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STRUCTURAL PROPERTIES OF QUOTIENT SURFACES

OF A HECKE GROUP

K. FAROOQ

Abstract. We study the properties of the surface Σq , which is a 2q-fold cover
of H/Gq , where Gq is a Hecke group and q is an integer greater than 3. We
have slightly different situations for the even and odd values of q. For odd

values of q the surface Σq is a q−1
2

genus surface with a cusp, whereas, for

even values it is a q−2
2

genus surface with two cusps. We prove that there exist

g embedded tori with a hole on Σq , where g = q−1
2

when q is an odd integer

and g = q−2
2

when q is even, with g boundary geodesics at different heights.
These boundary geodesics are the separating geodesics intersecting each other
transversally. We also prove that the surface Σq is a hyper-elliptic surface for
every integer q > 3.

1. Introduction

In [1], Haas and Series described the relation between the height spectrum of
geodesics of the quotient surface H/Gq and the generalized Diophantine approx-
imation of Gq. They were able to give a formula for the Hurwitz constant of a
Hecke group Gq, where q ≥ 3. Our aim is to further study the properties of the
quotient surface of a Hecke group Gq for q > 3. More precisely, we will be studying
the 2q-fold cover, Σq, of the surface H/Gq. In [1] and [4], Series introduced some
detailed coding systems for the geodesics lying on Σq. We use these techniques to
further explore the structural properties of these surfaces.

This article is arranged as follows: Section 2 presents some preliminary defini-
tions. In Section 3 we discuss some of the important generators and fundamental
domains of the fundamental group of Σq. In Section 4 we define the symbolic
systems, introduced by Series, and the relation between them. With the help of
these symbolic systems we will be able to approximate the endpoints of the lifts of
geodesics from the surface Σq to the hyperbolic plane H. Section 5 is dedicated to
proving that the surface Σq is hyper-elliptic; the surface has an order two symme-
try. In this section we will prove that there are v embedded tori with a hole in Σq,

where v = q−2
2 when q is an even integer greater than 3, whereas, v = q−1

2 when q
is an odd integer. In Section 6 we will discuss how to numerically calculate heights
of closed geodesics lying on the surface Σq for a fixed value of q ≥ 3.

Received by the editors September 4, 2014, and, in revised form, July 26, 2017, and July 13,
2019.

2010 Mathematics Subject Classification. Primary 20H10, 30B70, 57M50; Secondary 11K60.
Key words and phrases. Quotient surfaces, Hecke groups, symbolic sequences.
The author was supported by WPRS grant from the University of Warwick, and HEC Partial

Support by the Government of Pakistan.

c©2019 American Mathematical Society

262

https://www.ams.org/ecgd/
https://www.ams.org/ecgd/
https://doi.org/10.1090/ecgd/341


PROPERTIES OF QUOTIENT SURFACES OF A HECKE GROUP 263

2. Preliminary

The classical Diophantine approximation is the problem of approximating any
real number x by a rational number p/q. It seeks the smallest possible value of
k where |x − p/q| < k/q2 for infinitely many q. Depending on x we can define a
function μ(x) such that

μ(x) = inf{k| |x− p/q| < k/q2 for infinitely many q}.
Consider the action of SL(2,Z) on the hyperbolic plane H. It is known that the orbit
of ∞ under SL(2,Z) is the set of all rational numbers p/q and that for every x ∈ R,
μ(x) remains invariant throughout the SL(2,Z)-orbit of x. The set {1/μ(x)|x ∈
R} is called the Markoff spectrum. There is one-to-one correspondence between
the Markoff spectrum and the height spectrum of geodesics on certain covers of
H/ SL(2,Z). One such cover is a punctured torus, which is a six-fold cover, and its
fundamental group is the commutator subgroup of SL(2,Z). The infimum of the

Markoff spectrum, defined as the Hurwitz constant, is
√
5.

The generalized Diophantine approximation, in [1], for a Fuchsian group G con-
taining a parabolic transformation P fixing ∞ is defined as follows. Let g ∈ G; then
g is of the form

(
a b
c d

)
, where ad− bc = 1 and a, b, c, d ∈ R. For our convenience, we

can write a = a(g), b = b(g) and so on. We define the set of G-rational numbers,
denoted by Q(G), as the set of points in R which are fixed by conjugates of the
parabolic transformation P by elements in G, and we call the complement of Q(G)
in R the set of G-irrational numbers. We need to approximate the G-irrational
number x by G-rational numbers. In other words given x ∈ R\Q(G) we want to
find that k > 0, such that

(1)

∣∣∣∣x− a(g)

c(g)

∣∣∣∣ < k

c(g)2
,

is satisfied for infinitely many c(g). We define

μG(x) = inf

{
k > 0|

∣∣∣∣x− a(g)

c(g)

∣∣∣∣ < k

q2
for infinitely many g ∈ G∞

}
.

The inequality (1) is the generalized Diophantine approximation. The fraction
a(g)
c(g) is actually g(∞), that is, the G-rational numbers are the orbit points of infinity

under the action of G. As in the classical case,

M(G) = {1/μG(x)|x ∈ R\Q(G)}
is defined to be the Markoff spectrum for G and h(G) = infM(G) the Hurwitz
constant of the group G. The formula for the Hurwitz constant for a Hecke group
Gq was proved by Haas and Series in [1], for any q ≥ 3.

There is a relation between between μG(x) and the essential height h(γ) (defined
later) of hyperbolic geodesic γ with one endpoint at x. Since the Markoff spectrum
is the set of all 1/μG(x), for G-irrational x, we can use geodesics in H to discuss
the Markoff spectrum of the group G.

For a geodesic γ(x, y) in H, where x and y are the endpoints of γ, the height is
defined as

ht(γ) =

{
1
2 |x− y| x, y ∈ R

∞ otherwise.

As defined in [1], let G∞ be the set of equivalence classes of elements in G, where
the equivalence relation is defined as: two transformations g and h are equivalent if
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there is a transformation V in G fixing ∞ such that g = V h. Here it can be noted
that for every geodesic γ ∈ H, the height of the images of γ under elements of an
equivalence class remains the same. The essential height is then defined as

h(γ) = sup {k| ht(gγ) ≥ k for infinitely many [g] ∈ G∞}.
It is proved in [1] that if γx is a geodesic in H joining x to ∞ and λ(x, y) is the
axis of a hyperbolic transformation in G, then h(γx) = h(λ) = sup {ht(gλ)| g ∈ G},
as each geodesic in H together with its images under the action of the group G
projects to a geodesic on the hyperbolic surface H/G.

We can also define the essential height in terms of horocycles. If C is a horocycle
on H, tangent at ∞, then its projection bounds a cusp region. The height of such
a horocycle is defined to be the Euclidean distance from the line �z = 0 to the
boundary of C. Let C be the horocycle with smallest possible height such that
no image of a geodesic γ ⊂ H intersects with C. Then the projection γ′ of γ will
not intersect the cusp region bounded by the projection of C. The essential height
of a geodesic tells us how far the projected geodesic goes towards the cusp on the
surface. The height of a geodesic γ′ on the surface is greater if the area of the cusp
region bounded by such a horocycle is less.

Theorem 2.1 ([1]). Let x ∈ ∂H such that x is a Gq-irrational number, and let γx
be the geodesic joining x to ∞. Then μ(x) = 1

2h
−1(γx).

We are interested in studying closed geodesics such that both x and y are Gq-
irrational numbers that are roots of the same quadratic equation.

3. The fundamental regions of the Hecke group and its subgroups

By definition, a Hecke group Gq is generated by

Jq =

(
0 −1
1 0

)
and Sq =

(
1 2 cos(π/q)
0 1

)
,

where Jq is a 180◦ rotation about the point ι =
√
−1, and Sq is a parabolic element

fixing ∞. We denote 2 cos(π/q) by wq. We also denote Eq = SqJq, which is an
elliptic element of order q rotation about the point cos π

q + ι sin π
q . An index q

subgroup of Gq, denoted Γq, is generated by the q elliptic transformations Jq,n =
E−n

q JqE
n
q and Jq,n̄ = E−n̄

q JqE
n̄
q , where n = 0, 1, . . . , v such that v = (q−1)/2 when

q is an odd element, whereas v = q/2 when q is an even integer, and n̄ denotes
inverse of n in Zq. All these elliptic transformations have order 2. Note that each of
the transformations Jq,n fixes the point En

q (ι). From these elliptic transformations
we define hyperbolic transformations in Γq by Jq,nJq,0 for n = 1, . . . , v where v
is as defined above. Each of these transformations can be seen geometrically as a
product of 180◦ rotations, first about ι and then about the point En

q (ι); see Figure
1. Similarly, we define Jq,0Jq,n̄ to be hyperbolic transformation which first rotates
any point on H about the point En̄

q (ι) through an angle of 180◦ and then rotates
about the point ι also through an angle of 180◦. We denote these transformations
by Ai = −Jq,nJq,0 and Bi = −Jq,0Jq,n̄, where n+ i = v + 1, for i, n ∈ {1, 2, . . . , v}
where v is as defined above. These hyperbolic transformations generate an index
2 subgroup, Hq, of Γq. This is also a subgroup of Gq of index 2q. Clearly each
Ax(Ai) and Ax(Bi) have the same heights, which can easily be seen from Figure 1.
Note that when q is even, for i = 1 the value of n = n̄ = q

2 gives us A1 = B̄1. The
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matrices Ai and Bi depend only on q and n, and we can calculate each of these
matrices. So we have

(2) En
q =

(
sin (n+1)π

q − sin nπ
q

sin nπ
q − sin (n−1)π

q

)
.

Then we have

(3) Ai =

(
sin2 nπ

q + sin2 (n−1)π
q 2 sin2 nπ

q cos π
q

2 sin2 nπ
q cos π

q sin2 nπ
q + sin2 (n+1)π

q

)
,

whereas

(4) Bi =

(
sin2 nπ

q + sin2 (n−1)π
q −2 sin2 nπ

q cos π
q

−2 sin2 nπ
q cos π

q sin2 nπ
q + sin2 (n+1)π

q

)
.

All the entries in the matrices have been simplified such that det(Ai) = det(Bi) =

(det(En
q ))

2 =
(
sin2 nπ

q − sin (n−1)π
q sin (n+1)π

q

)2

= sin4 π
q �= 1; also we can see that

det(Ai) > 0.

R

−w5

ι

E3
5(ι)

E4
5(ι)

w5

E5(ι)

E2
5(ι)

exp(ιπ/5)

Figure 1. The fundamental domain of a genus 2 surface with a cusp.

The quotient surface H/Gq is a sphere with a cusp and two cone points of orders
q and 2. We fix a fundamental region of Gq in H which is a quadrilateral with
vertices ι, exp(ιπ/q), Eq(ι) and a vertex at ∞ denoted by R. Any quotient surface
obtained by the action of any subgroup of Gq on H is a covering surface of H/Gq.
So the surface H/Γq is a q-fold covering surface of H/Gq. This surface is a sphere
with a cusp and q cone points all of order 2. There is a fundamental region, denoted
by P , of Γq containing R, which is a q-gon with vertices Em

q (∞) where 1 ≤ m ≤ q.
Finally, the quotient surface H/Hq is a two-fold and 2q-fold cover of H/Γq and
H/Gq, respectively. The region Q refers to the fundamental region of Hq on H

containing R and P . This region Q is an ideal 2(q − 1)-gon with vertices Em
q (∞),

J(Em
q (∞)) where 1 ≤ m ≤ q. The quotient surface Σq := H/Hq is a genus g = q−1

2

surface with a cusp when q is an odd integer, whereas it is a genus g = q−2
2 with

two cusps when q is an even integer. The fundamental domain of H/Hq is shown
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ι
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Figure 2. The fundamental domain of a genus 2 surface with two cusps.

in Figure 1 and Figure 2 for q = 5 and 6. The 2q copies of the fundamental domain
R of H/Gq are shown by dotted lines on both figures; their union is the region Q.

4. Symbolic sequences

Series introduced two coding systems for geodesics lying on the quotient surface
H/Gq and its covers. She also defined a way to relate these types of bi-infinite
symbolic sequences for a geodesic on the surface H/Hq.

4.1. Oriented geodesics. In every quotient surface of the form H/G the Fuchsian
group G is the fundamental group of the surface. We can relate every geodesic on
the surface with a conjugacy class of a hyperbolic element in G. The axis of each
hyperbolic element in a conjugacy class projects to a unique geodesic on the surface
H/G. We denote geodesics lines in H by s and γ, and oriented lines by s and γ.
Let γ ⊂ H be a lift of an oriented geodesic on the surface. Then there exists a
primitive hyperbolic element g ∈ G such that γ = Ax(g). We denote the attractive
and repulsive endpoints of the geodesic γ by γ+ and γ−, respectively. If γ and δ
are two oriented lines in H intersecting at a point z ∈ H, then we write γ ∧ δ > 0
if the unit tangent vectors of these lines at z have the same orientation as that of
the vectors (1, 0) and (0, 1) at the origin.

4.2. T-sequences. The T-sequence is defined with respect to a fundamental do-
main P of the group Γq, and the tessellation T created by covering H by all the
copies of P under the action of Γq, [1]. Let γ be an oriented geodesic in H. We
divide this geodesic into a sequence of segments by {H ∩ γ}\T, in the form

. . .γ−1,γ0,γ1, . . . .

Label the line I passing through 0, i to ∞ by s0, and the rest of the sides of P
by s1, s2, . . . , sq−1 in the clockwise direction. Since the geodesic γ is oriented, we
denote γ+

i and γ−
i as the final and initial endpoints of the segment γi, respectively.

Now we can assign each segment a number as follows: for each γi there is a unique
g ∈ Γq such that g(γi) is in P with initial point on s0. We assign the number
j to this segment if the final endpoint of this image is on the side sj , denoted as
σ(γi) = j. Hence the symbolic sequence σ(γ) of the geodesic γ is a sequence in
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ΣT = Π∞
n=−∞{1, 2, . . . , q − 1}. There are some observations about the geodesics

related with the symbolic sequences.

Theorem 4.1 (cf. [1], [3]). (1) Two geodesics α, β ⊂ H are equivalent under
Γq, or in other words are images of each other under the action of Γq if
and only if there is m ∈ Z such that σ(αn) = σ(βn+m) for all n ∈ Z [1].

(2) A geodesic γ in H projects to a closed geodesic on the surface H/Γq if and
only if its symbol sequence is periodic [1].

(3) For each σ = (σn) ∈ ΣT and each oriented side s of T and m ∈ Z, there is
a unique oriented geodesic γ ⊂ H with σ(γn) = σn and such that γ−

m ∈ s
and γ ∧ s > 0. We denote such a geodesic by . . . σm−1sσm . . . . And with
varying s and m, we get varying geodesics with the same sequence. All such
geodesics are called lifts of σ.

(4) Let s be an oriented side of T, and let σ, σ′ ∈ ΣT with σn = σ′
n for n ≥ N .

Let γ = . . . σN−1sσN . . . and γ′ = . . . σ′
N−1sσ

′
N . . . . Then γ+ = γ′+.

We denote γ+ by sσNσN+1 . . . and γ− by s̄ σ̄N−1σ̄N−2 . . . , where ī is the
inverse of i in Zq. Here the sequence sσNσN+1 . . . means starting from the
side s with positive orientation and then following the sequence cutting the
adjacent sides. Note that this will give us a unique point on ∂H.

4.3. O-sequences. The O-sequence for each geodesic is defined with reference to
the O tessellations; see [3]. The sequence of a geodesic represents the order in which
it crosses the sides of tessellations created by the copies of the region Q. With each
intersection or crossing we assign a value from the set

H0 = {Ai, Bi, Āi, B̄i|1 ≤ i ≤ v},

where v = q−1
2 if q is odd and v = q

2 if q is even; see Figure 3. So corresponding
to each geodesic we have a bi-infinite sequence from the set Π∞

i=−∞H0. Let ΣO

be the set of all such reduced bi-infinite sequences, which means no element in the
sequence is followed by its inverse. And let Σn

O denote reduced O sequence of length
n, for n ∈ Z. We define each oriented side of the tessellation as follows. Let s be a
side joining two regions S and S′ in O. Then the side of s interior to S is labelled
h ∈ H0 if and only if S = hS′. In this case the side of s interior to S′ is labelled
h̄. Now if a geodesic γ ⊂ H crosses the regions S0, S1, . . . , Sn of O in order, and if
hi ∈ H0 is the label for the side Si−1 ∩ Si interior to Si for 0 < i ≤ n and n ∈ Z,
then from above, we have Sn = h1 . . . hnS0. The sequence corresponding to γ is
denoted as χ(γ) ∈ ΣO. We also denote ∂hS as the side interior to the region S in
O with label h.

Proposition 4.2 (cf. [3]). Here are some important results related to the O-
sequences of geodesics on the surface:

(1) Two oriented geodesics γ, δ ⊂ H are equivalent under H if and only if there
exists m ∈ Z such that χ(γ)n = χ(δ)n+m for all n ∈ Z.

(2) For every χ = (hn) ∈ ΣO, a region S of O, and m ∈ Z there exists a
unique geodesic γ ⊂ H such that χ(γ) = (hn) and that γ ∩ S �= φ where
(γ ∩ S)− = ∂hm

(S) and (γ ∩ S)+ = ∂hm+1
(S). This geodesic is called a lift

of χ and can be expressed as

. . . hm−1 ∂hm
(S)hm+1 . . . .
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BA q−1
2

B̄ q−1
2

B q−1
2

Ā q−1
2

B̄A
BĀ

B q−1
2

B̄ q−1
2Ā q−1

2
A q−1

2

A B̄

Ā

Figure 3. Fundamental regions showing the labels with respect
to some of the generators.

(3) For two sequences χ , χ′ ∈ ΣO with χn = χ′
n for all n ≥ N and a region S

of O such that

γ = . . . χ
N−1

∂χ
N
(S)χ

N+1
. . .

and

γ′ = . . . χ′
N−1

∂χ′
N
(S)χ′

N+1
. . . ,

then γ+ = γ′+. So we write γ+ = ∂χ
N
(S)χN+1 χN+2 . . ., and for the given

γ, we write γ− = ∂χ̄
N
(χ̄

N
S) χ̄

N−1
χ̄

N−2
. . . . Further, if m > n, then

∂χn
(S)χn+1 χn+2 · · · = ∂χm

(χnχn+1 . . . χmS)χm+1 . . . .

(4) If g = χ1 . . . χk is a cyclically reduced word in H, then

∂χ1
(Q) . . . χk χ1 . . . χk . . .

is the positive fixed point of g. Generally,

∂ψ1(Q)ψ2 . . . ψrχ1 . . . χk

is the fixed point of the word w = ψ1 . . . ψrχ1 . . . χkψ̄r . . . ψ̄1 whenever it
is reduced, where by χ1 . . . χk we mean an infinite periodic sequence of the
terms χ1 . . . χk.

4.4. Relation between T and O sequences. From the definition of the funda-
mental regions P and Q, we can see that every O region is divided into two T

regions by h(I), where I is the imaginary axis and h ∈ H. We define the label
ϕ for I on right-hand side and ϕ̄ on the left-hand side; similarly, h(I) is labelled

ϕ and h(Ī) is labelled ϕ̄. Let Σ̂O be the set of reduced sequences from Π∞
−∞Ĥ0,

where Ĥ0 = H0 ∪{ϕ, ϕ̄}. In order to find the relation between ΣO and ΣT, we first

have to transform each sequence in ΣO into a sequence in Σ̂O. This can be done as
follows, for every geodesic γ ⊂ H: let χ(γ) ∈ ΣO. It is observed that χ̂(γ) depends
on χ(γ), more precisely every entry in χ̂(γ) depends on the corresponding adjacent
entries in χ(γ): let ψ be the map

ψ : Σ2
O → Σ̂2

O ∪ Σ̂3
O such that ψ(h, h′) = χ̂(γ(h, h′)),

where γ = γ(h, h′) is a geodesic segment contained entirely in the region Q with
γ− ∈ ∂h(Q) and γ+ ∈ ∂h̄′(Q). This is illustrated more clearly in the following
example.
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Example 4.3. Looking at Figure 4 we can see that

ψ(A,A) = AϕA and ψ(A,B) = AB.

B

A q−1
2

B q−1
2

A q−3
2

B q−3
2

B̄ q−3
2

Ā q−3
2

Ā q−1
2

B̄ q−1
2

A

B̄ Ā

ϕϕ̄

∞

0

Figure 4. Fundamental regions showing the labels with respect
to some of the generators.

From the map ψ we can find the unique sequence χ̂ = (χ̂n) ∈ Σ̂O from any

sequence χ = (χn) ∈ ΣO. It is obvious that a sequence χ̂ = (χ̂n) in Σ̂O holds the
same properties as that of the corresponding sequence χ = (χn) in ΣO.

Now for a relation from Σ̂O to ΣT, consider a mapping τ : Σ̂2
O → Σ1

T such that
τ (h1, h2) is the T-symbol of the geodesic segment in P joining the side ∂h1

(P ) to

∂h̄2
(P ). From this we can extend to a map τ : Σ̂n

O → Σn
T, and hence τ : Σ̂O → ΣT.

Consider the restriction in τh : {h1 . . . hn ∈ Σ̂n
O : h1 = h} → Σn

T. Then τh is a
bijection since the T-sequence determines the O-sequence uniquely with the fixed
initial side.

Example 4.4. Again from Figure 4 we can see that if we fix one side, then the
T-sequence gives a unique image under τ−1

h :

τ−1
A (2) = Aϕ and τ−1

ϕ (3) = ϕA.

4.5. Position of the endpoint of a geodesic using T-sequence. Looking at
only the first few entries of the T-sequence of a geodesic, we can give an interval in
R where the endpoint of the geodesic lies. As we move onwards in the sequence,
we get smaller and smaller intervals such that every next interval is nested in the
preceding interval.

Let γ be a geodesic segment such that σ(γ) = i1 . . . in ∈ Σn
T. Let s be a side of

T such that γ− ∈ s and γ ∧ s > 0. Also let s0 = s, s1, s2, . . . , sn be the sides cut
by γ in order. Then we write si1i2 . . . in for the side sn. We define Z[si1 . . . in] for
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the interval in R bounded by the endpoints of sn. The endpoints of Z[si1 . . . in] are
Z[si1 . . . in]

− and Z[si1 . . . in]
+ such that Z[si1 . . . in]

− < Z[si1 . . . in]
+.

Lemma 4.5 (cf. [3, lemma 1.5.2]). Let s = I±, let i1 . . . in ∈ Σn
T, and let 1 ≤

i < j ≤ q − 1. Then Z[si1 . . . ini]
− ≥ Z[si1 . . . inj]

+, with equality if and only if
j = 1 + i.

Proof. As defined above let sk = si1 . . . ik where 1 < k ≤ n. Let Z[sk] be as defined
above. We can see that Z[s1] ⊃ Z[s2] ⊃ · · · ⊃ Z[sk] ⊃ . . . . Now consider the
interval Z[snm], where 1 ≤ m ≤ (q − 1). This implies that Z[snm] ⊂ Z[sn] for
every m. Now there exists a unique g ∈ Γ such that g(sn) = I and that g(snm)
is the side of the region P with the T-symbol m for all m ∈ {1, 2, . . . , q − 1}.
From the definition of T-sequences, it is obvious that the smaller the symbol is,
the farther the side is from the origin. The sides represented by two consecutive
symbols intersect only at one point in ∂H, which is the positive end of the side
with the larger symbol and the negative end of the side with the smaller symbol.
Therefore Z[snm]− = Z[sn(m+ 1)]+. Hence the result. �

Throughout this paper we are dealing with symbolic sequences that converge to
points on ∂H. There are some important results in which we have to deal with
the relationship between the endpoints of the intervals of the form Z[r], where r
is one of the geodesics giving rise to the tessellation T. The task of finding out
these relationships would be much easier if we could calculate these endpoints. The
endpoints of the T-tessellation can be easily calculated using the translation Sq and
the elliptic transformation Eq. We are only considering the case where r is of the
form Iσ1σ2 . . . , where σj ∈ {1, 2, . . . (q − 1)} and j ∈ Z+ is finite. The case where
r is of the form Īσ1σ2 . . . is analogous to the previous case.

Theorem 4.6. For every r of the form described above, there exists a unique
element g ∈ Gq such that Z[r]+ = g(∞) and Z[r]− = g(0).

Proof. This theorem follows from the fact that every line r of the T-tessellation
can be mapped back to the oriented side I by an element, say h ∈ Gq. Keeping in
mind the orientation of the geodesics in the tessellation T, we can see h(r) = I or
h−1(I) = r. Then h−1 is our required element g such that h−1(∞) = Z[r]+ and
h−1(0) = Z[r]−. Hence the result. �

Lemma 4.7. Let s be the line of the form Ij, where 1 ≤ j ≤ (q − 1). Then
Ej−1S(∞) = Z[s]+ and Ej−1S(0) = Z[s]−.

Proof. It can easily be seen that when s = I1, then S(I) = s, and that S(∞) =
Z[s]+ and S(0) = Z[s]−. When j > 1, we can rotate the side S(I) j−1 times by the
elliptic transformation Eq in order to get to the side Ij. So we have Ej−1

q S(I) = Ij.
Now using Theorem 4.6, we get the result. �

For our convenience we denote the T-symbols for each pair of generators Ai and
Bi from the sets, say Σ(Li, Ri), where Li = n and Ri = n̄ and n = v − i + 1 for
i, n ∈ {1, 2, . . . , v}, where v is as defined above. For example, the sequences for
A1 = A and B1 = B, when q is an odd integer, are from the set Σ( q−1

2 , q+1
2 ) =

Σ(L1, R1), and that of A q−1
2

and B q−1
2

from the set Σ(1, (q− 1)) = Σ(L q−1
2
, R q+1

2
).

In general, Σ(Li, Ri) = Σ(n, n̄).
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Lemma 4.8. In terms of the T-sequence, the side ILi = En−1
q S(I) whereas IRi =

En̄−1
q S(I), where 1 ≤ i ≤ q−1

2 and n + i = q+1
2 when q is odd and 1 ≤ i ≤ q

2 and

n+ i = q+2
2 when q is even.

Proof. This can be seen from the fact that for every i we have Li = n and Ri = n̄.
The result then follows from Lemma 4.7. �

We can calculate the values of En−1
q S and En̄−1

q S in terms of n. We know the
value of En

q from equation (2), so we can simplify to get the following:

(5) En−1
q S =

(
sin nπ

q sin (n+1)π
q

sin (n−1)π
q sin nπ

q

)
,

and using the fact that n+ n̄ = q we get

(6) En̄−1
q S =

(
sin nπ

q sin (n−1)π
q

sin (n+1)π
q sin nπ

q

)
.

Lemma 4.9. Let s = Iσ1σ2σ3 . . . σm. Then the transformation g mentioned in
Theorem 4.6 is equal to the product

∏m
j=1 gj, where

gj =

{
En−1

q S(I), when σj = Li,
En̄−1

q S(I), when σj = Ri,

where n̄ is the inverse of n in Zq.

This lemma is a straightforward consequence of Lemma 4.8, and therefore leads
to the following corollary.

Corollary 4.10. For every s and every gj defined in Lemma 4.9, we have Z[s]+ =
Πm

j=1gj(∞), whereas Z[s]− = Πm
j=1gj(0).

From Lemma 4.8, we can now find all of the vertices of the Q region, which is
the special fundamental domain of the surface Σq = H/Hq.

Lemma 4.11. The endpoints of the side ILi are Z[ILi]
+=

sin nπ
q

sin
(n−1)π

q

and Z[ILi]
−=

sin (n+1)π
q

sin nπ
q

, where n and i are as defined above. The endpoints of the side IRi

are Z[IRi]
+ =

sin nπ
q

sin
(n+1)π

q

and Z[IRi]
− =

sin (n−1)π
q

sin nπ
q

. Note that Z[ILi]
± ≥ 1 and

Z[IRi]
± ≤ 1, with equality when q is odd and n = q−1

2 .

Proof. This can be seen by calculating the images of 0 and ∞ under the trans-
formations En−1

q S and En̄−1
q S. The equality follows when q is odd and n = q−1

2 ,

which gives us Z[IL1]
− =

sin (n+1)π
q

sin nπ
q

=
sin nπ

q

sin (n+1)π
q

= Z[IR1]
+ = 1. �

From this lemma, we can see that Z[IRi] is the interval where the endpoints
are just the reciprocals of the endpoints of Z[ILi]. This immediately gives us the
following result.

Corollary 4.12. For every i ∈ {1, 2, . . . , v} we have l(Z[ILi]) ≥ l(Z[IRi]), where
v = q−1

2 when q is an odd integer and v = q
2 when q is an even integer. Here l(Z[s])

represents the length of the interval Z[I] on ∂H.
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Lemma 4.13. For every i ∈ {1, 2, . . . , v} we have l(Z[ILi1]) > l(Z[ILiq]) and
l(Z[IRiq]) > l(Z[IRi1]), where v = q−1

2 when q is an odd integer and v = q
2 when

q is an even integer.

Proof. From Lemma 4.9, we have

g1 = En−1
q S2

(
sin nπ

q 2 sin nπ
q cos π

q + sin (n+1)π
q

sin (n−1)π
q 2 sin (n−1)π

q cos π
q + sin nπ

q

)

and

g2 = En−1
q SEq−1

q S =

(
2 sin (n+1)π

q cos π
q + sin nπ

q sin (n+1)π
q

2 sin nπ
q cos π

q + sin (n−1)π
q sin nπ

q

)

such that g1(I) = ILi1 and g2(I) = ILiq. Now the length of each interval can be
easily calculated, that is,

l(Z[ILi1]) = g1(∞)− g1(0) =
sin2 π

q

2 sin2 (n−1)π
q cos π

q +sin nπ
q sin (n−1)π

q

and

l(Z[ILiq]) = g2(∞)− g2(0) =
sin2 π

q

2 sin2 nπ
q cos π

q +sin nπ
q sin

(n−1)π
q

.

But since 2 sin2 nπ
q cos π

q > 2 sin2 (n−1)π
q cos π

q , we have l(Z[ILi1]) > l(Z[ILiq]).

The second inequality l(Z[IRi1]) < l(Z[IRiq]) can be proved similarly. �

Now we try to see the relation between Euclidean lengths of sides of any fun-
damental regions bounded by T. First consider the elliptic transformation F =( cos π/q sinπ/q
− sinπ/q cos π/q

)
, which fixes the point ι with rotation angle 2π/q. We study its

action on ∞.

Lemma 4.14. Let Z(z) = F (z) − z. Then the function Z is increasing whenever

z ∈
(−1+cos π

q

sin π
q

,
1+cos π

q

sin π
q

)
and decreasing otherwise. Moreover, when q is an odd

integer, then

(7)
−1 + cos π

q

sin π
q

= F
q−1
2 (∞),

and when q is an even integer, then

(8) F
q
2 (∞) = 0.

Proof. The function Z will be increasing when Z ′(z) > 0 and decreasing when
Z ′ < 0. This means that Z is increasing only when |F ′(z)| > 1, that is, when

1(
−z sin π

q + cos π
q

)2 > 1.

Therefore, Z(z) is increasing when
−1+cos π

q

sin π
q

< z <
1+cos π

q

sin π
q

. Equation (8) is obvious.

Equation (7) can be seen simply by using double angle identities on the F
q−1
2 (∞).

�

Lemma 4.15. If u >
cos π

q

sin π
q
, we have |Fn(u)−Fn−1(u)| > |Fn+1(u)−Fn(u)| when

n < v, and |Fn(u) − Fn−1(u)| < |Fn+1(u) − Fn(u)| when v + 1 < n < q, where
v = q−1

2 when q is odd and v = q
2 when q is even.
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Proof. To prove this claim, in view of Lemma 4.14, all we need to show is that

F
q−1
2 (u) <

−1+cos π
q

sin π
q

, whereas F
q+1
2 (u) >

−1+cos π
q

sin π
q

and F q−1(u) <
1+cos π

q

sin π
q

.

We know that F
q−1
2 (u) =

u sin π
2q+cos π

2q

−u cos π
2q+sin π

2q
. Assume that F

q−1
2 (u) ≥ −1+cos π

q

sin π
q

.

Then we have
u sin π

2q+cos π
2q

−u cos π
2q+sin π

2q
≥ −1+cos π

q

sin π
q

. We can see that sin π
2q − u cos π

2q < 0,

because if not, then we have u <
sin π

2q

cos π
2q

=
1−cos π

q

sin π
q

<
cos π

q

sin π
q
, which is not possible

since u >
cos π

q

sin π
q
. So, we get

u sin π
2q sin

π
q + cos π

2q sin
π
q ≤ u cos π

2q − sin π
2q − u cos π

2q cos
π
q + sin π

2q cos
π
q ,

which simplifies to sin
(

π
q − π

2q

)
+ sin π

2q ≤ u cos π
2q − u cos

(
π
q − π

2q

)
= 0. This

leads us to a contradiction. Hence our assumption is false. Therefore, F
q−1
2 (u) <

−1+cos π
q

sin π
q

. This proves the inequality |Fn−1(u)−Fn(u)| < |Fn(u)−Fn+1(u)| when
n < q−1

2 .

We now assume that F
q+1
2 (u) ≤ −1+cos π

q

sin π
q

. This leads to the inequality u ≤

− cos π
q

sin π
q
. But this contradicts our hypothesis. Now assume F q−1(u) ≥ 1+cos π

q

sin π
q

. This

gives u ≤ −1−cos π
q

sin π
q

, which is not true since u >
cos π

q

sin π
q
. This completes the proof. �

Corollary 4.16. Let s be a side represented by either Ii1 . . . in or Īi1 . . . in, where
i1 . . . in ∈ Σn

T and n ∈ Z. Then

l(Z[s1]) > l(Z[s2]) > · · · > l (Z [sv]) and

l (Z [s (v + 1)]) < · · · < l(Z[s(q − 1)]),

where v = q−1
2 when q is odd and v = q

2 when q is even.

Proof. Let S be the region of T with s as one of its sides such that the geodesic
segment γ with symbolic sequence σ(γ) = Ii1 . . . inin+1 crosses s and γ ∧ s > 0.
As we know, there exists a g ∈ Γq such that gP = S. Then gEqg

−1 is an elliptic
element of order q with rotational angle 2π/q fixing a point p = g(cos π

q + ι sin π
q )

in S. The vertices of S are the rotation of g(∞) about the point p under the
transformation gEg−1.

Without loss of generality, we can translate and, if needed, expand the region
S such that p maps to the point ι. Doing so gives us a new region S′, and the
vertices of this region can be obtained by rotating one of its vertices about the
point ι with respect to the transformation F . From Figure 5, we can see that
Z[s]+ = Z[s1]+ is now mapped to some point u and that Z[s]− = Z[s(q − 1)]− is

mapped to F (u). This is only true when u >
cos π

q

sin π
q
= F q−1(∞), because otherwise

the side connecting F (u) with u will not be the image of the side s under translation
and expansion. Also the interval Z[si] in terms of the function F is mapped to the

interval [F ī(u), F ī+1(u)] where 1 ≤ i ≤ (q − 1) and ī is the inverse of i in Zq. This

means Z[si]− = F ī(u) and Z[si]+ = F ī+1(u). We want to study the relative lengths
of the intervals bounded by the endpoints of each of the sides of S. Since translations
and expansions do not affect the relation between the lengths of the sides, we can
study these relations on S′. Thus we can see that l(Z[si]) < l(Z[s(i + 1)]) if and

only if |F ī+1(u)−F ī(u)| < |F ī+1(u)−F ī+2(u)| and l(Z[si]) > l(Z[s(i+ 1)]) if and
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only if |F ī+1(u) − F ī(u)| > |F ī+1(u) − F ī+2(u)|. Hence the result follows from
Lemma 4.15. �

F
q
−
1

2
(u
)

i

v 2 u

F
q
−
1
(u
)

F
q
−
1
(∞

)

F
(u
)

F
(∞

)

v1 =
−1+cos π

q

sin π
q

v2 =
1+cos π

q

sin π
q

v 1

Figure 5. The bold lines represent sides of the S′ region.

The following result is a modified version of Proposition 3.1 in [3]. It shows that
the highest lift is in the position . . . LiILi . . . or . . . RiĪRi . . . .

Proposition 4.17. Let σ = (σn) ∈ PS(Li, Ri) for a fixed i, and suppose that
σn = σn+1 = Li for some n ∈ Z. Let s be a side of T, and let m ∈ Z. Then

ht(. . . σnIσn+1 . . . ) > ht(. . . σmsσm+1 . . . ),

unless σm = σm+1 = Li and s = Sk
q I for some k ∈ Z, or σm = σm+1 = Ri and

s = Sk
q Ī for some k ∈ Z, where Sq =

(
1 wq

0 1

)
and i and q is defined as above. We

exclude the case when i = 1 for even values of q.

Proof. Fix a value of i, where 1 ≤ i ≤ q−1
2 . Let α be the lift of the sequence

. . . σn−1σnIσn+1σn+2 . . . , where σn = σn+1 = Li. Then α+ = ILiσn+2 . . . and
α− = ĪRiσ̄n−1 . . . . It can be seen that α+ ∈ Z[ILi]. Therefore from Lemma 4.5
we conclude that α+ > Z[ILiRi]

−. Similarly, α− ∈ Z[ĪRi] and α− < Z [̄IRiLi]
+.

Hence,

α+ −α− > Z[ILiRi]
− − Z[ĪRiLi]

+.

Now consider another curve β which is also a lift of the above sequence and is of the
form . . . LiIRi . . . . Then we can see that β+ ≤ Z[IRiLi]

+ and β− ≥ Z[ĪRiRi]
−.

Assume that 1 ≤ i < q−1
2 . We will separately discuss the case when i = q−1

2 . Then

β+ − β− ≤ Z[IRiLi]
+ − Z[ĪRiRi]

−.

Thus we want to show that α+ −α− > β+ − β−. It is sufficient to see that

(9) Z[IRiLi]
+ − Z[ĪRiRi]

− < Z[ILiRi]
− − Z[ĪRiLi]

+,

which is the same as

(10) Z[ĪRiLi]
+ − Z[ĪRiRi]

− < Z[ILiRi]
− − Z[IRiLi]

+.
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Since there is a symmetry about the imaginary axis, Z[ĪRiLi]
+ − Z[ĪRiRi]

− =
Z[ILiLi]

+ − Z[ILiRi]
−. Now equation (10) becomes

(11) Z[ILiLi]
+ − Z[ILiRi]

− < Z[ILiRi]
− − Z[IRiLi]

+.

Now we prove the following:

(12) Z[ILiRi]
− − Z[IRiLi]

+ > Z[ILiRi]
− − Z[IRi]

+ > Z[ILiLi]
+ − Z[ILiRi]

−,

as shown in Figure 6. This is done for q = 5 and i = 1 (that is, when n = q−1
2 )

by Series in [3] using direct computation. We know that Z[ILiRi]
− − Z[IRi]

+ <
Z[ILiRi]

− − Z[IRiLi]
+. Now suppose for a contradiction that

(13) Z[ILiRi]
− − Z[IRi]

+ ≤ Z[ILiLi]
+ − Z[ILiRi]

−.

Then by using Corollary 4.10, for instance Z[ILiLi]
+ = En−1SEn−1S(∞), we can

rewrite inequality (13) as follows:

2 sin2 nπ
q cos π

q

sin2 nπ
q +sin2 (n−1)π

q

− sin nπ
q

sin (n+1)π
q

≤ sin2 nπ
q +sin (n−1)π

q sin (n+1)π
q

2 sin (n−1)π
q sin nπ

q

− 2 sin2 nπ
q cos π

q

sin2 nπ
q +sin2 (n−1)π

q

.

Z
[I
L
R
]−

Z
[I
R
L
]+

Z
[I
L
L
]+

Figure 6. Magnified section of H showing the points on the tes-
sellation lines of T when i = 1 for any odd integer q.

First we prove that (13) is false for the case when i = 1 and q is an odd integer

(that is, when n = q−1
2 ), in which case we have sin nπ

q = sin (n+1)π
q = cos π

2q and

sin (n−1)π
q = cos 3π

2q . Thus in this case, the above inequality can be simplified into

8 cos2 π
2q cos

π
q cos 3π

2q ≤ cos3 π
2q + 3 cos2 π

2q cos
3π
2q + cos π

2q cos
2 3π

2q + 3 cos3 3π
2q .

But the inequality is reversed and can be proved using the fact that cos 3π
2q <

cos π
q < cos π

2q . So this inequality contradicts our assumption in (13).

For i ∈ {2, . . . , (v−1)} and q > 5, we consider the worst case scenario using Corol-
lary 4.16, that is, when Z[ILiLi]

+ − Z[ILiRi]
− is maximum, which only depends

on i and happens when i = (v− 1) or equivalently when n = 2 because l(Z[ILi]) is
the maximum when i = (v − 1) as compared to i ∈ {1, 2, . . . , (v − 2)}. So we get
Z[L(v−1)L(v−1)]

+ = Z[IL(v−1)1]
− and Z[L(v−1)R(v−1)]

− = Z[IL(v−1)q]
+. Keeping

i = (v− 1) and varying q such that Z[ILiRi]
−−Z[IRiLi]

+ is minimum, we get the
case when q = 6. This is because for every q the distance Z[ILiRi]

−−Z[IRiLi]
+ >

Z[ILi]
−−Z[IRi]

+ =
sin (n+1)π

q

sin nπ
q

− sin nπ
q

sin (n+1)π
q

for all 1 < i ≤ (v−1); see Figure 7. In the

case of i = (v−1) this becomes
sin2 3π

q −sin2 2π
q

sin 3π
q sin 2π

q

, which increases as q increases. Since
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the distance Z[ILi]
−−Z[IRi]

+ increases as q increases, then Z[ILiRi]
−−Z[IRiLi]

+

increases. So, by substituting q = 6 and n = 2 in (12) gives the following:

0.5292 > 0.2990 > 0.1443.

Z
[I
L
iL

i]
+

IRi

Z
[I
R

iL
i]
+

ILi

Z
[I
L
iR

i]
−

Figure 7. Magnified section of H showing the points on some
tessellation lines of T when q = 6 and n = 2 and i = q−3

2 .

So, when 2 ≤ i < q−3
2 , the term Z[ILiLi]

+−Z[ILiRi]
− increases since the length

l(Z[ILi]) increases as i increases and at the same time Z[ILiLi]
+ and Z[ILiRi]

−

get closer to Z[ILi]
+ and Z[ILi]

−, respectively, until it reaches the maximum, that

is, when i = q−3
2 .

Keeping q fixed, the smallest value of Z[ILiRi]
− −Z[IRiLi]

+ is when i = 1 and
q is an odd integer, in which case inequality (11) is already proved.

When i = v and q > 3 (that is, when n = 1), we have a slightly different
situation. Since the curve β is also a lift of the above sequence and is of the form
. . . LiIRi . . . , then we can see that β+ ≤ Z[IRiLi]

+, but instead of Z[ĪRiRi] we
take β− ≥ Z[ĪRiLi]

+. This is because otherwise we would have the sequence of
the form . . . LiLiIRi . . . ; this means, for i = q−1

2 , the side ĪRi is the translation

S−1
q (Ī). Therefore the sequence will be of the form . . . LiS

−1
q (I)LiRi . . . , which is

the case excluded by the assumption of this proposition. So now we need to prove
that α+ −α− > β+ − β−. First note that

β+ − β− ≤ Z[IRiLi]
+ − Z[ĪRiLi]

+.

But since Z[IRiLi]
+ ≤ Z[ILiRi]

−, we have

Z[IRiLi]
+ − Z[ĪRiLi]

+ ≤ Z[ILiRi]
− − Z[ĪRiLi]

+ < α+ −α−.

This completes the proof. �

5. The surface H/Hq and symmetries

As discussed earlier the quotient surface of H/Gq is topologically a sphere with
two cone points of orders 2 and q. This sphere has a 2q-fold cover, Σq, which is a

genus q−1
2 surface with a puncture when q is an odd integer, whereas it is a genus

q−2
2 surface with two cusps when q is even. The fundamental group of Σq is Hq,

which is also a subgroup of Gq, generated by (q − 1) hyperbolic elements of Gq.
For the group Hq there is a special set of generators {Aj , Bj |1 ≤ j ≤ v} where

v = q−1
2 when q is odd and v = q

2 when q is even. We study some special features
of the geodesics on the surface Hq, restricted to some classes which are the lifts of
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words formed by these special generators. In this section we discuss the fact that
the surface Σq admits an involution. We also study the effect of this involution on
a general geodesic as well as on some special geodesics.

5.1. The quotient surface Σq. We are interested in finding some of the properties
of the surface Σq with respect to each of the commutators of the form [Ai, Bi], where

i = 1, . . . , v and v = q−1
2 when q is an odd integer and v = q

2 when q is an even
integer. Each commutator separates the surface into two components. We study
these complementary regions which will help us in later results. Let aj and bj be
the nonseparating geodesics on Σq which are the projections of Ax(Aj) and Ax(Bj),
where 1 ≤ j ≤ v, and let gj be the separating geodesic which is the projection of
the axis of the commutator [Aj , Bj ], where 1 ≤ j ≤ v.

Ā q−1
2
A q−1

2

B q−1
2

A q−1
2

B̄ q−1
2

B q−1
2A q−1

2

B q−1
2

Figure 8. The highest commutator is shown by bold lines in the
fundamental region for H7.

Theorem 5.1. For every pair of generators of the form (Ai, Bi), where 1 ≤ i ≤ q−1
2

when q is an odd integer and 2 ≤ i ≤ q
2 when q is even, there is a simple closed

geodesic gi on Σq represented by the commutator [Ai, Bi]. This geodesic divides the
surface in two components, one of which is a torus Ti with a hole, where gi is its
boundary geodesic. Furthermore, this torus entirely contains the geodesics ai and
bi.

Proof. We consider the commutator g q−1
2
; all the rest of the cases are similar.

Figure 8 shows the case when q = 7. In this figure we can see that the bold lines,
which are the lift of gi to the fundamental domain Q, bound a region in Q. Let
Li = {l1, l2, l3, l4} be shown in Figure 9, where lk have endpoints xk and yk for
1 ≤ k ≤ 4. The opposite sides of Q contained in this region are identified under the
quotient map π : H �→ H/Hq. From Figure 9 and from the construction of gi, we can
see that π(yk) = π(xk+1) for 1 ≤ k ≤ 3 and π(y4) = π(x1). According to this the
geodesic segment [x2, y3] is identified with the geodesic segment [y1, x4], similarly
the geodesic segment [x3, y4] is identified with the geodesic segment [y2, x1]. So if
we cut Q along the bold lines, the component bounded by it projects to a torus Ti

with a hole for which gi is the boundary geodesic. Clearly the remaining region of
Q is also connected. This other component is a (v − 1)-genus surface with a cusp
and a hole. For the torus Ti, the group π1(Ti) is generated by the elements Ai and
Bi, therefore the geodesics ai and bi lie entirely on it.

Note that we exclude the case when i = 1 and q is even, because in this case we
have seen that A1 = B̄1, which implies that [A1, B1] is identity matrix. Hence the
result. �
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i

l1

l4

l3

l2

x1

y2

y1

x4

y4
x3y3

x2

Figure 9. The bold lines show the lift Lv of the geodesic gv.

5.2. Hyper-elliptic involution. Following the definitions from [2], a hyper-elliptic
involution of a surface Σ is an order 2 conformal automorphism which is also an
isometry of the surface. If such an involution exists, then it is unique [2]. Any sur-
face admitting such an involution is called a hyper-elliptic surface. The existence
of a hyper-elliptic involution on a genus two surface is well known; see Haas [2].
When there are one or two cusps on a surface with genus g ≥ 2 no such involu-
tion exists in general. But in the case of Σq, where the surface is equipped with
a special hyperbolic structure, one can prove that this surface has a hyper-elliptic
involution ζ. We claim that ζ is induced by the isometry Jq : H → H, defined by
z �→ − 1

z which fixes the fundamental domain Q. The involution ζ fixes q points on
the surface and an additional cusp only when q is an odd integer. We prove the
existence of this involution in the following theorem.

Theorem 5.2. Let ζ be the isometry of the surface Σq induced by the isometry Jq
of the hyperbolic plane H. Then ζ is the hyperelliptic involution of Σq which fixes
exactly q+1 points when q is an odd integer and q points when q is an even integer
on the surface, called the Weierstrass point.

In the following theorem, we discuss the behaviour of some special geodesics.

Theorem 5.3. Let ζ be the homeomorphism of the surface Σq induced by the

mapping Jq. Let v be q−1
2 when q is an odd integer and q

2 when q is even. Then:

(1) ζ maps the nonseparating geodesics aj and bj to themselves reversing ori-
entation, for every 1 ≤ j ≤ v.

(2) Any such nonseparating simple closed geodesic passes through exactly two
of the Weierstrass points.

(3) The separating simple closed geodesics gj remain invariant under the invo-
lution ζ, where 1 ≤ j ≤ v, with the exception of the case when j = 1 and q
is even.

(4) The separating simple closed geodesics gj do not pass through any of the
Weierstrass points.

5.3. Structure of the special commutators on Σq. From the above discussions
about the properties of each geodesic gj , we now discuss the structure and position
of these geodesics on the surface Σq. We can now gather all the information:

(1) From Theorem 5.3 we have proved that the involution ζ preserves the geo-
desic gj where 1 ≤ j ≤ v.
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Commutator [B3, A3]

Commutator [B2, A2]

Commutator [B1, A1]

Figure 10. Figure showing how all gj intersect each other. The
shaded region is common in all regions bounded by each commu-
tator.

(2) From Theorem 5.1, each of the geodesics gj separates the surface into two
components one of which is a torus Tj with a hole.

(3) We have seen from Theorem 5.3 (2) that every aj and bj , where 1 ≤ j ≤ v,
passes through the projection of the point ι on the surface Σq, and since
π1(Tj) = 〈aj , bj〉, then π(ι) ∈ Tj for all j. We call this point the common
Weierstrass point.

(4) From Theorem 5.3 (3), we have seen that Lj bounds a region in Q which

projects to Tj for every 1 ≤ j ≤ q−1
2 when q is an odd integer and for

every 1 < j ≤ q
2 when q is an even integer. In part (3) of the above, we

concluded that there is a common Weierstrass point in every Tj . Since we
have a finite number of the embedded tori with hole Tj , this implies that
there is a small region containing the point π(i) which is common in every
such torus with a hole Tj . This means that all the commutators intersect
transversally with each other as seen in Figure 10.

Using all of the above observations, we conclude that the geodesic gj must be
positioned as shown in Figure 11. This figure shows an example of geodesics g1 and
g2 on the surface Σ5, with the embedded tori with holes T1 and T2. As we know,
h(a2) = h(b2) > h(a1) = h(b1), and T1 = 〈a1, b1〉 and T2 = 〈a2, b2〉. So obviously
the commutator g2 must cut the surface in such a way that the shortest distance of
g2 to the cusp is smaller than h(g1); see Figure 10. Therefore, the boundary of T2

is higher than that of T1, which means that T2 is closer to the cusp than T1. Each
of the tori contains the common Weierstrass point as well as two more Weierstrass
points such that no Weierstrass point occurs in both T1 and T2 other than the
common Weierstrass point. In T1 (resp., T2) the geodesics a1 and b1 (resp., a2 and
b2) pass through the common Weierstrass point and either of the remaining two
points. The other component cut out by g2 is a torus with a hole and a cusp such
that it contains the remaining two Weierstrass points not lying on the geodesics a2
and b2.

6. Calculating heights of geodesics

One way of calculating the height of a geodesic on the surface Σq is by finding
its respective symbolic sequences. We have already seen that there is a bijection τϕ
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g2 g2

g1

H/H6
H/H5

g1

Figure 11. Bold lines showing geodesics gi. Left figure shows g2
for an even value of q, whereas the figure on the right shows g1 as
well as q2 for an odd value of q.

s0 s1

s2
s3

s4

Figure 12. Bold lines indicating the symbols associated with
crossing geodesics through the pentagon for q = 5

between the set of all T-sequences ΣT and the set of all reduced O-sequences ΣO

with initial side ϕ or ϕ̄.

Theorem 6.1. For each symbol j we associate a unique transformation S−1
q E

−(j−1)
q ,

for every 1 ≤ j ≤ (q − 1), such that it takes any point on the side sj of the region
P to the side s0.

This theorem is the reverse of Lemma 4.7; see Figure 12.

Proof. Consider a geodesic segment γi of a geodesic γ, and assume that this seg-
ment lies in the region P with γ−

i lying on the line labelled s0 such that γi∧s0 > 0.
As explained earlier, the main idea is to pull back the endpoint γ+

i of the geodesic
segment from the side, say sj , of P to the side s0. We need to find the unique
transformation that performs this task for each label in the set {1, 2, . . . , (q − 1)}.
For this, all we have to do is use the translation transformation Sq : z �→ z + ωq
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and rotational transformation Eq, which rotates at an angle of π/q in the clockwise
manner about the point cos π

q + i sin π
q . It also rotates the lines of P in the order

s0 → s1 → s2 → · · · → sq−1 → s0. For the symbol 1, the point γ+
i lies on the

line labelled s1 which is parallel to s0 and at a distance ω from it. Clearly, the
point S−1(γ+

i ) lies on the side s0, and since it is a translation of the point γ+
i the

height is preserved. For symbol 2, we have to first rotate γ+
i from s2 to s1 and then

translate from s1 to s0. So the transformation taking γ+
i from s2 to s0 is S−1

q E−1
q .

Similarly, we can find the unique transformations for all the other symbols. �

These symbols are used only for the fundamental domain P for the group Γq.
We need to find the heights of geodesics on the surface H/Hq, that is, we want
to calculate the heights of a geodesic with respect to the fundamental domain Q.
In order to find the essential height, we also have to consider the reflection Ω of
geodesics about the line I, also referred to as s0. The effect of Ω on the symbols is
that it interchanges the symbols from n ←→ n̄, for every n ∈ {1, 2, . . . , (q − 1)/2}.
The new geodesic, which may or may not be the same, has the same height on the
surface as that of the original one since reflection preserves heights.

Theorem 6.2. The height of any closed geodesic, intersecting the projection of the
line I, on the surface H/Hq with known symbolic sequence can be calculated with
the help of its O-sequence.

Proof. We know that the symbolic sequence of a closed geodesic is periodic. Let γ
be a closed geodesic on Σq. Consider the word X ∈ H∗

q = {Ai, Bi, Āi, B̄i : 1 ≤ i ≤
v} that forms a period of the O-sequence, starting from the first symbol with initial
point on I oriented from left to right. Multiply the matrices that correspond to each
of the O-symbols, where these matrices belong to the set H∗

q , in such a way that
every next matrix is multiplied on the right side. Once the period is completed, we
get a primitive matrix representing its axis with the same symbolic sequence. This
means that the axis of this matrix is a lift of γ to H. We can now easily find the
height of this lift. Since it is a periodic sequence the choice of our starting symbol
varies. This means that any cyclic permutation of the word X also gives a lift of
the geodesic γ. Here by the starting symbol we mean the symbol with initial point
on the line I. Now since we want to find the essential height of the geodesic γ
on the surface Σq, we have to consider the heights of all the possible lifts of this
geodesic to H. Taking the maximum of these heights will give the essential height.
The heights corresponding to all the lifts can be calculated by finding the heights
of the all possible cyclic permutations of the word X and its inverse.

Since we have defined the assignment of each symbol only when oriented from
left to right, we also have to find some method to deal with the possibilities when
oriented from right to left. So here we apply Ω, which interchanges the symbols and
may change the word as well. But the new geodesic still has the same height, on the
surface, as the original one. So again for this new set of symbols we find heights of
all possible lifts. And the greatest value among these heights is the essential height
of the original geodesic, or the height of it on the surface H/Hq. �

Lemma 6.3. Let χ = {χk} ∈ ΣO be a periodic sequence such that χk ∈ {Ai, B̄i}
and X is a word which corresponds to its period. Then the essential height of χ is
realized when X is of the form B̄ixAi where x is a word in Ai and B̄i.
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Proof. From Proposition 4.17, we know that for any σ sequence such that σk ∈
{Li, Ri}, the highest lift of σ occurs when we have a sequence of the form . . . LiILi

. . . , or in terms of O-sequence, . . . AiIB̄i . . . . Now if σ is periodic, then the period of
this lift is Liσ

′
2 . . . σ

′
mLi or τ

−1
ϕ (Liσ

′
2 . . . σ

′
mLi) = ϕB̄iχ

′
2 . . . χ

′
m+1Ai, which can be

written in the form B̄ixAi after ignoring the symbol ϕ, where x is a word consisting
only of Ai and B̄i. �
Example 6.4. To explain Lemma 6.3, we use the following examples:

(1) The highest lift of the symbolic sequence of AiBiAiB̄i is a periodic sequence
with repeating blocks of the form [B̄iAiBiAi].

(2) The height corresponding to the word AiBiĀiB̄i is less than that of the
word B̄iĀiBiAi. Since both are inverses of each other the essential height
of the geodesic corresponding to this word is the height given by the word
B̄iĀiBiAi. It is calculated to be 1.3969 when q = 5 and i = 1.

In [5] we used this method to calculate the essential heights of the geodesics on
the surface Σq, where q is an odd integer greater than 3, and found some important
results about its height spectrum. We have proved that unlike the height spectrum
of a once punctured torus, the heights of simple closed geodesics and that of a
nonsimple closed geodesics do not lie on separate intervals. In fact, there are some
very small intervals on the height spectrum where we can find the heights of simple
closed geodesics as well as the heights of finitely intersecting closed geodesics.
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