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ON NET MAPS: EXAMPLES AND NONEXISTENCE RESULTS

EDGAR A. SAENZ

Abstract. A Thurston map is called nearly Euclidean if its local degree at
each critical point is 2 and it has exactly four postcritical points. Nearly
Euclidean Thurston (NET) maps are simple generalizations of rational Lattès
maps. We investigate when such a map has the property that the associated
pullback map on Teichmüller space is constant. We also show that no Thurston
map of degree 2 has constant pullback map.

1. Introduction

Let S2 be a topological 2-sphere with a fixed orientation. We use P1 to denote
the Riemann sphere. In this paper, all maps S2 → S2 will be orientation preserving.
Let f : S2 → S2 be a branched cover, and let Ωf be the set of its critical points.
We define the postcritical set of f to be

Pf :=
⋃

n>0

f◦n(Ωf ).

If Pf is finite, we call f a Thurston map. Two Thurston maps f and g are
called equivalent iff there exist homeomorphisms h0 : (S2, Pf ) → (S2, Pg) and
h1 : (S2, Pf ) → (S2, Pg) for which h0 ◦ f = g ◦ h1 and h0 is isotopic, rel Pf , to h1.
In this case, if g is a rational map we also say that f is realized by g.

Suppose f : S2 → S2 is a Thurston map. The orbifold Of = (S2, νf ) associated
to f is the topological orbifold with underlying space S2 and whose weight function
νf (x) at x is given by νf (x) = lcm{n ∈ Z+: there exists a positive integer m such
that f◦m has degree n at some y ∈ S2 with f◦m(y) = x}. Let Tf be the Teichmüller
space of Of . We may regard the space Tf as the space of complex structures on Of ,
up to the equivalence of isotopy fixing Pf . A complex structure on Of pulls back
under f to a complex structure on (S2, f−1(νf )), and this extends to a complex
structure on Of . In this way we obtain a map Σf : Tf → Tf . We will refer to Σf

as the pullback map induced by f .
In [5], Douady and Hubbard, following Thurston, provide necessary and sufficient

conditions for a Thurston map to be equivalent to a rational map.

Theorem 1.1 (Thurston). A Thurston map f is equivalent to a rational map if
and only if Σf has a fixed point.

One would expect it to be rare (if it happens at all) for a Thurston map f to have
the pullback map Σf be constant. In the Buff–Epstein–Koch–Pilgrim paper [2], the
authors give an example where the pullback map Σf is constant and characterize
when Σf is constant. The example uses a result of McMullen (Proposition 5.1 in [2])
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to construct a Thurston map f with Σf constant by having Σf factor through a
trivial Teichmüller space. That result is formulated as follows.

Theorem 1.2 (McMullen). Let s : P1 → P1 and g : P1 → P1 be rational maps with
critical value sets Vs and Vg. Let A ⊂ P1. Assume Vs ⊆ A and Vg∪g(A) ⊆ s−1(A).
Then

• f = g ◦ s is a Thurston map,
• Vg ∪ g(Vs) ⊆ Pf ⊆ Vg ∪ g(A), and
• the dimension of the image of Σf : Teich(P1, Pf ) → Teich(P1, Pf ) is at
most |A| − 3.

We refer to the assumptions of this theorem as McMullen’s constant conditions.
We showed in [8] that not every Thurston map whose Teichmüller map is constant
satisfies McMullen’s constant conditions. The Teichmüller map associated to the

rational map f(z) = − 3
√
2z(z3 + 2)/(2z3 + 1) is constant (see Appendix D of [8]).

The ramification portrait for this map f is:

x
3 �� − 3

√
2x

���
��

��
��

��
�

y
3 �� − 3

√
2y �� 0

��

z
3 �� − 3

√
2z

�����������

where x = −1/2 +
√
3i/2, y = −1/2 −

√
3i/2, and z = 1. However, f cannot

be written as the composition of two maps of degree greater than one because
deg(f) = 4 and the local degree of f at every critical point is 3.

Other examples of Thurston maps whose induced maps on Teichmüller space are
constant and that do not satisfy McMullen’s constant conditions can be found in
the class of topological branched coverings called Nearly Euclidean Thurston maps
(NET maps). A Thurston map f : S2 → S2 is a NET map if its local degree at
each of its critical points is 2 and it has exactly four postcritical points.

Any NET map f admits what we call a NET map presentation. That is, given
a NET map f , we can associate to f a quintuple (Λ1,Φ, R, hR, h) where Λ1 is a
lattice in R2 (see Section 3). This combinatorial data allows us to algorithmically
compute the number of essential components in the preimage of an essential simple
closed curve contained in S2 \ Pf . The following theorem can be found in [4].

Theorem 1.3. Let Λ2 = Z2, and let δ be an essential simple closed curve in S2\Pf

with slope p/q with respect to the canonical basis of Λ2. Let λ = (q, p) ∈ Λ2. Since
p and q are relatively prime, there exists μ ∈ Λ2 such that λ and μ form a basis for
Λ2. Let c1, c2, c3, c4 be the coset numbers for H = p−1

1 (Pf ) ⊂ Λ2/2Λ1 relative to λ
and μ. Then, the number of essential components in f−1(δ) is c3 − c2.

This result and Theorem 5.1 of [2] imply that the Teichmüller map of a NET map
f is constant if and only if c2 = c3 for every choice of λ and μ. In [4], J. Cannon
et al. use this constraint on c2 and c3 to define the concept of a nonseparating
set (a set that never separates c2 from c3), then the authors use the definition of a
nonseparating set to provide an algebraic characterization of those NETmaps whose
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induced maps on Teichmüller space are constant. This characterization reduces to
the existence of a nonseparating set within the finite Abelian group Λ2/2Λ1.

We are particularly interested in the existence of nonseparating sets contained in
finite Abelian groups. Our main result is focused on this purely algebraic problem.

Theorem 1.4 (Main Theorem). Let A be a finite Abelian group generated by two

elements such that A/2A ∼= Z/2Z ⊕ Z/2Z. If |A| = 4pk1
1 pk2

2 · · · pkn
n with pi prime,

pi ≥ 13, and |k| = k1 + k2 + · · ·+ kn ≥ 1, then A does not contain a nonseparating
subset.

As a consequence of this, if n = pk1
1 pk2

2 · · · pkn
n where each pi is at least 13, then

there does not exist a NET map with degree n whose Teichmüller map is constant.
This paper is organized as follows. Section 2 sets notation, reviews results, and

provides new algebraic properties related to nonseparating sets which will be needed
in the sequel. Section 3 introduces NET maps, reviews basic facts, and applies
the theory of Section 2 in the construction of two examples of NET maps whose
Teichmüller maps are constant. One of these examples does not satisfy McMullen’s
constant conditions. In Section 4 we investigate when the induced pullback map
on Teichmüller space of NET maps cannot be constant. In Section 5 we show that
no Thurston map of degree 2 has constant pullback map. The proof of Corollary
5.3, in the case |Pf | = 4, gives a new proof of Theorem 4.1.

2. Coset numbers and nonseparating sets

In this section, we first review the definitions and facts on coset numbers and
nonseparating sets. Then we prove the converse of Lemma 2.4 and a technical
lemma relevant in the proof of the main result.

Let A be a finite abelian group. Let H be a subset of A which is the disjoint
union of four pairs {±h1}, {±h2}, {±h3}, {±h4}. (It is possible that hi = −hi.)
Let B be a subgroup such that A/B is cyclic, and let a ∈ A so that a+B generates
A/B. Let n be the order of A/B. For each k ∈ {1, 2, 3, 4} there exists a unique
integer c with 0 ≤ c ≤ n/2 such that (ca + B) ∩ {±hk} �= ∅. Let c1, c2, c3, c4 be
these four integers ordered so that 0 ≤ c1 ≤ c2 ≤ c3 ≤ c4. These four numbers are
called coset numbers for H relative to B and the generator a+B of A/B.

Let A be a finite Abelian group. A subset H of A is called nonseparating if and
only if it satisfies the following conditions:

• H is a disjoint union of the form H = H1

∐
H2

∐
H3

∐
H4, where each Hi

has the form Hi = {±hi}. (It is possible that hi = −hi.)
• Let B be a cyclic subgroup of A such that A/B is cyclic. Let c1, c2, c3, c4
be the coset numbers for H relative to B and some generator of A/B. The
main condition is that c2 = c3 for every such choice of B and generator of
A/B.

Example 2.1. Let A = Z/3Z⊕ Z/3Z. The subset H = A \ {(0, 0)} is a nonsepa-
rating subset of A. In fact, let B be a cyclic subgroup of A so that A/B is cyclic.
Then B ∼= A/B ∼= Z/3Z. Given a generator a + B of A/B we have only three
cosets: B, a + B and 2a + B. It is obvious that B contains exactly one pair of
mutually inverse elements of order 3. So c1 = 0 and c2 = c3 = c4 = 1.

Example 2.2. Let k be an integer with k ≥ 3. Let A = Z/2kZ ⊕ Z/2Z, and
let H = {±(1, 0),±(2k−2, 0),±(2k−2, 1),±(2k−1 − 1, 0)}. We show that H is a
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nonseparating subset of A. Let B be a cyclic subgroup of A such that A/B is
cyclic. Then either |B| = 2k or |B| = 2. First suppose that |B| = 2k. Then
A/B ∼= Z/2Z. Given a generator a + B of A/B we have only two cosets: B and
a+B. In this case to show that H does not separate c2 from c3 it suffices to prove
that B does not contain exactly two elements of H. If (1, 0) ∈ B, then (2k−2, 0)
and (2k−2 − 1, 0) ∈ B. The same is true if (2k−1 − 1, 0) ∈ B. So if B contains
exactly two elements of H, then these elements are (2k−2, 0) and (2k−2, 1). But
then (0, 1) ∈ B. This is impossible.

Now suppose that |B| = 2. Then either B = 〈(0, 1)〉 or B =
〈
(2k−1, 1)

〉
. Let

a ∈ A such that a+B generates A/B. The first component of a has the form 4r±1
for some integer r. Hence 2k−2a + B = ±(2k−2, 0) + B, and so the coset number
of ±(2k−2, 0) is 2k−2. Similarly, one verifies that the coset number of ±(2k−2, 1) is
2k−2. Let m be the integer in {0, . . . , 2k−1} such that m(a+B) = ±(1, 0)+B. Then
(2k−1−m)(a+B) = ±(2k−1−1, 0)+B. So if m is the coset number of ±(1, 0), then
2k−1 − m is the coset number of ±(2k−1 − 1, 0). Thus, {c1, c4} = {m, 2k−1 − m}
and c2 = c3 = 2k−2. This proves that H is a nonseparating subset of A.

The next two lemmas provide ways to produce nonseparating subsets from known
ones. For details of the proofs, see Section 10 of [4].

Lemma 2.3. Let A be a finite Abelian group, and let H be a nonseparating subset
of A. If ϕ : A → A is a group automorphism and τ is an element of A with 2τ = 0,
then ϕ(H) + τ is a nonseparating subset of A.

Lemma 2.4. If A is a finite Abelian group and if A′ is a subgroup of A, then every
subset of A′ which is nonseparating for A′ is nonseparating for A.

Example 2.5. Let A = Z/4Z⊕Z/2Z. The setH = {(0, 0),±(1, 0),±(1, 1),±(2, 0)}
is a nonseparating subset of A. For details of the proof see Example 10.3 of [4].
By Lemma 2.4, H ′ = {(0, 0),±(1, 0),±(1, 2), (2, 0)} is a nonseparating subset of
Z/4Z⊕ Z/4Z.

The next lemma shows the converse of Lemma 2.4. For additional details of the
proof, see Appendix A.

Lemma 2.6. Let A be a finite Abelian group generated by two elements, and let A′

be a subgroup of A. If H is a subset of A′ which is nonseparating for A, then H is
nonseparating for A′.

Proof. Let B′ be a cyclic subgroup of A′ such that A′/B′ is cyclic. Let a′ be an
element of A′ such that a′ + B′ generates A′/B′. By Proposition A.4, there exists
B a subgroup of A such that A/B is cyclic and A′ ∩B = B′. Let n be the order of
A/B, and let m be the order of a′ +B ∈ A/B. By Proposition A.1, there exists an
element a in A such that a + B generates A/B and (n/m)(a + B) = a′ + B. Let
0 ≤ c1 ≤ c2 ≤ c3 ≤ c4 ≤ (1/2)|A′/B′| be the coset numbers for H relative to B′ and
the generator a′ + B′ of A′/B′. Since a′ ∈ A′ and ma′ ∈ B, ma′ ∈ B′. So |A′/B′|
divides m. This yields 0 ≤ nc1/m ≤ nc2/m ≤ nc3/m ≤ nc4/m ≤ n/2. Since ci(a

′+
B′) ⊆ ci(a

′ + B) = (nci/m)(a + B), it follows that nc1/m, nc2/m, nc3/m, nc4/m
are the coset numbers for H relative to B and a+B. Hence nc2/m = nc3/m, and
so c2 = c3. �

Let A be a finite Abelian group. Because of Lemma 2.3 we define an equivalence
relation ∼ on the collection of nonseparating subsets of A as follows.
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Definition 2.7. Let H1, H2 be two nonseparating subsets of A. We say that H1

is related to H2 and write H1 ∼ H2 if and only if there exists ϕ an automorphism
of A and an element τ ∈ A with 2τ = 0 such that H2 = ϕ(H1) + τ . The equiva-
lence classes of this equivalence relation are called Hurwitz classes of nonseparating
subsets.

Remark 2.8. Let A, H be as in Example 2.2. The group A contains the subgroup〈
(2k−2, 0)

〉
⊕Z/2Z which is isomorphic to Z/4Z⊕Z/2Z. By Lemma 2.4 and Example

2.5 above, H ′ = {(0, 0),±(2k−2, 0),±(2k−1, 0),±(2k−2, 1)} is also a nonseparating
subset of A. If there were an element τ in A with 2τ = 0 and an automorphism ϕ of
A such that H = ϕ(H ′)+τ , then τ = ϕ(0)+τ would be an element of H. However,
H contains no element of order less than 4. So H and H ′ are representatives of
distinct Hurwitz classes of nonseparating subsets of A.

Remark 2.9. With the assistance of a computer program W. Parry has verified that
there are three Hurwitz classes of nonseparating subsets in Z/4Z⊕Z/4Z. Here are
representatives for them:

H1 = {(0, 0),±(1, 0),±(1, 2), (2, 0)},
H2 = {±(1, 0),±(0, 1),±(2, 1),±(1, 2)},
H3 = {±(1, 0),±(0, 1),±(1, 1),±(3, 1)}.

A detailed proof of this fact can be found in Appendix B.

We now state and prove a lemma that will be used in the proof of Theorem 4.5.

Lemma 2.10. Let a and b be odd positive integers such that a|b and a > 1. Let
A = Z/2Z⊕ Z/2Z⊕ Z/aZ⊕ Z/bZ, and let φ : A → Z/aZ⊕ Z/bZ be the canonical

projection. Suppose that A contains a nonseparating subset H =
∐4

i=1{±hi}. Let
D = {φ(hi)±φ(hj) : i, j ∈ {1, 2, 3, 4} with i < j}. Assume that there exists a cyclic
subgroup G of Z/aZ⊕Z/bZ such that G∩D ⊆ {0} and (Z/aZ⊕Z/bZ)/G is cyclic.
If Z/aZ⊕Z/bZ = 〈φ(H)〉, then we may assume that 〈φ(h1), φ(h2)〉 = Z/aZ⊕Z/bZ
and h2, h3, and h4 all differ by an element of order 2.

Proof. Define the following three cyclic subgroups of A:

• E(1,0) = 〈(1, 0)〉 ⊕G,
• E(0,1) = 〈(0, 1)〉 ⊕G,
• E(1,1) = 〈(1, 1)〉 ⊕G.

The quotient groups A/E(1,0), A/E(0,1), and A/E(1,1) are cyclic. Let xij +E(i,j)

be a generator of A/E(i,j). We denote the second coset number for H relative to
E(i,j) and the generator xi,j + E(i,j) by ci,j .

Since H is a nonseparating subset of A, without loss of generality we may assume
that h2 and h3 are elements of the coset c1,0x1,0 +E(1,0). Then φ(h2)−φ(h3) ∈ G.
So, φ(h2) = φ(h3) and h2 − h3 = (1, 0, 0, 0).

We show that {±h2,±h3} ⊂ c0,1x0,1 + E(0,1) cannot occur. Proceed by con-
tradiction. If {h2, h3} ⊂ c0,1x0,1 + E(0,1) or {−h2,−h3} ⊂ c0,1x0,1 + E(0,1), then
h2 − h3 = (0, 1, 0, 0), which is impossible. If {h2,−h3} ⊂ c0,1x0,1 + E(0,1) or
{−h2, h3} ⊂ c0,1x0,1 + E(0,1), then h2 + h3 = (0, 1, 0, 0), and so 2h2 = (1, 1, 0, 0),
which yields a contradiction. Similarly, {±h2,±h3} ⊂ c1,1x1,1+E(1,1) cannot occur.

We now show that {±h1,±h4} ⊂ c0,1x0,1 + E(0,1) cannot occur. Relabeling, if
necessary, it suffices to show that {h1, h4} ⊂ c0,1x0,1+E(0,1) cannot occur. Proceed
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by contradiction. Suppose that {h1, h4} ⊂ c0,1x0,1 + E(0,1). The above argument
shows that φ(h1) = φ(h4) and that {±h1,±h4} ⊂ c1,1x1,1 + E(1,1) cannot occur.
Then one of the following sixteen inclusions must hold:

• {±h1,±h2} ⊂ c1,1x1,1 + E(1,1),
• {±h1,±h3} ⊂ c1,1x1,1 + E(1,1),

• {±h4,±h2} ⊂ c1,1x1,1 + E(1,1),
• {±h4,±h3} ⊂ c1,1x1,1 + E(1,1).

However, each of them would imply that 〈φ(H)〉 = 〈φ(h1)〉. Since Z/aZ⊕Z/bZ =
〈φ(H)〉, none of these inclusions occur. So, {±h1,±h4} ⊂ c0,1x0,1 + E(0,1) cannot
occur.

Now, we may assume that either {h3, h4} or {−h3, h4} is a subset of the coset
c0,1x0,1 + E(0,1). If {h3, h4} ⊂ c0,1x0,1 + E(0,1), then h3 − h4 = (0, 1, 0, 0). Hence
φ(h2) = φ(h3) = φ(h4) and the lemma follows. If {−h3, h4} ⊂ c0,1x0,1 + E(0,1),
then h3 + h4 = (0, 1, 0, 0). In this case, φ(h2) = φ(h3) = −φ(h4). Relabeling h4 by
−h4, the lemma follows. �

3. NET maps: Preliminaries and examples

In this section we briefly review some definitions and properties of NET maps.
We refer the reader to Section 1 in [4] for more details.

Definition 3.1. A Thurston map f : S2 → S2 is called Euclidean if its local degree
at each of its critical points is 2, it has at most four postcritical points, and none
of them is critical.

Definition 3.2. A Thurston map f : S2 → S2 is called nearly Euclidean (NET) if
its local degree at each of its critical points is 2 and it has exactly four postcritical
points.

From Lemma 1.3 of [4], it follows that every Euclidean Thurston map is nearly
Euclidean, and every NET map f has the property that f−1(Pf ) contains exactly
four points which are not critical points; f is Euclidean if and only if these four
points are precisely the points of Pf . The next theorem shows that NET maps lift
to maps of tori. The proof of the theorem and the following description can be
found in Section 1 of [4].

Theorem 3.3. Let f be a Thurston map. Then f is nearly Euclidean if and only
if there exist branched covering maps p1 : T1 → S2 and p2 : T2 → S2 with degree 2
from the tori T1 and T2 to S2 such that the set of branch of p2 is Pf and there exists

a continuous map f̃ : T1 → T2 such that p2 ◦ f̃ = f ◦ p1. If f is nearly Euclidean,
then f is Euclidean if and only if the set of branched points of p1 is Pf .

Let f : S2 → S2 be a NET map. Let p1 : T1 → S2, p2 : T2 → S2, and f̃ : T1 → T2

as in Theorem 3.3 such that p2 ◦ f̃ = f ◦ p1. For j ∈ {1, 2}, let Pj(f) ⊂ S2 be the
set of branched points of pj and let qj : R

2 → Tj be a universal covering map. The
map pj ◦ qj : R2 → S2 is a regular branched covering map whose local degree at
every ramification point is 2. Let Γj and Λj be the set of deck transformations and
the set of ramification points of pj ◦ qj . We can choose qj so that Γj is generated
by the set of all Euclidean rotations of order 2 about the points of Λj . We may,
and do, normalize so that 0 ∈ Λj . Hence Λj is a lattice in R2 and the elements of
Γj are the maps of the form x �→ 2λ± x for some λ ∈ Λj .
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The map f̃ ◦ q1 lifts to a continuous map f̂ : R2 → R2 such that q2 ◦ f̂ = f̃ ◦ q1.
Since f̃ ◦ q1 is a covering map, the map f̂ is as well. Hence, f̂ is a homeomorphism.

We replace q1 by q1 ◦ f̂−1. In this case, f̃ lifts to the identity map. Thus, Λ1 ⊆ Λ2

and Γ1 ⊆ Γ2. So we obtain the standard commutative diagram

Λ1
ic−−−−→ Λ2

ic

⏐⏐�
⏐⏐� ic

R2 id−−−−→ R2

q1

⏐⏐�
⏐⏐� q2

T1
f̃−−−−→ T2

p1

⏐⏐�
⏐⏐� p2

S2 f−−−−→ S2

where id is the identity map and the maps from Λ1 and Λ2 are inclusion maps.
The group Γj contains the group of deck transformations of qj . It is the subgroup

with index 2 consisting of translations of the form x �→ 2λ + x with λ ∈ Λj . So
we can identify Tj with R2/2Λj . The standard commutative diagram implies that
R2/Γ1 and R2/Γ2 are both identified with S2. Thus there is an identification map
φ : R2/Γ2 → R2/Γ1. To evaluate f at some point x, we view x as an element of
R2/Γ1. We lift it to R2, then project it to R2/Γ2, and then apply the identification
map φ to obtain f(x). For Euclidean NET maps the identification map φ can be
obtained by using Φ : R2 → R2 an affine automorphism such that Φ(Λ2) = Λ1.

The following theorem shows that a NET map f can be obtained by taking
a Euclidean Thurston map g and postcomposing it by a homeomorphism h that
satisfies h(Pg) ⊆ g−1(Pg), subject to the constraint that the composition f = h ◦ g
has four postcritical points. More precisely, we have the following.

Theorem 3.4.
(1) If g : S2 → S2 is a NET map and h : S2 → S2 is an orientation-preserving

homeomorphism such that h(Pg) ⊆ g−1(Pg), then f = h ◦ g is a NET map if it has
at least four post critical points.

(2) Let f be a NET map with P1 = P1(f) and P2 = P2(f). Let h : S2 → S2 be
an orientation-preserving homeomorphism with h(P1) = P2. Then f = h ◦ g, where
g : S2 → S2 is a Euclidean Thurston map with Pg = P1 and P2 ⊆ g−1(Pg), so that
h(Pg) ⊆ g−1(Pg).

Combining Theorem 3.3, the description of the standard commutative diagram
given above, and Theorem 3.4, each NET map can be constructed as follows. Let
Λ2 be the lattice generated by (1, 0) and (0, 1). Fix a quintuple (Λ1,Φ, R, hR, h),
where

• Λ1 is a sublattice of Λ2 of covolume greater than one. Let Γ1,Γ2 be the
groups generated by rotations of order 2 about elements of Λ1, Λ2 so that
S2
1 := R2/Γ1, S

2
2 := R2/Γ2 are spheres. For j ∈ {1, 2}, let πj : R2 → S2

j

be the canonical quotient map. Since Λ1 < Λ2, we have Γ1 < Γ2. So the
identity map i : R2 → R2 induces a map i : S2

1 → S2
2 such that i ◦ π1 = π2.

The map i is a branched covering map of degree d := [Λ2 : Λ1].
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• For j ∈ {1, 2}, set Tj := R2/2Λj , and let pj : Tj → S2
j be branched covering

maps of degree 2. Let Pj = Λj/Γj be the set of branched points of pj . Note
that |Pj | = 4.

• Φ : (R2,Λ2) → (R2,Λ1) is an affine map of the form Φ(x) = Lx + b where
b ∈ Λ1 and L is a 2× 2 matrix over Z of determinant greater than one.

• R ⊂ Λ2/Γ1 ⊂ S2
1 is a set of four points.

• hR : P1 → R is a bijection.
• h : (S2

1 , P1) → (S2
1 , R) is an orientation-preserving homeomorphism which

is an extension of hR:

R2

π1

��

i �� R2

π2

��

Φ �� R2

��
π1

��
S2
1

i �� S2
2

φ �� S2
1

h �� S2
1

The affine map Φ descends to a homeomorphism φ : S2
2 → S2

1 so that the com-
position g = φ ◦ i is a Euclidean Thurston map such that Pg = P1. Since
h(Pg) = h(P1) = R, it turns out that f := h ◦ g is a Thurston map such that
Pf ⊂ R. If Vg = P1 (which is always true if deg(g) = 3 or deg(g) ≥ 5), then
Pf = R and we get a NET map by this process. Thus, given a nearly Euclidean
Thurston map f , we can always associate to f a quintuple (Λ1,Φ, R, hR, h) and a
commutative diagram as above where f = h ◦ g = h ◦ (φ ◦ i).

Under these settings, in [4] J. Cannon et al. proved the following result.

Theorem 3.5. Let f be a NET, and let p1,Λ1,Λ2 be as above. Then the Te-
ichmüller map of f is constant if and only if p−1

1 (Pf ) is a nonseparating subset of
Λ2/2Λ1.

So, in order to construct NET maps whose Teichmüller maps are constant, we
may consider the following steps:

1. Let Λ2 be the lattice generated by (1, 0) and (0, 1).
2. Construct a finite Abelian group A generated by two elements with A/2A ∼=

Z/2Z⊕ Z/2Z such that A has a nonseparating subset H.
3. Construct a lattice Λ1 such that Λ1 < Λ2 for which Λ2/2Λ1

∼= A.
4. Construct an isomorphism Φ from Λ2 to Λ1, which in effect produces a

Euclidean Thurston map g corresponding to Λ1 and Λ2. That is, g = φ ◦ i.
5. Construct an orientation-preserving homeomorphism h : S2

1 → S2
1 such

that h(Pg) = p1(H). Here p1 : T1 → S2
1 .

6. Set f := h ◦ g. By Theorem 3.4, if f has four postcritical points, then it
is a NET map. In that case, Pf = h(Pg), and so H = p−1

1 (Pf ). Then, by
Theorem 3.5, the Teichmüller map of f is constant. Since |Λ2/Λ1| = deg(f),
we have |A| = 4deg(f).

In [4], J. Cannon et al. prove a general existence theorem. If d is an integer with
d > 2 such that d is divisible by either 2 or 9, then there exists a NET map with
degree d whose Teichmüller pullback map is constant. In particular, it is possible
to construct NET maps with odd degree and a constant Teichmüller map.

Lemma 3.6. Let s : S2 → S2 be an orientation-preserving branched covering map
such that deg(s, x) = 2 for every x ∈ Ωs. If |Vs| ≤ 3, then deg(s) = 2 or deg(s) = 4.
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Proof. If deg(s) = 3, the preimage under s of every element of Vs contains three
points counting multiplicity and no such preimage contains two critical points.
Then s maps its four critical points bijectively to Vs, and so |Vs| = 4.

Let d = deg(s). By the Riemann–Hurwitz formula |Ωs| = 2(d−1). Since |Vs| ≤ 3
and deg(s, x) = 2 for every x ∈ Ωs it follows that |Ωs| ≤ 3(d/2). So d ≤ 4. �

Proposition 3.7. There exist NET maps with constant pullback map that do not
satisfy McMullen’s constant conditions.

Proof. Let f be an NET map with odd degree whose pullback map is constant.
If f satisfies McMullen’s constant conditions (see Theorem 1.2), then there are
two orientation-preserving branched covering maps g and s and a set A such that
f = g ◦ s, |A| ≤ 3, and Vs ⊆ A. Since f is nearly Euclidean, deg(s;x) = 2 for every
x ∈ Ωs. By Lemma 3.6, either deg(s) = 2 or deg(s) = 4. This is impossible because
deg(f) is an odd number. �

Example 3.8. We construct an expanding rational NET map with degree 4 whose
Teichmüller map is constant. Let g be the Lattés map described in Example 10.7
of [4]. The critical points of g are E1, E

′
1, E2, E

′
2, E3, E

′
3 and the postcritical set

of g is {e1, e2, e3,∞}. Moreover, g(ei) = g(∞) = ∞ and g(Ei) = g(E
′

i) = ei for
i ∈ {1, 2, 3}. Now let h : P1 → P1 be an orientation-preserving homeomorphism

such that h(e1) = e1, h(e2) = E1, h(e3) = E
′

1, h(∞) = ∞.
Following the description given in Example 10.7 of [4], one sees that f = h ◦ g is

a NET map whose Teichmüller map is constant so it is combinatorially equivalent
to a rational map, R. One easily verifies that R(E1) = R(E

′

1) = e1 mapping with

degree 2, R(E2) = R(E
′

2) = E1 mapping with degree 2, R(E3) = R(E
′

3) = E
′

1

mapping with degree 2, and R(e1) = R(∞) = ∞ mapping with degree 1. So R is a
rational map without periodic critical points. Let μ be the Mobiüs transformation
that satisfies μ(E1) = 0, μ(E

′

1) = ∞, μ(e1) = 1, and let F = μ ◦ R ◦ μ−1. Set

α = μ(E2), β = μ(E
′

2), γ = μ(E3), λ = μ(E
′

3). Using the branching data of F , we
have that

F (z) =
(z − α)2(z − β)2

(z − γ)2(z − λ)2
.

The numerator of F (z)−1 is given by (z−α)2(z−β)2−(z−γ)2(z−λ)2. Since z = 0
is the unique zero of the numerator of F (z) − 1 and has multiplicity 2, it follows
that (z −α)(z− β) + (z− γ)(z− λ) = 2z2 and that (z −α)(z− β)− (z− γ)(z− λ)
is a nonzero constant. This leads to the equations

−(α+ β) + (γ + λ) = 0,

−(α+ β)− (γ + λ) = 0,

αβ + γλ = 0.

This forces α + β = 0 and γ + λ = 0. So α = −β, γ = −λ, and −β2 − λ2 = 0.
Hence, F (z) = (z2 − β2)2/(z2 + β2)2 with the restriction F (F (1)) = F (1). This
restriction implies that either

(F (1))2 − β2

(F (1))2 + β2
=

1− β2

1 + β2
or

(F (1))2 − β2

(F (1))2 + β2
= −1− β2

1 + β2
.

Thus, either (F (1))2 = 1 or (F (1))2 = β4. If (F (1))2 = 1, then F (1) = −1, and so
β2 = ±i. If (F (1))2 = β4, then (1− β2)4 = (1 + β2)4β4.
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We now show that if β2 = i, then the map F (z) = (z2 − i)2/(z2 + i)2 is an
expanding rational (see [3]) NET map with a constant pullback map. To see this,
it suffices to consider g(w) = (w− i)2/(w+ i)2, s(z) = z2, and A = {0, 1,∞}. Note
that F = g ◦ s and g, s and A verify McMullen’s constant conditions.

Remark 3.9. The preceding example suggests the following family of rational maps:
Fn(z) = (zn− i)2/(zn+ i)2, with n ≥ 2. Each Fn has no periodic critical points, so
each Fn is expanding. Also, note that Fn = g ◦ sn where g(w) = (w − i)2/(w + i)2

and sn(z) = zn. If n is even and A = {0, 1,∞}, then g, sn, and A verify McMullen’s
constant conditions. Thus, if n is even, Fn has a constant Teichmüller map.

Example 3.10. We construct a NET map of degree 9 whose Teichmüller map is
constant. First of all, we construct an Abelian group of degree 4 · 9 = 36 which
contains a nonseparating subset. We take A = Z/6Z ⊕ Z/6Z. The 3-torsion sub-
group of A is isomorphic to Z/3Z⊕Z/3Z. Example 2.1 and Lemma 2.4 imply that
H = {±(0, 2),±(2, 2),±(2, 4),±(2, 0)} is a nonseparating subset of A.

Let Λ2 = Z2, and let Λ1 = 3Λ2. So Λ2/2Λ1
∼= A. Let Γj be the group generated

by rotations of order 2 about elements of Λj . Note that S2
j := R2/Γj is a sphere

and that the identity map i : R2 → R2 induces a quotient map i : S2
1 → S2

2 .
This quotient map is a branched covering map of degree d = [Λ2 : Λ1] = 9. Let
Φ : (R2,Λ2) → (R2,Λ1) be the affine map Φ(x, y) = (3x, 3y). The map Φ induces
a homeomorphism φ from S2

2 to S2
1 . Then we have the following commutative

diagram:

R2

π1

��

i �� R2

π2

��

Φ �� R2

��
π1

��
S2
1

i �� S2
2

φ �� S2
1

Below is a fundamental domain for the action of Γ1 on R2. The dots are elements
of Λ2. The lower left corner is (0, 0). Points are labeled (bold) by their images in
S2
1 under the map π1. The map g := φ ◦ i is a Euclidean map with postcritical set

Pg = π1(Λ1) = {a, b, c, d}. Let T1 := R2/2Λ1, and let p1 : T1 → S2
1 be the map

defined by (x, y) + 2Λ1 �→ π1(x, y). We identify A with Λ2/2Λ1 so that the subset
H = {±(0, 2) + 2Λ1,±(2, 2) + 2Λ1,±(2, 4) + 2Λ1,±(2, 0) + 2Λ1} is nonseparating
in Λ2/2Λ1.

Figure 1. A fundamental domain for the action of Γ1 on R2.
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Let h : S2
1 → S2

1 be an orientation-preserving homeomorphism so that h(a) = δ,
h(b) = β, h(c) = α, h(d) = γ. Let f := h ◦ g. Then Pf = {α, β, γ, δ} and
Pf = h(Pg) = p1(H), where H is the nonseparating set (identification) contained
in T1. By Theorem 3.5, the map f is a NET map of degree 9 whose Teichmüller
map is constant; however, because of Proposition 3.7, this example does not satisfy
McMullen’s constant conditions.

4. Nonexistence results

The following nonexistence results can be found in Section 10 of [4].

Theorem 4.1. There does not exist a NET map with degree 2 whose Teichmüller
map is constant.

Theorem 4.2. Let A be a finite Abelian group such that A/2A ∼= Z/2Z ⊕ Z/2Z
and 2A is a cyclic group with odd order. Then A does not contain a nonseparating
subset.

Theorem 4.3. There does not exist a NET map with degree an odd square-free
integer and constant Teichmüller map.

Our main theorem is a nonexistence result. We begin with the following lemma.

Lemma 4.4. Let N = pk1
1 · · · pkn

n with pi ≥ 13. Let A = Z/aZ ⊕ Z/bZ such that
a|b, N = ab, and a > 1. If D ⊆ A so that |D| ≤ 12, then there exists a cyclic
subgroup G of A such that G ∩D ⊆ {0} and A/G is cyclic.

Proof. Since a|b and N = ab, then a = ps11 · · · psnn and b = pk1−s1
1 · · · pkn−sn

n , where
0 ≤ 2si ≤ ki. Let I = {1, . . . , n}, and define I1 := {i ∈ I : si = 0} and I2 := I \ I1.
Since a > 1, I2 cannot be empty. Then A ∼= C ⊕ P , where C =

⊕
i∈I1

Z/pki
i Z and

P =
⊕

i∈I2
(Z/psii Z ⊕ Z/pki−si

i Z). Without loss of generality we may assume that

A = C ⊕P . Now, for each i ∈ I2 let φi : A → Z/psii Z⊕Z/pki−si
i Z be the canonical

projection. Since |φi(D)| ≤ 12 and pi ≥ 13, there exists a cyclic subgroup Gi of

Z/psii Z ⊕ Z/pki−si
i Z such that Gi ∩ φi(D) ⊆ {0} and

(
Z/psii Z ⊕ Z/pki−si

i Z
)
/Gi is

cyclic. The subgroup G :=
⊕

i∈I2
Gi satisfies the conclusion. �

Theorem 4.5. Let A be a finite Abelian group generated by two elements such
that A/2A ∼= Z/2Z ⊕ Z/2Z. If |A| = 4pk1

1 pk2
2 · · · pkn

n with pi prime, pi ≥ 13, and
|k| = k1 + k2 + · · ·+ kn ≥ 1, then A does not contain a nonseparating subset.

Proof. We proceed by induction on |k|. If |k| = 1, thenA ∼= Z/2Z⊕Z/2pZ. Since 2A
is cyclic with odd order, by Theorem 4.2, the conclusion follows. Now, suppose the
conclusion holds for any |k| ∈ {1, . . . ,m−1} and assume that |A| = 4pk1

1 pk2
2 · · · pkn

n ,
where k1 + · · · + kn = m. Then there are two positive odd integers a and b such
that A ∼= Z/2aZ ⊕ Z/2bZ, |A| = 4ab, and a divides b. If a = 1, then 2A is a
cyclic group with odd order. By Theorem 4.2, the conclusion follows. Now, assume
that A = Z/2Z ⊕ Z/2Z ⊕ Z/aZ ⊕ Z/bZ with a > 1 and proceed by contradiction.
Suppose that A contains a nonseparating subset H = H1

∐
H2

∐
H3

∐
H4, where

eachHi = {±hi}. Then, either Z/aZ⊕Z/bZ ⊆ 〈H〉 or (Z/aZ⊕Z/bZ)∩(A\〈H〉) �= ∅.

Case I. Z/aZ⊕Z/bZ ⊆ 〈H〉. Let φ : A → Z/aZ⊕Z/bZ be the canonical projection,
and let D := {φ(hi)± φ(hj) : i, j ∈ {1, 2, 3, 4} and i < j}. The cardinality of D is
at most 12. By Lemma 4.4, there exists a cyclic subgroup G of Z/aZ⊕ Z/bZ such
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that G ∩D ⊆ {0} and (Z/aZ⊕ Z/bZ)/G is cyclic. Then, by Lemma 2.10, we may,
and do, assume that 〈φ(h1), φ(h2)〉 = Z/aZ⊕Z/bZ and h2, h3, and h4 all differ by
an element of order 2.

If a = b, there exists a cyclic subgroup B of A of order 2b such that h2 ∈ B and
A/B is cyclic. Since h2, h3, and h4 all differ by an element of order 2, then h2+B,
h3+B, h4+B lie in the subgroup of order 2 in A/B. They are not all equal because
B does not contain three elements of order 2. So either c1 = c2 = 0 and c4 = b or
c1 = 0 and c3 = c4 = b. Thus, the order of h1 + B divides 2. Hence 2φ(h1) ∈ B,
and so φ(h1) = ((b + 1)/2)(2φ(h1)) ∈ B. Therefore 〈φ(h1), φ(h2)〉 ⊆ B. This is a
contradiction because B is cyclic and 〈φ(h1), φ(h2)〉 = Z/aZ⊕ Z/bZ.

If a < b, set Ã := Z/2Z ⊕ Z/2Z ⊕ Z/bZ ⊕ Z/bZ and let ic be the canonical

monomorphism ic : A → Ã defined by ic(x, y, z, t) = (x, y, (b/a)z, t). By Lemma 2.4

ic(H) is a nonseparating subset of Ã. Now, set μ := ic(φ(h1)) and ν := ic(φ(h2)).
Since 〈φ(h1), φ(h2)〉 = Z/aZ⊕Z/bZ, then 〈μ, ν〉 = ic(Z/aZ⊕Z/bZ) = 〈b/a〉⊕Z/bZ.
Furthermore, ic(h2), ic(h3), and ic(h4) all differ by an element of order 2. Since

ν ∈ Z/bZ ⊕ Z/bZ there exists a cyclic subgroup B̃ of Ã of order 2b such that

ic(h2) ∈ B̃ and Ã/B̃ is cyclic. Then ic(h2) + B̃, ic(h3) + B̃, ic(h4) + B̃ lie in the

subgroup of order 2 in Ã/B̃. They are not all equal because B̃ does not contain
three elements of order 2. So either c1 = c2 = 0 and c4 = b or c1 = 0 and
c3 = c4 = b. Thus, ic(h1) + B̃ must have order 2 in Ã/B̃. Hence 2μ ∈ B̃, and so

μ = ((b+ 1)/2)(2μ) ∈ B̃. Therefore 〈μ, ν〉 ⊆ B̃. This is a contradiction because B̃
is cyclic and 〈μ, ν〉 = 〈b/a〉 ⊕ Z/bZ.

Case II. (Z/aZ ⊕ Z/bZ) ∩ (A \ 〈H〉) �= ∅. This means that 〈H〉 does not contain
a copy of Z/aZ ⊕ Z/bZ. Then, H ⊂ 〈H〉 ⊆ A′ where A′ is a proper subgroup of
A whose order has the form 4r. Obviously, r divides |A|/4 and r < |A|/4. Since
A′ is a finite Abelian group generated by 2 elements, we can apply the inductive
hypothesis to A′ and conclude that A′ does not contain a nonseparating subset.
However, this contradicts Lemma 2.6.

This proves Theorem 4.5. �

As an immediate consequence of Theorem 4.5, we have the following corollary.

Corollary 4.6. Let n = pk1
1 pk2

2 · · · pkn
n with pi prime, pi ≥ 13. There does not exist

a NET map with degree n whose Teichmüller map is constant.

We proved in [8] the following theorems. Their proofs are similar to the proof of
Theorem 4.5. For further details see Chapter 5 of [8].

Theorem 4.7. Let A be a finite Abelian group generated by two elements such that
A/2A ∼= Z/2Z ⊕ Z/2Z. If |A| = 4p2 with p prime and p ≥ 5, then A does not
contain a nonseparating subset.

Theorem 4.8. Let A be a finite Abelian group generated by two elements such that
A/2A ∼= Z/2Z ⊕ Z/2Z. If |A| = 4p3 with p prime and p ≥ 7, then A does not
contain a nonseparating subset.

As immediate consequences, we have the following corollaries.

Corollary 4.9. For any prime p ≥ 5 there does not exist a NET map with degree
p2 whose Teichmüller map is constant.
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Corollary 4.10. For any prime p ≥ 7 there does not exist a NET map with degree
p3 whose Teichmüller map is constant.

Corollaries 4.6, 4.9, and 4.10 strongly support the conjecture made by J. Cannon
et al. in Section 10 of [4]. This conjecture has been verified by computer for all
NET maps with degree at most 300. See section 2 of [6] for further progress in this
direction.

Conjecture. There exists a NET map with degree d and constant Teichmüller map
if and only if d > 2 and d is divisible by either 2 or 9.

5. On Thurston maps of degree 2

Let f : S2 → S2 be a Thurston map, and let Pf be its postcritical set. Combining
statements 1 and 4 of Theorem 5.1 of [2] implies that the pullback map Σf is
constant if and only if for every essential simple closed curve α in S2 \ Pf , every
connected component of f−1(α) is either trivial or peripheral in S2 \ Pf . We use
this result to conclude that there does not exist a Thurston map of degree 2 with
at least four postcritical points whose Teichmüller map is constant.

A branched covering map f : S2 → S2 is said to be a topological polynomial
if there exists a critical point w such that f−1(w) = {w}. If f is a Thurston
polynomial and |Pf | > 2, there is a unique point w such that f−1(w) = {w}; we
call this point ∞.

Lemma 5.1. Let f : S2 → S2 be a branched covering map of degree n. Suppose
that deg(f, w) = n for some w ∈ S2 . If U ⊂ S2 is homeomorphic to an open disk
with f(w) /∈ U , then every component of f−1(U) is homeomorphic to a disk.

Proof. Straightforward consequence of Lemma 5.1 of [1]. �

Theorem 5.2. Let f : S2 → S2 be a Thurston map of degree n with |Pf | = m.
Suppose there exists w ∈ S2 such that deg(f, w) = n. Suppose additionally that
there exists c ∈ Pf \ Vf , and let k = |f−1(c) ∩ Pf |.

(1) If w ∈ Pf and m− k ≥ 3, then Σf cannot be constant.
(2) If w /∈ Pf , k ≥ 2, and m− k ≥ 2, then Σf cannot be constant.

Proof. To prove statement (1), let α be a simple closed curve contained in S2 \ Pf

that separates the points c and f(w) from the other postcritical points of f . Let
D be the connected component of S2 \ α that contains the points c and f(w).
By Lemma 5.1, f−1(D) is connected. Furthermore, f |f−1(D) : f−1(D) → D is a
branched covering map of degree n with exactly one critical point. It follows that
f−1(D) ∩ Pf = {w} ∪ (f−1(c) ∩ Pf ). So, one connected component of S2 \ f−1(α)
contains exactly k+1 postcritical points of f . Then the other connected component
of S2 \ f−1(α) contains m− (k+1) postcritical points of f . Since m− (k+1) ≥ 2,
f−1(α) is essential in S2 \ Pf . This proves statement (1) of Theorem 5.2.

To prove statement (2), let α and D be as in the previous paragraph. Since
w /∈ Pf , f

−1(D)∩Pf = f−1(c)∩Pf . Under the assumptions k ≥ 2 and m− k ≥ 2,
it follows that f−1(α) is essential in S2 \ Pf .

This proves Theorem 5.2. �

Corollary 5.3. Let f be a Thurston map of degree 2. If |Pf | ≥ 4, then Σf cannot
be constant.
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Proof. Let f be a Thurston map of degree 2. We proceed by cases:

• |Pf | = 4. If f is a Euclidean Thurston map, Tf can be identified with the
upper half plane H and Σf : H → H is given by Σf (z) = (dz + b)/(cz + a)
where a, b, c, d ∈ Z and ad− bc = deg(f). So Σf cannot be constant.

We now assume that f is not a Euclidean Thurston map. In this case,
Pf ∩Cf �= ∅. The set Pf \Vf contains exactly two elements, say a and b. If
|f−1(a)∩Pf | = |f−1(b)∩Pf | = 2, then Pf = f−1(a)

∐
f−1(b) and no critical

point would be postcritical. Hence |f−1(a)∩Pf | = 1 or |f−1(b)∩Pf | = 1. So
there exist w ∈ Pf with deg(f, w) = 2 and c ∈ Pf \Vf with 1 = |f−1(c)∩Pf |.
Part (1) of Theorem 5.2 implies that Σf cannot be constant.

• |Pf | ≥ 5. If f is a topological polynomial, then ∞ ∈ Pf and deg(f,∞) = 2.
Let x ∈ Ωf \ {∞} and let O(x) be the forward orbit of x under f . Since
4 ≤ |O(x)| < ∞, there exists c ∈ O(x) such that |f−1(c) ∩ Pf | = 1. By
part (1) of Theorem 5.2 (take w = ∞) it follows that Σf cannot be constant.

We now assume that f is not a topological polynomial. So f has two
critical points, say a and b, and neither of them is a fixed point. Let O(a)
and O(b) be the forward orbits of a and b, respectively. If one of these
critical points, say a, is preperiodic, then there exists c ∈ O(a) such that
|f−1(c) ∩ Pf | = 2. In this case, take w = a and apply part (2) of Theorem
5.2 to conclude that Σf cannot be constant. If a and b are both periodic,
then a /∈ Vf or b /∈ Vf . Without loss of generality we may assume that
b /∈ Vf . Then 1 = |f−1(b) ∩ Pf |. In this case, take w = a and apply part
(1) of Theorem 5.2 to conclude that Σf cannot be constant. �

Remark 5.4. In Proposition 5.3 of [7], Koch shows that if f is a topological poly-
nomial with |Ωf | = 2, then X : Wf → MPf

is injective. So a moduli space map gf
exists. This implies that Σf cannot be constant. For further details, see Proposition
5.3 and Corollary 5.4 of [7].

Appendix A. Group theory

Proposition A.1. Let G be a finite cyclic group of order n, and let h be an element
of order m in G. Then there exists g ∈ G such that 〈g〉 = G and gn/m = h.

Proof. Choose a ∈ G such that 〈a〉 = G. Then 〈an/m〉 = 〈h〉, so there exists r ∈ N

such that anr/m = h; of course gcd(r,m) = 1. Also, if d ∈ N, then and/m = h if
and only if d ≡ r mod m.

Let q be the product of the primes which divide n/m but do not divide m. Thus,
gcd(m, q) = 1 and gcd(s, n) = 1 if and only if gcd(s,m) = gcd(s, q) = 1. By the
Chinese remainder theorem, we may choose τ ∈ N such that τ ≡ r mod m and
τ ≡ 1 mod q. Then gcd(τ, n) = 1, so aτ generates G. Also (aτ )n/m = h, as
required. �
Proposition A.2. Every element of Z/nZ⊕Z/nZ is a multiple of a basis element.

Proof. In fact, let g = (x, y) ∈ Z/nZ ⊕ Z/nZ. If x = 0 or y = 0, the proposition

follows. Assume x �= 0 and y �= 0; then g = d(x/d, y/d) where d = gcd(x, y). Since

gcd(x/d, y/d) = 1, (x/d, y/d) is a basis element and the proposition follows. �
Proposition A.3. Assume that A = Z/nZ ⊕ Z/nZ. Let A′ be a subgroup of A,
and let B′ be a cyclic subgroup of A′ so that A′/B′ is also cyclic. Then there exists
a cyclic subgroup B of A such that A/B is cyclic and A′ ∩B = B′.
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Proof. Let S1, . . . , S� be the Sylow subgroups of A. Since every subgroup C of A is
the direct sum of C∩S1, . . . , C∩S�, it suffices to prove the proposition for p-groups.
So we may, and do, assume that n = pr where p is a prime number and r ∈ Z+.

Case I. Suppose that A′ is cyclic. By Proposition A.2, every element of A′ is a
multiple of a basis element of A. Let v ∈ A be a basis element such that 〈v〉 contains
A′. Choose w ∈ A so that {v, w} is a basis for A. Let ϕ be the automorphism
of A defined on these generators by ϕ(v) = (1, 0) and ϕ(w) = (0, 1). Let b′ be
a generator of B′, and let k = o(b′). Since ϕ(b′) ∈ 〈(1, 0)〉, by Proposition A.1,
there exists g ∈ Z/nZ such that Z/nZ = 〈g〉 and ϕ(b′) = (n/k)(g, 0). Let T be the
automorphism of A defined on generators by T (g, 0) = (1, 0) and T (0, 1) = (0, 1).
Now consider the isomorphism f = T ◦ ϕ. Then A′ is isomorphic to f(A′) which
is a subgroup contained in the subgroup 〈(1, 0)〉. Let b ∈ A so that f(b) = (1, k).
Using these coordinates, we have 〈f(b)〉 ∩ f(A′) = 〈(n/k, 0)〉. Then 〈b〉 ∩A′ = 〈b′〉.
Finally, we set B = 〈b〉. Since o(b) = n, A/B is cyclic as required.

Case II. Suppose that A′ is not cyclic. In this case, there are positive integers s, t
so that A′ ∼= Z/psZ⊕Z/ptZ. We first show that no cyclic subgroup of A′ properly
contains B′. If C is a cyclic subgroup of A′ such that B′ � C, then B′ ⊆ pC,
and so B′ ⊆ pA′ � A′. The Third Isomorphism Theorem for groups would then
imply that the quotient group (A′/B′)/(pA′/B′) is isomorphic to A′/pA′. This is a
contradiction because A′/B′ is cyclic and A′/pA′ is not. Now let b′ be a generator
of B′, and let b be a basis element of A such that 〈b〉 contains B′. Set B = 〈b〉.
Because b is a basis element of A, A/B is cyclic. Finally, since A′ ∩ B is a cyclic
subgroup of A′ that contains B′, we have A′ ∩B = B′. �
Proposition A.4. Let A be a finite Abelian group generated by two elements. Let
A′ be a subgroup of A, and let B′ be a cyclic subgroup of A′ so that A′/B′ is also
cyclic. Then there exists a cyclic subgroup B of A such that A/B is cyclic and
A′ ∩B = B′.

Proof. We may assume that A = Z/mZ⊕Z/nZ where m and n are positive integers
such that m|n. Let ic : A → Z/nZ⊕Z/nZ be the canonical monomorphism defined
on generators by ic(1, 0) = (n/m, 0) and ic(0, 1) = (0, 1). Then A is isomorphic
to the subgroup 〈n/m〉 ⊕ Z/nZ. So, without loss of generality, we may assume
that A is a subgroup of Z/nZ ⊕ Z/nZ. Now let A′ be a subgroup of A, and let
B′ be a cyclic subgroup of A′ so that A′/B′ is cyclic. By Proposition A.3, there
exists a cyclic subgroup B of Z/nZ⊕ Z/nZ such that (Z/nZ⊕ Z/nZ)/B is cyclic

and A′ ∩ B = B′. Now, set B̃ = A ∩ B. Obviously B̃ is a cyclic subgroup of A
and A′ ∩ B̃ = A′ ∩ (A ∩ B) = (A′ ∩ A) ∩ B = A′ ∩ B = B′. Finally, using the
canonical projection φ : A → (Z/nZ⊕Z/nZ)/B defined by x �→ x+B, one sees that

Ker(φ) = A∩B = B̃, and so A/B̃ is isomorphic to φ(A). Since (Z/nZ⊕Z/nZ)/B

is cyclic, φ(A) is also, and therefore A/B̃ is cyclic. �

Appendix B. Classifying nonseparating subsets of Z/4Z⊕ Z/4Z

Theorem B.1. There are exactly three Hurwitz classes of nonseparating subsets
in A = Z/4Z⊕ Z/4Z. The following subsets are representatives for each class:

H1 = {(0, 0),±(1, 0),±(1, 2), (2, 0)},
H2 = {±(1, 0),±(0, 1),±(2, 1),±(1, 2)},
H3 = {±(1, 0),±(0, 1),±(1, 1),±(3, 1)}.
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Proof. It is known that H1 = {(0, 0),±(1, 0),±(1, 2), (2, 0)} is a nonseparating sub-
set of A (see Example 2.5). We now show that H2 is a nonseparating subset of A.
Let B be a cyclic subgroup of A such that A/B is cyclic. Then B ∼= A/B ∼= Z/4Z.
There are only six possible choices for B: 〈(1, 0)〉, 〈(0, 1)〉, 〈(1, 2)〉, 〈(2, 1)〉, 〈(3, 1)〉,
and 〈(1, 1)〉. If B = 〈(1, 1)〉 or B = 〈(1, 3)〉, one verifies in these cases that
c1 = c2 = c3 = c4 = 1. If B �= 〈(1, 1)〉 and B �= 〈(1, 3)〉, one verifies in these
cases that c1 = 0 and c2 = c3 = 1. Similarly, it is not difficult to show that H3 is
also a nonseparating subset of A.

It remains to show that the Hurwitz classes of H1, H2, and H3 are the only
possible Hurwitz classes of nonseparating subsets of A.

Let H be a nonseparating subset of A. Using the fact that Z/2Z⊕Z/2Z does not
contain any nonseparating subset and Lemma 2.6, it follows that H must contain
at least one element of order 4.

We first show that if H contains the point (0, 0), then H is in the Hurwitz class
of H1. Suppose that (0, 0) ∈ H. Since H contains at least one element of order
4, by a group automorphism of A, we may assume that H contains ±(1, 0). Let
B = 〈(1, 0)〉 and consider the generator (0, 1) + B of A/B. Since c1 = c2 = 0,
we must have c3 = 0. So (2, 0) ∈ H. Now take B′ = 〈(0, 1)〉 and consider the
generator (1, 0) +B′ of A/B′. Since c′2 = c′3 = 1, exactly one of the following must
be contained in H: {±(1, 1)}, {±(1, 2)}, {±(1, 3)}. Now let B′′ = 〈(1, 2)〉. Since
(0, 0), (2, 0) ∈ H, any generator for A/B′′ leads us to c′′1 = c′′2 = 0. Then c′′3 = 0,
and so ±(1, 2) ∈ H. Therefore, H would be in the Hurwitz class of H1.

If H is a nonseparating subset of A that contains an element of order 2, say τ ,
then H ′ = H + τ is a nonseparating subset of A containing the point (0, 0). The
above argument shows that H ′ is in the Hurwitz class of H1.

We now assume that H contains no elements of 〈2〉 ⊕ 〈2〉. Then H cannot be in
the Hurwitz class of H1. Moreover, H must contain exactly four of the following
subsets:

{±(1, 0)}, {±(0, 1)}, {±(1, 1)}, {±(1, 2)}, {±(2, 1)}, {±(1, 3)}.

So H contains a basis of A. By a group automorphism of A, we may assume that
H contains ±(1, 0) and ±(0, 1). Hence H is in the Hurwitz class of at least one of
the following subsets:

J1 = {±(1, 0),±(0, 1),±(1, 2),±(2, 1)}, J2 = {±(1, 0),±(0, 1),±(1, 2),±(1, 1)},
J3 = {±(1, 0),±(0, 1),±(1, 2),±(3, 1)}, J4 = {±(1, 0),±(0, 1),±(2, 1),±(1, 1)},
J5 = {±(1, 0),±(0, 1),±(2, 1),±(3, 1)}, J6 = {±(1, 0),±(0, 1),±(1, 1),±(3, 1)}.

In this paragraph we show that J2, . . . , J6 are in the same Hurwitz class. In fact,
note that J4 + (2, 0) = J5, the automorphism of A defined by (x, y) �→ (y, x) maps
bijectively J2 onto J4 and J3 onto J5; and the automorphism of A defined by
(x, y) �→ (x+ y, y) maps bijectively J5 onto J6.

To show that either H is in the Hurwitz class of H2 or in the Hurwitz class of
H3, it suffices to show that J1 and J6 are not in the same Hurwitz class. To do so,
we proceed by contradiction. Suppose that there exists an automorphism of A, say
ϕ, and an element τ ∈ A with 2τ = 0 such that ϕ(J1) + τ = J6. Regardless of the
choice of the automorphism we have ϕ(1, 0) ≡ ϕ(1, 2) (mod 2), ϕ(0, 1) ≡ ϕ(2, 1)
(mod 2), and ϕ(1, 0) �≡ ϕ(0, 1) (mod 2). So the set ϕ(J1) + τ (mod 2) has exactly
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two elements. This yields a contradiction because the set J6 (mod 2) contains
exactly three elements. �

List of Symbols

N = {0, 1, 2, . . .}.
Z is the set of integer numbers.
Z+ is the set of positive integers.
R is the set of real numbers.
C is the complex plane.
P1 is the Riemann Sphere.
Z2 is the 2-dimensional integer lattice.
Ωf is a critical set of the map f .
Vf is a critical value set of the map f .
Pf is a postcritical set of the Thurston map f .
Σf is the pullback map induced by the Thurston map f .
deg(f) is the degree of the map f .
deg(f, w) is the local degree of f at the point w.
|A| is the cardinality of the set A.
o(g) is the order of the group element g.
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