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CANTOR BOUQUETS IN SPIDERS’ WEBS

YANNIS DOUREKAS

Abstract. For many transcendental entire functions, the escaping set has
the structure of a Cantor bouquet, consisting of uncountably many disjoint
curves. Rippon and Stallard showed that there are many functions for which
the escaping set has a new connected structure known as an infinite spider’s
web. We investigate a connection between these two topological structures for
a certain class of sums of exponentials.

1. Introduction

Let f : C → C be a transcendental entire function. We denote by fn the nth
iterate of f for n = 0, 1, 2 . . .. The Fatou set of f , F (f), is the set of points z ∈ C

such that the sequence {fn}n∈N forms a normal family in some neighbourhood of
z. The complement of the Fatou set is the Julia set of f , J(f). Another set of note
is the escaping set of f , I(f), defined as the set of points that tend to infinity under
iteration. Further, we can define the fast escaping set of f , A(f), roughly defined
as the set of points that tend to infinity under iteration “as fast as possible”. The
formal definition of the fast escaping set, which can be found in [14], along with an
extensive study of many of its properties, is

A(f) = {z ∈ C : ∃L ∈ N such that |fn+L(z)| ≥ Mn(R, f) for n ∈ N},
where

M(r, f) = max
|z|=r

|f(z)| for r > 0,

Mn(r, f) denotes iteration of M(r, f) with respect to the variable r, and R > 0 is
any value large enough so that M(r, f) > r for r ≥ R.

In the same paper, the notion of a spider’s web is introduced. This is a connected
structure containing a nested sequence of loops. The formal definition is as follows.

Definition 1.1. A set E is an (infinite) spider’s web if E is connected and there
exists a sequence of bounded simply connected domains Gn, with Gn ⊂ Gn+1, for
n ∈ N, ∂Gn ⊂ E, for n ∈ N and

⋃
n∈N

Gn = C.

It is known that the escaping, fast escaping, and even Julia sets of many tran-
scendental entire functions are spiders’ webs [14]. We note that the spiders’ webs
that arise in complex dynamics are extremely elaborate [12, 14].

On the other hand, the escaping set for certain families of exponential functions
has been found to consist of a set of uncountably many, pairwise disjoint curves,
referred to as a Cantor bouquet. Results on this can be found for the family of
functions λez for 0 < λ < 1/e [9,10] and λ ∈ C [7]. This structure has been closely
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associated to symbolic dynamics that arise from the dynamical properties of these
functions, as can be seen in the aforementioned papers as well as [4,16]. Informally,
a Cantor bouquet can be thought of as the Cartesian product of a Cantor set with
[0,+∞) [9, p. 490]. A topological description of a Cantor bouquet can be found in
[1], with additional discussion provided in [4].

In this paper we prove that it is possible for a Cantor bouquet (or indeed many
Cantor bouquets) to lie within an escaping or Julia set spider’s web.

To that end, we study the family of transcendental entire functions defined as

F =

{
f : f(z) =

p−1∑
k=0

exp(ωk
pz) for any p ≥ 3

}
,

where ωp = exp(2πi/p) is a pth root of unity. A larger class of functions that
includes this family was studied in [17]. One of the main tools used in this study
was the fact that, for each p ≥ 3, there exist p unbounded regions outside a circle
centered at the origin with the property that f behaves like a single exponential
in each one of them. Each of these regions is a 2kπ/p rotation of the others for
k = 1, . . . , p− 1 (see the lemma in the next section).

It was shown in [17] that the Julia, escaping, and fast escaping sets of each of
these functions is a spider’s web. Our goal is to prove that, within each of these
spiders’ webs there lie Cantor bouquets. We formulate our main result as follows.

Theorem 1.2. Let f ∈ F . Then J(f) is a spider’s web that contains a Cantor
bouquet. Additionally, the curves minus the endpoints lie in A(f).

Remark. The result holds for functions of the form λωpf , where f ∈ F , λ > 0, and
ωp is a pth root of unity. The reasoning is similar (note that f(ωpz) = f(z); see
Lemma 2.1), but for simplicity we have given the proof for the case λωp = 1.

We will prove our result for just one of the p regions mentioned above; due to
symmetry, the curves we find in that region will have 2kπ/p rotations in all the
other regions for k = 1, . . . , p− 1, and these rotations will have similar properties.
Throughout the rest of the paper p is a fixed integer with p ≥ 3.

The structure of the paper is as follows:

• In Section 2 we list the preliminary results from [17] that we will make use
of.

• In Section 3 we find all the zeros and critical points for all f ∈ F .
• In Section 4 we find different subsets of the plane that cover themselves
under f : the endpoints of the curves in the Cantor bouquet will lie in these
regions.

• In Section 5 we identify curves that extend to infinity (which we call hairs),
prove that they do, in fact, constitute a Cantor bouquet, and further prove
that they are in J(f) and A(f) (apart from the endpoints), thus making
them part of the J(f), A(f), and A(f) ∩ J(f) spiders’ webs.

Our argument in Sections 4 and 5 is inspired by [7], where the authors prove the
existence of hairs in the dynamical plane for the family of complex exponential
functions z 	→ λez for λ ∈ C. In our case, the functions in F provide extra
challenges (for example, locating the critical points and finding regions that cover
themselves under iteration), since they arise as sums of exponentials and, further,
are not in the Eremenko–Lyubich class. Several different tools, including Laguerre’s
theorem, are thus required in order to prove our results.
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2. Preliminaries

This section contains some of the preliminary results we will use, many taken
from [17] with slight modifications in order to make their purpose clearer for the
requirements of this paper. We also prove a lemma that follows as a corollary from
these results.

We first state a result that concerns the symmetry properties of F . This will
allow us to work in certain angles in order to prove results for the whole plane, and
justifies the use of the phrase “due to symmetry” that will appear numerous times
in what follows.

Lemma 2.1. Let f ∈ F . Then f(ωk
pz) = f(z) for k = 1, . . . , p − 1 and for all

z ∈ C.

Proof. Clear. �
The following result is one we have already mentioned in the previous section

[17, Theorem 1.2].

Theorem 2.2. Suppose that f ∈ F . Then each of

A(f), I(f), J(f) ∩A(f), J(f) ∩ I(f), and J(f)

is a spider’s web.

We will now fix several constants that serve as preparation for the next lemma,
which concerns the fact that there are certain unbounded regions in which f behaves
like a single exponential.

Choose a constant σ such that

0 < σ <
1

8
√
2
.

Fix a constant η > 4/σ. Fix also a constant τ sufficiently large that

τ ≥ log(4pη)

2 sin(π/p)
> 0.

Suppose that ν > 0 is large compared to τ ; we will specify its size more precisely
below. Let P (ν) be the interior of the regular p-gon centered at the origin and with
vertices at the points

ν

cos(π/p)
exp

(
(2k + 1)iπ

p

)
for k ∈ {0, 1, · · · , p− 1}.

Define the domains

Qk =

{
z exp

(
(2k + 1)iπ

p

)
: Re(z) > 0, | Im(z)| < τ

}
for k ∈ {0, 1, · · · , p− 1}.

Roughly speaking, each Qk can be obtained by rotating a half-infinite horizontal
strip of width 2τ around the origin until a vertex of P (ν) is positioned centrally in
the strip.

Set

T (ν) = C \
(
P (ν) ∪

p−1⋃
k=0

Qk

)
.

The set T (ν) consists of p simply connected unbounded components. These
components are arranged rotationally symmetrically. We label these Tj(ν), for j ∈
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{0, 1, · · · , p−1}, where T0(ν) is the component that has an unbounded intersection
with the positive real axis. Then, each component of Tj+1(ν) is obtained by rotating
Tj(ν) clockwise around the origin by 2π/p radians; see Figure 1. We take ν > 0 so
large that

(2.1) |ez| ≥ 4pη| exp(ωk
pz)|

for k = 1, 2, . . . , p − 1 and z ∈ T0(ν). The following lemma shows that for such
ν, f behaves like a single exponential in each component of T (ν). Lemma 2.3 is a
special case of [17, Lemma 4.1].

P (ν)

Q0

Q4

Q3

Q2

Q1

T0(ν)

T1(ν)

T4(ν)

T3(ν)

T2(ν)

Figure 1. The sets P (ν), Tk(ν), and Qk for p = 5 and k ∈ {0, 1, 2, 3, 4}.

Lemma 2.3. Let f ∈ F . Suppose that η, τ, Tj(ν) and T (ν) are as defined above
for j ∈ {0, 1, · · · , p − 1}. Then there exists ν′ > 0 such that the following holds.
Suppose that ν ≥ ν′; there exists a constant ε0 ∈ (0, 1), independent of ν, such that,
for all z ∈ T (ν),

(2.2) |f ′(z)| > 2,

(2.3)

∣∣∣∣z f ′(z)

f(z)

∣∣∣∣ > 2,
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and finally

(2.4) |f(z)| > max{eε0ν ,M(ε0|z|, f)}.

For the rest of this paper we will be working in T0(ν). Similar arguments work
for the other components of T (ν) due to symmetry.

We fix the notation found in [7] that we also use here. For each integer k, we
define horizontal strips R(k) by

R(k) = {z ∈ C : (2k − 1)π < Im z < (2k + 1)π}.
Note that z 	→ ez maps the boundary of R(k) onto the negative real axis and z 	→ ez

maps R(k) onto C \ {x ∈ R : x ≤ 0} for each integer k.

Definition 2.4. For z ∈ C, the itinerary of z under f is the sequence of integers
s(z) = s0s1s2 . . . where sn = k if and only if fn(z) ∈ R(k). We do not define the
itinerary of z if fn(z) ∈

⋃
k∈N

∂R(k) for some n.

Let N ∈ N. Let ΣN consist of all one-sided sequences s0s1s2 . . ., where each
sj ∈ Z and |sj | ≤ N . The one-sided shift σ on ΣN is defined by

σ(s0s1s2 . . .) = s1s2s3 . . . .

It is known that σ has dense periodic points in ΣN , has dense orbits, and exhibits
sensitive dependence on initial conditions (see for example [8, Chapter 3]).

We finish this section by proving the following lemma for points that stay in
Tj(ν), j ∈ {0, 1, . . . , p− 1}, under iteration.

Lemma 2.5. Let z ∈ C be such that fn(z) ∈ Tj(ν) for all n ≥ 1 and j ∈
{0, 1, . . . , p− 1}. If ν is large enough, then z ∈ J(f) ∩ A(f).

To prove this we need the following. First, a lemma from [17].

Lemma 2.6. Suppose that f is a transcendental entire function and that z0 ∈ I(f).
Set zn = fn(z0) for n ∈ N. Suppose that there exist λ > 1 and N ≥ 0 such that

f(zn) = 0 and

∣∣∣∣zn f ′(zn)

f(zn)

∣∣∣∣ ≥ λ for n ≥ N.

Then either z0 is in a multiply connected Fatou component of f or z0 ∈ J(f).

Second, we state a corollary from [17] (proved using [5, Theorem 4.5]).

Corollary 2.7. Suppose f ∈ F . Then f has no multiply connected Fatou compo-
nents.

Proof of Lemma 2.5. Let z ∈ C be such that fn(z) ∈ Tj(ν) for all n ≥ 0 and
j ∈ {0, 1, . . . , p − 1}. If ν is large enough, it follows from (2.4) that z ∈ I(f). We
will prove that z ∈ A(f). Let 0 < ε0 < 1 be the constant from Lemma 2.3. We
need a standard result about M(r) (see, for example, [14, p. 793, (2.3)]): if k > 1,
then

M(kr)

M(r)
→ ∞ as r → ∞.

Therefore, taking k = 1/ε0, we have

(2.5) M(r) = M

(
ε0r

ε0

)
≥ 1

ε20
M(ε0r)
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for all large enough r > 0, say r ≥ ε0r0 > 0. Further, from (2.4), we have

|f(z)| ≥ M(ε0|z|)
since z ∈ Tj(ν) for some j ∈ {0, 1, . . . , p− 1}, and thus, by (2.5) with |z| ≥ ε0r0,

|f(z)| ≥ 1

ε20
M(ε20|z|).

Additionally, by substitution and the previous inequality,

|f2(z)| ≥ 1

ε20
M(ε20|f(z)|) ≥

1

ε20
M(M(ε20|z|)),

and thus, using induction, we have

|fn(z)| ≥ 1

ε20
Mn(ε20|z|) ≥ Mn(ε20|z|)

for all n ≥ 0 and all large enough |z|. Therefore, for these z with large enough
moduli, z ∈ A(f). But the other z ∈ C for which fn(z) ∈ Tj(ν) for all n ≥ 0 and
j ∈ {0, 1, . . . , p−1} are in I(f), so their moduli will get as large as we want, making
them preimages of points in A(f). Consequently, they are in A(f) as well.

We now prove that z ∈ J(f). From (2.3) we have∣∣∣∣fn(z)
f ′(fn(z))

f(fn(z))

∣∣∣∣ > 2

for n ≥ 0. Since z ∈ I(f), it follows from Lemma 2.6 that either z ∈ J(f) or z is in
a multiply connected Fatou component. The latter case is impossible by Corollary
2.7, so z ∈ J(f). �

3. Zeros and critical points

Recall that f(z) =
∑p−1

k=0 exp
(
ωk
pz

)
for some fixed p ≥ 3. In this section we will

locate the zeros of f . These will, in turn, lead us to the location of the critical
points and the critical values of f , and later on allow us to locate bounded sets that
cover themselves under iteration.

We claim that all the zeros of f lie on the rays V0, . . . , Vp−1, where V0 := {x+iy ∈
C : y = tan(π/p)x, x > 0} and V1, . . . , Vp−1 are its 2kπ/p-rotations around the
origin for k = 1, . . . , p − 1, respectively. The main tool used to prove this is the
following result which we quote as a lemma [13, Problem 160].

Lemma 3.1. Let q be an integer, q ≥ 2. The entire function

F (z) = 1 +
z

q!
+

z2

(2q!)
+

z3

(3q!)
+ . . .

has no non-real zeros.

We now state and prove our result about the zeros of f .

Theorem 3.2. Let f ∈ F . Then all the zeros of f lie on the rays V0, . . . , Vp−1.

Proof. We write

f(z) =

p−1∑
k=0

exp
(
ωk
pz

)
=

p−1∑
k=0

∞∑
j=0

(
(ωk

pz)
j

j!

)
= p

(
1 +

zp

p!
+

z2p

(2p)!
+ . . .

)
,

since 1 + ωk
p + (ωk

p )
2 + . . .+ (ωk

p)
p−1 = 0 for k = 1, . . . , p− 1.
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We substitute z = w1/p, the principal branch, to obtain

(3.1) g(w) = f(w1/p) = p

(
1 +

w

p!
+

w2

(2p)!
+ . . .

)
.

We can apply Lemma 3.1 to the function g to deduce that all the zeros of g are real.
Hence, the zeros of f must lie on the preimages of the real axis under z 	→ z1/p.
These are exactly the rays V0, . . . , Vp−1, which are the preimages of the negative
real axis, along with the positive real axis, which is the preimage of itself. But it is
simple to see that f(x) = 0 for x ≥ 0. �

In fact, we can say more about the location of the zeros. In particular, we can
describe their distribution in a neighbourhood of infinity.

First, we introduce some notation and establish some symmetry properties of f .
Consider one of the terms of the sum defining f ; its general form is

exp(ωk
pz) = exp

(
e2ikπ/p(x+ iy)

)
= exp(uk(z)) exp(ivk(z)),

with z = x+ iy,

(3.2) uk(z) = x cos

(
2kπ

p

)
− y sin

(
2kπ

p

)

and

(3.3) vk(z) = x sin

(
2kπ

p

)
+ y cos

(
2kπ

p

)
.

We also define vk(z) to be equal to π/3 for k = p/2 − 1 when p is odd, to make
the statement of the next lemma more concise (the reason for this will appear near
the end of the proof). We prove our results for V0; analogous results follow for the
rest of the rays due to symmetry. We start by proving a lemma that simplifies the
equation of f on V0, in particular showing that f is real on V0, and so f is real on
each of the rays Vk, k ∈ {1, . . . , p − 1}, by symmetry; this fact also follows from
(3.1), since if z ∈ Vk, then zp ∈ R and f(z) = g(zp).

Lemma 3.3. Let z ∈ V0. We have

f(z) = 2
∑

k=0,1,...,p/2−1

exp(uk(z)) cos(vk(z)).

Proof. We show that the terms of the sum defining f act similarly in pairs on the
ray V0 with regard to their moduli, which are proven to be equal for specific pairs, as
well as their arguments which, for the same pairs, are proven to be of opposite sign.
In particular, the kth term, for k < (p−1)/2, behaves similarly to the (p−k−1)th
term.

In particular, a point in V0 is of the form r exp(πi/p) for r > 0. By substitution
we get

uk(r exp(πi/p)) = Re exp(e2πik/preπi/p) = er cos (π(2k + 1)/p)

and

vk(r exp(πi/p)) = Im exp(e2πik/preπi/p) = er sin (π(2k + 1)/p) .
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On the other hand,

up−k−1(r exp(πi/p)) = Re exp(e2πi(p−k−1)/preπi/p)

= er cos (π(2p− 2k − 1)/p)

= er cos (π(−2k − 1)/p) ,

so

(3.4) uk(r exp(πi/p)) = up−k−1(r exp(πi/p)),

and

vk(r exp(πi/p)) = Im exp(e2πik/preπi/p) = er sin (π(2p− 2k − 1)/p)

= er sin (π(−2k − 1)/p) ,

so

(3.5) vk(r exp(πi/p)) = −vp−k−1(r exp(πi/p)).

Therefore, for z = r exp(πi/p), the following sum is real:

exp(ωk
pz) + exp(ωp−k−1

p z)

= exp(uk(z)) exp(ivk(z)) + exp(up−k−1(z)) exp(ivp−k−1(z))

= exp(uk(z)) exp(ivk(z)) + exp(uk(z)) exp(−ivk(z))

= 2 exp(uk(z)) cos(vk(z)).

Note that, if p is odd, say p = 2m+ 1, then, by (3.5),

vm(r exp(πi/p)) = v(2m+1)−m−1(r exp(πi/p)) = −vm(r exp(πi/p)),

so

vm(r exp(πi/p)) = 0

and thus the only term of the sum that does not belong to a pair exclusively attains
real values on V0. Further, in this case

um(r exp(πi/p)) = r cos

(
π(2m+ 1)

2m+ 1

)
= −r,

so exp(um(r exp(πi/p))) = e−r. For points z ∈ V0, we can therefore write

f(z) = 2

p/2−1∑
k=0

exp(uk(z)) cos(vk(z))

for even p, and

f(z) = 2

p/2−1∑
k=0

exp(uk(z)) cos(vk(z)) + exp(u(p−1)/2(z))

for odd p. Recalling our convention that vk(z) = π/3 for k = p/2 − 1 when p is
odd, we can finally write, for z ∈ V0 and all p ≥ 3,

f(z) = 2
∑

k=0,1,...,p/2−1

exp(uk(z)) cos(vk(z)).

�
We state an elementary lemma about real exponentials which we will make use

of below several times.
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Lemma 3.4. For d > 0 and a < 1, let Ed,a : R+ → R with Ed,a(x) = ex − deax.

Then, for x(1− a) > log+(ad), and as x → ∞, Ed,a(x) increases to infinity.

Proof. We have

Ed,a(x) = ex − deax = eax(ex(1−a) − d) → ∞

as x → ∞, and is increasing for x(1− a) > log+(ad). �
We are following the notation and the partition of the plane as introduced in

[17, p. 9757] and discussed in Section 2. From Lemma 2.3 we know that there
exist no zeros of f in T0(ν) and all potential zeros of f should therefore lie in⋃

k=0,...,p−1 Qk. Due to symmetry, it suffices to locate all zeros in Q0; the rest will

be 2π/p rotations of these. We can write

Q0 = {z ∈ C : z = w + t for w ∈ V0 and |t| ≤ τ/ cos(π/p)}.
We define the lines

(3.6) Cm =

{
x+ iy : y = − cot(π/p)x+

mπ

sin2(π/p)

}
for m ∈ N. Note that Cm meets V0 at (mπ cot(π/p),mπ). As pointed out in
[17, p. 9766], it is easy to check that

(3.7) arg(ez) = arg(eω
p−1
p z)

for z ∈ Cm, m ∈ N. This is important since, in the part of the plane near Q0, these
two terms are much larger in terms of their modulus than the rest of the terms that
make up the sum that defines f . For all m ∈ N we finally consider the rectangle
defined by the lines Cm and Cm+1 along with the rays V0±(τ/ cos(π/p)), and name
it Dm.

We now describe the distribution of the zeros of f .

Theorem 3.5. Let f(z) =
∑p−1

k=0 exp(ω
k
pz) and consider the set of the rectangles

Dm ⊂ Q0 for m ∈ N, as well as all their rotations around the origin that lie in
Q1, . . . , Qp−1. There exists M ∈ N such that for m > M , there is exactly one
zero of f inside each one of the p rectangles corresponding under symmetry to Dm,
which additionally lies on one of the rays Vk for k = 1, . . . , p − 1. These are the
only zeros of f with a modulus larger than M/ sin(π/p).

Proof. Again, we restrict our calculations to Q0. We use Rouché’s theorem to prove
that, for large enough M , there is exactly one zero in each of the rectangles Dm for
m > M . To that end we locate the zeros of the auxillary function φ : C → C with

φ(z) = ez + eω
p−1
p z.

For φ(z) = 0 to hold, we must have |ez| = |eωp−1
p z| and arg ez = − arg eω

p−1
p z (or,

equivalently, u0(z) = up−1(z) and v0(z) = −vp−1(z)). So for z = x + iy, and by
(3.2) and (3.3), we must have

ex = exp(x cos(2π/p) + y sin(2π/p)),

which holds if and only if y = tan(π/p)x, and we are interested in the ray with x > 0
(that is to say, V0) which is contained in Q0. But, from (3.5), for z = x + iy ∈ V0

we have

vp−1(z) = −v0(z) = −y,
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and we thus get φ(z) = 0 for y = mπ + π/2 with m ∈ N, since (as can easily
be checked) these are exactly the points on V0 where the arguments of ez and

eω
p−1
p z cancel each other out. Hence the only zeros of φ in Dm are (cot(π/p)(mπ+

π/2),mπ + π/2) for each m ∈ N.
We now apply Rouché’s theorem in Dm. We know that φ has exactly one zero

inside each Dm. To show that the same holds for f , we shall prove the inequality

(3.8) |f(z)− φ(z)| < |φ(z)|
on each ∂Dm.

Fix m ∈ N. We claim that φ and f − φ are symmetric about V0 as well. Then,
due to symmetry, it suffices to prove inequality (3.8) for the part of the boundary
of the rectangle that lies on and to the right-hand side of V0.

For φ, we need to show φ(z̄eiπ/p) = φ(zeiπ/p). We have

φ(z̄eiπ/p) = exp(z̄eiπ/p) + exp(z̄e−i2π/peiπ/p) = exp(z̄eiπ/p) + exp(z̄e−iπ/p)

and

φ(zeiπ/p) = exp(z̄e−iπ/p) + exp(ze−i2π/peiπ/p) = exp(z̄e−iπ/p) + exp(z̄eiπ/p),

which proves the symmetry for φ.
For f , we use the function g that we previously defined in Theorem 3.2, with

g(w) = f(w1/p) = p

(
1 +

w

p!
+

w2

(2p)!
+ . . .

)
.

The function g is entire and satisfies g(w̄) = g(w). But a point z and its reflection
about V0, say z′, map to a complex conjugate pair w and w under z 	→ zp, thus
proving the symmetry about V0 for f . Therefore both φ and f − φ are symmetric
about V0 as we claimed, and we can proceed with the rest of the proof.

For z = x+ iy ∈ ∂Dm ∩ Cm we have, by (3.6) and (3.7),

(3.9) |φ(z)| = ex + exp(−x+ 2 cot(π/p)mπ),

since, for z = x+ iy ∈ ∂Dm ∩ Cm,∣∣∣eωp−1
p z

∣∣∣ = |exp ((cos(2π/p)− i sin(2π/p)) (x+ iy))|
= exp (x cos(2π/p) + y sin(2π/p))

= exp

(
x cos(2π/p) +

(
− cot(π/p)x+

mπ

sin2(π/p)

)
sin(2π/p)

)
= exp (x (cos(2π/p)− cot(π/p) sin(2π/p)) + 2mπ cot(π/p))

= exp (−x+ 2 cot(π/p)mπ) .

On this same part of ∂Dm, it is simple to see geometrically that

(3.10) max
k=1,...,p−2

{∣∣exp(ωk
pz)

∣∣} = eu1(z)
(
= eup−2(z)

)
,

and by substituting (3.6) into (3.2) with k = 1 we obtain

u1(z) = x cos

(
2π

p

)
−
(
− cot(π/p)x+

mπ

sin2(π/p)

)
sin

(
2π

p

)
= x (cos(2π/p) + cot(π/p) sin(2π/p))− 2 cot(π/p)mπ

= x
(
cos(2π/p) + 2 cos2(π/p)

)
− 2 cot(π/p)mπ,
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so

(3.11) u1(z) = x (2 cos(2π/p) + 1)− 2 cot(π/p)mπ.

Now, for z = x+ iy in this same part of ∂Dm, we can write x = mπ cot(π/p) + c,
with c ∈ (0, τ sin(π/p)) (as this is the perpendicular, and τ sin(π/p) denotes the
horizontal distance from a point in V0 to ∂Dm). Hence, to verify (3.8) for z ∈
Dm ∩ Cm, by (3.9), (3.10), and (3.11), it suffices to show that

(3.12) exp(mπ cot(π/p) + c) + exp(mπ cot(π/p)− c)

is greater than (p− 2)eu1(z) for all c ∈ (0, τ sin(π/p)), which we can write as

(p− 2) exp ((mπ cot(π/p) + c) (2 cos(2π/p) + 1)− 2 cot(π/p)mπ) ,

by (3.11), that is,

(3.13) (p− 2) exp (mπ cot(π/p)(2 cos(2π/p)− 1) + c(2 cos(2π/p) + 1)) .

By Lemma 3.4, for

d = (p− 2) exp(c(2 cos(2π/p) + 1))/(ec + e−c),

x = mπ cot(π/p), and

a = 2 cos(π/p)− 1,

we deduce that (3.12) is greater than (3.13) for large enough m ∈ N, and we let M
be the largest integer for which it is not.

For the side of ∂Dm which lies in Cm+1 we can repeat the above calculations for
m+ 1 instead of m.

It remains to show the inequality (3.8) for the side of ∂Dm which lies in ∂T0(ν).
From (2.1) we can deduce that

|ez| ≥
p−1∑
k=1

∣∣∣eωk
pz
∣∣∣

for z ∈ ∂T0(ν). Hence

|φ(z)| =
∣∣∣ez + eω

p−1
p z

∣∣∣
≥ |ez| −

∣∣∣eωp−1
p z

∣∣∣
≥

p−1∑
k=1

∣∣∣eωk
pz
∣∣∣− ∣∣∣eωp−1

p z
∣∣∣

=

p−2∑
k=1

∣∣∣eωk
pz
∣∣∣

≥
∣∣∣∣∣
p−2∑
k=1

eω
k
pz

∣∣∣∣∣
= |f(z)− φ(z)|.

Thus, by Rouché’s theorem, we have proven that for m > M , the number of zeros
of f in the corresponding rectangle Dm is one, and we know this zero must lie on
V0 by Theorem 3.2. We now show that for sufficiently large values of m, the unique
zero of f in Dm lies between y = mπ and y = (m+ 1)π.
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For the two dominant terms ez and eω
p−1
p z, and for points z = x+ iy ∈ V0, from

(3.4) and (3.5) we have

u0(z) = up−1(z) = x

and

v0(z) = −vp−1(z) = y.

Hence, for points z = x+ iy ∈ V0 with y = 2mπ, m ∈ N, we get (by Lemma 3.4)

f(z) = 2ex + 2
∑

k=1,2,...,p/2−1

exp(uk(z)) cos(vk(z))

and, for y = 2mπ + π, m ∈ N,

f(z) = −2ex + 2
∑

k=1,2,...,p/2−1

exp(uk(z)) cos(vk(z)).

From Lemma 3.4 we deduce that for all p ≥ 3, there exists x0 > 0 such that for
x > x0 and z = x+ iy ∈ V0 (so y = x tan(π/p)),

ex > (p− 2) max
k=1,2,...,p−2

exp(uk(z))

= (p− 2) max
k=1,2,...,p−2

exp

(
x

cos(π/p)
cos

(
π(2k + 1)

p

))

= (p− 2) exp

(
x

cos(π/p)
cos

(
3π

p

))
,

since this inequality is equivalent to Ep−2,a(x) > 0 for a = cos(3π/p)/ cos(π/p).
Thus,

f(z) > 0 for z = x+ iy ∈ V0 with y = mπ, m ∈ N,

and

f(z) < 0 for z = x+ iy ∈ V0 with y = (m+ 1)π, m ∈ N.

It follows from the intermediate value theorem that, for all sufficiently large m ∈ N,
f vanishes at some point in each of the segments between the points y = mπ and
y = mπ + π on V0, and thus this is the only zero of f inside the corresponding
rectangle Dm.

The more general result, as stated, follows from obvious symmetry arguments
and from the fact that the distance of DM from the origin is M/ sin(π/p). �

In the following, we will use Theorem 3.5 to locate the critical points of f .

Theorem 3.6. All critical points of f lie in
⋃

k=0,...,p−1 Vk and are separated in
each Vk from each other by the zeros of f . Furthermore, since those rays are mapped
under f onto the real axis, all the critical values of f lie on the real axis, alternating
between the positive and negative axes.

Proof. Let h be the principal branch of z 	→ z1/p. Recall that, as in Theorem 3.2,

g(w) = f(w1/p) = p

(
1 +

w

p!
+

w2

(2p)!
+ . . .

)
,
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so g = f ◦ h and the function g is entire. We investigate its order:

ρ(f ◦ h) = lim sup
r→∞

log(logM(r, f ◦ g))
log r

= lim sup
r→∞

log(logM(r1/p, f))

log r

and, for s = r1/p,

ρ(f ◦ h) = lim sup
s→∞

log(logM(s, f))

p log s

=
1

p
ρ(f) =

1

p
,

since

M(r, f ◦ h) = max{|f(z1/p)| : |z| = r} = max{|f(z)| : |z| = r1/p} = M(r1/p, f).

We state a theorem by Laguerre [18, p. 266].

Theorem 3.7. If f is an entire function, real for real z, of order less than 2, with
only real zeros, then the zeros of f ′ are also all real, and are separated from each
other by the zeros of f .

Since g is real on R, we can apply Laguerre’s theorem to g = f◦h, which certainly
has order less than 2, and whose zeros all lie on the negative real axis, from the
proof of Theorem 3.2. We deduce that the critical points of g = f ◦ h are all real
and are separated by the zeros of g. Hence, by symmetry, the critical points of f
lie on

⋃p−1
k=0 Vk and on each Vk they are separated by the zeros of f . �

4. Trapeziums

In this section we locate compact subsets of the plane that cover themselves
under f . Inside these compact sets we construct invariant Cantor sets for f on
which f is conjugate to the one-sided shift on ΣN , and which will serve as the
endpoints of the curves in the Cantor bouquet. Specifically, these compact sets are
the trapeziums Tm,c bounded by the lines

y = tan(π/p)x,

y = (2m− 1)π,

y = (2m+ 1)π,

x = c,

for m ∈ N, for large enough c > τ/ sin(π/p), and with their sides labelled, respec-
tively, as S1

m,c, S
2
m,c, S

3
m,c, S

4
m,c. Note that we define the sets Tm,c to contain the

boundary as well as the inside of each trapezium. We also define T−m,c to be the
reflection of Tm,c with respect to R.

We know from Theorem 3.5 that, for large enoughm, f maps S1
m,c into a bounded

subset of the real axis which contains 0 (which f attains twice on S1
m,c).

We proceed to investigate the curves f(S2
m,c) and f(S3

m,c). We give a lemma

about the behaviour of f at the points on the half-lines Y ±
m := {x + iy ∈ C :

y = (2m ± 1)π, x > cot(π/p)y} for m ∈ N, which are the horizontal half-lines
that contain a segment of the boundary of the trapezium Tm,c (analogous results
immediately follow for T−m,c).
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Lemma 4.1. There exists M ∈ N such that f(Y ±
m ) lies in the left half-plane for

all m > M .

Proof. Let z = x+ iy. We prove the result for Y +
m ; Y −

m is similar. For x+ iy ∈ Y +
m ,

we will write x = cot(π/p)ym+ ξ where ym = (2m+1)π and ξ > 0. Assuming that
x+ iy ∈ Ym in the following, we have, from (3.2) and (3.3), for k = 0, 1, . . . , p− 1,

(4.1) uk(z) =
ym

sin(π/p)
cos

(
π(2k + 1)

p

)
+ ξ cos

(
2kπ

p

)
and

(4.2) vk(z) =
ym

sin(π/p)
sin

(
π(2k + 1)

p

)
+ ξ sin

(
2kπ

p

)
,

which we now treat as functions of ξ. For k ∈ {0, . . . , p−1} we define the functions
φk : (0,+∞) → R by

φk(ξ) = exp(uk(z)) cos(vk(z)),

so

Re f(z) =

p−1∑
k=0

exp(uk(z)) cos(vk(z)) =

p−1∑
k=0

φk(ξ).

We want to prove that Re f(z) < 0 for all points in Ym when m is sufficiently
large. The two largest terms with respect to their moduli for small ξ are the terms
corresponding to k = 0 and to k = p− 1. By (4.1) and (4.2) these are, respectively,

(4.3) φ0(ξ) = − exp(ym cot(π/p) + ξ),

which is negative for all ξ > 0, and (since sin(π(2(p− 1) + 1)/p) = − sin(π/p) and
sin(2(p− 1)π/p) = − sin(2π/p))

φp−1(ξ) = exp(ym cot(π/p) + ξ cos(2π/p)) cos(ym + ξ sin(2π/p)),

which is negative if ξ satisfies

π < π + ξ sin(2π/p) < 3π/2;

that is, if

0 < ξ <
π

2 sin(2π/p)
.

But for ξ ≥ π/(2 sin(2π/p)) we have∣∣∣∣φp−1(ξ)

φ0(ξ)

∣∣∣∣ ≤ exp(ym cot(π/p) + ξ cos(2π/p))

exp(ym cot(π/p) + ξ)

= exp(ξ(cos(2π/p)− 1)),

which is a function of ξ that decreases to 0 as ξ increases to ∞, and thus attains
its maximum value for ξ = π/(2 sin(2π/p)). There consequently exists μ = μ(p) ∈
(0, 1) such that

|φp−1(ξ)| ≤ μ|φ0(ξ)| for ξ ≥ π/(2 sin(2π/p)),

and thus, since φ0(ξ) is negative for all ξ > 0,

(4.4) φ0(ξ) + φp−1(ξ) ≤ (1− μ)φ0(ξ) for all ξ > 0.
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It is simple to see that, for all ξ > 0,

(4.5) max
k=1,...,p−2

|φk(ξ)| = |φ1(ξ)| = exp

(
ym cos(3π/p)

sin(π/p)
+ ξ cos(2π/p)

)
,

so

p−2∑
k=1

|φk(ξ)| ≤ (p− 2)|φ1(ξ)| for ξ > 0.

We now use Lemma 3.4. Following its notation, we substitute

x = ym cot(π/p),

as well as

d = 2(p− 2) exp(ξ(cos(2π/p)− 1))/(1− μ)

and

a = cos(3π/p)/ cos(π/p) < 1,

and choose M so large that ex− deax > 0 for all m > M . Returning to the original
notation of this part, it follows that for all m > M and x+ iy ∈ Ym, we have

(p− 2)|φ1(ξ)| ≤
1− μ

2
|φ0(ξ)|,

by (4.3) and (4.5), and thus

(4.6)

p−2∑
k=1

|φk(ξ)| ≤
1− μ

2
|φ0(ξ)| for ξ > 0,

by (4.5) again. Hence, finally, for z ∈ Ym with m > M , from (4.4) and (4.6) we
have

Re f(z) =

p−1∑
k=0

φk(ξ) ≤
1− μ

2
φ0(ξ) < 0 for ξ > 0,

as required. �

From Lemma 4.1, we know that f(S2
m,c) and f(S3

m,c) lie in the left half-plane

for m > M . We now investigate the behaviour of f(S4
m,c) in order to complete

the proof that the trapeziums cover themselves under f . Specifically, we prove the
following.

Lemma 4.2. For large enough c > 0, the set {z ∈ C : Re z ≥ 0} ∩ f(S4
m,c) is a

curve that meets both the positive and negative imaginary axes and lies inside an
annulus of the form Am,c := {z : ||z| − ec| ≤ maxz∈S4

m,c
|(f − exp)(z)|}.
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Proof. The image of S4
m,c under ez is the circle around the origin with radius ec.

Additionally, by Lemma 2.1 and (2.1),

max
z∈S4

m,c

|(f − exp)(z)| = max
z∈S4

m,c

p−1∑
k=1

exp(uk(z))

≤ (p− 1) max
z∈S4

m,c

exp(up−1(z))

= (p− 1) max
z∈S4

m,c

exp

(
c cos

(
2π

p

)
+ y sin

(
2π

p

))

= (p− 1) exp

(
(2m+ 1)π sin

(
2π

p

))
exp

(
c cos

(
2π

p

))
.

But, since cos(2π/p) < 1, the quantity maxz∈S4
m,c

|(f − exp)(z)| is small compared
to ec, since

exp(c)

exp(c cos(2π/p))
= exp(c(1− cos(2π/p))) → ∞ as c → ∞.

Thus, for large enough c, f(z) for z ∈ S4
m,c has to lie inside a ball of radius

maxz∈S4
m,c

|(f − exp)(z)| around a point on {z : |z| = ec}. For large enough c,

then, f(S4
m,c) is a curve inside an annulus that meets both the positive and nega-

tive imaginary axes, and joins up the rest of the image of ∂Tm,c under f in the left
half-plane. �

We can now define inverse branches of f inside the trapeziums Tm,c, using the
following lemma.

Lemma 4.3. There exists c > 0 such that the inverse branch of f in Tm,c is well
defined and analytic for large enough m.

Proof. Let r(m, c) denote the radius of the inner boundary curve of the annulus
Am,c that was defined in Lemma 4.2; that is,

r(m, c) := ec − max
z∈S4

m,c

|(f − exp)(z)|.

FixK ∈ N. Choose c0 > 1 such that Ti,c and Tj,c exist for c ≥ c0, with Ti,c ⊂ f(Tj,c)
for all i, j ∈ {M, . . . ,M + K − 1,−M, . . . ,−M − K + 1}; Lemmas 4.1 and 4.2
guarantee that such a c0 > 1 exists. The image curve f(S4

m,c) goes around Am,c,
so it surrounds {z : Re z > 0} ∩ B(0, r(m, c)). We can thus deduce from Rouché’s
theorem that the points inside {z : Re z > 0} ∩ B(0, r(c,m)) are covered by the
image of Tm,c under f as many times as they would be covered under exp; that is,
once. Hence, the inverse of f in Tm,c is well defined. �

The values M and K will remain fixed from now on, and for the following we
assume that c = c0 and write TM+j,c = Tj+1, T−M−j,c = T−j−1 for j ∈ {0, . . . ,K−
1} and Si

m,c = Si
m. Let Lj be the branch of the inverse of f on {z ∈ C : Re z >

0} ∩B(0, r(c,m)) that takes values in Tj .
Let TK =

⋃
1≤|j|≤K Tj and let ΛK be the set of points whose orbits remain for

all time in TK (see Figure 1). Recall that the trapeziums are closed sets.

Theorem 4.4. The set ΛK is homeomorphic to ΣK and f|ΛK
is conjugate to the

shift map on ΣK .
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T1

T2

T3

V0

T−1

T−2

T−3

0

Figure 2. The set TK for K = 3.

Proof. Let s = s0s1s2 . . . ∈ ΣK and define

(4.7) Ln
s (z) = Ls0 ◦ · · · ◦ Lsn−1

(z) for z ∈ TK .

We claim that, for z ∈ TK ,

lim
n→∞

Ln
s (z)

exists and is independent of z.
For any 1 ≤ |j| ≤ K consider the image set f(intTj); from Lemmas 4.1 and 4.2

and the remarks before them it follows that this image set will lie inside B(0, r(c,m))
and cover TK . This allows us to choose a simply connected regionG inside f(intTj),
for any 1 ≤ |j| ≤ K, so that TK ⊂ G. Thus, for each j, there exists an open

connected subset of Tj , say T
′

j , which maps univalently onto G under f . Then

the inverse branch Lsj maps T
′

j strictly inside itself and so each Lsj is a strict
contraction of the Poincaré metric on G. In particular, each Lsj is a uniformly

strict contraction of the Poincaré metric on TK′
=

⋃
1≤|j|≤K T

′

j (since there are

only finitely many Lsj ). Therefore, the sets L
n
s (T

K′
) are nested and their diameters

decrease to 0 as n → ∞. So limn→∞ Ln
s (z) exists and is independent of z.

We can thus define Φ(s) = limn→∞ Ln
s (z) for all z ∈ TK′

. A standard argument
(see, for example, [6, Theorem 9.9]) then shows that Φ is a homeomorphism, which
gives the conjugacy between f and the shift map. �

For each s ∈ Σk, let z(s) be the unique point in ΛK whose itinerary is s.

Corollary 4.5. Let s = s0s1 · · · sn−1 be a repeating sequence in ΣK . Then z(s) is
a repelling periodic point of f with period n.

Proof. The map Ln
s is a composition of analytic maps and therefore analytic itself.

Also, Ln
s (Ts0) is contained in the interior of Ts0 . Since Ln

s is a strict contraction
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of the Poincaré metric on Ts0 , it follows that Ts0 has a unique fixed point in this
trapezium and that this fixed point is attracting for Ln

s ; thus repelling for f . Since
this point has itinerary s for f , it must be z(s). �
Corollary 4.6. Let s ∈ ΣK . Then z(s) ∈ J(f).

Proof. From Corollary 4.5 it follows that z(s) is a limit of repelling periodic points
given by the conjugacy with the shift map. By a result of Baker [2], J(f) is the
closure of the set of repelling periodic points of f ; hence z(s) ∈ J(f). �

We note that z(s) is not the only point inside the strip R(s0) that has itinerary
s: in fact, there are infinitely many points in this strip that share the itinerary s
and form a curve, as we will show in the next section.

To end this section, we prove an additional property of the points z(s), s ∈ ΣK ;
some of them will always exist in R(m) ∩ Q0 and R(−m) ∩ Q1 for large enough
positive m.

Lemma 4.7. Let f ∈ F . For m ≥ M , there exist s, s′ ∈ ΣK , such that z(s) ∈
R(m) ∩Q0 and z(s′) ∈ R(−m) ∩Q1.

Proof. Consider the repeating sequence s = sj in ΣK . Then z(s) ∈ R(j). If z(s)
was in T0(ν), from Lemma 2.3 we would have fn(z(s)) → ∞ as n → ∞, which is a
contradiction. Therefore, z(s) ∈ Q0 ∪Q1. �

5. Hairs

We continue to use the proof strategy of [7] in this section, with our goal being to
show that each point in ΛK (constructed in Section 4) actually lies at the endpoint
of a continuous curve, all points of which share the same itinerary.

Definition 5.1. Let s = s0s1s2 . . . ∈ ΣK . A continuous curve hs : [1,∞) → Rs0 is
called a hair of f that is attached to z(s) if

(1) hs(1) = z(s);
(2) for each t ≥ 1, the itinerary of hs(t) under f is s;
(3) if t > 1, then limn→∞ Re fn(hs(t)) = ∞;
(4) limt→∞ Rehs(t) = ∞;

or if it is a rotation of a curve that satisfies the above properties.

In the following we continue to focus our attention on Tν(0), since analogous
results follow for the other angles due to symmetry. A hair attached to z(s) is a
continuous curve that extends from the endpoint z(s) to infinity in the right half-
plane. Any point z on this hair that is not z(s), shares the same itinerary as z(s),
and has an orbit that tends to infinity in the right half-plane. Further, the orbit of
the endpoint z(s) is bounded since s ∈ ΣK .

To show that such hairs exist, we need a covering result which we can obtain as
a corollary to two lemmas from the previous section.

Corollary 5.2. Let Hm,c be the half-strip that extends to infinity in the right half-
plane, bounded by the lines

y = (2m− 1)π,

y = (2m+ 1)π,

x = c,
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for m ∈ N and c > 0. Then, for large enough c > 0, we have

{z ∈ C : Re z > 0} ∩ f(Hm,c) ⊂ {z ∈ C : Re z > 0} ∩ C \B(0, R(c)),

where R(c) ∼ ec as c → ∞.

Proof. This is an immediate consequence of Lemmas 4.1 and 4.2, keeping in mind
that we can apply Lemma 4.2 to all large enough c. �

Following the notation established in the previous section, we extend the inverse
branches of f , Lj (previously defined in the proof of Theorem 4.4), to the half-strips
Hm,c as follows.

Let z ∈ Hm,c for some m and c. Then Lj(z) is the preimage under f of z in
Hj,c. Note that, for all m and c and any j, we have

(5.1)
∣∣∣L′

j(z)
∣∣∣ < 1/2 for z ∈ Hm,c,

by (2.2).
We will now prove that if s = s0s1s2 . . . is a bounded sequence, then there is a

unique hair attached to z(s). Let E(z) = (1/e)ez. For any s ∈ ΣK we define the
functions Gn

s : [1,∞) → C by

Gn
s (t) = Ln

s ◦En(t), 1 ≤ t < ∞;

recall that Ln
s was defined in (4.7). We will show that the limit function of Gn

s

exists and that it provides a parametrisation of the hair hs as a function of t. First,
we prove an inequality about the functions Gn

s (t).

Proposition 5.3. There exist q,M > 0 such that, for any s = s0s1s2 · · · ∈ ΣK

and for all t > q + 1 and n ≥ 1, we have

(5.2) t−M ≤ ReGn
s (t) ≤ t+M.

Proof. Since |si| ≤ K for all i, there exists MK > 2π such that | ImLsi(z)| < MK

for each si and all z = x+ iy ∈ T0(ν), whose preimages we will consider.
Define ε(z) := f(z)/ez − 1. We will make use of the following estimate of the

quantity |1 + ε(z)|:

|1 + ε(z)| =
∣∣∣∣∣e

z +
∑p−1

k=1 exp(ω
k
pz)

ez

∣∣∣∣∣
=

∣∣∣∣∣1 +
p−1∑
k=1

exp((ωk
p − 1)z)

∣∣∣∣∣
≤ 1 + (p− 1) max

k∈{1,...,p−1}

∣∣exp((ωk
p − 1)z)

∣∣
≤ 1 + (p− 1) max

k∈{1,...,p−1}
exp

(
Re((ωk

p − 1)z)
)

≤ 1 + (p− 1) exp

(
max

k∈{1,...,p−1}
((cos(2kπ/p)−1)x−y(sin(2kπ/p)− 1))

)
.

We can thus write

(5.3) |1 + ε(z)| ≤ 1 + Ceax,

where

a = max
k∈{1,...,p−1}

(cos(2kπ/p)− 1) < 0
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and

C = (p− 1) max
k∈{1,...,p−1},|y|≤MK

exp (−y(sin(2πk/p)− 1)) > 0.

Recall that E : R → R is E(t) = (1/e)et. We define

sn(t) :=

n∑
k=0

log(1 + C exp(aEk(t)))

for t > 1, with s(t) := limn→∞ sn(t). The series defining s(t) is convergent and
the function s is decreasing to 0 with respect to t, since a < 0 and C = C(p, k) is
independent of y.

In the following we will consider several lower bounds for q, starting here: we
can choose q > 0 large enough and, further, M = M(q) > 1 such that

(5.4) sn(t) ≤ s(t) ≤ M − 1

and

(5.5) sn(t) ≤ s(t) + logMK − 1 ≤ M

for all t > q + 1. We further choose q > 0 to be large enough so that

(5.6) E(q) > M + 2

and consider all t > q + 1 such that

(5.7) ReLj(E(t)) ≥ q

for all |j| ≤ K.
For t ≥ 1, we have E(t) ≥ 1, so

(5.8) 1 +
sn(q)

E(t)
≤ esn(q) for all n ∈ N and q > 0.

For the rest of the proof we assume that q is large enough so that (5.4), (5.5),
(5.7), and (5.8) all hold. We will prove that for any sequence s ∈ ΣK′ (with
K ′ ≤ K − 1) it is the case that

t−M ≤ ReGn
s (t)

for all n ∈ N and all such large enough t > q + 1.
We have

f(z) = ez(1 + ε(z)),

so

ez =
f(z)

1 + ε(z)

and thus, if f(z) = w, with z, w ∈ T0(ν), then the corresponding inverse branch is

(5.9) f−1(w) = z = logw − log(1 + ε(z))
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for the appropriate branch of the logarithm. Hence we can write

ReG1
s(t) = ReLs0(E(t))

= Re logE(t)− Re log(1 + ε(Ls0(E(t))))

≥ t− 1− log(1 + Ceaq)

≥ t− 1− s0(q)

≥ t−M

with the first inequality following from (5.3) and (5.7), the second following from
the fact that s0(q) ≤ s(q), while the third follows from (5.4). This is the first step
of the induction. Now let us assume that, for all s ∈ Σk, for some m ≥ 3 and for
all q large enough and t > E(q), we have

(5.10) ReGm
s (t) ≥ t− 1− sm−1(q),

from which

ReGm
s (t) ≥ t−M

follows, by (5.4) and the definition of s(q). We will proceed to deduce that (5.10)
holds with m replaced by m+ 1. Substituting E(t) for t and E(q) for q in (5.10),
we obtain

ReGm
s (E(t)) ≥ E(t)− 1− sm−1(E(q))

from which it follows by (5.4) and the definition of s(q) that

(5.11) ReGm
s (E(t)) ≥ E(t)−M.

So, by (5.3) and (5.9),

ReGm+1
s (t) = ReLs0

(
Gm

σ(s)(E(t))
)

≥ log
∣∣∣Gm

σ(s)(E(t))
∣∣∣− log(1 + Ceaq)

≥ log
∣∣∣ReGm

σ(s)(E(t))
∣∣∣− log(1 + Ceaq)

= log
(
ReGm

σ(s)(E(t))
)
− log(1 + Ceaq),

with the last equality following from (5.6) and (5.11). We claim that

ReGm+1
s (t) ≥ log (E(t)− 1− sm−1(E(q)))− log(1 + Ceaq)

≥ logE(t)− log(1 + sm−1(E(q)))− log(1 + Ceaq)

≥ logE(t)− sm−1(E(q))− log(1 + Ceaq)

= logE(t)− sm(q)

≥ t− 1− sm(q)

≥ t−M

for any n ∈ N and t > E(q). The third inequality follows easily from the fact that
log(1 + x) ≤ x for x > 0. We now prove that the second one holds as well.

Here we use the fact that, for a > b > 1 and a ≥ b2/(b− 1), we have

log(a− b) ≥ log a− log b,
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which we apply with a = E(t) and b = 1 + sm−1(E(q)). For t > E(q), we have

E(t) > 1 + sm−1(E(q)) > 1,

so it remains to show that, for large enough q, (and since t > E(q))

E(E(q)) ≥ (1 + sm−1(E(q)))2

sm−1(E(q))
,

or, equivalently,

E(E(q)) ≥ 1/sm−1(E(q)) + 2 + sm−1(E(q)).

The quantity sm−1(E(q)) decreases to 0 as q increases to infinity, but

1/sm−1(E(q)) ≤ 1/s0(E(q)) = 1/ log(1 + CeaE(q)).

For q large enough we have CeaE(q) ≤ 1, since C is bounded and −1 < a < 0, so

1

log(1 + CeaE(q))
≤ Ce−aE(q)

log 2
≤ E(E(q)),

again for q large enough, and using the fact that

log(1 + x)

x
≥ log 2

for 0 < x < 1.
We have thus proven our claim that (5.10) holds with m+1 replacing m and so

the induction is complete.
We will now, again using induction, prove that

ReGn
s (t) ≤ t+M

for all n ≥ 1, and for q large enough and t > q + 1. From (5.3) and (5.4) we have

ReG1
s(t) = ReLs0(E(t))

= Re logE(t)− Re log(1 + ε(Ls0(E(t))))

≤ t− 1 + log(1 + Ceaq)

≤ t+M.

Now suppose that

ReGm
s (t) ≤ t+ sm(q),

so, in particular,

ReGs
u(t) ≤ t+M.

Then,

ReGm
σ(s)(E(t)) ≤ E(t) +

m∑
k=1

log(1 + C exp(aEk(q))),

and

ReGm+1
s (t) = ReLs0

(
Gm

σ(s)(E(t))
)
.

From this, together with (5.9), we have

ReGm+1
s (t) ≤ log |Gm

σ(s)(E(t))|+ log(1 + Ceaq).
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Thus,

ReGm+1
s (t) ≤ log

(
|ReGm

σ(s)(E(t))|+ | ImGn
σ(s)(E(t))|

)
+ log(1 + Ceaq)

≤ log(ReGm
σ(s)(E(t))) + log(1 + Ceaq) + logMK ,

since log(a + b) ≤ log a + log b as long as a, b > 2 (recall that ReGm
σ(s)(E(t)) ≥

E(t) − M > 2 from (5.6) and (5.11), as well as that MK > 2π). Now, by taking
logarithms in (5.8), we have

ReGm+1
s (t) ≤ log

(
E(t) +

m∑
k=1

log(1 + C exp(aEk(q)))

)
+ log(1 + Ceaq) + logMK

≤ t− 1 +
m∑

k=1

log(1 + C exp(aEk(q))) + log(1 + Ceaq) + logMK

= t− 1 +
m∑

k=0

log(1 + C exp(aEk(q))) + logMK

= t− 1 + sm(q) + logMK

≤ t+M,

thus proving the desired result for m+ 1 and completing the induction. �

We now prove that

hs(t) := lim
n→∞

Gn
s (t)

is a well defined function for t ≥ 1. It suffices to prove that {Gn
s (t)} is Cauchy for

all large t. From the result of Proposition 5.3 and the quantity MK defined at the
start of its proof, we have, for large enough t,

|Gn
s (t)−Gn+1

s u(t)| ≤ 2(M +MK)

for any s ∈ ΣK . For those large enough t we have∣∣GN+n
s (t)−GN+n+1

s (t)
∣∣ = ∣∣∣LN

s ◦Gn
σN (s)(t)− LN

s ◦Gn+1
σN (s)

(t)
∣∣∣

≤
∣∣∣(LN

s

)′

(z)
∣∣∣ ∣∣∣Gn

σN (s)(t)−Gn+1
σN (s)

(t)
∣∣∣

≤ (1/2)N2(M +MK),

with the last inequality due to (5.1). Now let ε > 0. There exists N = N(ε) > 0
such that, for all m > n ≥ N ,

∣∣GN+n
s (t)−GN+m

s (t)
∣∣ ≤ 2(M +MK)

m−n−1∑
k=0

1

2N+k
,

which is less than ε for large enough N . This proves our claim that hs is well
defined.

Next, we prove that hs is continuous in [1,∞). We initially leave out t = 1; it is
handled separately below.

Proposition 5.4. Suppose that s = s0s1s2 . . . ∈ ΣK . Then hs(t) is continuous as
a function of t ∈ (1,∞).



24 YANNIS DOUREKAS

Proof. Choose α with 0 < α < 1 and let q and M be as specified in the previous
proposition. Choose T > q + 2M so that, if Re z > T and | Im z| < MK (with MK

defined as in Proposition 5.3), then

(5.12) |L′

si(z)| < α.

This is possible due to (2.2) of Lemma 2.3. By Proposition 5.3, if t > T , then

(5.13) Ek(t)−M ≤ ReGn
s (E

k(t)) ≤ Ek(t) +M

for all n, k ≥ 0.
We first prove the continuity of hs(t) for t > T . Let ε > 0 and choose k ∈ N

so that αk(3M + 2π) < ε. Given t0 > T , choose δ such that, if |t − t0| < δ, then
|Ek(t) − Ek(t0)| < M . We claim that, if |t − t0| < δ, then |hs(t) − hs(t0)| < ε.
Indeed, we note that for such t and each n ≥ 0 we have

|Gn
σk(s)(E

k(t))−Gn
σk(s)(E

k(t0))| < 3M + 2π.

This follows since, by (5.13) and our choice of δ,∣∣∣ReGn
σk(s)(E

k(t))− ReGn
σk(s)(E

k(t0))
∣∣∣ < ∣∣Ek(t)− Ek(t0)

∣∣+ 2M < 3M

and ∣∣∣ImGn
σk(s)(E

k(t))− ImGn
σk(s)(E

k(t0))
∣∣∣ < 2π.

Consequently, by (5.12) and (5.13) for |t− t0| < δ and n ≥ 0,∣∣Gn+k
s (t)−Gn+k

s (t0)
∣∣ = ∣∣∣Lk

s ◦Gn
σk(s)(E

k(t))− Lk
s ◦Gn

σk(s)(E
k(t0))

∣∣∣
≤ αk

∣∣∣Gn
σk(s)(E

k(t))−Gn
σk(s)(E

k(t0))
∣∣∣

≤ αk(3M + 2π) < ε,

from which it follows that t 	→ hs(t) is continuous for any s = s0s1s2 . . . ∈ ΣK and
t > T .

We will now prove continuity for 1 < t ≤ T . If 1 < t < T , then there exists k
(depending on t) such that Ek(t) > T . Then, by the earlier part of the proof,

t 	→ Lk
s ◦ hσk(s)(E

k(t))

is continuous, since each inverse function of f is well defined and continuous on the
half-strips Hm,c; see the remark following the proof of Corollary 5.2. But this map
is given by

t 	→ lim
n→∞

Lk
s ◦Gn

σk(s) ◦ Ek(t) = hs(t),

and since k depends only on t, the result follows. �

We now prove continuity for t = 1.

Proposition 5.5. Suppose that s ∈ ΣK . Then hs(t) is continuous at t = 1.

Proof. From Section 4, we know that, for all i ≥ 0, Lsi(z) maps TK (defined in
that section as the union of the relevant trapeziums) strictly inside itself for any
c large enough, with x = c being the line on which the right-hand sides of each
of the trapeziums in TK lie. As we previously saw in Lemma 4.4, Lsi is a strict
contraction with respect to the Poincaré metric on TK . We need to use this fact to
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prove our result, but also we want to benefit from the inequalities of Proposition
5.3.

To that end, note that for a value of t that is sufficiently close to 1, there exists
some integer N (dependent on t) such that EN (t) is larger than the q that is
specified in Proposition 5.3. Thus, for any n > N , we have Gn

σN (s)(E
N(t)) ∈ TK

for c sufficiently large. We can now use the Poincaré metric to show that the
distance between hs(1) = z(s) and

hs(t) = lim
N→∞

LN
s ◦Gn

σn(s)(E
N(t))

can be made arbitrarily small as t → 1+.
To prove this, first we note that the endpoint z(s) lies in Ts0,c for any sufficiently

large c > 0. Choose c > 0 to be large enough so that

(1) f(Tj,c) contains T
K
c for all 1 ≤ |j| ≤ K, and

(2) all endpoints for the hairs corresponding to itineraries s = s0s1s2 . . . with
|sj | ≤ K lie in TK

c .

Then, z(s) lies in Tj,c. Since z(σk(s)) lies in Tsk,c, we claim that z(s) arises as the
limit of successive preimages under f of the trapeziums (in accordance with the
itinerary).

To prove this claim, we use the Branner–Hubbard criterion (see, for example,
[11, p. 233, Problem 2.5]). Let us denote by modA the conformal modulus of
an open topological annulus A ⊂ C. The Branner–Hubbard criterion states that
if K1 ⊃ K2 ⊃ K3 ⊃ . . . is a nested sequence of compact connected subsets of
C, with each Kn+1 contained in the interior of Kn, and if, further, each interior
K◦

n is simply connected (making each difference An = K◦
n \ Kn+1 a topological

annulus), then if
∑∞

n=1 modAn = ∞, the intersection
⋂
Kn reduces to a single

point. The sets An, in our case, are the difference of the starting set with the
corresponding preimage under f ; that is, A1 = Ts0,c \ Ls0(Ts1,c) and An = Ls0 ◦
. . . ◦ Lsn−2

(Tsn−1,c) \ Ls0 ◦ . . . ◦ Lsn−1
(Tsn,c) for n ≥ 2. But f maps conformally

between these trapeziums (since f is entire on C and the zeros of f ′ lie on the lines⋃
k=0,...,n−1 Vk as shown in Theorem 3.6), making the conformal moduli in each

step constant and thus proving our claim. �

Finally, we prove that to z(s), for each s ∈ ΣK , there corresponds a unique curve
that is attached to it and is parametrised by t 	→ hs(t).

Theorem 5.6. Let s = s0s1s2 . . . ∈ ΣK . There is a unique hair attached to z(s)
and t 	→ hs(t) is a parametrisation of this hair. In particular, this hair lies entirely
in R(s0).

Proof. We first verify that hs is indeed a hair, following Definition 5.1. We claim
that hs(t) has itinerary s for t ≥ 1. Note that, since f ◦Ls0 is the identity, we have,
for t ≥ 1,

f ◦ hs(t) = lim
n→∞

f ◦Gn
s (t) = lim

n→∞
Gn−1

σ(s)(E(t)) = hσ(s)(E(t)).

It follows that, for t ≥ 1,

(5.14) fn ◦ hs(t) = hσn(s)(E
n(t)).
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Hence fn(hs(t)) ∈ R(sn) (which denotes the horizontal 2π-width strip that corre-
sponds to sn), as required. Also, from Proposition 5.3 and (5.14),

En(t)−M ≤ Re fn ◦ hs(t) ≤ En(t) +M,

for n sufficiently large, where M is as specified in Proposition 5.3. Therefore,
Re fn ◦ hs(t) → ∞ as n → ∞ when t > 1. Finally, since t−M ≤ Rehs(t) ≤ t+M
for t > q, it follows that Rehs(t) → ∞ as t → ∞. This proves that hs parametrises
a hair. We will now show that this hair is unique.

Suppose that hs is not unique. Then there are at least two hairs attached to
z(s); consider two of them. We examine the following two cases.

• Suppose that the hairs meet in only a bounded set of points. Consider the
last point of intersection; suppose that point is ζ. Let U be the unbounded
open set consisting of the set of points contained in R(s0) that is bounded
by the two hairs, has ζ in its boundary, and can only access infinity from
the right half-plane. We claim that the images of U under fn are contained
within the images of the hairs attached to fn(ζ) (so, in T0(ν)) and therefore,
by Montel’s theorem, U has to be in the Fatou set of f , which contradicts
Lemma 2.5.

To prove the claim, we consider a point z ∈ U and intersect U with the
half-plane {w ∈ C : Rew < λ}, with λ > Re z; name the new bounded set
Uλ. The crosscuts of Uλ on the vertical {w ∈ C : Rew = λ} map under
exp to arcs of a circle around the origin of radius eλ. When λ is large
enough, f will map the crosscuts to a thin annulus around that circle. The
set f(Uλ) can then be one of two bounded sets defined by f(∂Uλ) inside
some circle around the origin. But, since the two hairs have to lie in R(s1)
following the itinerary s and f(Uλ) does not contain the origin, f(Uλ) is
a bounded region that is defined between them and has to lie in R(s1) as
well. Its further forward images will lie in their respective strips in T0(ν),
thus avoiding the left half-plane. Since λ > Re z was arbitrary, the forward
images under f of the unbounded region U also have to also lie in T0(ν),
thus proving our claim.

• Suppose that the curves meet in an unbounded set of points. Since the
hairs are unbounded closed sets that are not identical, there must exist a
domain U lying in R(s0) whose boundary lies entirely in the two hairs. As
in the previous case, the images of U under fn are bounded by the images
of the hairs attached to fn(ζ) and therefore, by Montel’s theorem, U is in
the Fatou set of f . This contradicts Lemma 2.5. �

We can now deduce our main result.

Proof of Theorem 1.2. Let f ∈ F . Theorem 5.6 gives the existence of a Cantor
bouquet in T0(ν) ∪ Q0 ∪ Q1. Consider an arbitrary hair of the Cantor bouquet,
parametrised by t 	→ hs(t). From Corollary 4.6, z(s) is in J(f). Let z = hs(t) with
t > 1. Then fn(z) → ∞ in the angle T0(ν), so there exists N ∈ N such that for
n ≥ N , fn(z) ∈ T0(ν). Therefore, from Lemma 2.5, z ∈ J(f) ∩ A(f). �

Finally, we have the following corollary of Theorem 5.6 and Lemma 4.7, which
reveals a key part of the structure of the Julia set given by Theorem 5.6.
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Corollary 5.7. Let f ∈ F . For all large enough k ∈ N, there exist two simple
unbounded curves γk and γ−k in J(f), with their endpoints in Q0 and Q1, respec-
tively, that lie entirely inside the strips R(k) and R(−k), respectively, and tend to
infinity through T0(ν).

We note that the symmetry properties of the function f allow us to extend the
result of this corollary to Tk(ν) for k = 1, . . . , p− 1.
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