.

(I) In the first paper, [7], the authors have laid out general foundations
for the theory of conformal tilings, tilings by conformally regular curvilinear
polygons with reflective structures, building on [5] and [6]. Existence and
uniqueness are established, basic phenomena are illustrated with examples,
and central themes, such as subdivision and conformal type, are discussed.
Particularly relevant here are conditions under which a combinatorial subdi-
vision of a tiling complex leads to a conformal subdivision of its conformal
tiling. These and other results needed in the present work are reviewed and
repackaged in the first section, so this paper is largely self-contained.

(II) In this, the second paper, we pursue links between conformal tilings
and traditional aperiodic tilings that began to emerge for the pentagonal tiling
in the dissertation of Maria Ramirez-Solano [21]. Our study centers on hi-
erarchical families of tilings generated from subdivision rules. In traditional
theory, largely euclidean, a tiling T determines a continuous hull in which ev-
ery tiling locally isomorphic to T has natural residence, a canonical dynamical
system on that hull, and a transversal for its action, which is a Cantor set
slice providing local isomorphism classes of pointed tilings. In the conformal
setting, a tiling T is determined essentially uniquely by the pattern of its
tiles, which is encoded in a planar polygonal complex K, so our work must
start with combinatorics: We develop a metric space of polygonal complexes,
a slice of local isomorphism classes to serve as transversal, and combinato-
rial versions of subdivision. Thus we are led to combinatorial hierarchies,
bi-infinite sequences {Kn} of complexes, each a subdivision of its predecessor.
Reconnecting fully to geometry requires the special notion of conformal sub-
divisions developed in [7], and for these we can define conformal hierarchies,
sequences {Tn} of conformal tilings, each an in situ subdivision of its prede-
cessor. Among our main results are conditions for determining the conformal
type, parabolic or hyperbolic, of conformal heierarchies and whether that type
is consistent across the local isomorphism class. We illustrate with examples,
culminating with special parabolic cases displaying a periodic hierarchy. This
ties our work to its beginnings in [5] and to the Cannon, Floyd, and Parry
efforts and serves as motivation for the third paper.

(III) The conformal hierarchies developed in the current paper are ad-
mittedly rare and special. When coupled with the notion of aggregate tiles
introduced in (I), however, they point the way to a new level of hierarchical
structure. Our third paper [4] will pursue this with a study of aggregate con-
formal tilings and their limits. The results bring together in one setting con-
formal tiling hierarchies, traditional euclidean hierarchies, and new, perhaps
fractal, tiling hierarchies. All arise spontaneously from pure combinatorics
when endowed with appropriate conformal geometry.
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Let us focus the lens a bit to preview our work in this paper. Conformal tilings T
are decompositions of the plane C or the hyperbolic plane D into curvilinear polyg-
onal tiles which are conformally regular and have a reflective structure. Conformal
tilings are determined essentially uniquely by their combinatorics, which we encode
as planar polygonal complexes K. We are interested in families of tilings generated
via subdivision rules τ , rules which have both combinatorial and geometric aspects.
In the first section we review the fundamentals in combinatorics, conformal tiling,
and subdivision on the way to establishing a key connection between combinatorics
and geometry: dihedrally symmetric simple subdivision operators are conformal
subdivision operators.

The second section concentrates on combinatorics with a view to the continuous
hull. We define the metric space RC of planar polygonal complexes and, for a given
complex K, a local isomorphism class LI(K) of rooted complexes. This material
is developed slightly beyond our immediate needs, but illuminates properties of K
that mirror the traditional setting (cf. [3, Chp 5]). In particular, we will see the
importance of two features: finite local complexity and repetitiveness. The broad
ideas of this section promise to be old hat to the traditional tiling experts, but the
particulars will be new, most certainly to those in discrete conformal geometry.

There seems to be no formal definition of the term hierarchical tiling, and we cer-
tainly refrain from suggesting one. Nonetheless, in the third section we define what
it means for a planar polygonal complex K to exhibit a combinatorial hierarchy, a
bi-infinite sequence {Kn}, each Kn a combinatorial subdivision of its predecessor.
We are not aiming for full generality, so we quickly restrict attention to hierarchies
based on subdivision rules τ . The key combinatorial notions of expansion com-
plexes and aggregate tilings are developed. Expansion complexes, introduced in [5]
and refined and exploited by Cannon, Floyd, and Parry in [10, 11], formalize the
extraction of limit combinatorial tilings. They allow us to define, for appropriate
rules τ , an aggregation operation which functions as τ−1. The final theorem of the
section, Theorem 3.3, guarantees a wealth of combinatorial hierarchies.

In the fourth section we bring in the additional combinatorial machinery, ex-
pansiveness, repetitiveness, and finiteness conditions, needed to capture the full
sense of hierarchy for appropriate subdivision rules τ . Several examples illustrate.
The section’s main result, Theorem 4.4, tells us that the existence of combinatorial
hierarchy for K can propogate to its whole local isomorphim class.

Conformal geometry enters in section five; when τ is a conformal subdivision rule,
then a hierarchy {Kn} of combinatorial tilings is realized as a conformal hierarchy
{Tn} of conformal tilings. Here each Tn is an in situ conformal subdivision of its
predecessor Tn−1, parallel to traditional euclidean substitution tilings. A principal
theme of the paper is the type problem: does the conformal tiling TK for K live in
the euclidean plane C, parabolic type, or in the hyperbolic plane D, hyperbolic type?
The section concludes with the paper’s Main Theorem, 5.5, establishing parabolicity
for certain complexes K and subdivision rules τ—indeed, showing that parabolicity
can propogate to the full local isomorphism class of K. This answers affirmatively
the question of Maria Ramirez-Solano [21] which motived this series of papers.

Concrete experiments have been central in the development of conformal tiling.
In section six we explore in some detail the phenomenon of periodic expansion com-
plexes, wherein the in situ subdivisions by τ are realized by Möbius transformations.
We are able to identify and construct all such periodicities, which turn out to be
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quite rare—a countable family among the local isomorphism class (K). We describe
and illustrate several examples.

Although periodicity itself is rare, the experiments and images of section six moti-
vate the next stage in the topic. There is much work yet to do in regard to Cannon’s
Conjecture, and the conformal hierarchies discussed here are suspended somewhere
between the traditional euclidean hierarchical model and what is needed in the
Cannon, Floyd, and Parry program. In our next paper [4] we introduce conformal
aggregate tilings, which we hope will further the Cannon, Floyd, Parry program
while also appealing to those who enjoy tiling for its own sake. We foreshadow
those developments with some observations in the final section of this paper.
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1. Conformal tilings

In this section we review the essentials of conformal tiling and subdivision and
establish notation. In particular, we provide enough background that the following
theorem, proved at the end of this section and used later in the paper, is under-
standable to the reader.

Theorem 1.1. Suppose τ is a dihedrally symmetric simple subdivision operator
and K is a planar polygonal complex. Then the conformal tiling TτK is a conformal
subdivision of the conformal tiling TK .

In [7] we laid out the combinatorial, equilateral, conformal, and concrete geo-
metric structures of tilings. We abused notation by using the same symbol T for
all. Here we must take more care: K will denote the planar polygonal complex
underlying a tiling, |Kβ |eq its piecewise euclidean structure, SK the associated Rie-
mann surface, and TK the conformal tiling itself, occupying either the euclidean
plane C or the hyperbolic plane represented as the unit disc D. In a sense, then, a
tiling is a 4-tuple T = {K, |Kβ|eq, SK , TK}. (Note that in the hyperbolic case, TK

will always refer to the so-called maximal tiling for K, so it fills D and is unique up
to conformal automorphisms (Möbius transformations) of D.)

Let us begin with the combinatorics K. Informally, a planar polygonal complex
is a decomposition of the plane into curvilinear polygons which meet one another
at vertices or along full edges of their boundaries. More precisely, K is an oriented
2-dimensional regular CW-decomposition of the plane whose attaching maps are
homeomorphisms. The 0-skeleton is a countable discrete collection of vertices; the
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1-skeleton consists of edges, each spanning two distinct vertices; and the 2-cells are
the faces, each a topological disc bounded by a closed cycle of two or more edges.
When a face k has n edges (n ≥ 2), we say that k is a combinatorial n-gon and
its polygonal type is n. We find it convenient to think of the cells of K—the edges
e and the faces k—as closed, and when we mean the corresponding open cell we
will write e◦ or k◦. We observe that these complexes may be defined from their
1-skeletons interpreted as “drawings” in the terminology of [7], but in this paper
we do not allow the loops, dangling edges, and non-embedded polygons which can
occur with drawings.

Our complexes K are locally finite, meaning that at most finitely many edges
emanate from any given vertex. If there is d < ∞ so that each face has polygonal
type at most d and at most d edges meet at any vertex, we sayK has bounded degree.
The smallest such d is the degree of K. Complexes K and K ′ are combinatorially
equivalent, or CW-isomorphic, if there is an orientation-preserving cellular isomor-
phism φ : K → K ′, that is, a homeomorphism which maps vertices to vertices,
edges to edges, and faces to faces. Write K ∼= K ′. If F and L are CW-complexes,
we write F ↪→ L to indicate that F isomorphically embeds in L. (Generally we will
be dropping the adjective orientation-preserving, but we ask the reader to keep in
mind that in this paper the complexes are oriented and maps between them are
orientation-preserving.)

Geometric structures are imposed via more refined combinatorics. The barycen-
tric subdivision of K, denoted as Kβ, is defined by introducing a new vertex, a face
barycenter, to each open face and a new vertex, an edge barycenter, to each open
edge, and then adding new edges in each face connecting its barycenter to both its
original vertices and to the barycenters added to its edges. This process subdivides
each edge into two edges and each face k of K of polygonal type n into 2n triangles
with the face barycenter as a common vertex, so the complex Kβ is a simplicial
decomposition of the plane into combinatorial triangles. A typical triangle in some
face k of K has vertices a, b, and c, where a is a vertex of k, b is the edge barycenter
for some edge of k, and c is the barycenter added to k◦.

We now endow K with the β-equilateral metric using this triangulation Kβ:
identify each face ofKβ with a unit-sided euclidean equilateral triangle, so each edge
has unit length. Observe that two faces meeting along an edge e isometrically reflect
to one another across e. The resulting metric space |Kβ |eq is piecewise flat with cone
type singularities at the vertices of Kβ. There is a canonical maximal conformal
atlas A for |Kβ |eq, giving it what we call its β-equilateral conformal structure. The
open faces are charts in A, edge charts are defined by mapping two contiguous faces
isometrically to the union of two equilateral triangles in the plane meeting along
a common unit edge, and vertex charts are defined using local power mappings
to resolve their cone type singularities. The resulting surface SK = (|Kβ|eq,A) is
a non-compact, simply connected Riemann surface. The classical Uniformization
Theorem implies that SK is conformally equivalent to one of the plane C or the
disc D. Throughout the paper we use G to denote a generic plane, always either
C or D. The conformal isomorphism mapping SK to G is unique up to conformal
automorphisms of G. We refer the reader to the first paper [7] for details of this
procedure.

Definition. Given a planar polygonal complex K, the conformal tiling TK for K
is the collection of tiles in G determined by a uniformizing map of SK onto G,
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where the tiles are the images of the faces of K under the uniformizing map. The
conformal tiling is unique up to conformal automorphisms of G.

The tiles of TK are curvilinear polygons in G that meet in the pattern of K.
When SK is parabolic, TK tiles the complex plane and is unique up to (orientation-
preserving) euclidean similarities; when SK is hyperbolic, TK tiles the Poincaré
disc and is unique up to (orientation-preserving) hyperbolic isometries. The type
problem now is manifest. Given K, is SK parabolic or hyperbolic? Does TK tile
the complex plane C or the Poincaré disc D? In general, this is very difficult to
resolve.

Two conformal properties characterize conformal tilings, regularity and reflec-
tivity. Regularity means that if t is a tile of TK of polygonal type n, then t is
homeomorphic to a regular euclidean n-gon by a homeomorphism that identifies
vertices and is conformal on the interior of t . This is a direct consequence of the
equilateral metric on |Kβ |eq and it is in this sense that t is a conformally regular
n-gon. However, there are uncountably many inequivalent ways to realize K by
conformally regular polygons. This is where the additional reflective property of
TK enters. Let us describe this property.

Let T be a locally finite tiling by conformally regular polygons. The dihedral
group D2n of order 2n acts as a group of conformal/anticonformal isomorphisms on
each tile t of polygonal type n. The action preserves and is transitive on vertices
and has an interior fixed point, the conformal center of t . The elements of D2n

that preserve orientation act as a conformal rotation group of order n and those
that reverse orientation act as anticonformal reflections whose fixed point sets—the
axes of the action—are analytic arcs spanning across two vertices or two edges of
t if n is even, and across vertex-edge pairs if n is odd. The intersection of an axis
with an edge e is the conformal center of e determined by t . Slicing every tile of T
along its axes breaks it into conformal triangles f . The resulting triangles form a

tiling we denote by T β .

Definition. A tiling T by conformally regular polygons is said to be reflective if
three conditions are satisfied whenever tiles t and t ′ meet along an edge e: (1) The
conformal centers of e determined by t and t ′ coincide; (2) e is the fixed point set
of an anticonformal reflection ψ that exchanges the two triangles f and f ′ meeting
along e; and (3) ψ exchanges the conformal centers of t and t ′, which are vertices
of f and f ′, respectively.

Note that conformal tilings TK are clearly reflective: the conformal charts for
edges in the atlas A were chosen with precisely this in mind. On the other hand,
suppose we start with a combinatorially equivalent tiling T with conformally regular
polygons. If T is reflective, then T β has the combinatorics of the barycentric
subdivision Kβ . This is the pattern used in the construction of TK , leading to the
following result.

Theorem 1.2. Suppose T is a tiling of G by conformally regular polygons with the
combinatorics of a polygonal complex K. If T is reflective, then T is an image of
the conformal tiling TK under some conformal automorphism of G.

Proof. The proof is a consequence of a Schwarz reflection process described in the
first paper [7]: Each triangular face k of Kβ is associated with a conformal triangle
in each of TK and T . A conformal homeomorphism φ between such triangles for a
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given face k extends analytically across each edge of k by classical Schwarz reflection.
Because TK and T are both reflective, φ can be shown to extend analytically to the
entirety of each triangle ofKβ neighboring k. The Schwarz reflection argument may
now be repeated triangle-by-triangle throughout TK leading to a bijective conformal
extension φ : TK → T which maps tiles to tiles. In particular, φ is necessarily a
conformal homeomorphism of G, an automorphism. �

We will work with patches of tilings. A connected subcomplex L ⊂ K for which
every cell of L is contained in a closed face of L is termed a combinatorial patch ofK.
The corresponding set of tiles of TK will be denoted TL and termed a patch of TK .
Patches TL and TL′ , are conformally equivalent if there is a conformal isomorphism
of |TL| =

⋃
{t : t ∈ TL} onto |T ′

L′ | that maps tiles to tiles. Obviously conformally
equivalent patches have combinatorially equivalent subcomplexes L and L′; this
theorem provides the converse.

Theorem 1.3. If L and L′ are combinatorially equivalent patches of K and K ′,
respectively, then TL and T ′

L′ are conformally equivalent patches of TK and TK′ .

The properties of conformal tilings, fully developed in [7], are taken for granted
here. For example, note that all tile edges are analytic arcs and that if m faces
meet at a vertex v, then each face has angle 2π/m there. Due to the β-equilateral

structure, the conformal tiling TK brings with it companion conformal tilings: T β
K

is a conformal tiling for Kβ; T †
K is the conformal tiling for the dual complex K†

with edges that are orthogonal bisectors of their dual edges in TK ; T �
K is a 4-gon

tiling for the quad complex K�. All these are formed by appropriate groupings of

the conformal triangles of T β
K . Through repeated Schwarz reflection, a single tile of

any of these serves to regenerate them all. The reader is referred to [7] for details;
Figure 4 there, illustrating the interlocking tilings, is particularly recommended.

The final review topic for understanding the statement and proof of Theorem 1.1
is that of subdivision. A subdivision of the planar polygonal complex K is a planar
polygonal complex Ks for which each open cell (vertex, edge, or face) of Ks is
contained in an open cell of K. In particular, each closed face of K is the union of
finitely many closed faces ofKs, and each closed edge ofK is a union of finitely many
closed edges of Ks. Write Ks ≤ K. We are interested in non-trivial subdivisions in
which each face of K is a union of at least two faces of Ks. Faces of Ks are subfaces
of those of K, faces of K are aggregates of those of Ks, and K is an aggregation of
Ks. Note that K plays two roles throughout this paper. For example, as a CW-
complex, K may have its faces decomposed into faces forming Ks. On the other
hand, as a combinatorial object, K could still be CW-isomorphic to Ks, K ∼= Ks.
We will encounter precisely this later, where both Ks ≤ K and K ∼= Ks hold. This
should cause no confusion—the use of K depends on context.

Subdivisions of interest in our work are generated by various types of subdivision
rules. Traditional examples, such as the Penrose, pinwheel, sphinx, and others,
and the more nuanced ones introduced by Cannon, Floyd, and Parry using model
complexes and subdivision maps, e.g., their mixed rule, were discussed at length in
the first paper [7]. For use in this first section, however, we introduce the slightly
more pedestrian subdivision operators.

Define a seed τn, n ≥ 1, to be a rotationally symmetric, oriented, regular CW-
decomposition of the standard n-gon Δn. The seed is non-trivial if it breaks Δn

into at least two pieces. The collection τ = {τn} of seeds is edge-compatible if there
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is an integer N ≥ 0 such that each τn subdivides each edge of Δn into the same
number N of subedges.

Definition. A subdivision operator τ is an edge-compatible collection τ = {τn :
n = 1, 2, 3, · · · } of rotationally symmetric, oriented, non-trivial seeds. Given any
polygonal complex K, τK ≤ K is the subdivision obtained from K by subdividing
each face of polygonal type n according to the pattern τn respecting orientation,
with edge subdivisions matching on shared edges.

The finiteness, orientability, edge-compatibility, and rotational symmetry of the
τn ensure that τK is determined unambiguously and is again a locally finite polyg-
onal complex. The notation is fairly consistent with the more nuanced notion of
subdivision rules that will be described in §3.1, though subdivision operators have
the advantage of applying to any and all polygonal complexes. Note that if F is a
subcomplex of K, τF has the obvious meaning as the subdivision of F induced by
τ and is a subcomplex of τK.

We illustrate a variety of rotationally symmetric subdivision algorithms in Fig-
ures 1 and 2—the star, barycentric, hex, pentagonal, twisted pentagonal, and others.
All but the twisted pentagonal are, in fact, dihedrally symmetric, a property that
will be important in future developments. Each of these algorithms applies to
n-gons for any positive n. Rotational symmetry means that one can encode the
pattern in a triangular fundamental region for the action of the rotation group, as
we have done in the central columns of the two figures: the bottom of the funda-
mental triangle represents an edge of the face to which the rule is applied and the
apex of the triangle represents the fixed point of the action, the face barycenter.
Vertices of the subdivision appear in yellow and edges appear as solid segments. By
identifying the left and right sides, the pattern may also be encoded as a seed in a
1-gon, as in the left-hand columns of the figures (though our polygonal complexes
do not admit 1-gons). In the right-hand columns of Figures 1 and 2 we illustrate
seeds for 5-gons or 4-gons, respectively, but of course each algorithm leads to a seed
τn for each n by identifying a cycle of n of these fundamental regions.

These and similar algorithms may be combined in various ways to describe sub-
division operators; for example, we might specify that seed τ4 comes from the
pentagonal algorithm, and all other seeds τn, for n = 2, 3, and n ≥ 5, come from
the quad algorithm, and since each subdivides an edge into two edges, this describes
an edge-compatible subdivision operator τ = {τn}. We have a special interest in
operators which apply the same algorithm to every n-gon—all quad subdivisions on
all faces regardless of polygonal type, or all pentagonal subdivisions, etc. A subdi-
vision operator that applies the same rotationally symmetric subdivision algorithm
to every tile is said to be simple.

There are two points of view on subdivisions. One is combinatorial and takes
place at the level of the tiling complex K—as with the subdivision operators we
just described. The other is geometric and takes place at the level of the geometric
tiles themselves. In traditional tiling the combinatorial and geometric mesh per-
fectly: one has a finite collection of model “prototile” shapes and a subdivision
(also called a substitution) process in which each of those tiles is broken into sub-
tiles drawn from that same collection. In Conway’s “pinwheel” tiling, for example,
a certain right triangle is partitioned into 5 congruent triangles, each similar to the
original with one fifth the area: the subdivision is both combinatorial and concrete.
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star subdivision

pentagonal
subdivision

twisted pentagonal
subdivision

teepee subdivision

lace subdivision

Figure 1. Rotationally symmetric subdivision algorithms for n-
gons for any n ≥ 1. Each pattern is encoded in a 1-gon (left-hand
column) and in a fundamental triangle (central column), and is
applied to a 5-gon (right-hand column).

This geometric compatibility accounts, in part, for the appeal of the relatively few
combinatorial patterns that have been realized in traditional hierarchical tilings.

In the conformal setting, on the other hand, one seems at first to have complete
freedom: any locally finite polygonal complex K has its conformal tiling TK , and
after applying a combinatorial subdivision, the new polygonal complex Ks likewise
has its conformal tiling TKs

. However, there is new subtlety here. For starters,
there are no prototile shapes; nearly every tile in a non-trivial conformal tiling
has a unique shape. The more important fact, however, is that generically the
combinatorial and the geometric worlds do not mesh. If you aggregate the tiles
from TKs

associated with some tile t of TK—that is, you “forget” the subdivision—
the resulting aggregate shape will not in general be the same as the shape of t itself.
The special cases in which the aggregate and original shapes agree are described in
detail and with examples in [7, §3.7]; they are covered under this definition, adapted
from there.

Definition. Let Ks be a combinatorial subdivision of K, Ks ≤ K. The conformal
tiling TKs

is said to be a conformal subdivision of the conformal tiling TK if the
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hexagonal
subdivision

quad subdivision

delta subdivision

barycentric
subdivision

snowball
subdivision

Figure 2. Dihedrally symmetric subdivision algorithms for n-
gons for any n ≥ 1. Each pattern is encoded in a 1-gon (left-hand
column) and in a fundamental triangle (central column), and is
applied to a 4-gon (right-hand column).

forgetful map between their Riemann surfaces, π : SKs
→ SK , is a conformal

homeomorphism. A subdivision rule or operator τ is said to be conformal if TτK is
a conformal subdivision of TK whenever τ can be applied to K.

The upshot is that in the case of a conformal subdivision rule or operator τ , the
conformal tiling TτK (appropriately normalized) is obtained from TK by partition-
ing its tiles in situ, parallel to what happens in traditional tiling. In particular,
when the conformal tiling TKs

is a conformal subdivision of the conformal tiling
TK , each tile of TKs

is contained in a tile of TK , each tile of TK is a union of finitely
many tiles from TKs

, and the tiles of both TK and TKs
are conformally regular and

reflective across their respective edges. We may safely write TτK ≤ TK , so we are
in position to explore subdivision families for a fixed tiling, and in particular to
study the type problem for its local isomorphism class.

We may now prove Theorem 1.1, whose content is reduced to the claim that
every dihedrally symmetric simple subdivision operator τ is conformal.
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Proof of Theorem 1.1. Suppose τ = {τn} is a dihedrally symmetric, simple subdi-
vision operator. Recall that for each n, τn is a combinatorial decomposition of a
standard n-gon Δn. However, we can impose the β-equilateral conformal structure
|τβn |eq, making τn into a conformal n-gon. The rotational symmetry of τn further
ensures that it is a conformally regular n-gon. Thus, for every n, we have at our dis-
posal the conformally regular model n-gon τn subdivided into a conformally regular
and reflective pattern of subtiles.

Consider a conformal tile t ∈ TK , say of polygonal type n. Since t and τn are
both conformally regular, there is a homeomorphism ft : τn → t which is conformal
on the interior and takes the n vertices of τn to the n-vertices of t . The image of the
subtiles of τn under ft now provides an in situ decomposition of t into conformally
regular and reflective subtiles. Applying the map ft for each t ∈ TK results in a
global tiling τT by conformally regular polygons with the combinatorics of τK.
Note that edge compatibility is due to the dihedral symmetry in the τn.

It remains only to show that τT is also reflective. Suppose tiles s , s ′ ∈ τT
share an edge e. If both are subtiles of the same aggregate tile t ∈ TK , then they
are reflective across e by construction. Otherwise, s , s ′ are subtiles of t , t ′ ∈ TK ,
respectively, with t and t ′ sharing an edge E which has e as a subedge.

It is here that the simple and dihedrally symmetric properties of τ are needed.
Let u, u ′ denote the unions in t , t ′, respectively, of the two triangles of |Kβ|eq neigh-
boring E, so u and u ′ are conformal quadrangles. The reflective property described
earlier now provides an anticonformal reflection ψ : u → u ′ with fixed point set E.
Suppose t is an n-gon, t ′ an n′-gon. Because τ is a simple subdivision operator, τn
and τn′ share the same pattern on fundamental domains of the rotational group ac-
tions for t and t ′. That is, the pattern of subtiles of t lying in u is identical to that
of t ′ lying in u ′. Here we recall that τn and τn′ are in fact dihedrally symmetric,
so even though ψ : u → u ′ is orientation reversing, it still maps subtiles to subtiles.

Now return to consider the subtiles s , s ′, which share edge e ⊂ E. Due to
the regularity and dihedral symmetry of the decompositions τn and τn′ , it is not
difficult to check that the triangles of |sβ |eq and |s ′β |eq neighboring e lie entirely in
u and u ′, respectively. The restricted map ψ|s∩u is thus an anticonformal map with
fixed point set e and identifying these pairs of triangles and their vertices. This
establishes the reflective structure for s and s ′ across e.

We conclude that the tile-by-tile decomposition of TK denoted by τT is confor-
mally regular and reflective. Since τT and TτK both have the combinatorics of τK,
Theorem 1.2 implies that they are conformally equivalent. It follows that τ is a
conformal subdivision operator and TτK may be realized as a conformal subdivision
of TK . In other words, TτK = τTK . �

We close this section with an example. Though our interest is in infinite pla-
nar complexes, the methods apply more widely and we illustrate with a compact
example introduced in our earlier paper.

Example 1.1. The example starts with a combinatorial cube K, that is, a topo-
logical sphere decomposed as six 4-gons. TK is a tiling of the Riemann sphere S2.
We apply successive stages of the “snowball” subdivision rule τ whose seed τ4 (the
only one we need) is shown at the bottom right in Figure 2. This seed subdivides
each 4-gon into thirteen 4-gons. Since τ is dihedrally symmetric and simple, τ
is conformal by Theorem 1.1. Figure 3 shows (numerical approximations of) four
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Figure 3. This represents a conformally correct picture of the
first four stages of the conformal “snowball” subdivision rule: Blue
subdivides the original bold black-edged cube; the green then sub-
divides the blue; the red, the green; and the black, the red. In situ
conformal subdivision may be continued ad infinitum.

stages of subdivision. Subdivision occurs in situ and can be continued ad infinitum
without disturbing earlier stages.

√

2. Complexes and their local isomorphism classes

In the traditional world of aperiodic euclidean tilings, an appropriate tiling de-
termines a tiling space, the so-called continuous hull of the tiling, an action of the
translation group on the hull, and a canonical transversal for the action that encodes
pointed tilings locally isomorphic to the original. In an impressive doctoral thesis,
Maria Ramirez-Solano [21] managed to generalize much of this to the conformal
setting for certain pentagonal tilings. We aspire to follow her lead and develop the
geometric structures which might support a more comprehensive parallel conformal
theory. To provide the combinatorial basis for that effort, though perhaps beyond
the immediate needs of this paper, we define various spaces of rooted polygonal
complexes and identify necessary topological properties of the local isomorphism
classes. Traditional tiling experts will see mirrored here several familiar structures,
but only those that emerge from the combinatorics of tilings rather than their
geometry.
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2.1. Spaces of planar polygonal complexes. Our main space is RC, the space
of rooted planar polygonal complexes. The elements are the rooted isomorphism
classes of pairs (K, f), where K is an oriented planar polygonal complex and f is
a fixed root face of K. In this setting, a rooted isomorphism of (K, f) to (L, g) is
a cellular isomorphism of K to L that takes f to g (note: f and g must be of the
same polygonal type). We will employ the notational use of sans serif letters to
denote elements of RC, so we may write (K, f) ∈ k ∈ RC. There is in this setting a
map ∗ : RC → C to the set of isomorphism classes of planar polygonal complexes C
that forgets the root face and that is countable-to-one. Thus, for example, K ∈ k∗

whenever (K, f) ∈ k. (As is usual practice, we do not distinguish between K and
its equivalence class [K], so, e.g., we write K = k∗ = [K].) Recall, our complexes
are always oriented and our maps orientation-preserving.

To define a metric on RC, we first define a combinatorial distance within each
complex. Given faces f and g of a planar polygonal complexK, the fat path distance
from f to g (terminology from [10]) is the smallest integer k for which there exists
a chain {f = f0, f1, · · · , fk = g} of faces such that fj and fj+1 share a common
edge in K for j = 0, 1, · · · , k − 1. This distance gives a metric on the collection of
faces of K and may also be described as the edge metric of the dual complex K†.

The metric we now impose on RC is modeled after the so-called big ball metric in
traditional tiling or the local metric in planar graph theory; however, completeness
requires a slightly more complicated set up than usual—we must use filled balls.
Given a face f of K and n > 0, define the (combinatorial) n-neighborhood CK(f, n)
as the subcomplex of K formed by those faces g having fat path distance from f
of at most n. Its complement in K has one unbounded component, but may also
have bounded components. We therefore define the filled n-neighborhood BK(f, n)
to be the smallest simply connected subcomplex of K containing CK(f, n). The
combinatorial boundary of BK(f, n) is a simple closed edge path that separates f
from the ideal boundary of K and is called the outer sphere of radius n centered
on f . The complex K is the nested union

BK(f, 1) ⊂ BK(f, 2) ⊂ · · · ⊂ BK(f, n) ⊂ BK(f, n+ 1) ⊂ · · ·
of filled neighborhoods. Note that BK(f, n) may not lie in the interior of BK(f, n+
1), but it does lie in the interior of BK(f,N) for N > n sufficiently large. Define
BK(f,∞) to be the whole complex K.

Given k, k′ ∈ RC and rooted complexes (K, f) ∈ k and (K ′, f ′) ∈ k′, let

ρ(k, k′) = ρ((K, f), (K ′, f ′)) = e−n

where, either n is the largest integer, or the symbol ∞, for which the rooted com-
plexes (BK(f, n), f) and (BK′(f ′, n), f ′) are rooted isomorphic, or n = −1 whenever
f and f ′ have differing polygonal types. This defines a metric on RC that satisfies
the property that, whenever j, k, l ∈ RC, then either

ρ(j, l) ≤ ρ(j, k) = ρ(k, l)

or one of the permutations of this relation, holds. This is equivalent to

ρ(j, l) ≤ max {ρ(j, k), ρ(k, l)} ,
which is the defining triangle inequality for an ultrametric, a topic of significant
application in p-adic analysis. (See, e.g., [22, §2.1] for basic properties of ultramet-
rics.)
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Theorem 2.1. The metric ρ on the space of rooted planar polygonal complexes RC
is bounded and complete, and the metric space (RC, ρ) is totally disconnected.

Proof. Obviously ρ is bounded since n ≥ −1 in the definition of ρ so that, in fact,
diamρRC = e. Let ki, i = 1, 2, 3, . . . , be a ρ-Cauchy sequence in RC. By passing
to a subsequence if necessary, we may assume that for each i, ρ(ki, ki+1) ≤ e−i.
Choose representatives (Ki, fi) ∈ ki, and observe that our definition of the metric
ρ implies that for each i, the filled neighborhood BKi

(fi, i) is rooted isomorphic to
the filled neighborhood BKi+1

(fi+1, i). Let hi : BKi
(fi, i) → BKi+1

(fi+1, i) be a
rooted isomorphism and enlarge the codomain of hi to BKi+1

(fi+1, i+ 1) to obtain
the directed sequence

BK1
(f1, 1)

h1−−−−→ BK2
(f2, 2)

h2−−−−→ BK3
(f3, 3)

h3−−−−→ · · · .

Since the BKi
(fi, i) are nested and simply connected, and since for each integer

i, there exists an integer N > i such that image of BKi
(fi, i) under hN−1 ◦ · · · ◦

hi is contained in the interior of the disc BKN
(fN , N), the direct limit complex

lim
−→

BKi
(fi, i) is a simply connected planar polygonal complex. Let k denote the

rooted isomorphism class of the rooted planar polygonal complex (K, f), where
K = lim

−→
BKi

(fi, i) and f ∈ K corresponds to f1. It is easy to show that ki → k as

i → ∞, and so ρ is complete. If we do not distinguish between rooted isomorphic
complexes, this direct sequence may be treated as a sequence of set containments
and the direct limit is simply its union.

For any point k ∈ RC and positive integer n, the metric ball Bρ(k, e
−n/2) of

radius e−n/2 is both open and closed, since the metric takes on only the values in
the countable set {0}∪{e−k : k = −1, 0, 1, . . . }. This implies that (RC, ρ) is totally
disconnected (as is the case with every ultrametric space). �

For each integer n ≥ 3, let RCn be the subspace of RC of rooted isomorphism
classes of planar polygonal complexes of degree bounded by n. (RC3 = ∅ is included
for later convenience.) Let RCω =

⋃∞
n=3 RC

n, the space of bounded degree, rooted
planar polygonal complexes. The subsets Cn and Cω of C are defined in the obvious
manners as the images of the respective spaces RCn and RCω under the forgetful
map ∗.

Theorem 2.2. For each n ≥ 3, the subset RCn is a closed, nowhere dense subspace
of RC.

Proof. Let ki → k where ki ∈ RCn and k ∈ RC. An arbitrarily large finite filled
neighborhood of the root face of k∗ is isomorphic to a filled neighborhood of the
root face of k∗i for large enough i, so the degree of k∗ is at most n so that k ∈ RCn.

RCn is nowhere dense in RC since every element k of RCn is the limit of a
sequence ki, each term with at least one vertex of degree greater than or equal to
n+ 1, as the reader may construct rather easily. �

Corollary 2.3. The space RCω of bounded degree, rooted planar polygonal com-
plexes is a dense Fσ subspace of RC, and the space RC−RCω of unbounded degree
rooted planar polygonal complexes is a dense Gδ subspace of RC.

The next property delineates special compact subsets of RCn. We say that a
planar polygonal complex K satisfies a θ-isoperimetric inequality if every finite
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combinatorial disc D ⊂ K satisfies the θ-isoperimetric inequality, meaning that

size(D) < θ(size(∂D)).

Here, θ : N → R is a positive function, size(D) is the number of faces in D, and
size(∂D) is the number of edges in the simple closed edge path ∂D forming the
combinatorial boundary of D. For each integer n ≥ 3 and positive function θ, let
RCn,θ consist of those k ∈ RCn for which the complex k∗ satisfies a θ-isoperimetric
inequality.

Theorem 2.4. For each n ≥ 3 and positive function θ, the subset RCn,θ is a
compact, nowhere dense subset of RC.

Proof. Since RCn is nowhere dense in RC, so too is RCn,θ ⊂ RCn. That RCn,θ is
closed in RC is again easily seen by looking at large neighborhoods of the root.

To verify compactness, we show that RCn,θ is totally bounded in RC, which for
closed subsets of complete metric spaces is equivalent to compactness. Recall that
a metric space is totally bounded if, for each ε > 0, there exists a finite ε-dense
subset of the space. Let ε > 0 and choose a positive integer m so that e−m < ε.
Let (H1, f1), . . . , (HJ , fJ ) be a list of all the finite, connected planar polygonal CW-
complexes of degree at most n that appear as the filled m-neighborhood of a face
in some planar polygonal complex in RCn,θ, up to isomorphism. This list is finite
precisely because, for all complexes in RCn,θ, the degree is bounded by n and the
θ-isoperimetric inequality holds; indeed, the bounded degree condition guarantees
that there are only finitely many isomorphism classes of m-neighborhoods CK(f,m)

as K ranges over RCn,θ and f ranges over K, and for each such class, the θ-
isoperimetric inequality guarantees that there are only finitely many ways to fill the
holes of any CK(f,m) to obtain its filled m-neighborhood BK(f,m). The upshot is
that these two conditions together place a bound M > 0 on the number of faces in
any such filled neighborhood, and there are then only finitely many ways to arrange
a set of at most M combinatorial polygons of polygonal type bounded by n to form
a filled neighborhood. For each i = 1, . . . , J , let Ki be a planar polygonal complex
that contains an isomorphic copy of Hi as the filled m-neighborhood BKi

(fi,m).

Letting ki = (Ki, fi), the set {k1, . . . , kJ} is a finite ε-dense subset of RCn,θ. �

Key features in this proof, the bound on degree and the θ-isoperimetric inequal-
ity, play the role in compactness that finite local complexity plays in the traditional
setting. However, whereas the geometry attached to traditional tilings brings the
isoperimetric condition for free, in the purely combinatorial setting we must im-
pose it as a hypothesis. The m-neighborhoods CK(f,m) can have “holes”, bounded
complementary components, that are filled in to get BK(f,m). Without an isoperi-
metric bound, these fillings could require arbitrarily many faces, independent of m.
The isoperimetric condition is important for compactness in this paper, so we add
it to the definition of finite local complexity from our earlier paper.

Definition. The planar polygonal complex K is said to have finite local complexity,
abbreviated as FLC, if the degree of K is bounded and K satisfies a θ-isoperimetric
inequality for some positive function θ : N → R.

To be rather clear on its intended use, we separate out as a corollary the impor-
tant feature of the preceding proof as applied to a single complex K.
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Corollary 2.5. Suppose the planar polygonal complex K has FLC. Then, up to
isomorphism, there are only finitely many filled m-neighborhoods in K of a given
radius m.

2.2. Local isomorphism classes of complexes. In studying conformal tilings,
we are not interested in a single tiling TK as much as in the family of those tilings
TL for which L is locally isomorphic to K. The notion of local isomorphism arises
naturally.

For planar polygonal complexes K and L, we say that K locally embeds in L,
written as K � L, if every finite combinatorial patch F ⊂ K isomorphically embeds
in L, F ↪→ L. We say K is locally isomorphic with L if K � L and L � K, and
in this case we write K ∼ L. We let (K) denote the local isomorphism class of the
planar polygonal complex K so that (K) = {L ∈ C : K ∼ L}. The relation � is
reflexive and transitive, and hence a pre-order on C, and it defines a partial order
on the set of local isomorphism classes of elements of C.

We will see a dichotomy shortly, as (K) is either a singleton or is uncountably
infinite. Let LI(K) denote the pre-image of (K) under the forgetful map ∗ defined
on RC, so that LI(K) is the set of rooted polygonal complexes k ∈ RC with k∗ ∼ K.
The set LI(K) is the combinatorial analogue of the canonical transversal Ξ = ΞT for
the action of the translation group on the continuous hull in the traditional theory
of aperiodic tilings (cf. [3, Chp 5]).

Our interest is in uncovering the structure and properties of the local isomor-
phism class (K) and of the rooted local isomorphism class LI(K). This working
lemma is proven with a straightforward diagonalization argument.

Lemma 2.6. Let K and L be planar polygonal complexes and let L1 ⊂ L2 ⊂ · · ·
be a sequence of finite, connected subcomplexes exhausting L, meaning that L =⋃∞

n=1 Ln. For each positive integer n, let hn : Ln ↪→ K be an isomorphic embedding
of complexes. If there are faces g0 ∈ L1 and f0 ∈ K such that hn(g0) = f0 for all
n ≥ 1, then K is isomorphic to L, K ∼= L.

The first application is to confirm that planar polygonal complexes that are
highly symmetric globally are uninteresting in terms of local isomorphism. Let
Aut(K) denote the set of orientation-preserving automorphisms of K.

Theorem 2.7. If Aut(K) acts cocompactly on the planar polygonal complex K and
L � K, then L ∼= K. It follows that the local isomorphism class (K) is a singleton.

Proof. Let F be a finite subcomplex of K that serves as a fundamental region for
the action of Aut(K) on K and write L =

⋃∞
n=1 Ln, where L1 ⊂ L2 ⊂ · · · are finite,

connected subcomplexes. Let g be a face of L1 and let (Ln, g) ∼= (Kn, fn), where
Kn is a subcomplex of K isomorphic to Ln. Since Aut(K) acts with fundamental
region F , we may assume that for each n, fn is a face of F . Since F is finite,
infinitely many of the faces fn must be the same face f , so we may assume without
loss of generality that fn = f for all n. Apply the working Lemma 2.6. �

Let H be a finite connected CW-complex. If K contains an isomorphic copy of
H, then we say that the H is represented in K. If there are infinitely many disjoint
isomorphic copies of H in K, we say that H is infinitely represented in K. If those
copies are uniformly distributed, we say H is quasi-dense in K. More precisely, H
is quasi-dense in K if there exists a positive integer n such that every vertex of
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K is contained in an edge path of length at most n that meets a vertex in some
embedded copy of H.

Definition. If every finite connected subcomplex H of K is quasi-dense in K, we
say that K is combinatorially repetitive.

When Aut(K) acts cocompactly on K, then every finite connected subcomplex is
quasi-dense. However, our interests are in settings without such global symmetries.

Theorem 2.8. If there is a finite connected complex H that is finitely represented
in K, then the local isomophism class (K) is a singleton. Alternately, if (K) is not
a singleton, then every finite connected subcomplex of K is infinitely represented
in K.

Proof. The proof is similar to that of Theorem 2.7. Assume that L is a planar
polygonal complex such that L ∼ K. Let L1 ⊂ L be a finite, connected subcomplex
that contains an isomorphic copy of H, which exists because K � L. Let F be a
finite, connected subcomplex of K that contains all subcomplexes of K isomorphic
to L1, which exists since H, and therefore L1, is finitely represented in K. Write
L =

⋃∞
n=1 Ln, where L1 ⊂ L2 ⊂ · · · are finite, connected subcomplexes which

exhaust L. Let g be a face of L1 and for each n let (Ln, g) ∼= (Kn, fn), where Kn is
a subcomplex of K isomorphic to Ln. By our choices of F and L1, for each n, fn
is a face of F . Since F is finite, infinitely many of the faces fn must be the same
face f , and we may assume without loss of generality that fn = f for all n. Apply
the working Lemma 2.6. �

Symmetries of a complex K typically bring to mind global symmetries, elements
of Aut(K). These don’t exist in traditional aperiodic tilings by definition. Yet if one
looks at, say, the familiar Penrose tiling, the eye immediately picks out large finite
patches that seem to repeat everywhere. Local isomorphism provides the refined
notion of symmetry that the eye picks out: namely, numerous local symmetries
between finite patches in differing regions of the tiling that do not extend to global
symmetries.

In the combinatorial setting of this paper, Theorems 2.7 and 2.8 position com-
plexes having singleton local isomorphism classes at both ends of the spectrum of
symmetry. The middle ground, complexes K without global symmetry, but such
that every finite patch reappears infinitely often, have rich local isomorphism classes
(K), the ones of most interest here.

We close this section with a detailed examination of the topology of the rooted
local isomorphism class LI(K). We find that the condition of combinatorial repeti-
tiveness is the key ingredient for identifying when LI(K) is compact.

Lemma 2.9. The set LI(K) is a dense Gδ subspace of the complete metric space

LI(K), the closure of LI(K) in RC, and as such is a completely metrizable Baire
space.

Proof. Obviously LI(K) is dense in the closure LI(K). Fix a face f of K and for
each positive integer n let

Un =
{
l ∈ LI(K) : BK(f, n) ↪→ l∗

}
.

To verify the theorem, we observe that each Un is open in LI(K) and that LI(K) =⋂∞
n=1 Un.
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Un is open in LI(K): Let l = (L, g) ∈ Un and chooseN ≥ n such thatBK(f, n) ↪→
BL(g,N), which is possible since BK(f, n) embeds isomorphically in L. Then the

set Bρ(l, e
−N ) ∩ LI(K) is an open neighborhood of l in LI(K) that is contained in

Un, and Un is open in LI(K).
LI(K) =

⋂∞
n=1 Un: The “⊂” containment follows from the observation that

LI(K) ⊂ Un for each n. For the containment “⊃”, suppose that l = (L, g) ∈ LI(K)
is an element of Un for all n. Then BK(f, n) ↪→ l∗ = L for all n, implying that every
finite connected subcomplex of K embeds isomorphically in L, so that K � L. For
any positive integer n, choose e = (E, h) ∈ LI(K) such that ρ(e, l) < e−n, which
is possible since l is in the closure of LI(K). Then BL(g, n) ∼= BE(h, n) ↪→ K, the
existence of the embedding following from E ∼ K. Since n is arbitrary, this implies
that every finite connected subcomplex of L embeds isomorphically in K, so that
L � K. We conclude that L ∼ K, hence l ∈ LI(K).

LI(K) is completely metrizable since it is a Gδ subspace of a complete metric
space (by Mazurkiewicz’s Theorem), and hence is a Baire space (by the Baire
Category Theorem). �

The following “invariance of domain” observation will be used several times later
in the paper.

Lemma 2.10. Let K and L be planar polygonal complexes, let f be a face of K,
and let g be a face of L. Let H be a subcomplex of K containing f so that (H, f) is
rootedly isomorphic to the combinatorial n-neighborhood CL(g, n) (resp., its filled
n-neighborhood BL(g, n)); then H = CK(f, n) (resp., H = BK(f, n)).

Theorem 2.11. If K is a planar polygonal complex whose local isomorphism class
(K) is not a singleton, then the space LI(K) has no isolated points. It follows
that LI(K) is a completely metrizable, uncountably infinite, perfect Baire space. In
particular, either (K) has one element or it has uncountably many elements.

Proof. Let l = (L, g) ∈ LI(K). By hypothesis there exists a planar polygonal
complex J that is locally isomorphic to, but not isomorphic to L. Let n be a
positive integer. Since L ∼ J , there is an isomorphic embedding h : BL(g, n) ↪→ J
with, say, h(g) = f . By the preceding lemma, the image of the filled n-neighborhood
BL(g, n) under h is precisely the filled n-neighborhood BJ (f, n), and this implies
that 0 �= ρ(j, l) ≤ e−n, where j = (J, f). It follows that l is not an isolated point of
LI(K).

Lemma 2.9 guarantees that the metric space LI(K) is a completely metrizable
Baire space and the argument of this proof thus far guarantees that it is perfect.
This implies that LI(K) cannot be countable.

The fact that (K) is uncountably infinite when not a singleton is an immediate
consequence of the fact that (K) is the image of the uncountable set LI(K) under
the countable-to-one forgetful map ∗. �

The set LI(K) generally fails to be closed in RC. The next theorem demonstrates
that its closure captures precisely those complexes that precede K under the pre-
order �.

Theorem 2.12. For an arbitrary planar polygonal complex K, the closure of LI(K)
in the space RC is

LI(K) = {l ∈ RC : l∗ � K}.
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Proof. (⊂): Let (L, g) = l ∈ LI(K) and let H be a combinatorial patch in L. Choose
n so that H ⊂ BL(g, n) and let (J, f) = j ∈ LI(K) such that ρ(j, l) < e−n. Then the
neighborhoods BL(g, n) and BJ (f, n) are isomorphic and therefore H ↪→ J . Since
J ∼ K, we conclude that H ↪→ K, and therefore l∗ = L � K.

(⊃): Suppose that (L, g) = l ∈ RC with L = l∗ � K. Then for any n, there
is an isomorphic embedding hn : BL(g, n) ↪→ K. By Lemma 2.10, the image
hn(BL(g, n)) = BK(hn(g), n). Hence ρ(l, kn) ≤ e−n, where kn = (K,hn(g)) ∈
LI(K), and therefore l ∈ LI(K). �

We now want to ask, when K is infinite, when the perfect, totally disconnected
metric space LI(K) is compact, and therefore a Cantor set. First note that if
K has FLC, say with degree bounded by a positive integer d and satisfying a
θ-isoperimetric inequality, then LI(K) is a subspace of the compact set RCd,θ (The-

orem 2.4), and the question becomes: When is the space LI(K) closed in RCd,θ?

Theorem 2.13. If K is combinatorially repetitive, then LI(K) is a closed subspace
of RC, and therefore complete in the metric ρ, and every complex in (K) is combi-
natorially repetitive. If in addition (K) is infinite and K has FLC, then LI(K) is
a Cantor set.

Proof. By Theorem 2.12, to verify that LI(K) is closed all we need show is that
l ∈ LI(K) whenever (L, g) = l ∈ RC satisfies L � K. Let L � K and let H be a
finite combinatorial patch in K. Since K is combinatorially repetitive, there exists
an integer n such that an isomorphic copy of H appears in the combinatorial n-
neighborhood of every face of K. Since L � K, there is an isomorphic embedding
h : BL(g, n) ↪→ K. By Lemma 2.10, h(BL(g, n)) = BK(h(g), n) and our choice
of n guarantees that H ↪→ BK(h(g), n). It follows that H ↪→ BL(g, n) ⊂ L and
therefore K � L. Therefore K ∼ L and (L, g) = l ∈ LI(K).

That L is combinatorially repetitive whenever K ∼ L is left as an exercise. If K
is of bounded degree d, satisfies the θ-perimetric inequality, and is combinatorially
repetitive, then LI(K) is a closed subspace of the compact set RCd,θ. If in addition
(K) is infinite, Theorem 2.11 implies that LI(K) is perfect and, therefore, is a
Cantor set. �

Our last result is a consequence of the two preceding theorems.

Corollary 2.14. If LI(K) is a closed subspace of RC, then L � K if and only if
L ∼ K. In particular, if K is combinatorially repetitive, then L � K if and only if
L ∼ K.

3. Combinatorial hierarchies

For the rest of the paper, planar polygonal complexes K will be referred to as
combinatorial tilings, their “tiles” k being combinatorial polygons. Our interest
lies with sequences of tilings which display hierarchical structure. This could take
many meanings, but for us it has to do with subdivision (or substitution) processes,
originally combinatorial but eventually conformal. This section develops the basics
of combinatorial hierarchies and quite general subdivision rules τ . In the next
section we make the conditions on τ progressively stronger, reaping progressively
stronger features in their hierarchies. We are then prepared to move to the parallel
conformal tiling story in §5.
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Recall that L ≤ K indicates that L is a combinatorial subdivision of K. In this
case, we also say K is a combinatorial aggregation of L.

Definition. The combinatorial tiling K exhibits a combinatorial hierarchy if there
is a bi-infinite sequence {Kn : n ∈ Z}, called a combinatorial hierarchy for K, of
combinatorial tilings indexed by the integers such that the following three conditions
hold:

(1) K0 = K;
(2) Kn+1 ≤ Kn ∀n ∈ Z (Kn+1 is a combinatorial subdivision of Kn);
(3) Kn+1 ∼ Kn ∀n ∈ Z (Kn+1 is locally isomorphic to Kn).

We bring condition (3) especially to the reader’s attention: a “hierarchy” is not
just a bi-infinite sequence of nested tilings since the members must belong to the
same local isomorphism class.

When K exhibits a combinatorial hierarchy {Kn}, there is a subdivision process
which we will denote by σn for each n so that σnKn = Kn+1. The collection {σn}
is called the subdivision sequence for the hierarchy {Kn}. For m ≥ n write σm

n for
the rule for Kn that applies σn, . . . , σm−1 successively to obtain the complex Km.
For now, the σn may be quite ad hoc processes. (In our notation, rule σm

m is the
identity and σn+1

n = σn.)
We should point out here that there are many ad hoc ways to generate hier-

archies. It is useful to observe, for example, that any bi-infinite subsequence of a
hierarchy is itself a hierarchy. However, our primary concern is with hierarchies
generated by subdivision rules τ , so let’s look at some details.

3.1. Subdivision rules. Up to this point, our “tiles” have simply been combi-
natorial polygons. However, circumstances generally require more sophistication.
From now on tiles will be classified as to “type”. By default, the type simply refers
to the number n of sides (and of vertices), but optionally type may include addi-
tional information, such as a “label”, an orientation, and/or a designated principal
vertex. In a sense, type serves as a substitute in the combinatorial setting for the
way that shape is used to distinguish tiles in traditional tiling. In any case, We
assume henceforth that there is some fixed set T of tile types behind the tilings we
are studying at the moment, with each tile corresponding to a unique member of
T. Often we need no details about the members of T, or only generic properties
such as finiteness of T (which is typical). At the other extreme, for specific subdi-
vision rules one must fully describe T; for instance, the Cannon, Floyd, and Parry
“mixed” rule, described in Figure 24 of [7], has six (6) tile types, four 4-gons, and
two 3-gons.

Definition. A subdivision rule τ is, in fact, a collection of rules, one associated
with each tile of a collection T of tile types. Each rule describes how its associated
tile is to be subdivided into a finite pattern of subtiles, each again of a type in T.
The rule τ is said to be finite if T is finite.

Some cautionary comments are in order on subdivision compatibility. Two tiles
of τK must intersect only at isolated vertices and/or along full edges; thus a vertex
of one tile cannot fall in the interior of an edge of a neighboring tile. If tiles k1
and k2 of K share a common edge e, then their subdivisions τk1 and τk2 must
decompose e in identical fashion. We covered ourselves in the case of subdivision
operators τ = {τn} by the requirement of “edge compatibility” of the seeds τn
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in §1, so τ can be applied to virtually any combinatorial tiling. Things are not
so straightforward in general. Though a subdivision rule τ may apply to each
individual tile type in a given combinatorial tiling K, it might not apply to K as
a whole due to edge incompatibilities. Conditions may seem easy to state, but
when designing a subdivision rule from scratch with the aim of making repeated
application, compatibility can be devilishly difficult to guarantee.

Introducing tile types is rather innocuous when it comes to the mechanics, but
it does require some adjustments in topics we have discussed earlier.

• In a given setting, we assume that T is minimal, meaning there are no
extraneous tile types included. Thus, every type t ∈ T is represented in
K or in a subdivision τkK for some positive integer k. For example, a
subdivision operator τ = {τn} as defined in §1 is nominally infinite, but
if the tiles of K and its subdivisions are m-gons for only some finite list
{m1,m2, · · · ,mk} of values for m, then T is finite and τ acts as a finite
subdivision rule.

• A combinatorial tiling K having finite local complexity, FLC, now means
that T is finite, that there is an upper bound on the number of tiles which
come together at any vertex, and that there is a positive function θ so that
K satisfies the θ-isoperimetric inequality.

• With T in the background, it is also understood that all maps between
tilings or patches of tilings—embeddings, isomorphisms, local isomor-
phisms, and so forth—respect type. If f : L → K is a cellular isomor-
phism between tilings, then faces k ∈ L and f(k) ∈ K automatically have
the same number of sides; but if the type of k also involves, for example, a
designated principal vertex, then h must respect this as well.

• Since maps respect types in T, the results of §2 apply with the understand-
ing that all tilings have tiles with these types. Thus we can speak of the

spaces RCT, CT, RC
n,θ
T

, LIT(K), and so forth. Since T may be assumed in
a given setting, we will abuse notation and drop the subscript.

• If TK is the conformal tiling for K, then type designations from K carry
over to TK as well.

It is immediate that, whenever K ∼= L, we have τK ∼= τL. This of course implies
that τ induces a function τ̂ : C → C in the obvious way, by sending the isomorphism
class of K to the isomorphism class of τK. The hat symbol ̂ is useful here: τK
refers to a specific combinatorial subdivision ofK while τ̂K refers to its isomorphism
class in C. The induced function τ̂ is also handy in another situation that will come
up frequently later in the paper, namely, periodicity.

Definition. SupposeK is combinatorial tiling and τ is a subdivision rule applicable
to K. If there is some m ≥ 1 so that τmK ∼= K, then we say τm is a combinatorial
period map forK and thatK is τ -periodic. The least value ofm for which τmK ∼= K
is called the τ -period of K.

We may rephrase this result by saying that the isomorphism class of K is a fixed
point for τ̂m. Clearly the collection of combinatorial period maps τ for K is closed
under composition.

The connections between subdivision rules and combinatorial heirarchies now
become our main focus, and we use the following terminology.
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Definition. A subdivision rule τ is said to manifest a combinatorial hierarchy
for the combinatorial tiling K if K exhibits a combinatorial hierarchy {Kn} with
τKn = Kn+1 for all n ∈ Z.

It is important to recall that this means τKn is locally isomorphic to Kn for each
n, a non-trivial requirement. Also note that by reindexing, the rule τ manifests
a combinatorial hierarchy of every Kn. (In our generic notation, σm = τ for all
m ∈ Z, and σn

m = τn−m for all m ≤ n.)

3.2. Expansion complexes. Our theory remains rather abstract until we can ac-
tually produce combinatorial hierarchies. From what we have said, the intuition is
clear—build a hierarchy for K by repeated application of some subdivision rule τ .
There are (at least) two hurdles: First, although the forward half of the sequence,
{Kn = τnK : n = 0, 1, 2, · · · }, seems straightforward, recall that we require that
τKn be locally isomorphic to Kn, which is not generally the case. Second, gener-
ating the backward half, {K−n : n = 1, 2, · · · }, suggests a need for an aggregation
rule τ−1, which generally fails to exist.

We introduce expansion complexes to address these issues. The basic idea will be
familiar to anyone in tiling theory: A subdivision rule τ defines a refinement process
for tilings: starting with a single “initial” tile, one subdivides, then subdivides the
result, and continues subdividing. Each stage is, of course, only a finite tiling, but
diagonalization allows one to extract infinite tilings in the limit. By subdividing
such a limit repeatedly with τ , one obtains one-way infinite sequences of infinite
tilings. Expansion complexes formalize the diagonalization procedure typically used
in these situations, though it avoids the global finite complexity hypotheses which
are commonly required. Moreover, as the formulation is combinatorial, we can often
extract two-way infinite sequences of infinite tilings, which are our main objects
of study. We begin with a definition of expansion complexes applicable to quite
arbitrary subdivision rules τ , though we will be more restrictive shortly.

In the following, we use a definition of “interior” for CW-complexes that comes
from manifold theory rather than general topology. It will be used only for finite,
2-dimensional planar CW-complexes F and refers to the union of the open faces of
F , the open edges that meet two closed faces of F , and the vertices of F that have
an open neighborhood in |F |. We denote it by F ◦.

Given a subdivision rule τ , let Δ denote a fixed combinatorial tile belonging
to the collection T of tile types for τ . Define the sequence of subdivisions {Δj},
wherein Δ0 = Δ and Δj+1 = τΔj , j = 0, 1, · · · . We study nested patches within
this sequence from which limit tilings may be extracted: Let

(‡) F1 ↪→ F2 ↪→ · · · ↪→ Fm ↪→ Fm+1 ↪→ · · ·

be any sequence of isomorphic embeddings of CW-complexes that satisfies the fol-
lowing properties:

(1) for each positive integer m, Fm is a connected subcomplex of Δim for some
positive integer im, with im < im+1;

(2) each map Fm ↪→ Fm+1 is a cellular, orientation-preserving, isomorphic
embedding of CW-complexes which respects tile types;

(3) for each m, there exists a positive integer p for which the image of Fm under
the composition Fm ↪→ · · · ↪→ Fm+p is contained in the interior of Fm+p;
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(4) for each m and each combinatorial simple closed edge path γ in Fm, there
exists a positive integer q for which the image of γ under the composition
Fm ↪→ · · · ↪→ Fm+q bounds a combinatorial disc in Fm+q.

Treating {Fm} as a nested sequence of complexes, it is not difficult to see that
it has a directed limit K = lim

−→
Fm. Property (3) guarantees that the topological

space |K| is a non-compact topological 2-manifold. Property (4) guarantees that
|K| is simply connected. It follows that |K| is homeomorphic to the plane so that
K is a CW-decomposition of the plane. Since each subdivision τ imΔ is regular, so
too is the CW-decomposition K. It follows that K is a combinatorial tiling. We
establish the following definition (omitting Δ since its significance generally fades
in the limit).

Definition. Let the sequence {Fm : m = 1, 2, · · · } be as in (‡) with the properties
(1)–(4) given above. The CW-complex K = lim

−→
Fm, the direct limit of the system

(‡), is a planar polygonal complex (a combinatorial tiling) called an expansion
complex for the subdivision rule τ .

Of course the tiles of K have the types of T and we may repeatedly apply τ to get
the one-way infinite sequence {Kn = τnK : n ≥ 0} of refinements, as anticipated.
For the full two-way infinite sequence, we look to aggregation in the next subsection.
First, remarks.

Remarks.

• We make no claim that these properties for the sequence {Fm} are in-
dependent: under mild restrictions on τ , for example, property (4) is a
consequence of properties (2) and (3). Property (3) guarantees that K
is a CW-decomposition of a surface without border, playing the role that
“forcing the border” plays in traditional tiling theory. Likewise, remov-
ing property (4) would allow for holes, perhaps even an infinite number.
Bordered and multiconnected complexes would be interesting in their own
right, but we avoid them here.

• In typical constructions, each Fm in (‡) will be a CW-decomposition of
a closed topological disc whose image under Fm ↪→ Fm+1 will lie in the
interior of Fm+1. Properties (3) and (4) automatically adhere in this case.
The slightly more complicated property (3) makes for easier proofs in what
follows.

• On the other extreme, one can easily find subdivision rules having no ex-
pansion complex: a rule that breaks each n-gon into n+1-gons, for example,
will not allow the embeddings needed in (‡).

• The initial tile Δ cannot be ignored in this definition, though it remains in
the background. In Example 6.3 of §6 we will see how this subtlety might
be overlooked.

• Lastly, we observe that expansion complexes as defined by Cannon, Floyd,
and Parry in [10] fit within our definition, but are more restrictive; as with
the pentagonal tiling of [5], their expansion complexes are associated with
expansion maps, which fail to exist generically.

3.3. Aggregation. The reverse of subdivision is what we term “aggregation”, and
the notion is precisely what one would expect.
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Definition. A τ -aggregate of a combinatorial tiling K is a combinatorial tiling L
for which τL ∼= K.

One can easily find complexes K to which τ applies that have no τ -aggregates,
and as will be seen in the cautionary Example 4.4, if a τ -aggregate exists it is not
necessarily unique. Thus, in deploying the machinery for constructing τ -aggregates,
we will place additional conditions on τ as circumstances demand. For the key
theorem proved next and later uses, we modify the notion of fat paths used in §2.
The skinny path distance δK(k, h) is the smallest integer m such that there exists a
chain {k = k0, k1, · · · , km = h} of faces of K with kj ∩ kj+1 �= ∅, j = 0, · · · ,m− 1.
Succeessive faces need not share edges, so one can step from face to face across
vertices as well; in particular, the skinny path distance between faces never exceeds
the fat path distance. We assume that τ is δ-bounded, meaning that there is a
positive constant �, called a δ-bound for τ , such that for any tile type in t ∈ T, the
skinny path diameter of its subdivision τ (t) is less than �. Note, for instance, that
all finite subdivision rules and all simple subdivision operators are δ-bounded.

Theorem 3.1. Any expansion complex K = lim
−→

Fm for a δ-bounded subdivision

rule τ has a τ -aggregate L which is itself an expansion complex for τ .

Proof. For each m > 1, let Gm be the smallest subcomplex of τ im−1Δ whose
τ -subdivision τGm, a subcomplex of τ imΔ, contains Fm. Ideally, the complexes
Gm would admit appropriate embeddings, Gm ↪→ Gm+1, so that τGm ↪→ τGm+1

extends the embedding Fm ↪→ Fm+1. The directed limit L = lim
−→

Gm would be

an expansion complex for τ with τL ∼= K. Unfortunately, in the face of non-
uniqueness of aggregation, this direct approach may fail. There is, however, a finite
list of candidates for each Gm, so we may use diagonalization. It may help the
reader to recall that there is a sequence {im} of indices given in property (1) for
the complexes Fm; our diagonalization involves choosing a subsequence {jm} of
these indices.

First, by identifying each Fm with its canonical embedded copy in the direct limit
K, we may write K as the increasing union

⋃∞
m=1 Fm. By passing to a subsequence

if necessary, property (3) allows us to assume, for each positive integer m, that Fm

is contained in the interior of Fm+1. In fact the use of property (3) allows us to
assume, without loss of generality, that the skinny path distance from any face
of Fm to any face in the complement of Fm+1 is greater than � + 1, where � is a
δ-bound for τ .

Recall the embedding sequence (‡): for integers m and p, 1 < m < p, we have
the embedding Fm ↪→ Fm+1 ↪→ Δip = τ ipΔ. Thus there is a smallest connected

complex Hm,p of τ ip−1Δ so that Fm ↪→ τHm,p ↪→ Δip . Since the skinny path
distance from any face of Fm to the complement of Fm+1 is greater than �+ 1, we
necessarily have Fm ↪→ τHm,p ↪→ Fm+1. Each Hm,p might play the role of Gm, but
the Hm,p need not be isomorphic for different p, and even if they were, the pairs
(τHm,p, Fm) need not be isomorphic as pairs. Nonetheless, since for each p > m
the complex τHm,p is a subcomplex of the finite complex Fm+1, we may extract
a subsequence pj of indices for which the pairs (τHm,pj

, Fm) will be isomorphic.
This is the basis for our diagonalization.

Applying the sequence extraction of the previous paragraph with m = 1, there is
a subsequence we label {p1j} so that the pairs (τH1,p1

j
, F1) are isomorphic. Continue

inductively: given sequence {pmj } there’s a subsequence {pm+1
j } of indices greater
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than m+1 so that the pairs (τHm+1,pm+1
j

, Fm+1) are all isomorphic. Having carried

this out for each positivem, we arrive at the diagonal sequence {nj}, where nj = pjj ,
which we may assume is increasing.

For each m > 0, the pairs (τHm,nj
, Fm) are isomorphic for all indices nj > m

so we define Gm = Hm,nm
to represent this shared complex. In particular, Gm

is isomorphic to a subcomplex of τnm−1, so we also define the index jm = nm −
1. Observe that for an index j > nm+1 both Gm and Gm+1 are isomorphic to
subcomplexes of τ ij−1Δ with

(1) Fm ↪→ τGm ↪→ Fm+1 ↪→ τGm+1 ↪→ Fm+2.

Since τGm+1 contains Fm, our definition of Hm,ij tells us that Hm,ij ↪→ Gm+1;
that is, Gm ↪→ Gm+1.

As a result of this process we arrive at the sequence

(‡‡) G1 ↪→ G2 ↪→ · · · ↪→ Gm ↪→ Gm+1 ↪→ · · · .

The complexes Gm along with the indices jm satisfy the properties (1)–(4), so
L =

⋃∞
m=1 Gm is an expansion complex for τ . Moreover, since K =

⋃∞
m=1 Fm, (1)

implies that τL = K, and L is seen as a τ -aggregate of K. This completes the
proof. �

Using this theorem we can obtain the backward half {K−n : n ≥ 1} of our nested
sequences: Given an expansion complex K for τ , let K0 = K and inductively define
K−n to be a τ -aggregate of K−n+1, n = 1, 2, · · · . The bi-infinite sequence {Kn}
now satisfies conditions (1) and (2) required of a combinatorial hierarchy for τ .

3.4. Primitive rules. Condition (3) in the definition of combinatorial hierarchy
involves, in our situation, the local isometry condition, τKn ∼ Kn. We can only ex-
pect this with restrictions on τ which are common as well in traditional substitution
tilings.

Definition. A subdivision rule τ (necessarily finite) is strictly primitive if for every
tile type t ∈ T, the subdivision τt contains subtiles representing all tile types in
T. The rule τ is primitive if there is some positive integer s so that τ s is strictly
primitive.

As an example, look to the “Penrose” subdivision rule τ of [7, Fig. 17]. Though
τ2 is strictly primitive, τ itself is not.

Theorem 3.2. Suppose τ is a primitive finite subdivision rule and that K is an
expansion complex for τ .

(a) K is combinatorially repetitive.
(b) The local isomorphism class (K) is precisely the set of all isomorphism

classes of expansion complexes for τ .
(c) For all positive integers k, τkK is locally isomorphic to K.

Proof. We first set notation. Suppose K = lim
−→

Fm is an expansion complex for τ

with initial polygon Δ of type t ∈ T. We may identify each Fm with its canonical
copy in K and write K =

⋃∞
m=1 Fm. Recall that for each Fm we have an integer

im so that Fm ↪→ τ imΔ. Fix s > 0 so that τ s is strictly primitive and let � be a
δ-bound for τ
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(a) Let H be a finite connected subcomplex of K. Then for some positive integer
m, H ↪→ Fm, hence H ↪→ τ imΔ. Apply Theorem 3.1 to obtain a τ im+s-aggregate
tiling K ′ for K; that is, so τ im+sK ′ ∼= K. Let k be any face of K and let k′ be
the face of K ′ that contains k. Note that the skinny path diameter of the complex
τ im+sk′, which contains k as a face, is at most �im+s. Since τ s is strictly primitive,
τ sk′ contains a tile g of type t. In particular, the subcomplex τ img of τ im+sk′

contains an isomorphic copy of H. It follows that the face k of K is �im+s-close to
an isomorphic copy of H in the skinny path metric δK , and this implies that each
vertex of k is contained in an edge path of K of length at most �im+s that also
contains a vertex of an isomorphic copy of H. We conclude that H is quasi-dense
in K, and thus that K to be combinatorially repetitive.

(b) For one direction, suppose L = lim
−→

Gm is another expansion complex for τ

with initial polygon Δ′ of type t′ ∈ T. It suffices to verify that, for each positive
integer n, the subdivided polygon τnΔ′ embeds isomorphically in K. From The-
orem 3.1 we can obtain a tiling K ′ such that τn+sK ′ ∼= K. Since τ s is strictly
primitive, τ sK ′ contains a tile k of type t′. Note that τnk ⊂ τn+sK ′, so τnk
embeds isomorphically in K. But τnk ∼= τnΔ′, so we are done. Interchanging the
roles of K and L, we conclude that any two expansion complexes for τ are locally
isomorphic.

For the other direction, we need to show that if a combinatorial tiling L is locally
isomorphic to the expansion complex K, then L is itself an expansion complex for
τ . Let Cm for m ≥ 1 be a sequence of pairwise disjoint simple closed edge paths in
L such that Cm+1 separates Cm from infinity and let Dm be the combinatorial disc
bounded by Cm. Then Dm is contained in the interior of Dm+1. Since K is locally
isomorphic to L, Dm is isomorphic to a subcomplex D′

m of K and there exists an
index k(m) such that D′

m is contained in Fk(m). We may assume by choosing k(m)
sequentially that k(m) < k(m+1), implying that jm = ik(m) < ik(m+1) = jm+1. We

then have the isomorphic embedding Dm
∼= D′

m ↪→ Fk(m) ↪→ τ jmΔ, and properties
(1) through (4) in the definition of expansion complex are satisfied. We conclude
that L =

⋃∞
m=1 Dm

∼= lim
−→

D′
m is an expansion complex for τ .

(c) Observe that τK is an expansion complex for the subdivision operator τ .
Indeed, the sequence of embeddings defining an expansion complex for τK is merely
τFm ↪→ τFm+1, where τFm is a subcomplex of ττ imΔ = τ im+1Δ. This and
induction then imply that, for all positive integers k, τkK is also an expansion
complex for τ , and an application of (b) finishes the proof. �

3.5. Generating hierarchies. We finally find ourselves in position to generate a
plethora of combinatorial hierarchies: indeed, for certain subdivision rules τ , every
expansion complex exhibits a combinatorial hierarchy.

Theorem 3.3. Every expansion complex K associated with a primitive finite sub-
division rule τ exhibits a combinatorial hierarchy manifest by τ .

Proof. Let K = K0 be an expansion complex for a strictly primitive finite subdi-
vision rule τ . For positive integers k, let Kk = τkK and define the combinatorial
tiling K−k inductively using Theorem 3.1 so that τK−k = K−k+1 for all k. Theo-
rem 3.1 guarantees that each K−k is an expansion complex associated to τ , while
Theorem 3.2(c) implies that Kk is locally isomorphic to Kk+1 for all integers k. It
follows that {Kk} is a combinatorial hierarchy manifested by τ . �
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Note that the converse of this theorem fails: a member Kn of a combinatorial
hierarchy for τ need not be an expansion complex for τ . See the discussion in
Example 6.3 for an illustration.

4. Combinatorial hypotheses

It turns out that combinatorial hierarchy alone is not enough to capture the
sense of hierarchical tiling as used in the traditional tiling community. Other prop-
erties of tilings, such as repetitiveness and finiteness conditions, and properties of
subdivision rules, such as expansiveness, must be brought to bear. In this section
we introduce the needed combinatorial machinery. We start with the notion of
engulfing.

4.1. Cores and engulfing. Suppose {Kn} is a generic combinatorial hierarchy for
K = K0 with subdivision sequence {σn}. When F is a finite subcomplex of K and
m ≥ 0, we say that the subcomplex E of K−m engulfs F if F is a subcomplex of
σ0
−mE, itself a subcomplex of K0 = K; that is, after E is subdivided m times, the

resulting tiles of K0 contain F . A core of K is a combinatorial patch that comes in
one of three flavors—its faces consist either of a single face of K, known as a face
core, two faces that meet along a common edge, an edge core, or all the faces that
meet at a vertex, a vertex core.

Definition. The combinatorial hierarchy {Kn} for K is expansive if, for every
finite subcomplex F of K, there exists an integer m ≥ 0 such that F is engulfed by
a core of K−m, and hence by a core of K−n for any n ≥ m.

This formalizes the idea that F may be thought of as a subset of a core once we
have aggregated a sufficient number of times, but we will need a more quantitative
statement. Recall that we have defined two combinatorial distances between faces
k and h of K, the fat path distance using chains of faces sharing edges and the
skinny path distance that allows faces to share just vertices. The latter, δK(k, h) is
more useful here; it cannot exceed the fat path distance, and, in fact, the two are
comparable if K has finite degree.

If F is a finite subcomplex of K, the skinny path diameter of F is the largest
skinny path distance between faces of K that meet F . Notice that if L is a sub-
division of K and k′, h′ are faces of L contained in faces k, h, respectively, of K
then skinny path distances satisfy δL(k

′, h′) ≥ δK(k, h), and we write δL ≥ δK .
Symbolically, L ≤ K implies δL ≥ δK . In this sense we may say that the se-
quence of skinny path metrics δKn

for the combinatorial hierarchy {Kn} increases
distances as n → ∞ and decreases distances as n → −∞. Notice that this increase
and decrease of distance among faces in a hierarchy is not necessarily strict, as
Example 4.3 below illustrates.

Definition. The combinatorial hierarchy {Kn} for K is strongly expansive if there
exists a function φ : N → R+, φ(n) → ∞ as n → ∞, and a positive constant M
such that, for any integer m > M , any finite subcomplex F of K of δK-diameter
at most φ(m) is engulfed by a core of K−m.

This of course says that the number of aggregations for a core to engulf a finite
subcomplex F of K depends only on the diameter of F : aggregating m times is
sufficient to engulf any finite subcomplex having δK-diameter at most φ(m). For
instance, if φ(m) = λm for some λ > 0, then the hierarchy is linearly expansive,
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while if φ(m) = λm for some λ > 1, then it is exponentially expansive. The latter
will play an important role in our later work. We will see, for example, that the
hierarchies for Z and P in Examples 4.1 and 4.2 below are exponentially expansive.

Here are three examples. The first two are strongly expansive, based on criteria
we develop later in the section, while the third is non-expansive.

Example 4.1. The Gaussian complex. For an elementary, but nonetheless
useful, example let Z denote the combinatorial tiling associated with the lattice
of unit squares in C having corners at the Gaussian integers Z2. For each n let
σn be the “quad” subdivision rule of Figure 2. Thus Z exhibits the combinatorial
hierarchy {Zn} where each Zn is isomorphic to Z itself. (In fact the conformal tiling
Z for Z is just the square tiling Z itself.)

√

Example 4.2. The regular pentagonal complex. More interesting is the com-
binatorial regular pentagonal tiling P whose conformal tiling P is the subject of [5].
If we let each σn be the “pentagonal” subdivision rule shown in Figure 1, then P

exhibits a combinatorial hierarchy {Pn}. The key observation exploited in [5] was
that Pn ∼= Pn+1. However, (P) is uncountable, and we will see that every complex K
that is locally isomorphic with P also exhibits a combinatorial hierarchy under the
“pentagonal” subdivision rule, though generically, Kn �∼= Kn+1. Examples of locally
isomorphic conformal tilings for P are illustrated later in Figures 6 and 7.

√

Example 4.3. A non-expansive combinatorial hierarchy. The combinatorial
tiling H we describe here underlies the Penrose hyperbolic tiling familiar to the
traditional tiling community, the discrete hyperbolic plane familiar to the geometric
group theory and conformal geometry communities, and the Carleson (or Whitney)
squares used in function theory. For example, the 1-skeleton of H occurs in the
Cayley graph of a Baumslag-Solitar group. We described the subdivision rule τ
and the resulting conformal tiling H = TH in [7, Example 3.11]; the reader can see
half plane tilings there in Figure 21.

Our interest in H lies with its combinatorics, and we use the rather pedestrian
schematic shown in Figure 4. The vertices of H lie along the horizontal lines in the
complex plane C with integer imaginary parts. At level m ∈ Z, the vertices are
{vm,k = 2mk +mi : k ∈ Z} and the edges are the horizontal segments incident to
vm,k and vm,k+1 for all k ∈ Z. The remaining edges are vertical segments incident
to the vertices vm,k and vm−1,2k for all m, k ∈ Z. The faces of H are pentagonal with
cyclically ordered vertices vm,k, vm−1,2k, vm−1,2k+1, vm−1,2k+2, vm,k+1 for the face
km,k, for m, k ∈ Z. For any integer n, the nth tiling in the combinatorial hierarchy
{Hn} is just a copy of H translated vertically n units. Explicitly, Hn = H + ni.
Observe that the subdivision σ0 subdivides each face km,k by bisecting each of
its horizontal edges with a midpoint vertex, then adding a single vertical edge
incident to the midpoint of the edge 〈vm,k, vm,k+1〉 and the vertex vm−1,2k+1. This
subdivides each of the pentagonal faces of H into two pentagonal faces and, easily,
σ0H = H+ i.

Any core of H is sandwiched between horizontal lines at most distance 2 apart,
and repeated subdivisions will not change this. In other words, if F is a finite
subcomplex of H spanning, say, two lines distance 3 apart, then there is no core
that can engulf F . In particular, the hierarchy {Hn} is not expansive. It is useful to
observe that while the Riemann surfaces SZ and SP for our two expansive examples
above are parabolic, the Riemann surface SH is hyperbolic.

√
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m = 0

m = 1

m = 2

m = −1

m = −2

m = −3

Figure 4. Geometric representation of the polygonal complex H.

4.2. Criterion for expansiveness. The hierarchies of interest to us are manifest
by subdivision rules τ , such as those in the three examples above. We next present
a criterion, simple to check, implying that any combinatorial hierarchy for τ must
be strongly expansive. If v is a vertex of a combinatorial n-gon k, then the set
∠v = {v} ∪ d◦ ∪ e◦ ∪ k◦, where d and e are the edges of k incident with the vertex
v, is called the open angle of k at v. In this definition, k is treated as a tile of a
type to which τ applies, but only the fact that it is an n-gon is relevant.

Definition. We say that a subdivsion rule τ is strictly shrinking if, for every n-gon
k to which it applies, every closed subtile of τk is contained in some open angle of
k. We say τ is shrinking if for some n ≥ 1, the rule τn obtained from τ by iterating
it n times is strictly shrinking.

Note in particular that if k is a face of a combinatorial tiling K to which a
strictly shrinking τ applies, and t is a subtile of τk, then t cannot contain two
vertices of k nor can it meet more than two edges of k non-trivially, and if it does
meet two edges, those edges must be adjacent. If τ is (strictly) shrinking, observe
that τm is (strictly) shrinking for all positive integers m. For examples, look to the
subdivisions arising from the rules showcased in Figures 1 and 2. One can check
that all but the star, delta, and hex rules are strictly shrinking. The hex rule is
shrinking, as its second iterate is strictly shrinking.

Lemma 4.1. Let τ be a shrinking subdivision rule with τ s strictly shrinking for
some integer s ≥ 1. Then the skinny path metrics satisfy δτsK ≥ 2δK − 1 for any
combinatorial tiling K to which τ applies. In particular, if {Kn} is a combinatorial
hierarchy for τ , then δKn+s

≥ 2δKn
− 1 for all integers n.

The proof of this lemma, though slightly technical, is straightforward, so we
leave it to the reader. With the help of this lemma we get the main result for this
subsection.

Theorem 4.2. Let τ be a subdivision rule that manifests a combinatorial hierar-
chy for the combinatorial tiling K. If τ is shrinking, then the hierarchy {Kn} is
exponentially expansive.
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Proof. By hypothesis, τ s is strictly shrinking for some positive integer s. Note,
however, that if one were to prove that the subhierarchy {Ksn : n ∈ Z} for τ s is
exponentially expansive, then one could conclude immediately that {Kn} itself is
exponentially expansive. It suffices, therefore, to assume that τ is strictly shrinking,
i.e., s = 1.

Define φ : N → R+ by φ(m) = 2m/2 = αm, an increasing exponential function

in the variable m with base α =
√
2 > 1. Let F be a finite subcomplex of K of δK-

diameter at most αm, for some positive integer m. We will verify that F is engulfed
by a core of K−m as long as m > 4. This will show that {Kn} is φ-expansive and
thus exponentially expansive.

First note that by the previous lemma with s = 1, we have the inequality δKn+1
≥

2δKn
− 1 available. This implies that δK ≥ 2rδK−r

− 2r +1 for all positive integers

r. Choose r so that 2r−1 < αm ≤ 2r and observe that this implies that 2(r − 1) <
m ≤ 2r. Fix a face k of K that meets F . Since δK ≥ 2rδK−r

− 2r + 1, if h is
another face of K that meets F with δK(k, h) > 1, and a and b are faces of K−r

that contain k and h, respectively, then

αm ≥ δK(k, h) ≥ 2rδK−r
(a, b)− 2r + 1.

This implies, since αm ≤ 2r, that when δK(k, h) > 1, then δK−r
(a, b) ≤ 2− 1/2r <

2, or δK−r
(a, b) ≤ 1. This says that after r aggregations, the subcomplex F is

engulfed by the combinatorial patch PK−r
(a, 1) of radius 1, the patch whose faces

c satisfy δK−r
(a, c) ≤ 1. Our claim is that after one more aggregation, the patch

PK−r
(a, 1), and therefore the subcomplex F , is engulfed by a core of K−(r+1). Since

2(r − 1) < m, it follows that

(†) (r + 1) ≤ 2(r − 1) < m as long as r ≥ 3.

If we set m > 4, then αm = 2m/2 > 22 implies that 2r−1 ≥ 22, so r ≥ 3 and hence
inequality (†) holds. Since F is engulfed by a core of K−(r+1) and m > (r + 1),
F is also engulfed by a core of K−m. This implies that the hierarchy {Kn} is
exponentially expansive, and the proof is complete modulo the claim.

As for the claim, we need only show that when τ is strictly shrinking, the com-
binatorial patch PτK(a, 1) of any face a of τK is contained in a core of K. Let b
be the face of K that contains a. Since τ is strictly shrinking, a is contained in
an open angle ∠bv = {v} ∪ d◦ ∪ e◦ ∪ b◦ determined by the vertex v of b that is
incident with the edges d and e of b. Immediately then, the vertices of a lie in
this open angle and this implies that any face of τK that meets a is contained in
the vertex core c(v) of K determined by v, and so the core c(v) engulfs PτK(a, 1).
This completes the proof; however, we comment that PτK(a, 1) is engulfed by the
face core determined by b if a ⊂ b◦ and that PτK(a, 1) is engulfed by the edge core
determined by d if a does not meet the edge e. �

4.3. Finiteness conditions. We gather various finiteness hypotheses and results
needed later in the paper. Recall that a combinatorial tiling K has bounded degree
if there exists a bound d both on vertex degree, the number of edges incident to
a vertex, and on the number of sides of its polygonal tiles. There is an important
subtlety here, for ifK manifests a combinatorial hierarchy {Kn}, then theKn, being
locally isomorphic to K, must share this same bound. If τ is a finite subdivision
rule based on the “star”, “delta”, or “barycentric” algorithms of Figures 1, 2,
for example, then τ cannot manifest a combinatorial hierarchy of bounded degree
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since each application of τ strictly increases some vertices degrees. In contrast,
most of the finite subdivision rules we find of interest do not suffer this growth
in vertex degree—look, for example, to rules based on “pentagonal”, “teepee”,
“hexagonal”, or “snowball” algorithms. To distinguish these latter rules, we say
that a subdivision rule τ has bounded degree if there is a positive integer β such
that for each tile type t ∈ T and for every positive integer m, every vertex of τmt

is incident to at most β edge of τmt.

Lemma 4.3. Suppose τ is a finite subdivision rule that manifests a combinato-
rial hierarchy for K. If τ is shrinking and K has bounded degree, then for any
positive integer n there are at most finitely many isomorphically distinct filled n-
neighborhoods BK(k, n) in K.

Proof. Fix n ≥ 1 and fix any face k ∈ K. The n-neighborhood CK(k, n) has
δK-diameter at most 2n. By Theorem 4.2 the hierarchy is strongly expansive, so
there is an associated expansion function φ : N → R+. We may choose a positive
integer m so large that 2n ≤ φ(m) and we then conclude that CK(k, n) is engulfed
by a core of K−m. Assuming K has a bound d on its degree, then K−m, being
locally isomorphic to K, also enjoys this bound. Up to isomorphism, then, there
are only finitely many distinct cores c ∈ K−m, and since τ is finite, there are up to
isomorphism only finitely many subdivided cores τmc ⊂ K.

Suppose, then, that CK(k, n) is engulfed afterm subdivisions by a core c ∈ K−m.
If c were simply connected, its subdivision τmc would be simply connected as well,
and since BK(k, n) is obtained by filling in any holes in CK(k, n), we would have
the following containments:

CK(k, n) ⊆ BK(k, n) ⊆ τmc.

However, a core c may fail to be simply connected, and an additional argument
from Mayhook [18, Lem 5.8] comes into play. In this case, we may work with the
augmented core c+ inK−m, which is defined as the union of c with its bounded com-
plementary components. Since τ is shrinking, c+ is engulfed by a core of K−(m+m′)

for some fixed m′ > 0. In particular, up to isomorphism the number of augmented
cores is finite. As these are simply connected, we may run our final counting argu-
ment with c+ in place of c. �

4.4. Local isomorphism. As noted at the beginning of this section, we need more
than a hierarchy alone to capture hierarchical structure. The two other attributes
we need, to wit, finiteness conditions and repetitiveness, will now be enforced to
prove this theorem, the main result of the section. We find, in particular, that the
existence of a combinatorial hierarchy is really a property not so much of a single
tiling K, but of its whole local isomorphism class (K).

Theorem 4.4. Suppose τ is a finite subdivision rule that manifests a combinatorial
hierarchy for K. If the hierarchy is strongly expansive and K has finite degree and
is combinatorially repetitive, then τ manifests a combinatorial hierarchy for any
combinatorial tiling L that is locally isomorphic to K.

Proof. Let τ be a finite subdivision rule that manifests the combinatorial hierarchy
{Kn} for K. Since K is repetitive and of bounded degree, then any combinatorial
tiling locally isomorphic to K has faces of the same tile types as K, is combi-
natorially repetitive, and has the same bounded degree d as K. This applies, in
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particular, to all members of any combinatorial hierarchy manifest by τ for L ∼ K.
Also, finiteness of τ means we have only a finite number of tile types and the rule
applied to each type gives only a finite number of subtiles, so there is an upper
bound λ < ∞ on the number of faces into which τ subdivides any face to which it
applies.

Let L ∼ K and define L0 = L and, for each positive integer n, Ln = τnL so
that Ln = τLn−1 when n ≥ 1. Our first task is to define a τ -aggregate tiling L−1,
so τL−1 = L0. We are starting with a hierarchy, not an expansion complex, so
although Theorem 3.1 cannot be applied directly, the arguments are similar.

The data used to construct L−1 are the three complexes L0, K0, and K−1, along
with τ . Fix a face k ∈ L0 and write L0 =

⋃∞
	=1 B	, where B	 = BL0

(k, λ(�+ 1)) is
the filled λ(�+ 1)-neighborhood of k. Using that K0 ∼ L0 and Lemma 2.10, there
are isomorphic embeddings f	 : B	 ↪→ K0 where the image of f	 is BK0

(k	, λ(�+1)),
the filled λ(� + 1)-neighborhood of k	 = f	(k) in K0. There is a unique face h	 of
K−1 such that k	 is a face of the subdivision τh	. The definition of λ may be used
to verify the first containment in the observation that

τCK−1
(h	, �) ⊂ CK0

(k	, λ(�+ 1)) ⊂ BK0
(k	, λ(�+ 1)).

Since BK−1
(h	, �) is obtained by merely “filling in the holes” of CK−1

(h	, �), it
follows from the containments above and the fact that BK0

(k	, λ(�+ 1)) is simply
connected, that τBK−1

(h	, �) is a subcomplex of BK0
(k	, λ(�+ 1)).

We now claim that we may extract a subsequence {hji}i of the sequence of faces
{h	}	 with the following properties:

(i) the finite complex Di = BK−1
(hji , i) admits an isomorphic embedding ei

into the complex Di+1 with ei(hji) = hji+1
;

(ii) the direct limit L−1 = lim
−→

(Di, ei) is a combinatorial tiling that is locally

isomorphic to L0;
(iii) τL−1

∼= L0.

For item (i), we define the subsequence hji inductively as follows. By Lemma 4.3,
there is a smallest subscript j1 such that D1 = BK−1

(hj1 , 1) is isomorphic to
BK−1

(h	, 1) for infinitely many subscripts � > j1. By Lemma 4.3 again, there
is among these infinitely many subscripts a smallest subscript j2 > j1 such that
D2 = BK−1

(hj2 , 2) is isomorphic to BK−1
(h	, 2) for infinitely many subscripts

� > j2. Having chosen hj1 , . . . , hjn in this way so that Dn = BK−1
(hjn , n) is

isomorphic to BK−1
(h	, n) for infinitely many � > jn, we again apply Lemma 4.3

to choose among these infinitely many subscripts the smallest subscript jn+1 > jn
such that Dn+1 = BK−1

(hjn+1
, n+1) is isomorphic to BK−1

(h	, n+1) for infinitely
many subscripts � > jn+1. This inductively defines the sequence hji for i = 1, 2 . . . ,
and for each i, the choice of ji+1 implies that there is an isomorphic embedding

ei : Di = BK−1
(hji , i)

∼= BK−1
(hji+1

, i) ⊂ BK−1
(hji+1

, i+ 1) = Di+1

with necessarily ei(hji) = hji+1
. This confirms item (i).

Since the complexes Di are filled i-neighborhoods and hence combinatorial discs
with Di contained in the interior of Di+1, the direct limit complex L−1 is a CW-
decomposition of the whole plane, and hence a combinatorial tiling. By construc-
tion, L−1 � K−1 and as K−1 ∼ K0 ∼ L0, we have L−1 � L0. We have yet to use
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the hypothesis of combinatorial repetitiveness, but now it is invoked to prove that
L0 � L−1, implying that L−1 ∼ L0 and confirming item (ii). Let F be a connected
subcomplex of L0. Since L0 ∼ K−1, there exists an isomorphic copy F ′ of F in
K−1. Since K−1 is combinatorially repetitive, there exists an integer k > 0 such
that every combinatorial k-neighborhood of any face in K−1 contains an embed-
ded copy of F ′, and therefore of F . In particular, Dk = BK−1

(hjk , k) contains an
embedded copy of F , and therefore so does L−1. We conclude that L0 � L−1, and
this finishes the verification of item (ii).

For item (iii), we will use the fact derived above that for any positive integer �,
τBK−1

(h	, �) is a subcomplex of BK0
(k	, λ(�+1)). Write L−1 =

⋃∞
i=1 D

′
i, where D

′
i

is the canonical isomorphic copy of Di in L−1, and let h be the face of the direct
limit L−1 that corresponds to the faces hji of the factors. Then τL−1 =

⋃∞
i=1 τD

′
i

so that τD′
1 ⊂ τD′

2 ⊂ τD′
3 ⊂ · · · is a sequence of finite subcomplexes of τL−1 that

exhausts τL−1, as in the hypothesis of the working Lemma 2.6. For each positive
integer i, the mappings

τD′
i
∼= τDi=τBK−1

(hji , i) ⊂ τBK−1
(hji , ji)⊂BK0

(kji , λ(ji + 1))
f−1
ji

∼= �� Bji ⊂ L0

define an isomorphic embedding τD′
i ↪→ L0. Notice that the image of one of the

faces k′i of the subdivided face τh ⊂ τD′
i under this embedding is equal to the face k

of L0. Since there are only finitely many faces in the subdivided face τh, by passing
to a subsequence if necessary, we may assume without loss of generality that all the
faces k′i are the same face k′ of τL−1. An application of the working Lemma 2.6
now implies that τL−1

∼= L0, and item (iii) is proved.
Having confirmed items (i)–(iii), we now may use the isomorphism τL−1

∼= L0 to
replace L−1 by an isomorphic copy that aggregates the faces of L0. That is, we may
assume without loss of generality that τL−1 = L0. Repeat the argument using the
data L−1, K−1, and K−2 in place of L0, K0, and L−1 to construct a combinatorial
tiling L−2 such that τL−2 = L−1 with L−2 ∼ L−1. Iterating ad infinitum, this
produces a sequence {Ln}n<0 such that τLn = Ln+1 and Ln ∼ Ln+1 for n ≤ −1.
Already we have defined Ln for n ≥ 0 so that τLn = Ln+1 and it follows from its
definition that Ln ∼ Kn ∼ Kn+1 ∼ Ln+1, since K ∼ L implies that τK ∼ τL.

All the ingredients are now in place as we have produced a bi-infinite sequence
{Ln}, for n ∈ Z, such that (1) L0 = L, (2) τLn = Ln+1, and (3) Ln ∼ Ln+1, and
this implies that the subdivision operator τ manifests a combinatorial hierarchy
for L. �

In the proof we have neither proved nor claimed that the backward sequence
{Ln}n<0 is uniquely determined by L = L0. There indeed may be differing ways
to apply the aggregation operation τ−1 to Ln to produce a tiling Ln−1 having
τLn−1 = Ln and Ln−1 ∼ Ln. This example illustrates.

Example 4.4. A cautionary example. Consider the lattice quad complex Z and
the quad subdivision rule τ of Example 4.1. Designate a fixed tile k0 of Z = Z0. It
is evident that we can aggregate the tiles of Z to get Z−1 = τ−1Z in four distinct
ways: if k′ is the tile of Z−1 that contains k0, then k0 can occupy any one of the
four quadrants of k′. These aggregates are distinct tilings, but of course they are
all isomorphic to Z.

√
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5. Conformal hierarchies

We are approaching our main goal, meshing the combinatorics and geometry
of hierarchical tilings. In this section we define conformal hierarchies and begin
realizing geometric versions of the various combinatorial situations developed in
the previous sections. We establish results on conformal type and conclude with
the statement of our Main Theorem.

When Ks is a combinatorial subdivision of K we have written Ks ≤ K. Suppose
Ts = TKs

and T = TK are the associated conformal tilings. Recall that Ts is a
conformal subdivision of T if Ts and T have compatible β-equilateral conformal
structures. In other words, Ts may be realized by subdividing the tiles of T in situ.
In this case we write Ts ≤ T ; we also say that T is a conformal aggregation of Ts.

Definition. The conformal tiling T exhibits a conformal hierarchy if there is a
bi-infinite sequence {Tn : n ∈ Z}, called a conformal hierarchy for T , of conformal
tilings indexed by the integers such that the following three conditions hold:

(1) T0 = T ;
(2) Tn+1 ≤ Tn ∀n ∈ Z (Tn+1 is a conformal subdivision of Tn);
(3) Tn+1 ∼ Tn ∀n ∈ Z (KTn+1

is locally isomorphic to KTn
).

The tilings Tn all lie in G, one of C or D, and the hierarchy is said to be of parabolic
or hyperbolic type, respectively.

The parallels to the combinatorial situation are self-evident. Indeed, lying behind
any conformal hierarchy {Tn} is a combinatorial hierarchy, which by convention will
be denoted {Kn = KTn

}. We say that {Tn} is a conformal realization of {Kn}, in
the same sense that an individual conformal tiling TK is a conformal realization of
K. As there, the Tn are uniquely determined in G up to a Möbius transformation
(which is independent of n, since we have arranged for the Tn to be nested).

What is more noteworthy are the geometric parallels with traditional euclidean
tilings based on the fact that conformal subdivisions occur in situ—a concrete geo-
metric tile is a union of concrete geometric tiles of its subdivision. We first establish
some terminology and notation associating combinatorial and geometric notions.
A conformal hierarchy {Tn} is said to be (strongly) expansive if its combinatorial
hierarchy {Kn} is (strongly) expansive. If F is a subcomplex of a combinatorial
tiling K, then the associated point set in the geometry G of the conformal tiling
TK will be denoted |F |. If F is a core c of K, then we call |c| a core of T . To say
|c| engulfs a compact set D ⊂ G simply means that D ⊂ |c|.
Lemma 5.1. If {Tn} is an expansive conformal hierarchy in G, then every compact
set D ⊂ G is engulfed by a core of the tiling T−m for some m ≥ 0.

Proof. Since T = T0 is a locally finite tiling of G and D is compact, only finitely
many tiles of T meet D and there is a finite subcomplex F of K = K0 such that
D ⊂ |F |. Since the hierarchy is expansive, there is an integer m ≥ 0 such that
F is engulfed by a core of K−m. If we write σ for the subdivision process σ0

m (so
T = σT−m), then engulfing means that there is some core c of K−m such that F
is a subset of σc ⊂ K. In particular, |F | ⊂ |σc| in G. By item (2) in the definition
of conformal hierarchy, T is a conformal subdivision of T−m; here we are using the
fact that conformal subdivision of tilings is a transitive relation. Thus T−m is an
in situ polygonal subdivision of T , implying |σc| = |c|. Thus, D ⊂ |F | ⊂ |σc| = |c|,
and D is engulfed by |c|. �



86 PHILIP L. BOWERS AND KENNETH STEPHENSON

5.1. Conformal type. Throughout this subsection we will be considering combi-
natorial tilings of bounded degree—that is, there’s a bound on the number of edges
in any face and the number of faces meeting at any vertex. We establish conditions
on conformal hierarchies ensuring that they will be parabolic, indeed, perhaps even
constantly parabolic across their local isomorphism classes.

We begin with a review of our main tool, a classical criterion for parabolicity
using ring domains. The reader is referred to the classic references Lehto and Virta-
nen [17] and Ahlfors [1] or the modern treatment given in Fletcher and Markovic [12]
for details. A ring domain C is a doubly connected open set in the Riemann sphere
S2, i.e., a domain of S2 whose complement consists of two non-empty connected
components. A classical theorem of Koebe implies that C is conformally equivalent
to a circle domain, a domain for which each complementary component is either
a closed circular disc or a point. It follows that any ring domain C is conformally
equivalent to a round annulus, one of the form

A(r, R) = {z ∈ C : 0 ≤ r < |z| < R ≤ ∞}.
The modulus of A = A(r, R) is defined as Mod(A) = log(R/r), with the obvious
interpretations that Mod(A) = ∞ if r = 0 and/or R = ∞. Two round annuli
A and B with finite moduli are conformally equivalent if and only if Mod(A) =
Mod(B). The annuli with infinite moduli determine two conformal equivalence
classes according to whether one or both of the complementary domains are points.
For any ring domain C, then, we may define its modulus by Mod(C) = Mod(A),
where A is any round annulus conformally equivalent to C.

With these facts under our belts, we can give a tool for determining the type
of a non-compact, simply connected Riemann surface S. Let D be a closed disc
in S. By the Uniformization Theorem, the set S\D is conformally equivalent to
a ring domain C in C. Obviously, S is parabolic if and only if Mod(C) = ∞ and
is hyperbolic if and only if Mod(C) < ∞. The theory of quasiconformal mapping
provides the following characterization of parabolic surfaces.

Proposition 5.2 (Criterion for Parabolicity). A non-compact, simply connected
Riemann surface S is parabolic if and only if there is a constant μ > 0 such that,
for every compact subset E of S, there is a ring domain C separating E from the
ideal boundary of S such that Mod(C) ≥ μ.

This is proved by applying the superadditivity of the modulus, which avers that
if C1, C2, . . . is a sequence of pairwise disjoint ring domains that are subdomains of
the ring domain C, with every Cn separating the boundary components of C from
one another, then

∞∑
n=1

Mod(Cn) ≤ Mod(C).

Theorem 5.3. If T is a conformal tiling of bounded degree that exhibits an expan-
sive conformal hierarchy, then T is parabolic.

Proof. Suppose {Tn} is an expansive conformal hierarchy for T . All these tilings
necessarily live in the same geometry G.

We focus our attention first on the tiling T = T0. For a core c of K = KT , we
denote by B(c) the subcomplex ofK consisting of all faces in the unbounded comple-
mentary domain of c that meet c. The complex B(c) will be called the combinatorial
collar of c, and the corresponding patch of tiles in T determines an open domain
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U(c) in G, the interior of |B(c)|, that separates the core |c| from infinity. Since B(c)
is a finite subcomplex of K, the domain U(c) is finitely connected and by the Koebe
Uniformization Theorem, there is a conformal isomorphism f : U(c) → V (c), where
V (c) is a circle domain, the complement of a finite number of closed round discs
in the plane. By applying an appropriate Möbius transformation, we may assume
two things: first, that V (c) is the complement of a finite number of closed round
discs inside the unit disc D; second, that the disc corresponding to the complemen-
tary domain of U(c) that contains |c|, call it D(c), is centered at the origin. There
is a largest round annulus A(c) ⊂ V (c) that shares one boundary with D(c) and
separates D(c) from the rest of the boundary of V (c). Let R(c) = f−1(A(c)) be its
image under the inverse isomorphism f−1. Then R(c) ⊂ U(c) is a ring domain that
separates the core |c| from infinity and is called the standard collar of the core |c|.
As c ranges over all cores of K (hence all cores of any complex locally isomorphic to
K) there are only finitely many different conformal isomorphism types of standard
collars R(c). This follows from the fact that T has bounded degree and from Theo-
rem 1.3. Indeed, there exists only finitely many combinatorial types of cores of K,
and for each one of these combinatorial types of cores, only finitely many combina-
torial types of collars. List combinatorial collars B1 = B(c1), . . . , BN = B(cN ) so
that the combinatorial collar B(c) of any core c of K is combinatorially equivalent
to one from the list. By Theorem 1.3, the domain U(c) of every core |c| of T is con-
formally equivalent to one of the domains U(c1), . . . , U(cN ). But this implies that
the standard collar R(c) is conformally equivalent to one of the standard collars
from the list R1 = R(c1), . . . , RN = R(cN ).

Suppose μ > 0 is the smallest conformal modulus of any ring domain in the list
R1, . . . , RN . LetD be a compact subset of G. By Lemma 5.1, there exists an integer
m ≤ 0 such that D is engulfed by a core |c| of the tiling Tm. It follows that the
ring domain R(c) separates D from infinity. By the observation of the preceding
paragraph, Mod(R(c)) ≥ μ, and this verifies the Criterion for Parabolicity and
completes the proof that G = C. �

While this result guarantees that T and the other tilings Tn of its hierarchy
are parabolic, it says nothing about the conformal type of their locally isomor-
phic cousins. Constancy of type across the whole local isomorphism class may be
achieved by strengthening the expansive hypothesis.

Theorem 5.4. Let T = TK be a conformal tiling of bounded degree that exhibits a
strongly expansive conformal hierarchy; then TL is parabolic for any combinatorial
tiling L which is locally isomorphic to K.

Proof. Theorem 5.3 implies that T is parabolic. Suppose TL is a conformal tiling
of G, either C or D, whose complex L is locally isomorphic but not isomorphic to
K = KT . We will verify the Criterion for Parabolicity Proposition 5.2 for G using
the standard collars from the proof of Theorem 5.3.

Let D be a compact subset of G and let F be a finite, connected subcomplex of L
whose corresponding patch of conformal tiles within TL covers D, so that D ⊂ |F |.
Since L ∼ K while L is not isomorphic to K, (K) is not a singleton, so Theorem 2.8
implies that the finite complex F is infinitely represented in K. Let k be a face of
F and let (F1, k1), (F2, k2), . . . be a pairwise unequal listing of all the pairs where
Fi is a finite subcomplex of K and ki is a face of Fi such that (Fi, ki) and (F, k)
are isomorphic as pairs.
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Let {Tn} be a strongly expansive conformal hierarchy for T = T0, so {Kn} is
a strongly expansive combinatorial hierarchy for K = K0. Suppose φ : N → R+

is the associated expansion function. Since F is finite and connected, there exists
a positive integer m such that both the δL-diameter of F and the δK-diameter of
Fi, for all positive integers i, are less than φ(m). Let σ denote the subdivision
process σ0

−m, so that σK−m = K. In particular, each of the subcomplexes Fi of K
is engulfed by some core ci of K−m. It is precisely here that strong expansivity is
used, so the m is independent of i. Let B(ci) be the combinatorial collar of ci in
K−m as constructed in the proof of Theorem 5.3 and recall from that proof that,
since K−m ∼ K, each collar B(ci) is combinatorially equivalent to one of a finite
list, B1, . . . , BN , of such collars. Moreover, from this, as the proof of Theorem 5.3
avers, each standard collar R(ci) is conformally equivalent to a standard collar from
the finite list, R1, . . . , RN , determined by the combinatorial collars B1, . . . , BN .

Since ci engulfs Fi, ki is a face of the subdivided core σci. Choose a positive
integer M so large that σ(ci ∪ B(ci)) is a subcomplex of the combinatorial M -
neighborhood CK(ki,M), and F is a subcomplex of CL(k,M). Such an M exists
since T has bounded degree, there are only finitely many combinatorial types of
cores in the list c1, c2, . . . and of collars in the list B(c1), B(c2), . . . , and there
is an upper bound on the number of faces in the subdivision σh of any face h

of K−m. Consider the combinatorial M -neighborhood CL(k,M) in the complex
L. Since L ∼ K, there is a subcomplex H of K that is isomorphic to CL(k,M)
via an isomorphism λ : CL(k,M) → H. By Lemma 2.10, H = CK(λ(k),M).
Since F is a subcomplex of CL(k,M), there exists a positive integer i such that
(Fi, ki) = (λ(F ), λ(k)), a subcomplex of H. It follows that

Fi ⊂ σci ⊂ σ(ci ∪B(ci)) ⊂ CK(ki,M) = CK(λ(k),M) = H.

The first containment is just the statement that the core ci of K−m engulfs Fi,
the second is trivial, and the third is by choice of M . By applying the inverse
isomorphism λ−1, there is a subcomplex J of CL(k,M) isomorphic to σB(ci) that
contains F in one of its bounded complementary domains of L, implying that J
separates F from infinity. By Theorem 1.3, TJ is conformally equivalent to TσB(ci).
It follows that open domain U(J), the interior of |TJ | in G, is conformally equivalent
to the open domain U(σB(ci)), the interior of |TσB(ci)| in C. Since the hierarchy
{Tn} is conformal, σT−m = T is a conformal subdivision of T−m, and therefore
is a polygonal subdivision. It follows that the open domain U(ci), the interior of
|TB(ci)| in C, is precisely equal to the open domain U(σB(ci)). This implies that the
standard collar R(ci) is contained in the open domain U(σB(ci)) and separates |TFi

|
from infinity in G. From this, we conclude that R = λ−1(R(ci)) is a ring domain in
G that is conformally equivalent to R(ci) and separates D ⊂ |TF | from infinity. But
R(ci), and therefore R, is conformally equivalent to one of the standard collars from
the list R1, . . . , RN , and therefore has conformal modulus at least μ, the smallest of
the positive moduli of those ring domains. We have determined a positive constant
μ such that, starting with an arbitrary compact subset of G, there is a ring domain
R of modulus ≥ μ that separates D from infinity, and the Criterion for Parabolicity
Proposition 5.2 applies to conclude that G = C, and hence that TL is parabolic. �

5.2. Main Theorem. For the hierarchies discussed above, the associated subdi-
vision sequences {σn} were generic. However, the hierarchies of real interest to us
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arise from subdivision rules. In particular, we bring in the special notion of confor-
mal subdivision rule which was central to our work in [7] and was recalled earlier
in §1.

Definition. If τ is a conformal subdivision rule that manifests a combinatorial
hierarchy {Kn} for K, then for every n the tiling Tn+1 = TKn+1

can be so chosen
that it is a conformal subdivision of Tn, and in this case we say that τ manifests a
conformal hierarchy {Tn} for TK .

Conformal subdivision occurs in situ, so we have

Tn+1 = TKn+1
= TτKn

= τTKn
= τTn for all n ∈ Z.

In other words, conformal hierarchies display the blend of combinatorics and ge-
ometry that we have been targeting, and we can state our Main Theorem.

Main Theorem 5.5. Let τ be a shrinking conformal subdivision rule that manifests
a combinatorial hierarchy for a combinatorial tiling K of bounded degree. Then
τ manifests a conformal hierarchy for T = TK and T is necessarily parabolic.
Moreover, TL is parabolic for all combinatorial tilings L that are locally isomorphic
to K.

Proof. Let {Tn} and {Kn} be the conformal and associated combinatorial hierar-
chies. Theorem 4.2 implies that {Kn}, and hence {Tn}, is strongly expansive. By
Theorem 5.4, type is constantly parabolic across the whole local isomorphism class
of K. �

The richest source we currently have for conformal subdivision rules is provided
by Theorem 1.1—namely, dihedrally symmetric simple subdivision operators are
conformal. Rules τ formed from compositions of these are likewise conformal.
In any case, if τ satisfies the additional hypotheses of finiteness, primitivity, and
bounded degree, Theorem 3.3 guarantees existence of a combinatorial hierarchy
for any expansion complex for τ , and we may then apply the Main Theorem. A
particular instance is the pentagonal tiling P discussed in Example 4.2. We are thus
able to answer the question of Maria Ramirez-Solano that instigated this study;
namely, we have proven the following.

Proposition 5.6. All conformal tilings locally isomorphic to the pentagonal tiling
P are parabolic.

The Main Theorem applies to many other subdivision rules τ , and these typi-
cally manifest uncountably many different conformal hierarchies. We illustrate an
example to motivate investigations in the next section.

Example 5.1. Let τ denote the “lace” subdivision rule, based on the lace algorithm
of Figure 1. This is a simple, dihedrally symmetric, shrinking, and strictly primitive
subdivision operator, hence conformal. Figure 5 shows four stages of τ -subdivision
applied to an initial 4-gon. This fragment is—up to round-off error—conformally
correct, but has been mapped to a euclidean square for display.

In this example you are asked to imagine the tiles in black as part of an infi-
nite conformal tiling T = T0, necessarily parabolic. Several stages of aggregation
have been color-coded to visually highlight the fact that τ is conformal. The red-
sided tiles approximate first level aggregates in T−1, the green-sided, second level
aggregates in T−2, and the blue-sided, third level aggregates T−3 in the conformal
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Figure 5. A patch of an infinite lace tiling T , with colors encoding
4 levels of aggregation.

hierarchy. The surrounding blue-sided square represents a fourth level aggregate in
T−4 that we have isolated as a euclidean square. In the final section of this paper we
refer back to this image as motivation for work in “Conformal tilings III” [4].

√

6. Hierarchical periodicity

In this, the penultimate section, we address an important but exceptional type
of self-similarity which we call hierarchical periodicity. These symmetries occur in
maps from a tiling to its own subdivisions within a hierarchy—in other words, these
are symmetries at the level of hierarchies rather than of individual tilings.

Recall from §3 that τ is a combinatorial period map for K if τmK ∼= K. Our
interest is in conformal realizations of this behavior. Let us start with a general
observation: Suppose T = TK is a conformal tiling in G ∈ {C,D} (i.e., T is confor-
mally regular and reflective) and suppose μ is in Aut(G), the group of conformal
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automorphisms of G. We write μT for the tiling

μT = {μ(t) : t ∈ T }.

This is necessarily again a conformal tiling of G and clearly KμT ∼= KT . The
situation of interest is captured in the following definition.

Definition. Let T be a conformal tiling in G, μ ∈Aut(G). If every tile of T is a
finite union of tiles of μT , then μ is called a (conformal) period map for T .

Lemma 6.1. Suppose T is a conformal tiling of G and μ and ν are two period
maps for T . Then λ = ν ◦ μ is also a period map for T .

Proof. Clearly, λT is a conformal tiling for KT : the issue is whether the tiles of
λT decompose the tiles of T in situ. By hypothesis, this does happen for μ, so as a
preliminary, we apply μ to break each tile t ∈ T , in situ, into a pattern of tiles from
μT and we outline these subtile shapes in pencil on t . The fact that this pattern
of subtiles is conformally regular and reflective persists in any image of t under a
conformal mapping.

We next need to apply ν. Fix attention on a concrete tile t 0 ∈ T . It is not
ν(t 0) that we want to look at, but rather t 0 itself. Because ν is a period map,

t 0 =
⋃k

j=1 ν(t j) for some tiles t j ∈ T . Each tile ν(t j) carries with it our markings
from the earlier application of μ. Applying ν to t j carries these penciled shapes
along into t 0, and now, of course, the penciled shapes are images of tiles of T under
ν◦μ = λ. The union of all of these penciled shapes, j = 1, · · · , k, gives a subdivision
of t 0. In other words, λ has decomposed t 0 in place as a finite union of tiles of λT .
This happens for every concrete tile t 0, so λT is a conformal subdivision of T . �

For conformal subdivision rules, conformal and combinatorial period maps are
in one-to-one correspondence. A conformal period map μ for T = TK induces a
combinatorial subdivision rule σμ for K, namely, σμK ∼= KμT . Because KμT ∼=
KT = K, we have σμK ∼= K, so σμ is a combinatorial period map for K. In the
other direction, a subdivision rule σ which is a combinatorial period map for K
induces a conformal period map if and only if σ is a conformal subdivision rule.
In that case, TσK can be realized as an in situ conformal subdivision of TK in G.
Because σK ∼= K, Theorem 1.2 then implies existence of a conformal automorphism
μ so that μTK = TσK . In other words, μ is a conformal period map for TK with
σμ = σ.

It is not difficult to take the next step in hierarchical periodicity. To be explicit,
let T0 = T and for each integer n define Tn by

(2) Tn = μnT ≡ {μn(t) : t ∈ T }.

Since μ is a conformal automorphism, each tiling Tn is a reflective tiling by confor-
mally regular polygons, hence is conformal. Since μT conformally subdivides T , a
moment’s consideration will convince the reader that, for each integer n, the tiling
Tn+1 conformally subdivides Tn and, in fact, Tn+1 = σTn, where σ = σμ.
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Theorem 6.2. Let K be a combinatorial tiling of bounded degree and let T =
TK . Let τ be a shrinking conformal subdivision rule and suppose K is τ -periodic
with τ -period m. Then T tiles the complex plane C and there exists a Möbius
transformation μ that realizes the subdivision rule τm in the sense that μT = {μ(t) :
t ∈ T } = τmT . The transformation μ fixes ∞ and has a single attracting fixed
point in C.

Proof. Define the subdivision rule σ = τm, so K has σ-period 1. The existence
of μ was discussed above. Define the conformal hierarchy {Tn} as in (2), so that
for all integers n, Tn+1 = μTn. Since τ is shrinking, σ is shrinking, hence strongly
expansive, and hence, by Theorem 5.4, T tiles the complex plane. Therefore, μ
has the form μ(z) = az + b for some complex constants a �= 0 and b. Since σT
is a non-trivial subdivision, μ is not the identity, and we will argue in turn that μ
is not a translation (a �= 1) and not a rotation (|a| �= 1), but rather is contractive
(0 < |a| < 1).

Suppose μ were a translation, so μ(z) = z+b for some non-zero complex constant
b. Let d be a positive integer strictly larger than the number of faces that meet at
any vertex of the complex KT and, given an arbitrary tile t of T = T0, let D be
the union of the tiles μj(t) = t + jb for j = 1, . . . , d. Since the conformal hierarchy
{Tn} is expansive, there is, for some integer n < 0, a core |c| of the tiling Tn that
engulfs D. Let p be a point interior to the tile t. Since the core |c| is the union
of fewer than d tiles, there is a tile s of Tn that contains at least two of the points
from the list p+ b, . . . , p+ db. Let k be the smallest integer in the list 1, . . . , d for
which p+kb ∈ s, and let � be the largest positive integer for which p+ �b ∈ s. Note
that k < � so that j = �− k > 0 and note that it may well be that � > d. Consider
the tile tk = μk(t) = t + kb ∈ Tk. Since p is interior to t , p + kb is interior to tk,
and so the tile s in Tn meets the interior of the tile tk of Tk = σk−nTn. Since Tk is
a polygonal subdivision of Tn, this implies that tk ⊂ s , and since p+ kb is interior
to tk, p+ kb is interior to s . The same argument applied to t	 = t + �b implies that
t	 ⊂ s and that p+ �b is interior to s . Choose ε > 0 so that the disc neighborhoods
Dk = {|z − (p+ kb)| < ε} and D	 = {|z − (p+ �b)| < ε} are contained in the tile s ,
and observe that μj(Dk) = D	. It follows that the tile μj(s) of Tn+j contains the
open disc D	, as does s , and so the tile s and the tile μj(s) meet in an interior point
of both. Since Tn+j subdivides Tn, we conclude that μj(s) ⊂ s . This implies, since
p+ �b ∈ s , that p+(�+ j)b = μj(p+ �b) ∈ s . Since j is positive, this contradicts the
choice of � as the largest positive integer for which p+ �b ∈ s . We conclude that μ
cannot be a translation, so a �= 1.

Since a �= 1, μ has a unique fixed point in C, namely the fixed point z0 = b/(1−a).
Let t be a tile of T that contains z0 and that has maximum area among all such tiles
of T . Then μ(t) is a tile of σT containing z0 = μ(z0) and since σT is a conformal
subdivision of T , z0 ∈ μ(t) ⊂ t∗ for some tile t∗ of T . Since σ is non-trivial, this
means μ(t) � t and area(μ(t)) < area(t∗). By our choice of t , area(t∗) < area(t),
implying area(μ(t)) < area(t). Thus μ must be contracting, so that 0 < |a| < 1,
and z0 must be an attracting fixed point for μ. �

The connections among μ, τ , and σ = τm can be subtle, as the authors know
keenly from experience. Therefore, some further observations may be in order:

1 Just because K is τ -periodic, not every conformal hierarchy {Tn} for K is
necessarily τ -periodic. We saw with the quad tiling (see Example 4.4) that



CONFORMAL TILINGS II 93

aggregation, as an inverse to subdivision, can be ambiguous. That is to
say, μT ′ = Tn+1 = τmTn does not necessarily imply that T ′ = Tn.

2 On the other hand, the particular hierarchy {Tn} defined in (2) is σ-periodic
by construction, with σ-period 1; so for all integers n, Tn = μnT0. That is,
within this particular hierarchy, subdivision is realized by μ and a particular
aggregation—one of potentially many—is realized by μ−1.

3 Suppose K is τ -periodic with τ -period m > 1 and μT = τmT . Although
the hierarchy constructed in (2) is for σ = τm, there is a canonical exten-
sion to a conformal hierarchy {T ′

n} for τ itself: For each integer n, write
n = sm + t for integers s and t, 0 ≤ t < m, and define T ′

k = τ tTs. This
inserts m − 1 successive subdivisions by τ between each pair of successive
subdivisions by σ. One easily verifies that for all integers n, μTn = Tn+m.
The associated combinatorial tilings K ′

n = KT ′
n
break into m distinct con-

jugacy classes which are cyclical under subdivision by τ .

Conformal period maps are rare but much sought after. Observed periodicity
in the regular pentagonal tiling was key to the founding of this topic, and related
quasiconformal period maps are the holy grail in Cannon, Floyd, and Parry’s ap-
proach to Cannon’s Conjecture. Moreover, in §6.2 we see how to easily construct
concrete examples.

Nonetheless, periodicity is the exception. We will see shortly that in the first
instance, for K to be τ -periodic is rare. Even then, Observation (1) is cautionary:
a generic conformal hierarchy manifest by τ will not be periodic. Observations (2)
and (3) suggest a loosening of the requirements of periodicity that will serve us well
in future developments of [4].

6.1. Periodic expansion and the action of τ̂ . If τ is a non-trivial subdivision
rule, then τK is never equal to K, but it may be isomorphic to K. This is where τ̂ ,
introduced on page 72, comes in: while τK may be a specific combinatorial tiling
that subdivides K, τ̂K is the isomorphism class of τK in C. Thus we always have
τ̂ : (K) → (τK). When τK is locally isomorphic toK, then we have τ̂ : (K) → (K),
and this is the situation we address in this subsection. To avoid trivialities, we
assume that (K) is not a singleton.

Let K be an expansion complex for a strictly primitive finite subdivision rule τ .
By Theorems 3.1 and 3.2, τ̂ : (K) → (K) is surjective. (It would seem that τ̂ is
also injective. But this concerns the uniqueness of aggregation and is a challenging
open question. See [25] for a proof of injectivity for certain traditional subdivision
rules.) If L ∈ (K), then L is τ -periodic if and only if L lies in a finite orbit in (K)
under the forward iteration of τ̂ . The τ -period of L is the number of tilings in that
orbit. Our main goal in this section is to construct τ -periodic expansion complexes,
but we first prove that these are the exception rather than the rule.

Theorem 6.3. Let τ be a shrinking, primitive finite subdivision rule of bounded
degree. Then for any N > 0 there are, up to isomorphism, at most finitely many
τ -periodic expansion complexes K having τ -period bounded by N .

Proof. Note first that an expansion complex K for τ is automatically an expansion
complex for any positive power τ s and vice versa. Moreover, if K is τ -periodic,
then it is also τ s-periodic, and the orbit under τ is no bigger than that under τ s.
It suffices, then, to prove our result with τ replaced by τ s; that is, we may assume
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without loss of generality that τ is strictly shrinking and strictly primitive. The
proof is divided into three parts.

Part 1: Classifying fixed points. Let J be an expansion complex for τ
that is a fixed point of the action of τ̂ . Then J is a CW-decomposition of the plane
and τJ is a CW-complex that subdivides J with τ̂J = J . This means that J is
isomorphic to τJ and we let λJ : C → C be a homeomorphism of the complex plane
that is a cellular isomorphism of J onto τJ . (Note that λJ and all other cellular
mappings in this proof respect the tile types of T.)

In Part 1, we work under this
Fixture Assumption: There is a closed face or edge cell bJ of J

for which λJ (bJ) ⊂ b◦J , or a vertex cell bJ of J for which λJ(bJ ) = bJ .
We will call bJ a fixture for λJ , and the goal of this first part of the proof is to

characterize combinatorially those fixed points J of τ̂ with isomorphisms λJ having
fixtures, and thereby to put a limit on their number.

Let CJ be the core of J determined by the cell bJ and let cJ be the core of
τJ determined by the cell λJ(bJ ). CJ and cJ are both vertex, edge, or face cores
depending on whether the cell bJ is, respectively, a vertex, edge, or face of J , and,
in fact, it is easy to see that λJ (CJ) = cJ . A straightforward argument using the
fact that τ is strictly shrinking shows that the core λ(cJ) of τ

2J is contained in the
interior (τ2CJ)

◦ of the τ2-subdivided core CJ .
Let J and L be expansion complexes that serve as fixed points of the action of

τ̂ , both of which satisfy the fixture assumption. Define J and L to be λ-equivalent
if there exists a homeomorphism h : |CJ | → |CL| that is a cellular isomorphism
of the cell complex τCJ onto the cell complex τCL such that h(cJ) = cL and for
which h−1 ◦ λL ◦ h = λJ ||CJ |. Our aim is to show that if J and L are λ-equivalent
fixed points of τ̂ , then J ∼= L so that J = L in (K). To prove this, we first show
how to recover J from the triple (CJ , cJ , λJ |CJ

). Indeed, our claim is that

J =

∞⋃
i=1

λ−i
J (τ iCJ),

where λi
J : J → τ iJ is the isomorphism of complexes gotten from iterating the map-

ping λJ i times. To verify the claim, note that, since cJ = λJ (CJ) is a subcomplex
of τCJ , the core CJ = λ−1

J (cJ) is a subcomplex of λ−i
J (τ iCJ) for every non-negative

integer i. It follows that the union J ′ =
⋃∞

i=1 λ
−i
J (τ iCJ) is a connected subcomplex

of J . To see that J ′ = J , it suffices to verify that, for each non-negative integer i,
the complex λ−i

J (τ iCJ ) is contained in the interior of λ−i−2
J (τ i+2CJ). But this fol-

lows from induction with the basis established from the fact that the complex λ(cJ)
is contained in the interior of τ2CJ , implying after an application of λ−2

J that CJ

is a subcomplex of J contained in the interior of λ−2
J (τ2CJ). Now, assuming that

the expansion complex L is λ-equivalent to J , as with J write L =
⋃∞

i=1 λ
−i
L (τ iCL)

and let h : |CJ | → |CL| be a homeomorphism with the properties described in the
definition of λ-equivalence. This means that h is a homeomorphism of |CJ | onto
|CL| that is a cellular isomorphism of τCJ onto τCL, and this implies by the obvi-
ous τ -aggregation that h is also a cellular isomorphism of the complex CJ onto the
complex CL. From h−1 ◦ λL ◦ h = λJ ||CJ | we may infer that h = λ−1

L ◦ h ◦ λJ ||CJ |.
For each positive integer i, this allows us to extend the cellular isomorphism h of
CJ onto CL to a cellular isomorphism hi = λ−i

L ◦ h ◦ λi
J ||Ji| of Ji = λ−i

J (τ iCJ ) onto

Li = λ−i
L (τ iCL) and we obtain the diagram of commuting cellular containments
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and cellular isomorphisms hi:

CJ

h ∼=
��

� � �� λ−1
J (τCJ)

h1
∼=
��

� � �� λ−2
J (τ2CJ)

h2
∼=
��

� � �� · · ·
lim
−→ �� J

CL
� � �� λ−1

L (τCL)
� � �� λ−2

L (τ2CL)
� � �� · · ·

lim
−→

�� L.

This induces an isomorphism of CW-complexes J ∼= L and implies that J = L
in (K).

Armed with the observation of the preceding paragraph, we can verify that there
are at most finitely many fixed points of the action of τ̂ on the local isomorphism
class (K) that satisfy the fixture assumption. Indeed, we have shown that each
fixed point J of the action of τ̂ that satisfies the fixture assumption identifies a
CW-pair (τCJ , cJ), where CJ is a core of J and cJ is a core of τJ , and that
J ∼= L whenever L is a fixed point of τ̂ satisfying the fixture assumption that
is λ-equivalent to J . Since τ has bounded degree, the expansion complex K has
bounded degree and, up to isomorphism, there are only finitely many pairs (τC, c)
where C is a core of K and c is a core of τK. Since the expansion complex J
is locally isomorphic to K, the pair (τCJ , cJ ) is, up to isomorphism, one of these
finitely many pairs (τC, c) from K. Moreover, for any fixed pair (C, c), there are, up
to cellular isotopy, only finitely many orientation-preserving cellular isomorphisms
λ from the cell complex C onto the cell complex c. This implies that each triple
(CJ , cJ , λJ |CJ

) is represented among the finitely many distinct triples (C, c, λ), and
this implies that there are only finitely many λ-equivalence classes of expansion
complexes in (K) that satisfy the fixture assumption, and therefore only finitely
many fixed points of τ̂ that satisfy the fixture assumption. This completes Part 1.

Part 2: Existence of a fixture for a power of λJ . In this second part
of the proof, we would like to show that any cellular isomorphism λJ of any fixed
point J of τ̂ onto its subdivision τJ has a fixture; unfortunately this fails to be
true. At the conclusion of the proof, we will give an example. Our aim in Part
2, then, is to prove that the strictly shrinking subdivision operator τ determines a
positive integer M such that, for every fixed point J of τ̂ , there exists a positive
integer m ≤ M such that the cellular isomorphism λm

J of J to τmJ has a fixture.
In fact, we will show that M = 6β works, where β is a degree bound for τ .

The verification of the existence of a fixture for a positive power of λJ depends
strongly on the fact that τ is expansive. Let J be any fixed point of the action of τ̂ .
We know from Theorem 3.3 that J exhibits a combinatorial hierarchy manifested
by τ , but we can say more in this case. Indeed, forward and backward iteration of
the mapping λJ builds such a hierarchy {Jk}, where for each integer k, Jk = λk

J (J).
Since τ is shrinking, Theorem 4.2 implies that the hierarchy {Jk} is exponentially
expansive. Our first goal is to show that there exist positive integers p and q and a
polygonal face h of J−p such that λq

J(h) ⊂ h. Toward this goal, let k0 be any face
of J and, for any positive integer m, let km be that unique face of J that contains
the face λm

J (k0) of Jm. Since the hierarchy is expansive, there is a positive integer
p and a core c of J−p that engulfs k0 ∪ k1 ∪ · · · ∪ kβ , where β is a degree bound for
τ , and therefore a bound on the number of faces that meet at any vertex of any Jk
of the hierarchy. Since the subcomplex c of J−p is a core, it has at most β faces
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and it follows that, since each of the faces k0, k1, . . . , kβ is a face of the subcomplex
τpc, there is at least one face, say h, of c that contains two of the faces from the
list k0, k1, . . . , kβ . Assume that the two faces ki and kj satisfy ki ∪ kj ⊂ h, where
0 ≤ i < j ≤ β are chosen so that q = j − i is as small as possible. By the definition
of the faces km, we have λi

J (k0) ∪ λj
J (k0) ⊂ h with λq

J(λ
i
J(k0)) = λj

J (k0). It follows

that the face λq
J (h) of λ

q
J(J−p) = J−p+q contains the face λj

J(k0) of its subdivision
Jj , as does the face h of J−p. This shows that the face λq

J (h) of J−p+q meets the

open face h◦ since λj
J(k0)

◦ ⊂ λq
J(h)∩h◦. Since the face λq

J (h) of the complex J−p+q

meets the open face h◦ of J−p, and since J−p+q subdivides J−p, we conclude that
λq
J(h) ⊂ h.
Since h is a face of J−p, the combinatorial n-cell a = λp

J(h) is a face of J with

λq
J(a) = λp+q

J (h) ⊂ λp
J (h) = a. If λq

J fixes a vertex v of a, then bJ = {v} is a fixture
of λq

J , or if λq
J (e) ⊂ e◦ for an edge e of a, then bJ = e is a fixture of λq

J . Assume
that λq

J neither fixes a vertex of a nor maps an edge of a into the corresponding
open edge. Since τ is strictly shrinking, so too is τ q. This implies that λq

J (a), a
face of τ qJ and a subset of a, is a subset of an open angle ∠av for a vertex v of a.
If λq

J(a) ⊂ a◦, then bJ = a is a fixture of λq
J ; otherwise, λ

q
J (a) meets one or both of

the half-open edges {v}∪d◦ and {v}∪ e◦, where d and e are the edges of a incident
to v. The remainder of the argument rests on where v goes under the action of
λq
J . There are four possibilities: λq

J (v) ∈ ∠av = {v} ∪ d◦ ∪ e◦ ∪ a◦, and as this is
a disjoint union, λq

J (v) lies in exactly one of the open cells {v}, d◦, e◦, or a◦. We
have assumed though that λq

J fixes no vertex of a, so the first possibility is ruled
out. The last possibility, that λq

J(v) ∈ a◦, implies that the image of the open angle

∠av under λq
J is contained in the open cell a◦, and from this we have λ2q

J (a) ⊂ a◦,

so that bJ = a is a fixture of λ2q
J . The remaining two possibilities are symmetric,

so we assume that λq
J(v) ∈ e◦. This implies, since λq

J is a cellular isomorphism of J
to a subdivision Jq, that λ

q
J(e

◦) is contained in either e◦ or a◦. In the former case,
since λq

J(e) also is contained in the open angle ∠va, then λq
J(e) ⊂ {v}∪e◦. But this

implies that λ2q
J (e) ⊂ e◦ and therefore bJ = e is a fixture of λ2q

J . In the latter case,

λ2q
J (v) ∈ a◦, implying that the image of the open angle ∠av under λ2q

J is contained

in the open cell a◦. From this we have λ3q
J (a) ⊂ a◦, so that bJ = a is a fixture

of λ3q
J . This paragraph’s discussion verifies that at least one of the mappings λq

J ,

λ2q
J , or λ3q

J has a fixture. A quick inductive argument proves that, for any positive
integer s, a fixture for λs

J is a fixture for λst
J for all positive integers t. We conclude

that the mapping λ6q
J has a fixture, and since 1 ≤ q ≤ β, we may set M = 6β. This

concludes the second part of the proof.
Part 3: The general case. Our aim is to bound the number of τ -periodic

expansion complexes in (K) having τ -periods bounded by some positive integer k.
However, Part 2 gives us one more reduction of our problem; for every fixed point
J of τ̂ , there exists a positive integer m ≤ 6β such that λm

J has a fixture, where λJ

is a cellular isomorphism of J onto τJ . Observe that λm
J = λτmJ , that is, λ

m
J is a

cellular isomorphism from J to τmJ , and that every fixed point of τ̂m with order
at most k is a fixed point of τ with order at most mk. Without loss of generality,
therefore, we may replace τ by τm and assume henceforth that λJ has a fixture.

We are now reduced to finding a bound on the fixed points of τ̂ with order
bounded by k. But if J is a fixed point of τ̂ , then it has a fixture, and we proved in
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C = (C, v; c, w)

c
w

v
C

Figure 6. A τ -periodic pentagonal tiling based on a vertex core
and having τ -period 1; see Example 6.3 for the description. Note
in particular that the periodicity of interest is not the rotational
symmetry that the eye picks out.

Part 1 that the set of such expansion complexes forms a finite subset of the local
equivalence class (K).

Finally, recall the integer s chosen in the opening paragraph of this proof and
the bound 6β on the m of Part 2 and let τ ′ = τ6sβ. Given N > 0, we have actually
shown that the number of τ ′-periodic expansion complexes J ∈ (K) having τ ′-
period bounded by N is finite. But if J has τ -period bounded by N , then it
automatically has τ̂ ′-period bounded by N . The number of these is thus finite and
the proof is complete. �

Example 6.1. Consider the hyperbolic tiling H of Example 4.3. The homeomor-
phism z �→ z + i of C (see Figure 4) provides a fixture-free cellular isomorphism
of H to σ0H, where σ0 is the non-shrinking subdivision rule of the example that
divides each pentagonal face into two pentagons and for which σ̂0H = H. All pow-
ers of σ0 are also fixture-free. The difficulty here is that hierarchy constructed in
Example 4.3 is not expansive. In fact, it is not difficult to see that the mapping σ̂0

induced on the local isomorphism class (H) is the identity, so that every element of
(H) is a fixed point even though (H) is uncountably infinite.1

Example 6.2. The Gaussian complex Z of Example 4.1 and its “quad” subdivision
rule τ provide an example of a cellular isomorphism that fails to have a fixture, even
though τ is a strictly shrinking, rotationally symmetric, and of bounded degree.
Let Rπ/2 be the counterclockwise rotation of π/2 radians about w = (1/2, 1/2),
the center of the unit square face k of Z whose lower left-hand vertex is the origin
O = (0, 0), and let M1/2 be the map that multiplies each complex number by 1/2,
and so dilates the complex plane toward the origin O. Then λZ = M1/2 ◦Rπ/2 is a

cellular isomorphism of Z onto τZ with no fixture. Though λ2
Z also fails to have a

fixture, a moment’s consideration shows that the face k serves as a fixture of λ3
Z.

√

1Dane Mayhook’s doctoral thesis explores the local isomorphism class (H) of this hyperbolic
complex and gives a constructive description of all elements of (H).
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C = (C, v; c, w)

c
w

v
C

Figure 7. A pentagonal tiling having τ -period 2. There are no
global symmetries in the tiling itself, the symmetry of interest lies
within the hierarchy. See Example 6.4 for details.

6.2. Conformal period maps. Reverse engineering the proof of Part 1 of The-
orem 6.3 opens the way to construction of conformal period maps. We describe
the process supposing that τ is a shrinking, primitive, finite, subdivision rule with
degree bounded by β. Indeed, for ease of construction, we assume that τ is strictly
shrinking and strictly primitive. We intersperse images of concrete conformal ex-
amples to help the reader, though their details will only be provided at the end of
this section.

It is the “fixtures” of Part 1 that we need to reverse engineer. Here is our
mechanism.

Definition. Let Δ be a tile with type in the collection T for τ and fix a positive
integer k > 0. A combinatorial footprint for τ is a 4-tuple C = (C, v; c, w) satisfying
the following properties:

(1) C is a core contained in the interior of the complex τ tΔ for some positive
integer t;

(2) c is a core of τkC that is contained in the interior of a combinatorial disc
in C;

(3) v is a vertex in the boundary of C;
(4) w is a vertex in the boundary of c;
(5) there exists an orientation-preserving cellular isomorphism λ0 : C → c with

λ0(v) = w. (As usual, this must respect tile types in T.)

Let μ0 : c ↪→ τkC be the cellular inclusion and, for each positive integer m,
let μm : τkmc ↪→ τk(m+1)C be the cellular inclusion induced from μ0, and let
λm : τkmC → τkmc be the cellular isomorphism induced from λ0. Setting Fm =
τkmC, for each non-negative integer m we have the isomorphic embedding Ξm =
μm ◦ λm : Fm ↪→ Fm+1 and a quick check verifies that this sequence of embeddings
satisfies properties (1)–(4) for the definition of an expansion complex for τ . Let
F = lim

−→
Fm be the expansion complex defined by this sequence of embeddings.

The idea here is that the isomorphic embedding Ξm shrinks C via λ to c and
then includes c back into C via μ, and the subscript m merely tells one the level at
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C = (C, v; c, w)

c
w v

C

Figure 8. A conformal tiling for the “snowball” subdivision rule
of period 1 based on an edge core. See Example 6.5 for details.

which Ξ is cellular, namely, at the level of the τkm-subdivision. Now set fm = τkmc
and let ξm = λm+1 ◦ μm : fm ↪→ fm+1, an isomorphic embedding of fm into the
interior of fm+1. Again, a quick check verifies that the sequence of embeddings
ξm : fm ↪→ fm+1 satisfies the four properties that define an expansion complex for
τ , and we let f = lim

−→
fm.

The following diagram commutes, and this has interesting implications for the
expansion complexes F and f :

F0

λ0

��

Ξ0 �� F1

λ1

��

Ξ1 �� · · ·
Ξm−1 �� Fm

λm

��

Ξm �� Fm+1

λm+1

��

Ξm+1 �� · · ·
lim
−→ �� F

f0

μ0���

������

ξ0

�� f1

μ1���

������

ξ1

�� · · ·

�����������
ξm−1

�� fm

μm����

������

ξm

�� fm+1
ξm+1

�� · · ·
lim
−→

�� f.

Since the vertical arrows are cellular isomorphisms, they induce a cellular isomor-
phism λ : F → f ; since the diagonal arrows are cellular inclusions, they induce a
cellular inclusion μ : f → τkF . Since the image of each μm lies interior to Fm+1, the
induced inclusion μ must be onto, and this implies that μ is a cellular isomorphism
of f onto τkF . That the diagram commutes further implies that the composition
λF = μ ◦ λ : F → τkF is a cellular isomorphism, and hence τ̂kF = F in (K).
It follows that F generates an �-orbit of the action of τ̂ on (K) for some positive
integer � ≤ k. If τ is not strictly shrinking and/or not strictly primitive, then there
is some positive integer j so that τ j has these properties. We can carry out the
construction above for τ j ; the only change is that the resulting � satisfies � ≤ jk.

All our concrete examples are conformal tilings. The pentagonal tilings in Fig-
ures 6 and 7 were constructed based on vertex cores, the “snowball” tiling of Fig-
ure 8, based on an edge core, and the “lace” tiling of Figure 9, based on a face core.
Each figure has a schematic of its combinatorial footprint on the left. Creation
of these footprints is straightforward: If C is a face core, then C has some type
t ∈ T and c must be a tile of the same type among the faces of τkC and interior
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C = (C, v; c, w)

c
w

v

C

Figure 9. A face core for the “lace” subdivision rule with peroid 1.

to C. It remains only to choose corresponding vertices v of C and w of c to get
the orientation-preserving isomorphism λ0. The face C, identified naturally as the
base face of F , is a fixture of the isomorphism λF since, under this identification,
λF (C) = c ⊂ C◦. The situation for edge and vertex cores is a bit more compli-
cated. In these cases, the mapping λF may have no fixture, but of course the proof
of Theorem 6.3 shows that a power m ≤ 6β of λF will have one.

The footprints we used for our examples are rather elementary, but computa-
tional complexity becomes quite daunting otherwise. In each case we have been
able to compute a significant fragment of the conformal tiling. The periodicity is
realized geometrically by applying an associated Möbius transformation μ of the
plane. The shading in each tiling image highlights nesting of the conformal core
under three applications of μ and gives some sense of the geometric action. After
looking at these you might consider the following Question, which was answered
affirmatively by Cannon, Floyd, Kenyon, and Parry [9] for scaling in the regular
pentagonal tiling.

Question. Are the Möbius period maps illustrated here necessarily algebraic? For
instance, in Figure 8 the period map involves a scaling factor λ < 1. Is λ necessarily
an algebraic real number?

Here are some further details regarding our concrete tiling examples.

Example 6.3. Figure 6 displays a periodic conformal tiling of period 1 for the
“pentagonal” subdivision operator τ . The construction is based on a vertex core,
and in this case that vertex is fixed under the cellular map carrying C to c, so the
associated point in the tiling is a fixed point for the conformal period map μ; we
have placed it at the origin. There is an evident 3-fold symmetry in the global
tiling, but this is incidental: period maps are not symmetries of an individual
tiling, but rather symmetries in the tiling’s hierarchy. In this case, μ is loxodromic,
a contraction by some factor λ < 1 followed by a counterclockwise rotation of 2π/3.

We take a moment here to point out a subtlety within the definition of expan-
sion complex. Let K = KT be the combinatorial tiling associated with Figure 6.
However, now imagine the footprint schematic on the left of Figure 6, built with,
say, five pentagons coming together on the central vertex instead of the current
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three. Subdivide each and denote the resulting complex by F2, then define sub-
sequent complexes Fn inductively by Fn+1 = τFn, n ≥ 2. It is not difficult to
see that the directed limit lim

−→
Fm is a combinatorial tiling K ′ much like K except

that the vertex at the center has degree 5 instead of degree 3. As with K, K ′ is
a fixed point for τ̂ . Thus we can build a combinatorial hierarchy {K ′

n} with all
and K ′

n
∼= K ′ and the associated conformal tilings {Tn = TK′

n
} form a conformal

hierarchy. However—and here is our point—K ′ is not an expansion complex for
τ . The definition posits an initial face Δ ∈ T, but there is no face core which, for
example, engulfs F2, since subdivision by τ will never produce an interior degree 5
vertex. The converse to Theorem 3.3 fails.

Example 6.4. Figure 7 is also a pentagonal tiling, this time of period 2. This
tiling is again based on a vertex core, but the cellular map does not fix that vertex.
In T the eye readily picks out the approximate location of the fixed point of the
conformal period map μ, and that point is not associated with any tile vertex. Note
that there are no global symmetries in this tiling.

Example 6.5. Figure 8 is constructed from an edge core for the “snowball” sub-
division rule. Reflective symmetry across the edge core in the footprint leads to a
line of global reflective symmetry for the tiling T . The fixed point for μ has been
placed at the origin; μ has period 1 and is a pure contraction μ(z) = λz. Note
that, other than the line of symmetry, there is not a single straight edge among the
conformal tiles.

7. What next?

This final short section foreshadows developments in the next paper in this series,
[4]. With regard to conformal hierarchies, we first will be directing the reader’s
attention to images like that of Figure 5 for motivation. This image represents
a conformal hierarchy manifest by the “lace” subdivision rule. The finest of the
tiles there (those in black) are part of the conformal tiling T = T0, while several
aggregate tiling levels are shown in various colors. However, our interest attaches
to the infinite sequence of forward subdivisions {τnT : n = 1, 2, · · · }, which have
necessarily been left to the reader’s imagination.

As these forward subdivisions occur in situ, the tilings become progressively
finer-grained. One can show that individual tiles go to zero in diameter, meaning
that every point z ∈ C can be identified with a bi-infinite sequence {tn} of nested
conformal tiles:

(�) z ←→ {. . . , t−2, t−1, t0, t1, t2, · · · }, tn ∈ Tn, tn+1 ⊂ tn, {z} =
⋂
n∈Z

tn.

This identification is essentially unique, ambiguity arising only for points z landing
on an edge of some tiling Tn, and these points form a set of Lebesgue measure zero.

We can now move considerations to the combinatorial side: each conformal tile
tn is associated with a combinatorial tile kn ∈ Kn, and thus with a rooted tiling
(Kn, kn) in RC. The result is a pseudo-geometric/combinatorial identification

(� �) z ←→ {(Kn, kn)} ⊂ RC, kn ∈ Kn, kn+1 ⊂ kn.

A handy example of these identifications is provided by the periodic conformal
tilings of the previous section. Each footprint is a prescription for building the
sequence {tn}, and the associated point z is just the fixed point of the conformal
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period map μ. We mentioned that these periodic cases are “exceptional”, and
that is the case. However a slightly modified notion might well be considered
“ubiquitous”. In studying (�) and (� �) in [4] we will introduce associated limiting
processes, simultaneously pointwise, combinatorial, and analytic. Among other
things, we will find a countable dense set of points z ∈ C whose limits are precisely
our τ -periodic tilings.

The attraction of the identifications (�) and (� �) is that they link objects in three
categories: points z in the plane, rooted conformal tilings, and rooted combinatorial
tilings. Each setting has its own internal life: topologies, limits, accumulation
points, morphisms, and so forth. With these, one begins to glimpse the interlocking
structures that are so prominent (and attractive) in traditional tiling theory.

There are limitations, however, and we also begin to address those. The basic
observation is that whenever τ manifests a combinatorial hierarchy {Kn}, there is
an associated bi-infinite sequence {Tn = TKn

: n ∈ Z} of conformal tilings. True,
this qualifies as a “hierarchy” only when τ is conformal, and we have rightly extolled
the virtues of this case, but we will uncover fascinating opportunities in other cases
as well. For example, suppose τ is the much-studied “Penrose” rule. Since τ is
not conformal, we lose (�), and thereby (� �) as well, even though Penrose tilings
already enjoy euclidean versions of such identifications. In a bid to reestablish these
by our methods, we will push in [4] beyond conformal hierarchies, using conformal
aggregate tilings and their limits to define yet another level of hierarchy. Due to
results of [16], our program succeeds for the Penrose and other traditional euclidean
substitution rules. But it also scoops in various non-conformal, non-traditional rules
τ . We subsume, for example, the “fractal hierarchies” of Mayhook ([18] associated
with the “twisted pentagonal” and other non-conformal subdivision rules.

As to whether we can formulate the notions mentioned at the beginning of §2,
the continuous hull of a tiling, the action of the “translation” group, its canonical
transversal—all seem to be tantalizingly close. We also inch closer to the beautiful
themes in the work of Cannon, Floyd, and Parry. Stay tuned.
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