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EXPANSION PROPERTIES FOR FINITE SUBDIVISION RULES
II

WILLIAM FLOYD, WALTER PARRY, AND KEVIN M. PILGRIM

Abstract. We prove that every sufficiently large iterate of a Thurston map
which is not doubly covered by a torus endomorphism and which does not have
a Levy cycle is isotopic to the subdivision map of a finite subdivision rule. We
determine which Thurston maps doubly covered by a torus endomorphism
have iterates that are isotopic to subdivision maps of finite subdivision rules.
We give conditions under which no iterate of a given Thurston map is isotopic
to the subdivision map of a finite subdivision rule.

1. Introduction

This paper continues our study of expansion properties for finite subdivision
rules begun in [12]. In [12] we usually began with a Thurston map which is the
subdivision map of a finite subdivision rule. Here we begin with a general Thurston
map, and we ask whether it is isotopic to the subdivision map of a finite subdivision
rule.

An answer to the question of which Thurston maps are isotopic to subdivision
maps of finite subdivision rules remains out of reach. A much more tractable
problem is to determine which Thurston maps have iterates which are isotopic
to subdivision maps of finite subdivision rules. Passage to an iterate does not
materially affect dynamics, so in terms of dynamics, passage to an iterate is not
very restrictive.

Our main result, Theorem 3.1, is that every sufficiently large iterate of a Thurston
map which is not doubly covered by a torus endomorphism and which does not have
a Levy cycle is isotopic to the subdivision map of a finite subdivision rule. A key
ingredient in our proof of this is a result [1, Theorem C] of Bartholdi and Dudko,
which implies that every Thurston map which is not doubly covered by a torus
endomorphism and which does not have a Levy cycle is Böttcher expanding. In
our proof of Theorem 3.1, what we really use is the fact that the map is Böttcher
expanding. In Theorem 4.1 we handle those Thurston maps which are doubly
covered by torus endomorphisms. So the question for iterates is answered except
for Thurston maps which are not covered by torus endomorphisms and which have
Levy cycles. Of course, many of these are subdivision maps of finite subdivision
rules. However, in Theorem 5.1 we present a condition on such a Thurston map
f which implies that no iterate of f is isotopic to the subdivision map of a finite
subdivision rule. Section 5 concludes with an example of such a Thurston map.
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We conclude this introduction with a brief history of this problem. There are
two sources of motivation: one from geometry, another from dynamics. On the
geometric side, finite subdivision rules were introduced in [4] as simplifications of
patterns (informally described as “local replacement rules” or “finite replacement
rules”) observed when studying the action of cocompact Kleinian groups on the
Riemann sphere; see e.g. [5, Section 3]. On the dynamical side, given a topological
dynamical system, it is natural to ask whether there are Markov partitions with
good topological properties. Thus the problem naturally arises to determine which
Thurston maps are subdivision maps of finite subdivision rules. Independent solu-
tions of this problem for all sufficiently large iterates of postcritically finite rational
maps with no periodic critical points (they all are) were obtained almost simulta-
neously by Bonk-Meyer and Cannon-Floyd-Parry. The latter solution appeared as
Theorem 1 in [6]. The former solution appeared as Corollary 15.2 in [3], where the
result was generalized to expanding Thurston maps. The main result of [7] is that
almost every Lattès rational map is the subdivision map of a finite subdivision rule
with one tile type of a very special form. In [13, Theorem 1.2] Gao, Häıssinsky,
Meyer, and Zeng prove that every sufficiently large iterate of a postcritically finite
rational map whose Julia set is a Sierpiński carpet is the subdivision map of a finite
subdivision rule. More recently Cui, Gao, and Zeng [9] proved that any critically
finite rational map has an iterate that preserves a finite connected graph containing
the postcritical set and thus is the subdivision map of a finite subdivision rule. Thus
although the present work applies to more Thurston maps, its conclusion is weaker
than those above because its conclusion only gives that the iterate is isotopic to
a map which is a subdivision map. Thus it would be interesting to know if the
techniques of [9] can be adapted to Böttcher expanding maps.

2. Definitions and preliminary lemmas

We fix some notation, make some definitions, and prove four lemmas. The nota-
tion and definitions which we introduce now will hold throughout this section. Let
f : S2 → S2 be a Thurston map which is not doubly covered by a torus endomor-
phism and which does not have a Levy cycle.

Böttcher expanding maps. Let Pf be the postcritical set of f , and let P∞
f be

the set of periodic points in Pf whose cycles contain a critical point. Following
[2, Definition 4.1] we say that f is Böttcher expanding if (i) there exists a complete
length metric on S2 − P∞

f which is expanded by f , in the sense that for every
nonconstant rectifiable compact curve γ : [0, 1] → S2−P∞

f , the length of any lift of
γ under f is strictly less than the length of γ, and (ii) for each p ∈ P∞

f , if n is the
least period of p, then the first-return map fn, near p, is locally holomorphically
conjugate to z �→ z±k near the origin, where k = deg(fn, p). Any two different
choices of such local holomorphic coordinates differ by a multiplicative constant
which is a (k − 1)st root of unity.

For example, if f is rational, then according to [10] there is a canonically asso-
ciated orbifold structure on S2 whose singular points are precisely the elements of
Pf , with elements of P∞

f having weight infinity, so that these points correspond to
punctures. The constant curvature metric on the orbifold universal cover descends
to a metric which is then expanded by f ; see [15, Appendix A].
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Our point of departure for our subsequent analysis is the following result. As
usual, the case of maps f whose orbifold Of is Euclidean (parabolic) requires special
treatment. Among these, those with three or fewer postcritical points are isotopic to
rational maps, by Thurston’s characterization [10], and these are Böttcher expand-
ing. The remaining types—those whose orbifolds have signature (2, 2, 2, 2)—are the
exceptions in our setting. Any such map f is isotopic through maps agreeing on
Pf to a map g which is affine in the natural Euclidean orbifold structure and which
lifts under the natural orbifold double-cover to an affine map of a torus induced by
an affine map of the plane of the form x �→ Afx + b.

The characterization in case (1) below is a deep result of Bartholdi and Dudko,
announced in [1, Theorem C] and proved in [2, Theorem A=Theorem 4.4].

Theorem 2.1 (Expanding conditions). Suppose f is a Thurston map.
(1) If Of does not have signature (2, 2, 2, 2), then f is isotopic to a smooth

Böttcher expanding map g if and only if it has no Levy cycles.
(2) If Of has signature (2, 2, 2, 2), then f is isotopic to a smooth Böttcher

expanding map g if and only if the eigenvalues of Af lie outside the closed
unit disk.

The characterization in case (2) is elementary. (Sufficiency is clear. To prove
necessity, note that an eigenvalue inside the closed unit disk must be real; a curve
given by a segment in the corresponding eigenspace and containing a fixed point
will have inverse images which do not get shorter under backward iteration, and
this is an obstruction to the existence of some length metric which is contracted
under taking preimages.)

So in the remainder of this section we may, and do, assume that f itself is smooth
and Böttcher expanding.

We will need uniform expansion. To accomplish this, we will excise open forward-
invariant neighborhoods, round-shaped in the natural conjugating coordinates, of
points in P∞

f to obtain a compact planar subset M with the property that its
preimage f−1(M) is contained in the interior of M. From compactness and expan-
sion it then follows that f is uniformly expanding on M in the sense that for some
0 < ρ < 1 and for every nonconstant rectifiable compact curve γ : [0, 1] → M, the
length of any lift of γ under f is at most ρ times the length of γ.

Fatou and Julia sets. Suppose f is a Böttcher expanding smooth Thurston map
and M is the complement of neighborhoods of the attractors as in the previous
subsection. We recall here some facts from [2, Section 4.2].

The Julia set Jf is the closure of the set of repelling periodic points; a peri-
odic point is repelling if there is no neighborhood U �= S2 with fk(U) compactly
contained in U for some k > 0. The Fatou set Ff is the set of points at which
the map S2 � z �→ (z, f(z), f2(z), . . .) ∈ (S2)∞ is continuous. By [2, Lemma 4.6],
S2 = Jf �Ff , and an equivalent formulation of Jf is that it coincides with the set
of points which do not converge under iteration to the attracting cycles in P∞

f , i.e.,
with the set of points which never escape M.

Notation. Let D be the open unit disk in C. We use an overline to denote the
topological closure of a set. So D is the closed unit disk. An arc is the image
of a closed unit interval under a homeomorphism; arcs are always closed. Let
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d : S2 × S2 → R be a spherical metric. All distances considered between points in
S2 are relative to d.

For each p ∈ P∞
f , the immediate basin of attraction Fp of p is the component of

the Fatou set that contains p. Then for each p ∈ P∞
f , there is a homeomorphism

ψp : D → Fp with the following property. If p ∈ P∞
f , q = f(p) and k is the local

degree of f at p, then ψ−1
q (f(ψp(z))) = z±k for every z ∈ D. Moreover, the Douady-

Hubbard proof [11, Section 3.5] of the local connectivity of the filled Julia set of
a subhyperbolic polynomial carries over in this setting, and so each ψp extends to
a continuous map ψp : D → F p. For more information, see the discussion before
Lemma 4.7 in [2] or Theorem 4.14 of Milnor’s paper [17].

The images in F p of radii in D are called rays, and the images of circles in D

concentric about 0 are called equipotentials; these are independent of the choice of
local holomorphic coordinates. The ray {ψp(reiθ) : 0 ≤ r ≤ 1} with angle θ is said
to land at ψp(eiθ). For every nonnegative integer n, the connected components of
f−n(Fp) are called Fatou components. Just as for rational Thurston maps which
are Böttcher expanding, the Julia set of f is connected, and each Fatou component
is homeomorphic to a disk and is eventually periodic. Because f is Böttcher ex-
panding, there exists a finite cover of S2 \

⋃
p∈P∞

f
Fp by open sets Ui such that the

diameters of the connected components of the sets f−n(Ui) tend to 0 as n → ∞.

Preliminary lemmas. We continue with four lemmas. The first lemma is a result
in combinatorial topology about connecting vertices in a tiling of the disk. The next
three lemmas are finiteness results about points in the boundary of an immediate
basin of attraction. We emphasize that the above notation and definitions remain
in force throughout this section.

The first lemma is essentially Lemma 4 in [6], though in [6] we assume that the
CW complex gives a regular tiling. In the setting of a CW complex with underlying
space a surface, the closed 2-cells are called tiles. The assumption in the second
sentence is nontrivial, since open 2-cells need not be Jordan domains, and so a tile
might contain a vertex in its interior.
Lemma 2.2. Let X be a closed topological disk with the structure of a CW com-
plex such that every tile of X is a closed topological disk. Let u1, u2, and v be any
triple of distinct vertices of X such that each is in the boundary of a tile of X.
Then there is an arc in the 1-skeleton of X which has initial point u1, terminal
point u2, and contains v.
Proof. We prove Lemma 2.2 by induction on the number of tiles in X. If X has
only one tile, then u1, u2, and v are on the boundary of a polygon, and the theorem
is clear. Suppose that n is a positive integer and that the result holds if X has n
tiles. Let Y be a closed topological disk which has the structure of a CW complex
with n + 1 tiles such that every tile of Y is a closed topological disk. Let u1, u2, v
be distinct vertices of Y such that each is in the boundary of a tile of Y . Because
every tile of Y is a closed topological disk, Y has distinct tiles t1 and t2 such that
the closures of Y \t1 and Y \t2 are topological disks. Let t be one of these tiles such
that v is in the closure X of Y \ t. If u1, u2 ∈ X, then we are done by induction.
Now suppose that u1 ∈ X but u2 /∈ X. Let w �= u1 be one of the two points of
t ∩ X ∩ ∂Y . By induction there is an arc in X with endpoints u1 and w which
contains v. This arc can easily be extended to u2. The case in which u1 /∈ X and
u2 ∈ X is symmetric, and the case in which u1, u2 /∈ X is similar. �
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The second lemma shows that there cannot be infinitely many rays landing at a
preperiodic point in the boundary of an immediate basin of attraction.

Lemma 2.3. Let p ∈ P∞
f , and let q be a preperiodic point in ∂Fp. Then only

finitely many rays in F p land at q.

Proof. By replacing f by an iterate of f , we may assume that f(p) = p and f(q) = q.
Let R be the set of rays in F p which land at q.

We now define an equivalence relation ∼ on R. Let R1, R2 ∈ R. If R1 = R2,
then R1 ∼ R2. Suppose that R1 �= R2. Then R1 ∪ R2 is a simple closed curve.
We set R1 ∼ R2 if one of the connected components of S2 \ (R1 ∪R2) contains no
element of Pf . This defines an equivalence relation on R. Because Pf is finite, this
equivalence relation has only finitely many equivalence classes R1, . . . ,Rj .

If Pf contains just two points, then f is Thurston equivalent to z �→ z± deg(f),
and the lemma is true in this case. So we assume that Pf contains a point other
than p and q. Hence if R,S ∈ R with R �= S and R ∼ S, then exactly one connected
component of S2 \ (R ∪ S) contains no element of Pf .

Let R ∈ R. Then fn(R) ∈ R for every nonnegative integer n. If the j + 1 rays
R, f(R), f2(R), . . . , f j(R) are not distinct for every R ∈ R, then R is finite. So we
may assume that R is chosen so that these j + 1 rays are distinct.

One of the equivalence classes R1, . . . ,Rj must contain at least two of these j+1
rays. We may assume that this equivalence class is R1. So there exist R1, R2 ∈ R1
with R1 �= R2 such that some iterate of f takes R2 to R1. We replace f by this
iterate and assume that f(R2) = R1.

Now let D be the closed topological disk bounded by R1 ∪ R2 whose interior
contains no element of Pf . The interior of D is evenly covered by f . Since f(R2) =
R1, the disk D therefore has a lift to a disk D̃ whose boundary is the union of R2
and a ray R3 in F p which lands at q. Then f(R3) = R2 and R3 ∈ R1 because the
interior of D̃ contains no element of Pf . Furthermore, the closure of the connected
component of S2 \ (R1 ∪R3) which contains no element of Pf contains R2.

This construction can be repeated. We obtain an infinite sequence R1, R2, R3, . . .
of rays in R1 such that f(Rn+1) = Rn for every positive integer n. Furthermore, the
closure of the connected component of S2 \ (R1 ∪ Rn) which contains no element
of Pf contains R2, . . . , Rn−1 for every integer n ≥ 3. It follows that the rays
R1, R2, R3, . . . converge to a ray in R fixed by f . The proof of Lemma 18.12 in
Milnor’s book [16] finally implies that if R contains a ray fixed by f , then only
finitely many rays in F p land at q.

This completes the proof of Lemma 2.3. �
The third lemma is about how many points in the boundaries of two immediate

basins of attraction are accessible to a point that is in neither of their closures.

Lemma 2.4. Let p and q be distinct elements of P∞
f , and let x ∈ S2 \ (F p ∪F q).

Then there exist at most two points y ∈ ∂Fp ∩ ∂Fq for which there exists an arc
γ in S2 with endpoints x and y such that γ ∩ (F p ∪ F q) = {y}.

Proof. Suppose that there are three distinct such points, y1, y2, y3. For i ∈ {1, 2, 3},
let ρi be a ray in F p which joins p and yi, and let σi be a ray in F q which joins
q and yi. Then S2 \ (

⋃3
j=1(ρj ∪ σj)) has three connected components. So the set⋃3

j=1(ρj ∪ σj) separates x from one of the points y1, y2, y3.
This contradiction proves Lemma 2.4. �
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Figure 1. The situation in Lemma 2.5. The point p′ is the solid
black dot in the middle.

Here is the fourth lemma. Figure 1 illustrates one of the finitely many situations
in question. The region shaded by line segments is a connected component of the
complement of the union of ρx, ρyε

, Tε, and γ \ {z}. Its interior contains a point
p′ ∈ Pf .

Lemma 2.5. Let p ∈ P∞
f , and let C be a connected component of S2 \F p. Then

there exist only finitely many points x ∈ ∂Fp for which the following conditions
are satisfied.

(1) There is a nontrivial arc γ in S2 with one endpoint x whose other points
are in C. Let z be the endpoint of γ other than x.

(2) There exist real numbers ε > 0 accumulating at 0 such that for each of
them there exists a path connected set Tε in S2 \ {z} whose diameter is
less than ε containing a point yε ∈ ∂Fp and a point of γ.

(3) There exist rays ρx and ρyε
in F p which land at x and yε such that the

union of ρx, ρyε
, Tε, and γ \ {z} separates z from an element of Pf .

Proof. Let x be a point in ∂Fp which satisfies the conditions of the lemma. The
compactness of S2, γ, and F p and condition (2) imply that a sequence of the sets
Tε converges in the Hausdorff topology to a point in γ ∩ ∂Fp. This point must be
x. Using condition (3), we see that by passing to a subsequence we may assume
that the corresponding sequence of rays ρyε

converges to a ray ρ′x which lands at x
such that ρx∪ρ′x is a simple closed curve which separates C from an element of Pf .
These simple closed curves separate C from different elements of Pf for different
values of x. Since Pf is finite, there are only finitely many such points x.

This proves Lemma 2.5. �

3. Realizability of Böttcher expanding maps

Theorem 3.1. Let f be a Thurston map such that (i) if it does not lift to a torus
endomorphism, it has no Levy cycles and (ii) if it lifts to a torus endomorphism,
the associated affine map has both eigenvalues outside the unit circle. Then every
sufficiently large iterate of f is isotopic to the subdivision map of a finite subdi-
vision rule. That is, if f satisfies (i) and (ii), then every sufficiently large iterate
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of f is isotopic to a Thurston map which admits an invariant connected graph
whose vertex set contains the postcritical points of f .

Before giving the proof, we discuss the strategy of the proof and the dependence
of the constants that arise in the proof. By Theorem 2.1 we may assume that f is
Böttcher expanding. The first thing we do is identify three subsets P∞

f , P 1
f , and P 0

f

that form a partition of the postcritical set Pf . The idea is to construct a graph,
G ⊆ S2, invariant up to isotopy and with vertex set containing Pf . For this we
construct three finite sets A, B, C of curves in S2. The sets B, C consist of arcs,
while A consists of closed curves which are either simple or trivial (a point); the
latter are the elements of P 0

f . Our first approximation of G as a set is the union of
the curves in A∪ B ∪ C.

Our first constant ρ ∈ (0, 1) is chosen sufficiently close to 1 based on an open
cover {Ui} of S2 \

⋃
p∈P∞

f
Fp that exists because f is Böttcher expanding. Once we

have ρ, we construct the collection A of elements of P 0
f and of equipotential curves

corresponding to radius ρ, one for every p ∈ P∞
f . The set B consists of tails of rays.

For every p ∈ P∞
f the set B contains the tails from the equipotential of Fp in A to

an element q ∈ P 1
f ∩ ∂Fp.

Our second constant δ is a sufficiently small positive real number such that
d(p, x) > 4δ if p ∈ P 0

f and x is either in P 0
f with x �= p or x is in the closure of

an immediate basin of attraction. The set C is a finite collection of arcs joining
curves in A which are carefully chosen to satisfy ten conditions; the second and
third conditions depend on δ.

Having constructed the sets A, B, and C, we give S2 the structure of a cell
complex S whose 1-skeleton is the union of the curves in A, B, and C. We obtain
a cell complex f−n(S) for every nonnegative integer n. Tiles in f−n(S) which are
mapped by some iterate of f into immediate basins of attraction are called Fatou
tiles. The other tiles of f−n(S) are Julia tiles.

We next choose a sufficiently small real number ε ∈ (0, δ). The number ε is
chosen to give certain disjointness properties of ε-neighborhoods of the arcs in C
and to also satisfy one additional constraint coming from one of the ten conditions.
Having chosen ε, we use the Böttcher expanding property to choose a sufficiently
large positive integer N such that if n ≥ N , then every Julia tile in F−n(S) has
diameter less that ε.

Now suppose that n is a positive integer with n ≥ N . We enlarge A ∪ B ∪ C to
get the final form of G by adding equipotential curves and rays in the immediate
basins of attraction. We add enough of these so that every Fatou tile in f−n(S) has
diameter less than ε. Finally, we show that fn is isotopic rel Pf to the subdivision
map of a finite subdivision rule whose 1-skeleton is G.

Proof. By Theorem 2.1 we may assume that f is Böttcher expanding. We partition
the postcritical set Pf of f into three subsets. The subset P∞

f consists of those
periodic elements of Pf whose cycles contain critical points. We let

P 1
f = {p ∈ Pf : p ∈ ∂Fq, q ∈ P∞

f } and P 0
f = {p ∈ Pf : p /∈

⋃
q∈P∞

f

F q}.

We intend to construct a finite subdivision rule R. This involves equipping S2

with the structure of a CW complex SR. The complex SR will be defined as a
subdivision of a CW complex S. We will define S by means of its 1-skeleton, which
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is a union of curves. These curves belong to three finite sets of curves A, B, and C.
The curves in A are either trivial, just points, or simple closed curves. The curves
in B and C are nontrivial arcs.

We construct the set of curves A in this paragraph. It depends on a real pa-
rameter ρ with 0 < ρ < 1. Let Dρ = {z ∈ C : |z| < ρ}. For every p ∈ P∞

f let
Dp = ψp(Dρ) ⊆ Fp. Recall that we have open sets Ui whose existence is a conse-
quence of the fact that f is Böttcher expanding. We choose and fix ρ so that the
open disks Dp together with the open sets Ui cover S2. The simple closed curves
in A are those curves of the form ∂Dp for p ∈ P∞

f . The trivial curves in A are the
points in P 0

f . This completes the construction of A.
Now we construct the set B. If P 1

f = ∅, then B = ∅. Suppose that P 1
f �= ∅. Let

p ∈ P 1
f . Then there exists q ∈ P∞

f such that p ∈ ∂Fq. For every such point q and
for every ray R in F q which lands at p, we require that B contain the subarc of R
which has one endpoint p and whose other endpoint is in ∂Dq . This completes the
construction of B. Lemma 2.3 implies that B is a finite set of arcs.

We next construct the set C. For this we choose a real number δ > 0 such that
d(p, x) > 4δ if p ∈ P 0

f and x ∈ P 0
f ∪ (

⋃
q∈P∞

f
F q) with x �= p. For every x ∈ S2, let

Br(x) be the open ball of radius r > 0 about x. The set C will be constructed as a
set of arcs γ which satisfy the following conditions.

(1) The endpoints of every arc γ are in distinct curves in A, and one of these
endpoints is in

⋃
p∈P∞

f
∂Dp if P∞

f �= ∅.
(2) If p ∈ P 0

f and p ∈ γ, then γ ∩ ∂Bδ(p) and γ ∩ ∂B2δ(p) each contain exactly
one point.

(3) If p ∈ P 0
f and p /∈ γ, then γ ∩B2δ(p) = ∅.

(4) If p ∈ P∞
f and γ ∩ ∂Dp �= ∅, then γ ∩ F p is a subarc of a ray.

(5) If p ∈ P∞
f and γ ∩ ∂Dp �= ∅, then γ avoids the finitely many points in

∂Fp which satisfy the conditions of Lemma 2.5 relative to the connected
component of S2 \ F p which contains γ \ F p.

(6) If p ∈ P∞
f and γ ∩ ∂Dp = ∅, then γ ∩ F p = ∅.

(7) If β ∈ B, then γ ∩ β = ∅.
(8) Two such arcs γ may meet only at a point of P 0

f .
(9) Every element of P 0

f is an endpoint of exactly two of the arcs γ.
(10) The connected components of the complement in S2 of the union of the

curves in A, B, and C are open topological disks whose closures are closed
topological disks.

Let G be the union of the curves in A and B. As we construct arcs in C, we adjoin
them to G. So G will grow during this construction. It will eventually become a
graph.

If P∞
f = ∅, then G = Pf = P 0

f . In this case we construct the arcs in C so that
their union G is a simple closed curve. It is easy to do this and satisfy conditions
(1)–(10).

So suppose that P∞
f �= ∅. Figure 2 contains a schematic diagram of one pos-

sibility for G after the construction of C is complete. The large dots are in P 0
f .

The small dots are in P 1
f . The circles are the simple closed curves in A. The line

segments are the arcs in B. The remaining arcs are the arcs in C which we are
about to construct.
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Figure 2. The union of the curves in A, B, and C, a precursor of
the final graph

Let p ∈ P 0
f . It is easy to construct an arc α with one endpoint p, one endpoint in⋃

q∈P∞
f

∂Dq, disjoint from Pf \ {p} and satisfying conditions (2), (3), (5), and (7).
The arc α has a minimal subarc γ which joins p and

⋃
q∈P∞

f
F q. Lemma 2.4 implies

that by choosing α to avoid finitely many points, we may assume that the endpoint
of γ other than p lies in just one of the sets ∂Fq with q ∈ P∞

f . We then extend
γ along a ray in F q to ∂Dq. Now γ satisfies conditions (1)–(7). We construct two
such arcs γ for every p ∈ P 0

f so as to satisfy conditions (1)–(9). We put these arcs in
C and adjoin them to G. After doing this for every element of P 0

f , every connected
component of G contains ∂Dp for some p ∈ P∞

f .
Suppose that there exist p, q ∈ P∞

f such that ∂Dp and ∂Dq lie in different
connected components of G. We partition P∞

f into two disjoint nonempty subsets
Q1 and Q2 such that if p ∈ Q1 and q ∈ Q2, then ∂Dp and ∂Dq lie in different
connected components of G. Let Hi =

⋃
q∈Qi

F q for i ∈ {1, 2}.
Suppose that H1 ∩ H2 is an infinite set. Then there exist p ∈ H1 and q ∈ H2

such that F p ∩ F q is an infinite set. Now we repeatedly apply Lemma 2.4 to p,
q, and x ∈ P∞

f \ {p, q} to conclude that there exists y ∈ ∂Fp ∩ ∂Fq such that
y /∈ ∂Fp′ ∪ P 1

f . We choose a ray in F p with endpoint y and a ray in F q with
endpoint y. The union of these rays contains a subarc γ with endpoints in ∂Dp

and ∂Dq. It is possible to choose y so that γ satisfies condition (5). Therefore
conditions (1)–(9) are maintained by putting γ in C. We put γ in C and adjoin it
to G. This reduces the number of connected components of G.

Suppose that H1 ∩H2 is a finite set. Then we construct an arc α which joins H1
and H2 and which avoids H1 ∩ H2, all arcs in B ∪ C already constructed, and all
closed balls B2δ(p) with p ∈ P 0

f . The arc α has a minimal subarc γ which joins F p

and F q with p ∈ Q1 and q ∈ Q2. We may choose α so that γ satisfies condition (5).
Using Lemma 2.4, we find that α may also be chosen so that p and q are unique.
We extend γ along rays in F p and F q to an arc with endpoints in ∂Dp and ∂Dq



38 WILLIAM FLOYD, WALTER PARRY, AND KEVIN M. PILGRIM

while satisfying conditions (1)–(9). We put this arc in C and adjoin it to G. This
reduces the number of connected components of G.

After constructing finitely many arcs as above, the set G is connected. So the
connected components of S2 \G are open topological disks. Let D be one of these
disks, and suppose that D is not a closed topological disk. Then there exists a
simple closed curve α in D with exactly one point not in D which satisfies the
following property. There exist p, q ∈ P∞

f such that ∂Dp ∩ D �= ∅, ∂Dq ∩ D �= ∅,
and α separates ∂Dp from ∂Dq. Working as in the previous paragraph, we construct
an arc γ with interior in D satisfying conditions (1)–(9) which joins ∂Dp′ and ∂Dq′ ,
where p′ and q′ are elements of P∞

f such as p and q.
In this way, we can eventually satisfy every condition (1)–(10). This completes

the construction of C.
We now have A, B, and C. The union G of their curves contains P 0

f and P 1
f but

not P∞
f . We make G into a 1-dimensional CW complex (graph) in the straightfor-

ward way: we declare that its vertices are the endpoints of the arcs in B ∪ C. This
in turn equips S2 with the structure of a 2-dimensional CW complex S.

For every nonnegative integer n we use fn to pull back S to obtain a CW complex
f−n(S). We call the closed 2-cells of such complexes tiles. We say that a tile is
a Fatou tile if it is contained in some Fatou component, equivalently, if its image
under some iterate of f is contained in Fp for some p ∈ P∞

f . Tiles which are not
Fatou tiles are Julia tiles.

We next choose a real number ε with 0 < ε < δ. Conditions (2) and (3) imply
that every arc γ ∈ C intersects S2 \

⋃
p∈P 0

f
Bδ(p) in a subarc γ∗. We choose an

open topological disk Dγ ⊆ S2 \ Pf which contains γ∗ such that Dγ ∩Dγ′ = ∅ if
γ, γ′ ∈ C with γ �= γ′. We also require that (i) Dγ ∩ F p = ∅ if p ∈ P∞

f such that
γ ∩F p = ∅ and (ii) Dγ ∩B2δ(p) = ∅ if p ∈ P 0

f such that p /∈ γ. We choose ε so that
Dγ contains the ε-neighborhood of γ∗ for every γ ∈ C.

We put one more restriction on ε in this paragraph. Condition (5) implies that ε
may be chosen so that the following holds. Let γ be any element of C which has an
endpoint in ∂Dp for some p ∈ P∞

f . Let x be the point of γ in ∂Fp, and let z be the
endpoint of γ not in F p. Let T be a path connected set in S2 \ {z} with diameter
less than ε which contains a point of γ and a point y ∈ ∂Fp. Let ρx and ρy be rays
in F p which land at x and y, respectively. Then the union of ρx, ρy, T , and γ \ {z}
does not separate z from an element of Pf . This completes our choice of ε.

We next choose a positive integer N . Recall that the assumptions and the choice
of ρ provide finitely many open sets Ui which cover the Julia tiles of S such that the
diameters of the connected components of the sets f−n(Ui) tend to 0 as n → ∞.
We may refine this collection to a finite collection of open sets Vj such that every Vj

is contained in some Ui, the Vj ’s cover the Julia tiles of S, and every Vj intersects
every Julia tile of S in a connected set. It follows that there exists a positive integer
N such that the diameter of every Julia tile in f−n(S) is less than ε for every integer
n ≥ N .

We fix an integer n ≥ N . We will prove that fn is isotopic to the subdivision
map of a finite subdivision rule R.

Now we define SR. Let p ∈ P∞
f . The disk Dp is defined so that Dp = ψp(Dρ).

We subdivide Dρ using radii and concentric circles as in Figure 3, in general with
many radii and concentric circles, not necessarily uniformly spaced. We do this so



EXPANSION PROPERTIES FOR FINITE SUBDIVISION RULES II 39

Figure 3. Subdividing Dρ

Figure 4. The 1-skeleton of the model subdivision complex SR

that the number of concentric circles is independent of p, and if an arc in B∪C has
an endpoint x ∈ ∂Dp, then ψ−1

p (x) is not a vertex of this subdivision of Dρ. These
subdivisions of Dρ, one for every p ∈ P∞

f , induce subdivisions of S and f−n(S).
The Julia tiles in f−n(S) have diameters less than ε. We choose these subdivi-

sions of Dρ so that every Fatou tile in the induced subdivision of f−n(S) also has
diameter less than ε. Thus every tile in the induced subdivision of f−n(S) has di-
ameter less than ε. We put one more restriction on these subdivisions. By possibly
including more radii in these subdivisions, we may assume that there exists a posi-
tive integer M such that the following condition holds. If p ∈ P∞

f , if γ1, γ2 ∈ B ∪ C
such that γi has an endpoint xi ∈ ∂Dp, and if one of the two arcs α ⊆ ∂Dp whose
endpoints are x1 and x2 meets no other arcs in B ∪ C, then α contains exactly M
vertices of the subdivision of Dp. The subdivision of S obtained in this way is SR.
See Figure 4.
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It remains to prove that the 1-skeleton of SR is isotopic rel Pf to a subcomplex
of the 1-skeleton of f−n(SR).

We begin the construction of an isotopy by moving only points near the arcs in
B. Let p ∈ P 1

f . Let β be an arc in B which contains p. Then β is a subarc of a ray
in some F q such that p ∈ ∂Fq. Moreover, fn(β) is a subarc of a ray in F fn(p), and
fn(β) contains a unique arc β′ ∈ B. So β′ lifts via fn to a subarc γ of β. So there
exists a point pushing isotopy taking β to γ which fixes the complement of Fq and
even the complement of a small neighborhood of β which avoids q. Because p is
the only element of Pf in this neighborhood, this isotopy fixes Pf . Such isotopies,
one for every arc in B, can be combined into one isotopy which moves the arcs in
B into the 1-skeleton of f−n(SR).

Now we prepare to move points near the arcs in C. We define for every p ∈
P 0
f ∪P∞

f a subcomplex Wp of f−n(SR) which is a closed topological disk with p in
its interior. If p ∈ P∞

f , then Wp is the connected component of f−n(Dfn(p)) which
contains p. Then Dp ⊆ Wp ⊆ Fp, and the boundary of Wp is an equipotential in
Fp. Now suppose that p ∈ P 0

f . Let Wp be the smallest closed topological disk such
that Wp contains every tile of f−n(SR) which meets Bδ(p). Since the diameters of
the tiles of f−n(SR) are less than ε < δ, we have that Bδ(p) ⊆ Wp ⊆ B2δ(p).

Let γ ∈ C. We begin to define an arc γ̂ in the 1-skeleton of f−n(SR) which is
isotopic to γ. Let x be an endpoint of γ. If x ∈ P 0

f , then set p1 = x. If x ∈ ∂Dp

for some p ∈ P∞
f , then set p1 = p. We define p2 in the same way using the other

endpoint of γ. Let W be the subcomplex of f−n(SR) which as a set is the union
of all tiles of f−n(SR) which meet γ but are not contained in either Wp1 or Wp2 .
The choices of ε and N imply that W ⊆ Dγ . The complexes Wp1 and Wp2 are
constructed so that γ ∩ ∂Wp1 �= ∅ and γ ∩ ∂Wp2 �= ∅. So the 1-skeleton of W
contains a minimal arc γ̂ which joins ∂Wp1 and ∂Wp2 . If i ∈ {1, 2} and pi ∈ P∞

f ,
then γ̂ meets ∂Fpi

in exactly one point.
Suppose that i ∈ {1, 2} and that pi ∈ P 0

f . We next use Lemma 2.2 to construct
an extension of γ̂ to pi. We take the complex X in Lemma 2.2 to be Wpi

. Let
v = pi. Let u1 be the unique vertex in ∂Wpi

∩γ̂. The vertex u2 is gotten in the same
way using the other arc in C which contains pi. We use the arc in Lemma 2.2 to
extend γ̂ to an arc in the 1-skeleton of f−n(SR) with endpoint pi. This completes
the definition of γ̂.

Now that we have γ̂, we wish to construct an isotopy rel Pf which moves γ to γ̂.
Moreover, if pi = p ∈ P∞

f for either i = 1 or i = 2, then we wish to be able to extend
this isotopy to the part of the 1-skeleton of SR which is in Dp. To do this, we must
deal with the difficulty that ∂Fp might be complicated near γ ∩ ∂Fp. In particular,
the intersection of Fp and the ε-neighborhood of γ might not be connected, as in
Figure 5. Both γ and γ̂ are drawn as thick arcs in Figure 5. The ε-neighborhood of
γ is shaded dark gray. The rest of Figure 5 will be explained in the next paragraph.

With an eye toward Figure 5, we proceed as follows. We continue to assume
that p = pi ∈ P∞

f . Let x and y be the points at which γ and γ̂ meet ∂Fp. Let ρx

and ρy be the rays in F p which land at x and y such that γ contains the subarc of
ρx which joins x and Dp, while γ̂ contains the subarc of ρy which joins y and Wp.
The latter subarc is in the boundary of a tile t of W . We are in the situation of
Lemma 2.5 with Tε = t and yε = y. Now we use the fact that γ satisfies condition
(5). It follows that there exists a closed topological disk Δp ⊆ S2 whose interior
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Figure 5. Constructing an isotopy which moves γ to γ̂

contains no element of Pf and whose boundary is contained in the union of ρx, ρy,
γ, and t. Such a disk is shaded by line segments in Figure 5.

Now we choose an isotopy rel Pf which moves γ to γ̂. We choose it so that points
in the middle section of γ move within the smallest closed topological disk in Dγ

which contains W . At an end of γ near p = pi ∈ P∞
f , points of γ move within Δp.

At an end of γ near p = pi ∈ P 0
f , points of γ move within B2δ(p). We do this so

that if p = pi ∈ P∞
f , then ρx moves to ρy, Dp remains within Wp, and Wp remains

within Fp. These isotopies can be constructed compatibly with supports disjoint
from the arcs in B. We obtain an isotopy rel Pf which moves the arcs in B and C
into the 1-skeleton of f−n(SR).

We finally extend this isotopy to the entire 1-skeleton of SR. Let p ∈ P∞
f . Let

X be the intersection of F p with the union of the arcs in B∪C. We have an isotopy
which moves the arcs in B and C to arcs comprising sets which we denote by B′

and C′. It also moves the cell complex Dp to a cell complex D
′
p ⊆ Wp. Let X ′ be

the intersection of F p with the union of the arcs in B′ ∪ C′. We wish to construct
an isotopy which fixes p, S2 \Fp and X ′ and which moves the 1-skeleton of D′

p into
the 1-skeleton of Wp. Figure 6 shows what we have from the point of view of D. It
shows a portion of ψ−1

p (∂Wp) and a portion of the cell structure of ψ−1
p (D′

p). The
cell structure of ψ−1

p (Wp) is not shown. Suppose that ψ−1
p (γ1) and ψ−1

p (γ2) meet
Dρ in points x1 and x2. By construction, x1 and x2 are not vertices of Dρ. Let
x′

1 and x′
2 be the points in ψ−1

p (∂Wp) such that the isotopy which we have moves
ψp(x1) and ψp(x2) to ψp(x′

1) and ψp(x′
2). So ψp(x′

1) and ψp(x′
2) are endpoints of

two arcs in X ′. Suppose that one of the two arcs α in ψ−1
p (D′

p) whose endpoints
are x′

1 and x′
2 contains no other points of ψ−1

p (X ′). Let α′ be the corresponding
arc in ψ−1

p (∂Wp) with endpoints x′
1 and x′

2. We wish to construct an isotopy which
moves α to α′, which fixes x′

1 and x′
2, and moves every vertex of ψ−1

p (D′
p) in α to

a vertex of ψ−1
p (Wp). In order to do this, all that is needed is that the number of

vertices of ψ−1
p (Wp) in α′ be at least as large as the number of vertices of ψ−1

p (D′
p)

in α. This is guaranteed by the fact that the subdivisions of Dρ were chosen so
that α has M vertices and the number of vertices in α′ is a positive multiple of M .
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Figure 6. The picture in D after moving the arcs in B and C

This allows us to isotop the radii of D′
p into the radii of Wp while fixing X ′ and

S2 \ Fp. It is easy to isotop the equipotentials in D
′
p to the equipotentials in Wp

because they are equal in number.
Thus the isotopy rel Pf which moves the arcs in B and C into the 1-skeleton of

f−n(SR) can be extended to an isotopy rel Pf which moves the 1-skeleton of SR
into the 1-skeleton of f−n(SR). This proves Theorem 3.1. �

4. Realizability of (2, 2, 2, 2)-Euclidean Thurston maps

This section treats the case when the orbifold of f has signature (2, 2, 2, 2), i.e.,
is isotopic to a map doubly covered by an affine torus map. Not every such map f
has an iterate isotopic to the subdivision map of a finite subdivision rule; Theorem
4.1 gives a characterization in terms of the eigenvalues of the associated linear map.

Our nonrealizability results in this section and the next are essentially based on
the following statement. If a Thurston map f is the subdivision map of a finite
subdivision rule, then the lift of f−1 to the universal covering orbifold of f is
combinatorially distance nonincreasing. This is formally stated in statement (1) of
Lemma 6.1 of [12]. We use this result in this section, and in the next section we
use its generalization to the universal covering space of the complement in S2 of
the postcritical set of f . We discuss this result in the next paragraph.

Let f : S2 → S2 be a Thurston map which is the subdivision map of a finite
subdivision rule. Let Pf be the postcritical set of f . Let D be either the universal
covering orbifold of f or the universal covering space of S2 − Pf . Let π : D → S2

be the associated branched covering map. The multifunction f−1 lifts to a genuine
function F : D → D, so that f ◦ π ◦ F = π. Because f is the subdivision map of
a finite subdivision rule, there exists a cell structure on S2 and a refinement of it
called its first subdivision such that f maps interiors of cells of the first subdivision
homeomorphically to interiors of cells of the initial cell structure. In general the
original cell structure on S2 does not lift to D, but only because of the need for
some vertices “at infinity”. So we enlarge D to a space D∗ by adding appropriate
vertices at infinity. We then construct a cell structure on D∗ by using π to lift
the initial cell structure on S2. As a result, π extends to a branched covering map
π : D∗ → S2. The first subdivision of this cell structure on D∗ is the lift of the
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first subdivision of the initial cell structure on S2. The map F also extends to
D∗. It homeomorphically maps interiors of cells of the initial cell structure on D∗

to interiors of cells of its first subdivision. A fat path in D∗ is the union of all
tiles which meet a given curve in D (not D∗). The length of a fat path is 1 less
than the number of these tiles. The fat path distance function on D (not D∗) is
defined so that the “distance” between points x, y ∈ D is the minimum length of
a fat path joining them. (The fat path function does not define a metric because
points in the interior of a tile have zero distance from each other, and it doesn’t
define a pseudometric because a point in an edge or a vertex that is in more than
one tile has positive distance from itself.) Because F maps initial tiles of D∗ into
initial tiles of D∗, it is distance nonincreasing with respect to this fat path distance
function.

The main result of [7] is that almost every Lattès rational map is the subdivision
map of a finite subdivision rule with one tile type of a very special form. The
following theorem treats a larger class of Thurston maps which need not be ratio-
nal. It almost completely determines which (2, 2, 2, 2)-Euclidean Thurston maps
are subdivision maps of finite subdivision rules. In this case, the orbifold universal
cover is R

2, and the map F in the statement of the theorem is the inverse of the
map F of the previous paragraph.

Theorem 4.1. Suppose f is a Thurston map whose orbifold Of has signature
(2, 2, 2, 2). Furthermore, suppose f is normalized so that it has a lift to the plane
of the form F (x) = Ax + b, where A is a 2 × 2 matrix of integers and b is an
integral linear combination of the columns of A.

(1) If both eigenvalues of A have absolute value greater than 1, then every
sufficiently large iterate of f is the subdivision map of a finite subdivision
rule.

(2) If ±1 is an eigenvalue of A, then f is the subdivision map of a finite
subdivision rule with one tile type.

(3) If A has an eigenvalue with absolute value less than 1, then no iterate
of f is Thurston equivalent to the subdivision map of a finite subdivision
rule.

Remark. Theorem 3.1 of [7] implies that in the setting of Theorem 4.1, if in addition
f is rational, then some iterate of f is the subdivision map of a subdivision rule
with one tile type. The proof given there does not use the fact that f is rational,
only that it is expanding.

Proof. We begin by making the connection between A and f precise. Let Λ be
the sublattice of Z

2 generated by the columns of A. Let Γ be the group of all
isometries of R2 generated by rotations of order 2 about the elements of Λ. The
map F respects the action of Γ on R2 and induces a map on R2/Γ in a canonical
way. The latter space is homeomorphic to S2. We conjugate this map on R

2/Γ to
S2 by this homeomorphism. The result is f . The image of Λ in S2 is the postcritical
set Pf of f , and the image of Z2 \ Λ in S2 is the set of critical points of f . Since
the postcritical set is invariant under f , f(Pf ) = Pf , so F (Λ) ⊂ Λ. In particular
F (0) ∈ Λ and so b ∈ Λ. This verifies that the normalization condition can always
be achieved.

Statement (1) follows from Theorem 3.1.
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Figure 7. A fundamental domain P for Γ in the situation of state-
ment (2)

To prove statement (2), suppose that ±1 is an eigenvalue of A. Replacing A by
−A does not change f , so we assume that 1 is an eigenvalue of A. Let d be the
degree of f . Since the product of the eigenvalues of A is det(A) = d, the eigenvalues
of A are 1 and d.

We continue by finding a normal form for A. Since the eigenvalues of A are
rational numbers, A has nonzero eigenvectors with rational entries, hence with
integer entries. Let (p, q) be an eigenvector of A with eigenvalue d such that p and q
are relatively prime integers. Then there exist integers r and s such that ps−qr = 1.
So (p, q) and (r, s) form a basis of Z2. Since (p, q) is an eigenvector with eigenvalue
d = det(A), when we conjugate A to this basis, we obtain a matrix of the form
[ d c
0 1 ]. Since conjugation of A by an element of SL(2,Z) corresponds to conjugation

of f by a homeomorphism, we may assume that A = [ d c
0 1 ]. (Conjugating this by a

matrix of the form [ 1 a
0 1 ], we may even assume that 0 ≤ c ≤ d− 2.)

Let P be the parallelogram in R2 bounded by the lines given by y = 0, y = 1, the
1-eigenspace of A, and the line parallel to this through (2d, 0). See Figure 7, where
dots mark elements of Z2 and large dots mark elements of Λ. This parallelogram
is a fundamental domain for Γ.

The image in S2 of the bottom of P is an arc α joining the postcritical points
which are the images of (0, 0) and (d, 0). Similarly, the image in S2 of the top
of P is an arc β joining the postcritical points which are the images of (c, 1) and
(c + d, 1). The map F maps horizontal lines through elements of Z2 to horizontal
lines through elements of Z2. Hence f stabilizes the union α∪β. The annulus in S2

determined by α and β is fibered by arcs which are the images of the line segments
in P parallel to the left and right sides of P . The map f stabilizes the set of these
arcs. The map f also stabilizes the simple closed curve in S2 which is the image
of the line in R2 given by y = 1/2. The degree of f on this simple closed curve is
d > 1. Hence the Lefschetz number of f restricted to this simple closed curve is
not 0, and so the Lefschetz fixed point theorem implies that f fixes a point of this
simple closed curve. Thus there exists an arc γ joining α and β which is stabilized
by f . The union of the arcs α, β, and γ is a tree containing the postcritical points
of f which is stabilized by f . This tree provides S2 with the structure of a CW
complex making f the subdivision map of a finite subdivision rule with one tile
type. This proves statement (2).

To prove statement (3), we argue by contradiction. Since the hypotheses are
preserved under passing to an iterate, we may replace f by an iterate and suppose
that A has an eigenvalue λ less than 1 in absolute value and that f is Thurston
equivalent to the subdivision map g : S2 → S2 of a finite subdivision rule. Since the
product of the eigenvalues of A is the degree of f , the eigenvalues of A are real, and
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the eigenvalue other than λ has absolute value greater than 1. Since multiplying A
by −1 does not affect f , we may furthermore assume that λ > 0.

Because f and g are Thurston equivalent, there exist two homeomorphisms
h, h′ : (S2, Pf ) → (S2, Pg) such that fh = h′g with h and h′ isotopic rel Pf . By
conjugating g, we may assume that h′ = 1, so that f and g have the same postcrit-
ical set: Pf = Pg. Then h(Pf ) = Pf , and h is isotopic to the identity map rel Pf .
Just as f lifts to F : R

2 → R
2 via the branched covering map from R

2 to S2, the
map h has a lift H : R2 → R2. Because h is isotopic to the identity map rel Pf ,
we may choose H so that its restriction to Λ is the identity map. Furthermore,
because S2 is compact, there exists a bound on the distances which H moves the
points of R2.

The results of the previous paragraph imply that the map G = F ◦H lifts g. So
G−1 = H−1 ◦ F−1 lifts the multifunction g−1. Furthermore, there exists a positive
real number J such that

∥∥G−1(x) − F−1(x)
∥∥ ≤ J for every x ∈ R

2. We choose J

so large that we even have that
∥∥G−1(x) −A−1x

∥∥ ≤ J for every x ∈ R2.
In this paragraph we prove that there exists a positive real number K such

that ‖A−nw‖ ≤ Kλ−n ‖w‖ for every positive integer n and every w ∈ R2. If A
is diagonal, then this is clear. In general, A can be conjugated by an element of
GL(2,R) to a diagonal matrix. Since the conjugating matrix deforms the standard
metric on R

2 by a bounded amount, the desired result follows.
Now let L be the λ-eigenspace of A. We will obtain a contradiction by considering

the action of the iterates of G−1 on L. Let x ∈ L. Then G−1(x) = A−1x + y1 =
λ−1x+y1 for some y1 ∈ R2 with ‖y1‖ ≤ J . Similarly, G−2(x) = λ−2x+A−1y1 +y2
for some y2 ∈ R

2 with ‖y2‖ ≤ J . Using the result of the previous paragraph, we
inductively see for every positive integer n that∥∥G−n(x) − λ−nx

∥∥ ≤ JK(λ−n+1 + · · · + λ−2 + λ−1 + 1)
= JK(λ−n − 1)(λ−1 − 1)−1.

Hence
λ−n ‖x‖ =

∥∥λ−nx− λ−n0
∥∥

=
∥∥(λ−nx−G−n(x)) + (G−n(x) −G−n(0)) + (G−n(0) − λ−n0)

∥∥
≤

∥∥λ−nx−G−n(x)
∥∥ +

∥∥G−n(x) −G−n(0)
∥∥ +

∥∥G−n(0) − λ−n0
∥∥

≤ 2JK(λ−n − 1)(λ−1 − 1)−1 +
∥∥G−n(x) −G−n(0)

∥∥ ,
and so ∥∥G−n(x) −G−n(0)

∥∥ ≥ λ−n ‖x‖ − 2JK(λ−n − 1)(λ−1 − 1)−1

≥ (‖x‖ − 2JK(λ−1 − 1)−1)λ−n.

Thus if ‖x‖ > 2JK(λ−1 − 1)−1, then ‖G−n(x) −G−n(0)‖ tends to ∞ as n tends
to ∞.

We finally use the fact that g is the subdivision map of a finite subdivision
rule. Note that G−1 is a lift of g−1 to the universal covering orbifold of g. So
the discussion at the beginning of this section applies. The initial tiling of S2 lifts
to a tiling T of R2. Because S2 is compact and this branched covering map is
regular, the tiles of T decompose into finitely many orbits under the action of its
group of deck transformations. Because the elements of this group are Euclidean
isometries, there is thus a bound on the diameters of the tiles of T . So a bound on
the fat path distance between two points of R2 provides a bound on the Euclidean
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distance between these points. Hence the lack of a bound on the Euclidean distances
‖G−n(x) −G−n(0)‖ implies the lack of a bound on the fat path distances between
G−n(x) and G−n(0). This contradicts the observation made at the beginning of
this section that G−1 is distance nonincreasing with respect to the fat path distance
function.

This proves Theorem 4.1. �

5. Nonrealizability conditions

Suppose f is a Thurston map with postcritical set Pf . We denote by C the set of
simple, unoriented, essential, nonperipheral (not homotopic into arbitrarily small
neighborhoods of elements of Pf ) curves in S2 − Pf , up to homotopy in S2 − Pf .
We denote by � the union of homotopy classes of inessential and peripheral curves
in S2 − Pf . Via pullback, we obtain a pullback relation f← on C ∪ {�}, where
γ

f← γ̃ if and only if some component δ ⊂ f−1(γ) is in γ̃. It is natural to view this
as a multivalued map of C ∪ {�} to itself and to consider its orbits; a point has
finite image under this map. Note that the image of � under this multivalued map
consists of only �. An orbit γ0

f← γ1
f← γ2 · · · is univalent if the unsigned degrees

deg(f : γi → γi−1), i = 1, 2, . . ., are all equal to 1; it is wandering if the γi’s are all
distinct and not equal to �.

Similarly, we denote by A the set of homotopy classes of arcs α : [0, 1] → S2

with α({0, 1}) ⊂ Pf , α(t) ∈ S2 − Pf for t �∈ {0, 1}, up to homotopy through arcs
with the same properties and reparameterizations which may reverse orientation,
and subject to the condition that α is not peripheral in a similar sense (that is, α
is not homotopic rel Pf to a constant arc). Note that an element of A might join a
point of Pf to itself. We denote by the union of those homotopy classes of arcs
α : [0, 1] → S2 defined similarly as for A, but with Pf replaced by f−1(Pf ), and
subject to the condition that they do not define elements of A. Again by pullback
we obtain a relation A∪{ } f← A∪{ } such that the corresponding multivalued
map has finite images of points and maps to itself. The corresponding degrees
by which arcs map are always equal to 1. Wandering is defined similarly.

Theorem 5.1 provides conditions under which no iterate of a given Thurston map
is Thurston equivalent to the subdivision map of a finite subdivision rule.

Theorem 5.1. Let f : S2 → S2 be a Thurston map with postcritical set Pf . If
the pullback relation on arcs has wandering orbits or if the pullback relation on
curves has wandering univalent orbits, then no iterate of f is Thurston equivalent
to the subdivision map of a finite subdivision rule.

Remark. If f is homotopic to a Böttcher expanding map, then (i) its pullback
relation on arcs has no wandering orbits, and (ii) its pullback relation on curves has
no univalent wandering orbits. Compare [19]. For maps without periodic branch
points, similar and stronger results are shown in [14, Proposition 5, Theorem 8].
Fix some length metric as in the definition of Böttcher expanding.

To prove (ii), note that the length of any essential, simple, nonperipheral curve is
bounded from below away from zero; that there are only finitely many such curves
whose length is bounded above by some positive constant; and that if f maps such
a curve γ̃ by degree 1 to another such curve γ by degree 1, then the definition of
Böttcher expanding implies �(γ̃) < c�(γ) where c < 1.
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To prove (i), we argue as follows. For p ∈ P∞
f and 0 < ρ < 1 denote by

Dp,ρ the disk of radius ρ about p in the local Böttcher coordinates. Define the
complexity C[α] of a homotopy class of arcs α to be the infimum, among homotopic
representatives, of the length of the portion of the subarc lying outside the disks
Dp,1/2. There are only finitely many arc classes whose complexity is bounded above
by some positive constant. Böttcher expansion implies that if f maps such an arc
α̃ to such an arc α, then C[α̃]) < cC[α] + δ where c < 1 is as in the previous
paragraph and δ > 0 is the maximum, over such p, of the distance between ∂Dp,1/2
and ∂Dp,(1/2)1/ deg(f) . The point is that under taking preimages, the middle of an
arc shortens by a definite multiplicative amount, while the end segments lengthen
by a bounded additive amount. Combined, these two facts mean that there are no
wandering arcs under iterated pullback.

Proof. Suppose α0
f← α1

f← · · · is such an orbit.
Every iterate of f satisfies the assumptions of the theorem with the sequence

α0, α1, α2, . . . replaced by a subsequence. Every Thurston map homotopic to f
satisfies the assumptions of the theorem with α0, α1, α2, . . . modified by homotopies
rel Pf . Thus to prove the theorem, it suffices to prove that f is not the subdivision
map of a finite subdivision rule.

We prove this by contradiction. Suppose that f is the subdivision map of a
finite subdivision rule R. We modify α0 by a homotopy rel Pf so that, except
for its endpoints in the case of arcs, for some nonnegative integer n it meets the
1-skeleton of R0(S2) transversely in n points which are not vertices. We then
modify α1, α2, . . . so as to preserve the assumptions of the theorem. Because f
is the subdivision map of R and f maps αi bijectively to αi−1, it follows that,
except for endpoints in the case of arcs, for every nonnegative integer i, αi meets
the 1-skeleton of R0(S2) transversely in at most n points which are not vertices.

Because α0, α1, α2, . . . are mutually not homotopic rel Pf , the order of Pf must
be at least 4. So the universal covering space of S2 \ Pf is the open disk D. Let
π : D → S2\Pf be the universal covering map. As at the beginning of Section 4, we
enlarge D to a space D∗ by adding vertices at infinity and extend π to a branched
covering map π : D∗ → S2. We use π to lift the cell structure of S2 to D∗.

Let F be a fundamental domain in D∗ for π which is a union of tiles of D∗. For
every nonnegative integer i, let α̃i be a lift of αi to D∗ which contains a point in
the interior of F . Then each α̃i meets the interior of F and crosses at most n edges
of D∗. Since there is a positive integer N such that every tile of D∗ has at most N
vertices and edges, these lifts are contained in the union of finitely many translates
of F under the group of deck transformations of π. In the case of arcs, it follows
that α̃i and α̃j have the same initial and terminal endpoints for some indices i �= j.
It follows that α̃i and α̃j are homotopic rel ∂D∗. Hence αi and αj are homotopic
rel Pf , a contradiction. The case of simple closed curves is only slightly different.

This proves Theorem 5.1. �

Theorem 4.1 shows that some Thurston maps with Euclidean orbifolds are not
subdivision maps of finite subdivision rules. We illustrate Theorem 5.1 with the
following example of a Thurston map with hyperbolic orbifold such that no iterate
is Thurston equivalent to the subdivision map of a finite subdivision rule.

Example 5.2. We begin by describing the subdivision map of a finite subdivision
rule on S2. The 1-skeleton of the initial cell structure on S2 is a square with four
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Figure 8. Defining the Thurston map g for Example 5.2

vertices and four edges. There are two tiles, each a quadrilateral. The subdivision
map g, a Thurston map, acts as in Figure 8. Figure 8 shows two copies of S2, each
with one point at ∞. The initial cell structure is shown in the right part of Figure 8
with the two tiles labeled A and B. The map g fixes all four initial vertices and the
two horizontal edges pointwise. The tile labels in the left part indicate the initial
tiles which are the images of these tiles. So g has degree 3. Its local degree at every
critical point is 2. These four critical points are all fixed by g, and so they form
the postcritical set of g.

Let τ be a Dehn twist, or even a half Dehn twist, about a simple closed curve
γ which is vertical relative to the orientation of Figure 8. Let f = τn ◦ g for some
nonzero integer n. Let α0 be the top edge of tile A. We lift α0 via the iterates of f
to obtain arcs α1, α2, α3, . . . . The arc condition of Theorem 5.1 is satisfied. So no
iterate of f is Thurston equivalent to the subdivision map of a finite subdivision
rule. Note that {γ} is a Levy cycle for g and hence also for f .

The canonical decomposition of a Thurston map [19, Theorem 10.2] provides
another source of examples.

Example 5.3. Suppose f is an obstructed Thurston map with an elliptic piece in
its decomposition that possesses at least four marked points. Then there exists a
homeomorphism h : (S2, Pf ) → (S2, Pf ) such that the twist h ◦ f is not homotopic
to the subdivision map of a finite subdivision rule.

One may arrange it so that h is supported on the given elliptic piece U and the
first-return map of h ◦ f is pseudo-Anosov on U , so that every curve contained in
this elliptic piece wanders under pullback of the restriction of f to this piece.

A bit more concretely: the mating of the 1/4-rabbit quadratic polynomial with
its complex conjugate provides an obstructed Thurston map f0. Its fourth iterate
f1 = f4

0 has the property that it is homotopic to a map which is the identity on a
subsurface U ⊂ S2 −Pf1 such that U is a sphere with four holes and the boundary
of each hole is essential and nonperipheral in S2 − Pf1 . Setting f = h ◦ f1 where
h : U → U is pseudo-Anosov and h|∂U = id will realize this construction.
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