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COMPLEX HYPERBOLIC TRIANGLE GROUPS

OF TYPE [m,m, 0; 3, 3, 2]

SAM POVALL AND ANNA PRATOUSSEVITCH

Abstract. In this paper we study discreteness of complex hyperbolic triangle
groups of type [m,m, 0; 3, 3, 2], i.e., groups of isometries of the complex hyper-
bolic plane generated by three complex reflections of orders 3, 3, 2 in complex
geodesics with pairwise distances m,m, 0. For fixed m, the parameter space of
such groups is of real dimension one. We determine intervals in this parameter
space that correspond to discrete and to non-discrete triangle groups.

1. Introduction

Complex hyperbolic triangle groups are groups of isometries of the complex
hyperbolic plane generated by three complex reflections in complex geodesics. We
will focus on the case of ultra-parallel groups, that is, the case where the complex
geodesics are pairwise disjoint. Unlike real reflections, complex reflections can be of
arbitrary order. If an ultra-parallel complex hyperbolic triangle group is generated
by reflections of orders n1, n2, n3 in complex geodesics C1, C2, C3 with the distance
between Ck−1 and Ck+1 equal to mk for k = 1, 2, 3, then we say that the group is
of type [m1,m2,m3;n1, n2, n3]. In this paper, we will study discreteness of ultra-
parallel complex hyperbolic triangle groups of type [m,m, 0; 3, 3, 2]; i.e., two of the
reflections are of order 3 and one is of order 2, the fixed point sets of order 3
reflections intersect on the boundary of the complex hyperbolic plane (m3 = 0),
and the other two distances between fixed point sets coincide (m1 = m2).

The deformation space of groups of type [m,m, 0; 3, 3, 2] for a given m is of real
dimension one; a group is determined up to an isometry by the angular invariant
α ∈ [0, 2π]. See section 2. Our main aim is to determine an interval in this one-
dimensional deformation space such that for all values of the angular invariant in
this interval the corresponding triangle group is discrete. The main result of the
paper is the following proposition:

Proposition 1. A complex hyperbolic triangle group of type [m,m, 0; 3, 3, 2] with
angular invariant α is discrete if

m � loge(3) and cos(α) � −1

2
.
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In the previous works [WG,Mo,MPP], the authors considered cases where all
three complex reflections are involutions. Ultra-parallel triangle groups of types
[m,m, 0; 2, 2, 2] and [m,m, 2m; 2, 2, 2] have been considered in [WG], while groups
of type [m1,m2, 0; 2, 2, 2] have been considered in [MPP] and [Mo].

To prove Proposition 1, we use a version of Klein’s combination theorem, adapted
to the configurations in question. Two of the generating reflections share a fixed
point on the boundary of the complex hyperbolic plane. We show that the ultra-
parallel triangle group satisfies a compression property by carefully studying the
structure of the stabilizer of this fixed point and of its subgroup of Heisenberg
translations. The argument starts in a similar way to that for complex reflections
of order 2. However for higher order complex reflections the rank of the group
of Heisenberg translations is higher, leading to a quadratic optimisation problem
over Z2 rather than Z.

On the other hand we obtain the following non-discreteness result using a com-
plex hyperbolic version of Shimizu’s lemma:

Proposition 2. A complex hyperbolic triangle group of type [m,m, 0; 3, 3, 2] with
angular invariant α is non-discrete if

cos(α) > 1− 1

12
√
3 cosh2

(
m
2

) .
Combining these results, we see that there is a gap between the intervals of

discreteness and non-discreteness. This is illustrated in Figure 1. The figure shows
the (m,α)-space. The light grey box corresponds to discrete groups (Proposition 1).
The black area corresponds to non-discrete groups (Proposition 2).

Ultra-parallel complex hyperbolic triangle groups of type [m,m, 0;n1, n2, 2] with
orders (n1, n2) other than (2, 2) and (3, 3) will be considered in [Po].

α

m

π

2π

0

4π
3
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3
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Figure 1. Discreteness and non-discreteness results in the (m,α)-space.
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The paper is organised as follows: In section 2 we summarise the necessary back-
ground information on complex hyperbolic and Heisenberg geometry. We introduce
the standard parametrisation for ultra-parallel [m1,m2, 0;n1, n2, n3]-triangle groups
in section 3. In section 4 we use the compression property to derive a discreteness
condition for [m1,m2, 0;n1, n2, n3]-groups. In section 5 we specialise the standard
parametrisation to the case of ultra-parallel [m,m, 0; 3, 3, 2]-triangle groups. The
fixed point sets of order 3 reflections intersect on the boundary of the complex
hyperbolic plane. In section 6 we study the structure of the stabilizer of this inter-
section point. In section 7 we use the discreteness conditions from section 4 to give
a proof of Proposition 1. In section 8 we use a version of Shimizu’s lemma to show
Proposition 2.

We use the following notation: For group elements A and B, their commutator
is [A,B] = A−1B−1AB.

2. Background

In this section we will give a brief introduction to complex hyperbolic geometry;
for further details see [Go,P10].

2.1. Complex hyperbolic plane. Let C2,1 be the 3-dimensional complex vector
space equipped with a Hermitian form 〈·, ·〉 of signature (2, 1), e.g.,

〈z, w〉 = z1w̄1 + z2w̄2 − z3w̄3.

If z ∈ C2,1, then we know that 〈z, z〉 is real. Thus we can define subsets V−, V0,
and V+ of C2,1 as follows:

V− = {z ∈ C2,1
∣∣ 〈z, z〉 < 0},

V0 = {z ∈ C2,1\{0}
∣∣ 〈z, z〉 = 0},

V+ = {z ∈ C2,1
∣∣ 〈z, z〉 > 0}.

We say that z ∈ C2,1 is negative, null , or positive if z is in V−, V0, or V+, respectively.
Define a projection map P on the points of C2,1 with z3 �= 0 as

P : z =

⎡
⎢⎢⎣
z1

z2

z3

⎤
⎥⎥⎦ �→

⎛
⎝z1/z3

z2/z3

⎞
⎠ ∈ P(C2,1).

That is, provided z3 �= 0,

z = (z1, z2, z3) �→ [z] = [z1 : z2 : z3] =

[
z1
z3

:
z2
z3

: 1

]
.

The projective model of the complex hyperbolic plane is defined to be the collection
of negative lines in C2,1, and its boundary is defined to be the collection of null
lines. That is,

H2
C = P(V−) and ∂H2

C = P(V0).

The metric on H2
C
, called the Bergman metric, is given by the distance function ρ

defined by the formula

cosh2
(
ρ([z], [w])

2

)
=

〈z, w〉〈w, z〉
〈z, z〉〈w,w〉 ,
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where [z] and [w] are the images of z and w in C2,1 under the projectivisation
map P. The group of holomorphic isometries of H2

C
with respect to the Bergman

metric can be identified with the projective unitary group PU(2, 1).

2.2. Complex geodesics. A complex geodesic is a projectivisation of a two-di-
mensional complex subspace of C2,1. Any complex geodesic is isometric to

{[z : 0 : 1]
∣∣ z ∈ C}

in the projective model. Any positive vector c ∈ V+ determines a two-dimensional
complex subspace

{z ∈ C2,1
∣∣ 〈c, z〉 = 0}.

Projecting this subspace we obtain a complex geodesic

P
(
{z ∈ C2,1

∣∣ 〈c, z〉 = 0}
)
.

Conversely, any complex geodesic is represented by a positive vector c ∈ V+, called
a polar vector of the complex geodesic. A polar vector is unique up to multiplication
by a complex scalar. We say that the polar vector c is normalised if 〈c, c〉 = 1.

Let C1 and C2 be complex geodesics with normalised polar vectors c1 and c2,
respectively. We call C1 and C2 ultra-parallel if they have no points of intersection
in H2

C
∪ ∂H2

C
, in which case

|〈c1, c2〉| = cosh

(
1

2
dist(C1, C2)

)
> 1,

where dist(C1, C2) is the distance between C1 and C2. We call C1 and C2 ideal
if they have a point of intersection in ∂H2

C
, in which case |〈c1, c2〉| = 1 and

dist(C1, C2) = 0.

2.3. Complex reflections. For a given complex geodesic C, a minimal complex
hyperbolic reflection of order n in C is the isometry ιC in PU(2, 1) of order n with
fixed point set C given by

ι(z) = −z + (1− μ)
〈z, c〉
〈c, c〉 c,

where c is a polar vector of C and μ = exp(2πi/n).

2.4. Complex hyperbolic triangle groups. A complex hyperbolic triangle is a
triple (C1, C2, C3) of complex geodesics in H2

C
. A triangle (C1, C2, C3) is a complex

hyperbolic ultra-parallel [m1,m2,m3]-triangle if the complex geodesics are ultra-
parallel at distances mk = dist(Ck−1, Ck+1) for k = 1, 2, 3. We will allow mk = 0
for some or all k. A complex hyperbolic ultra-parallel [m1,m2,m3;n1, n2, n3]-triangle
group is a subgroup of PU(2, 1) generated by complex reflections ιk of order nk in the
sides Ck of a complex hyperbolic ultra-parallel [m1,m2,m3]-triangle (C1, C2, C3).

2.5. Angular invariant. The real dimension of the space of [m1,m2,m3]-triangles
for each fixed triplem1,m2,m3 is equal to one. We can describe a parametrisation of
the space of complex hyperbolic triangles in H2

C
by means of an angular invariant α.

We define the angular invariant α of the triangle (C1, C2, C3) by

α = arg

(
3∏

k=1

〈ck−1, ck+1〉
)
,
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where ck is the normalised polar vector of the complex geodesic Ck. We use the
following proposition, given in [Pra], which gives criteria for the existence of a
triangle group in terms of the angular invariant.

Proposition 3. An [m1,m2,m3]-triangle in H2
C
is determined uniquely up to isom-

etry by the three distances between the complex geodesics and the angular invari-
ant α. For any α ∈ [0, 2π], an [m1,m2,m3]-triangle with angular invariant α exists
if and only if

cos(α) <
r21 + r22 + r23 − 1

2r1r2r3
,

where rk = cosh(mk/2).

For m3 = 0 we have r3 = 1, and the right hand side of the inequality in Propo-
sition 3 is

r21 + r22
2r1r2

� 1,

so the condition on α is always satisfied; i.e., for any α ∈ [0, 2π] there exists an
[m1,m2,m3]-triangle with angular invariant α.

2.6. Heisenberg group. The boundary of the complex hyperbolic space can be
identified with the Heisenberg space

N = C× R ∪ {∞} = {(ζ, ν)
∣∣ ζ ∈ C, ν ∈ R} ∪ {∞}.

One homeomorphism taking ∂H2
C
to N is given by the stereographic projection:

[z1 : z2 : z3] �→
(

z1
z2 + z3

, Im

(
z2 − z3
z2 + z3

))
if z2 + z3 �= 0, [0 : z : −z] �→ ∞.

The Heisenberg group is the Heisenberg space N with the group law

(ξ1, ν1) ∗ (ξ2, ν2) = (ξ1 + ξ2, ν1 + ν2 + 2 Im(ξ1ξ̄2)).

The centre of N consists of elements of the form (0, ν) for ν ∈ R. The Heisenberg
group is not abelian but is 2-step nilpotent. To see this, observe that

[(ξ1, ν1), (ξ2, ν2)] = (ξ1, ν1)
−1 ∗ (ξ2, ν2)−1 ∗ (ξ1, ν1) ∗ (ξ2, ν2) = (0, 4 Im(ξ1ξ̄2)).

Therefore the commutator of any two elements of N lies in the centre.
An alternative description of the Heisenberg group N is as the group of upper

triangular matrices ⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
1 x y

0 1 z

0 0 1

⎞
⎟⎟⎠ ∣∣ x, y, z ∈ R

⎫⎪⎪⎬
⎪⎪⎭

with the operation of matrix multiplication. For any integer k �= 0, the subgroup
Nk generated by the matrices

a =

⎛
⎜⎜⎝
1 0 0

0 1 1

0 0 1

⎞
⎟⎟⎠ , b =

⎛
⎜⎜⎝
1 1 0

0 1 0

0 0 1

⎞
⎟⎟⎠ , and c =

⎛
⎜⎜⎝
1 0 1

k

0 1 0

0 0 1

⎞
⎟⎟⎠

is a uniform lattice in N with the presentation

Nk = 〈a, b, c
∣∣ [b, a] = ck, [c, a] = [c, b] = 1〉.
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Moreover, any uniform lattice in N is isomorphic to Nk for some integer k �= 0; see
section 6.1 in [De].

2.7. Chains. A complex geodesic in H2
C
is homeomorphic to a disc, and its inter-

section with the boundary of the complex hyperbolic plane is homeomorphic to a
circle. Circles that arise as the boundaries of complex geodesics are called chains .

There is a bijection between chains and complex geodesics. We can therefore,
without loss of generality, talk about reflections in chains instead of reflections in
complex geodesics.

Chains can be represented in the Heisenberg space; for more details see [Go].
Chains passing through ∞ are represented by vertical straight lines defined by
ζ = ζ0. Such chains are called vertical . The vertical chain Cζ0 defined by ζ = ζ0
has a polar vector

cζ0 =

⎡
⎢⎢⎣

1

−ζ̄0

ζ̄0

⎤
⎥⎥⎦ .

A chain not containing ∞ is called finite. A finite chain is represented by an ellipse
whose vertical projection C× R → C is a circle in C. The finite chain with centre
(ζ0, ν0) ∈ N and radius r0 > 0 has a polar vector⎡

⎢⎢⎣
2ζ0

1 + r20 − ζ0ζ̄0 + iν0

1− r20 + ζ0ζ̄0 − iν0

⎤
⎥⎥⎦

and consists of all points (ζ, ν) ∈ N satisfying the equations

|ζ − ζ0| = r0, ν = ν0 − 2 Im(ζζ̄0).

2.8. Heisenberg isometries. We consider the space N equipped with the Cygan
metric,

ρ0 ((ζ1, ν2), (ζ2, ν2)) =
∣∣∣ |ζ1 − ζ2|2 − i(ν1 − ν2)− 2i Im(ζ1ζ̄2)

∣∣∣1/2.
A Heisenberg translation T(ξ,ν) by (ξ, ν) ∈ N is given by

(ζ, ω) �→ (ζ + ξ, ω + ν + 2 Im(ξζ̄)) = (ξ, ν) ∗ (ζ, ω)

and corresponds to the following element in PU(2, 1):⎛
⎜⎜⎝

1 ξ ξ

−ξ̄ 1− |ξ|2−iν
2 − |ξ|2−iν

2

ξ̄ |ξ|2−iν
2 1 + |ξ|2−iν

2

⎞
⎟⎟⎠ .

A special case is a vertical Heisenberg translation T(0,ν) by (0, ν) ∈ N given by

(ζ, ω) �→ (ζ, ω + ν).

A Heisenberg rotation Rμ by μ ∈ C, |μ| = 1 is given by

(ζ, ω) �→ (μ · ζ, ω)
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and corresponds to the following element in PU(2, 1):⎛
⎜⎜⎝
μ 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠ .

A minimal complex reflection ιCϕ
of order n in a vertical chain Cϕ with polar vector

cϕ =

⎡
⎢⎢⎣

1

−ϕ̄

ϕ̄

⎤
⎥⎥⎦

is given by

(ζ, ω) �→ (μζ + (1− μ)ϕ, ω − 2|ϕ|2 Im(1− μ) + 2 Im((1− μ)ϕ̄ζ))

and corresponds to the following element in PU(2, 1):⎛
⎜⎜⎝

−μ −(1− μ)ϕ −(1− μ)ϕ

−(1− μ)ϕ̄ (1− μ)|ϕ|2 − 1 (1− μ)|ϕ|2

(1− μ)ϕ̄ −(1− μ)|ϕ|2 −(1− μ)|ϕ|2 − 1

⎞
⎟⎟⎠ ,

where μ = exp(2πi/n). The complex reflection ιCϕ
can be decomposed as a product

of a Heisenberg translation and a Heisenberg rotation:

ιCϕ
= Rμ ◦ T(ξ,ν) = T(μξ,ν) ◦Rμ,

where

ξ = (μ̄− 1)ϕ and ν = −2|ϕ|2 · Im(1− μ) = 2|ϕ|2 sin(2π/n).
Heisenberg translations, Heisenberg rotations, and complex reflections are isome-
tries with respect to the Cygan metric. The group of all Heisenberg translations
is isomorphic to N . The group of all Heisenberg rotations {Rμ

∣∣ μ ∈ C, |μ| = 1}
is isomorphic to U(1). The group of their products N�U(1) contains all complex
reflections.

2.9. Products of reflections in chains. What effect does the minimal complex
reflection of order n in the vertical chain Cζ have on another vertical chain, Cξ,
which intersects C× {0} at ξ?

We calculate⎛
⎜⎜⎝

−μ −(1− μ)ζ −(1− μ)ζ

−(1− μ)ζ̄ (1− μ)|ζ|2 − 1 (1− μ)|ζ|2

(1− μ)ζ̄ −(1− μ)|ζ|2 −(1− μ)|ζ|2 − 1

⎞
⎟⎟⎠
⎡
⎢⎢⎣

1

−ξ̄

ξ̄

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−μ

−(1− μ)ζ̄ + ξ̄

(1− μ)ζ̄ − ξ̄

⎤
⎥⎥⎦ .

This vector is a multiple of⎡
⎢⎢⎣

1

(1− μ)μ̄ζ̄ − μ̄ξ̄

−(1− μ)μ̄ζ̄ + μ̄ξ̄

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1

−(μξ − (μ− 1)ζ)

(μξ − (μ− 1)ζ)

⎤
⎥⎥⎦ ,

which is the polar vector of the vertical chain that intersects C×{0} at μξ−(μ−1)ζ.
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•

• •

C3

C2 C1

r2e
iθ

−r1e
−iθ

Figure 2. Chains C1, C2, and C3 (figure from [MPP]).

This corresponds to rotating ξ around ζ through 2π
n . So if we have a vertical chain

Cξ, the minimal complex reflection of order n in another vertical chain Cζ rotates
Cξ as a set around Cζ through 2π

n (but not pointwise).

2.10. Bisectors and spinal spheres. Unlike in the real hyperbolic space, there
are no totally geodesic real hypersurfaces in H2

C
. Acceptable substitutes are the

metric bisectors. Let z1, z2 ∈ H2
C
be two distinct points. The bisector equidistant

from z1 and z2 is defined as

{z ∈ H2
C

∣∣ ρ(z1, z) = ρ(z2, z)}.
The intersection of a bisector with the boundary of H2

C
is a smooth hypersurface

in ∂H2
C
called a spinal sphere, which is diffeomorphic to a sphere. An example is

the bisector

C = {[z : it : 1] ∈ H2
C

∣∣ |z|2 < 1− t2, z ∈ C, t ∈ R}.
Its boundary, the unit spinal sphere, can be described as

U = {(ζ, ν) ∈ N
∣∣ |ζ|4 + ν2 = 1}.

3. Parametrisation of complex hyperbolic triangle groups

of type [m1,m2, 0;n1, n2, n3]

For r1, r2 � 1 and α ∈ (0, 2π), let C1, C2, and C3 be the complex geodesics with
respective polar vectors

c1 =

⎡
⎢⎢⎣

1

−r2e
−iθ

r2e
−iθ

⎤
⎥⎥⎦ , c2 =

⎡
⎢⎢⎣

1

r1e
iθ

−r1e
iθ

⎤
⎥⎥⎦ , and c3 =

⎡
⎢⎢⎣
0

1

0

⎤
⎥⎥⎦ ,
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where θ = (π−α)/2 ∈ (−π/2, π/2). The type of triangle formed by C1, C2, C3 is an
ultra-parallel [m1,m2, 0]-triangle with angular invariant α, where rk = cosh(mk/2)
for k = 1, 2.

Let ιk be the minimal complex reflection of order nk in the chain Ck for
k = 1, 2, 3. The group 〈ι1, ι2, ι3〉 generated by these three complex reflections is
an ultra-parallel complex hyperbolic triangle group of type [m1,m2, 0;n1, n2, n3].
Looking at the arrangement of the chains C1, C2, and C3 in the Heisenberg space
N , the finite chain C3 is the (Euclidean) unit circle in C×{0}, whereas C1 and C2

are vertical lines through the points ϕ1 = r2e
iθ and ϕ2 = −r1e

−iθ, respectively; see
Figure 2. For k = 1, 2, the reflection ιk rotates any vertical chain as a set through
2π
nk

around Ck.

4. Compression property

Let C1, C2, C3 be chains in N as in the previous section. Let ιk be the minimal
complex reflection of order nk in the chain Ck for k = 1, 2, 3. We will assume that
n3 = 2. To prove the discreteness of the group 〈ι1, ι2, ι3〉 we will use the following
version of Klein’s combination theorem discussed in [WG]:

Proposition 4. If there exist subsets U1, U2, and V in N with U1 ∩ U2 = ∅ and
V � U1 such that ι3(U1) = U2 and g(U2) � V for all g �= Id in 〈ι1, ι2〉, then the
group 〈ι1, ι2, ι3〉 is a discrete subgroup of PU(2, 1). Groups with such properties are
called compressing.

Projecting the actions of complex reflections ι1 and ι2 to C × {0} we obtain
rotations j1 and j2 of C around ϕ1 = r2e

iθ and ϕ2 = −r1e
−iθ through 2π

n1
and 2π

n2
,

respectively. We will use Proposition 4 to prove the following lemma:

Lemma 1. If |f(0)| � 2 for all f �= Id in 〈j1, j2〉 and |h(0)| � 2 for all vertical
Heisenberg translations h �= Id in 〈ι1, ι2〉, then the group 〈ι1, ι2, ι3〉 is discrete.

Proof. Consider the unit spinal sphere

U = {(ζ, ν) ∈ N
∣∣ |ζ|4 + ν2 = 1}.

The complex reflection ι3 in C3 is given by

ι3([z1 : z2 : z3]) = [−z1 : z2 : −z3] = [z1 : −z2 : z3].

The complex reflection ι3 preserves the bisector

C = {[z : it : 1] ∈ H2
C

∣∣ |z|2 < 1− t2, z ∈ C, t ∈ R}
and hence preserves the unit spinal sphere U which is the boundary of the bisector C.
The complex reflection ι3 interchanges the points [0 : 1 : 1] and [0 : −1 : 1] in H2

C
,

which correspond to the points (0, 0) and ∞ in N . Therefore, ι3 leaves U invariant
and switches the inside of U with the outside.

Let U1 be the part of N\U outside U , containing ∞, and let U2 be the part
inside U , containing the origin. Clearly

U1 ∩ U2 = ∅ and ι3(U1) = U2.

Therefore, if we find a subset V � U1 such that g(U2) � V for all elements g �= Id
in 〈ι1, ι2〉, then we will show that 〈ι1, ι2, ι3〉 is discrete. Let

W = {(ζ, ν) ∈ N
∣∣ |ζ| = 1}
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be the cylinder consisting of all vertical chains through ζ ∈ C with |ζ| = 1. Let

W1 = {(ζ, ν) ∈ N
∣∣ |ζ| > 1} and W2 = {(ζ, ν) ∈ N

∣∣ |ζ| < 1}
be the parts of N\W outside and inside the cylinder W , respectively. We have
U2 ⊂ W2 and so g(U2) ⊂ g(W2) for all g ∈ 〈ι1, ι2〉. The set W2 is a union of vertical
chains. We know that elements of 〈ι1, ι2〉 map vertical chains to vertical chains.
There is also a vertical translation on the chain itself. Therefore, we look at both
the intersection of the images of W2 with C × {0} and the vertical displacement
of W2.

Elements of 〈ι1, ι2〉 move the intersection of W2 with C × {0} by rotations j1
and j2 around r2e

iθ and −r1e
−iθ through 2π

n1
and 2π

n2
, respectively. Provided that

the interior of the unit circle is mapped completely off itself under all non-identity
elements in 〈j1, j2〉, then the same is true forW2 and hence for U2 under all elements
in 〈ι1, ι2〉 that are not vertical Heisenberg translations.

A vertical Heisenberg translation will shift W2 and its images g(W2) vertically
by the same distance; hence the same is true for U2 and its images g(U2).

We choose V to be the union of all the images of U2 under all non-vertical
elements of 〈ι1, ι2〉. This subset will satisfy the compressing conditions assuming
that the interior of the unit circle is mapped off itself by any non-identity element
in 〈j1, j2〉 and that the interior of the unit spinal sphere U is mapped off itself by
any non-identity vertical Heisenberg translation in 〈ι1, ι2〉. Since the radius of the
unit circle is preserved under rotations, we need to show that the origin is moved
the distance of at least twice the radius of the circle:

|f(0)| � 2 for all f ∈ 〈j1, j2〉, f �= Id .

Since vertical translations shift the spinal spheres vertically, we need to show that
they shift by at least the height of the spinal sphere:

|h(0)| � 2 for all vertical Heisenberg translations h ∈ 〈ι1, ι2〉, h �= Id .

We see that the conditions of this lemma ensure that the sets U1, U2, and V satisfy
the conditions of Proposition 4. �

5. Parametrisation of complex hyperbolic triangle groups

of type [m,m, 0; 3, 3, 2]

We will now focus on the case of [m1,m2, 0;n1, n2, n3]-groups with

m1 = m2 = m,n1 = n2 = 3, and n3 = 2.

In this case the setting described in section 3 is as follows. We consider the fol-
lowing configuration of chains in N : C3 is the (Euclidean) unit circle in C × {0},
whereas C1 and C2 are vertical lines through the points ϕ1 = reiθ and ϕ2 = −re−iθ,
respectively, where r = cosh(m/2) and θ ∈ (−π/2, π/2). The type of triangle
formed by C1, C2, C3 is an ultra-parallel [m,m, 0]-triangle with angular invari-
ant α = π − 2θ ∈ (0, 2π). We will consider the ultra-parallel triangle group
Γ = 〈ι1, ι2, ι3〉 generated by the minimal complex reflections ι1, ι2, ι3 of orders 3, 3, 2
in the chains C1, C2, C3, respectively.

The description of complex reflections in section 2.8 in this case is as follows:
The reflection ιk for k = 1, 2 is given by

(ζ, ω) �→ (μζ + (1− μ)ϕk, ω + 2|ϕk|2 Im(1− μ) + 2 Im((1− μ)ϕ̄kζ)),
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where μ = exp(2πi/3), and can be decomposed into a product of a Heisenberg
translation and a Heisenberg rotation:

ιk = Rμ ◦ T(ξk,νk) = T(μξk,νk) ◦Rμ,

where

ξk = (μ̄− 1)ϕk and νk = −2|ϕk|2 · Im(1− μ) = 2|ϕk|2 sin(2π/3).
For k = 1, 2, the reflection ιk rotates any vertical chain as a set through 2π

3
around Ck.

6. Subgroup of Heisenberg translations

Let Γ = 〈ι1, ι2, ι3〉 be as in section 5. In this section we will consider the structure
of the subgroup E = 〈ι1, ι2〉 in more detail.

Proposition 5. Let T be the subgroup of all Heisenberg translations in E. Every
element of E can be written as a product of a Heisenberg translation and a power
of ι1. The group T is generated by the elements

T1 = ι2ι1ι2 and T2 = ι1ι1ι2.

Let H = [T1, T2] = (ι1ι2)
3. Every element of T is of the form T x

1 T
y
2 H

n for some
x, y, n ∈ Z. The elements T1, T2, H are Heisenberg translations by

(v1, t1) = (2r
√
3 cos(θ) · i, 12

√
3r2 cos2(θ)),

(v2, t2) = (r cos(θ) · (3 + i
√
3), 12r2 sin(θ) cos(θ)),

(0, ν) = (0, 24r2
√
3 cos2(θ)),

respectively. The subgroup of vertical Heisenberg translations in E is an infinite
cyclic group generated by H. The shortest non-trivial vertical translations in E are
H and H−1.

Proof. We can write every element in E as a word in the generators ι±1
1 and ι±1

2 .
Using the relations ι−1

1 = ι21 and ι−1
2 = ι22 we can rewrite it as a word in just ι1

and ι2. Consider the words ιk1k2k3
= ιk1

ιk2
ιk3

of length 3. Using the decomposition
ιk = Rμ ◦ T(ξk,νk) = T(μξk,νk) ◦Rμ (section 5), we can write

ιk1k2k3
= (Rμ ◦ T(ξk1

,νk1
)) ◦ (Rμ ◦ T(ξk2

,νk2
)) ◦ (Rμ ◦ T(ξk3

,νk3
))

= (Rμ)
3 ◦ T(μξk1

,νk1
) ◦ T(μ2ξk2

,νk2
) ◦ T(ξk3

,νk3
)

= T(μξk1
,νk1

) ◦ T(μ2ξk2
,νk2

) ◦ T(ξk3
,νk3

);

hence ιk1k2k3
is a Heisenberg translation. Let f ∈ E = 〈ι1, ι2〉. We can write f as

a product of some words of length 3 and one word of length at most 2. Moreover,
using the relations ι2 = ι211 · ι1, ι22 = ι221 · ι21, ι1ι2 = ι121 · ι21, and ι2ι1 = ι211 · ι21, we
can rewrite f as a product of some words of length 3 and a power of ι1. Using the
relations ι31 = ι32 = Id we see that all words ιk1k2k3

of length 3 can be expressed in
terms of T1 = ι212 and T2 = ι112 as ι221 = T−1

2 , ι122 = T2T
−1
1 , ι211 = T1T

−1
2 , and

ι121 = T2T
−1
1 T−1

2 . Hence f can be written as a product of an element in 〈T1, T2〉
and an element w ∈ 〈ι1〉, and f is a Heisenberg translation if and only if w = Id.
Therefore T = 〈T1, T2〉.

Let H = [T1, T2] ∈ T . As a commutator of two Heisenberg translations, the
element H is a vertical Heisenberg translation and lies in the centre of N ; hence
[H,T1] = [H,T2] = 1. Direct computation shows that T2HT−1

2 = (ι1ι2)
3. On
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the other hand, T2H = HT2 implies that T2HT−1
2 = HT2T

−1
2 = H; hence H =

(ι1ι2)
3. Using the relations HT1 = T1H, HT2 = T2H, and T2T1 = T1T2H

−1,
every element of T can be written in the form T x

1 T
y
2 H

n for some x, y, n ∈ Z. The
elements T1 and T2 are Heisenberg translations by (v1, t1) and (v2, t2), respectively.
The commutatorH = [T1, T2] is a vertical Heisenberg translation by ν = 4 Im(v1v̄2).
We determine (vk, tk) and ν by direct computation. Projection to C maps H to
the identity, Tk to the Euclidean translation by vk, and T x

1 T
y
2 H

n to the Euclidean
translation by xv1 + yv2. Hence T x

1 T
y
2 H

n is a vertical translation if and only if
x = y = 0, i.e., if it is a power of H. Therefore the subgroup of vertical Heisenberg
translations in E is generated by H. �

Remark. The group T has the presentation

T = 〈T1, T2, H
∣∣ [T1, T2] = H, [H,T1] = [H,T2] = 1〉

and is isomorphic to the uniform lattice N1 as defined in section 2.6.

Remark. An alternative approach to the understanding of the structure of the
subgroup E = 〈ι1, ι2〉 is to use the classification of almost-crystallographic groups by
Dekimpe [De]. An almost-crystallographic group is a uniform discrete subgroup E
of G�C, where G is a connected, simply connected nilpotent Lie group and C
is a maximal compact subgroup of Aut(G). As a discrete subgroup of N�U(1)
(see section 2.8), the group E is an almost-crystallographic group with G = N
and U(1) ⊂ C ⊂ Aut(N ). The projection of E = 〈ι1, ι2〉 to C is a wallpaper
group Q = 〈j1, j2〉, where jk is the rotation of C around ϕk through 2π/3 obtained
by projecting ιk to C. The wallpaper group Q = 〈j1, j2〉 is generated by two order 3
rotations and has a presentation

〈j1, j2
∣∣ j31 = j32 = (j1j2)

3 = 1〉.

The standard notation for this wallpaper group is p3; see for example [BB]. In
the classification of three-dimensional almost-crystallographic groups in section 7.1
of [De], the wallpaper group p3 appears in case 13 on page 164. In this case the
group E is generated by elements a, b, c, α with relations

[b, a] = ck1 , [c, a] = [c, b] = [c, α] = 1, αa = bαck2 , αb = a−1b−1αck3 , α3 = ck4 .

We consider the generators ι1 = α and ι2 = αa so that α3 = (αa)3 = 1. The
hypothesis α3 = 1 implies k4 = 0. The hypothesis (αa)3 = 1 can be rewritten as

1 = (αa)3 = αaα(aα)a = αaα(b−1α)b−1ack3 = αa(αα)a−1b−1ack2+k3

= (ba−1b−1a)c2k2+k3 = b([b, a])−1b−1c2k2+k3 = c−k1+2k2+k3 ;

hence −k1 + 2k2 + k3 = 0. The translations T1 and T2 in Proposition 5 are

T1 = ι2ι1ι2 = (αa)α2a = back2 and T2 = ι1ι1ι2 = α3a = a.

Their commutator is

H = [T1, T2] = (back2)−1a−1(back2)a = a−1b−1a−1baa = a−1[b, a]a = ck1 .

On the other hand, the kernel of the map E = 〈ι1, ι2〉 → 〈j1, j2〉 given by ι1 �→ j1,
ι2 �→ j2 is generated by (ι1ι2)

3. We calculate

(ι1ι2)
3 = (α2a)3 = α2aα2(aα2)a = α2a(αb)ack2 = α2b−1(αa)ck2+k3 = c2k2+k3 .
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Using −k1 + 2k2 + k3 = 0 we can rewrite this as (ι1ι2)
3 = ck1 . Hence the element

H = [T1, T2] = (ι1ι2)
3 = ck1 is the shortest vertical Heisenberg translation in

E = 〈ι1, ι2〉.

7. Proof of Proposition 1

Let Γ = 〈ι1, ι2, ι3〉 be as in section 5. In this section we will use Lemma 1 to find
conditions for the group Γ to be discrete.

Proof. We need to check that the conditions of Lemma 1 are satisfied. Note that
m � loge(3) implies that

r = cosh
(m
2

)
� 2√

3
.

We first check that |h(0)| � 2 for all vertical Heisenberg translations h �= Id in
〈ι1, ι2〉. Any vertical translation in 〈ι1, ι2〉 is a power of the vertical translation H

by (0, 24r2
√
3 cos2(θ)). We need the displacement of each vertical translation Hn,

n �= 0, to be at least the height of the spinal sphere, i.e.,

24r2
√
3 cos2(θ) � 2 ⇐⇒ r2 cos2(θ) �

√
3

36
.

The hypothesis cos(α) � − 1
2 for α ∈ (0, 2π) implies that 2π

3 � α � 4π
3 and hence

|θ| =
∣∣π−α

2

∣∣ � π
6 . For cos(θ) �

√
3
2 and r � 2√

3
we have

r2 cos2(θ) � 1 >

√
3

36
;

hence the condition |h(0)| � 2 is satisfied for all vertical translations h �= Id in
〈ι1, ι2〉.

We will now check that |f(0)| � 2 for all f �= Id in 〈j1, j2〉. We can write every
element f in 〈j1, j2〉 as a word in the generators j1 and j2. Figure 3 shows the
points f(0) for all words f of length up to 6 in the case r = 1 and θ = 0:

Figure 3. Points f(0) for all words f up to length 6.
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The group 〈j1, j2〉 is the projection to C of the group E = 〈ι1, ι2〉. For k = 1, 2,
projecting ιk to C, we obtain a rotation jk of C through 2π

3 around ϕk. These
rotations are given by jk(z) = μ · z+(1−μ) ·ϕk, where μ = exp(2πi/3). According
to Proposition 5, every element of E is of the form T x

1 T
y
2 H

nι	1 for some x, y, n ∈ Z

and  ∈ {0, 1, 2}, where T1 = ι2ι1ι2, T2 = ι1ι1ι2, and H = [T1, T2] are Heisenberg
translations by (v1, t1), (v2, t2), and (0, ν), respectively, and

v1 = 2r
√
3 cos(θ) · i, v2 = r cos(θ) · (3 + i

√
3).

Projection to C maps H to the identity, Tk to the Euclidean translation by vk,
T x
1 T

y
2 H

n to the Euclidean translation by xv1 + yv2, and ι1 to the rotation j1.
Therefore every element of 〈j1, j2〉 is a product of a translation by xv1 + yv2 for
some x, y ∈ Z and a rotation j	1 for some  ∈ {0, 1, 2}. Hence every point in the
orbit of 0 under 〈j1, j2〉 is of the form p+ xv1 + yv2, where x, y ∈ Z and

p ∈ {0, j1(0), j21(0)} = {0, (1− μ)ϕ1, (1− μ̄)ϕ1}.

Using |v1|2 = |v2|2 = 2Re(v1v̄2) = 12r2 cos2(θ), we calculate

|p+ xv1 + yv2|2

= x2|v1|2 + y2|v2|2 + 2xyRe(v1v̄2) + 2xRe(pv̄1) + 2yRe(pv̄2) + |p|2

= 12r2 cos2(θ) · (x2 + xy + y2) + 2xRe(pv̄1) + 2yRe(pv̄2) + |p|2.

We make a coordinate change u = y − x and v = x + y; that is, x = (v − u)/2
and y = (u + v)/2. Points (x, y) ∈ Z2 are mapped to points (u, v) ∈ Z2 with
u ≡ vmod 2. We obtain

|p+ xv1 + yv2|2 = 3r2 cos2(θ) · (u2 + 3v2 − 2au− 6bv + a2 + 3b2)

= 3r2 cos2(θ) · ((u− a)2 + 3(v − b)2),

where

a =
Re(p(v̄1 − v̄2))

6r2 cos2(θ)
= −

Re
(
p(3 + i

√
3)
)

6r cos(θ)
,

b = −Re(p(v̄1 + v̄2))

18r2 cos2(θ)
= −

Re
(
p(1− i

√
3)
)

6r cos(θ)

and

a2 + 3b2 =
|p|2

3r2 cos2(θ)
.

Our aim is to show that |p + xv1 + yv2|2 � 3r2 for all (x, y) ∈ Z2, excluding
the case p = 0, x = y = 0 that corresponds to f = Id. This is equivalent to
(u − a)2 + 3(v − b)2 � sec2(θ) for all (u, v) ∈ Z2 with u ≡ vmod 2, excluding
the case a = b = u = v = 0. Note that this inequality is always satisfied if
|u− a| � sec(θ) or |v − b| � sec(θ)/

√
3, so we only need to check that

g(u, v) = (u− a)2 + 3(v − b)2 − sec2(θ) � 0

for all (u, v) ∈ Z2 with u ≡ vmod 2 inside the bounding box

(a− sec(θ), a+ sec(θ))×
(
b− sec(θ)√

3
, b+

sec(θ)√
3

)
.
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In the following table we list the values of a, b, and a2 + 3b2 in terms of t = tan(θ)

and μ = exp(2πi/3) = − 1−i
√
3

2 for w ∈ {Id, j1, j21}:

w p = w(0) a b a2 + 3b2

Id 0 0 0 0

j1 (1− μ) · ϕ1 −1 − t√
3

t2 + 1

j21 (1− μ̄) · ϕ1
1
2 (t

√
3− 1) − 1

6 (3 + t
√
3) t2 + 1

Under the assumption that |θ|� π
6 we have t=tan(θ)∈ [−d, d] and sec(θ)∈ [1, 2d],

where d = 1/
√
3 ≈ 0.577. In each of the three cases we list the bounds on a and b

and the size of the bounding box:

(min(a)− 2d,max(a) + 2d)× (min(b)− 2/3,max(b) + 2/3).

We then calculate

g(u, v) = (u− a)2 + 3(v − b)2 − sec2(θ)

= u2 + 3v2 − 2au− 6bv + (a2 + 3b2)− (t2 + 1)

and check that g(u, v) � 0 for all (u, v) ∈ Z2 with u = vmod 2 inside the bounding
box.

• w = Id, a = b = 0: The bounding box

(−2d, 2d)× (−2/3, 2/3) ⊂ (−2, 2)× (−1, 1)

contains only one point (u, v) ∈ Z2 with u = vmod2, the point (u, v) =
(0, 0), which corresponds to the excluded case f = Id.

• w = j1, a = −1, b = −t/
√
3 ∈ [−1/3, 1/3]: The bounding box

(−1− 2d,−1 + 2d)× (−1, 1) ⊂ (−3, 1)× (−1, 1)

contains points (0, 0) and (−2, 0). The function

g(u, v) = u2 + 3v2 + 2u+ 2tv
√
3 + (t2 + 1)− (t2 + 1)

= u2 + 3v2 + 2u+ 2tv
√
3

is non-negative: g(0, 0) = g(−2, 0) = 0.

• w = j21 , a = 1
2 (t

√
3 − 1) ∈ [−1, 0], b = − 1

6 (3 + t
√
3) ∈ [−2/3,−1/3]: The

bounding box

(−1− 2d, 2d)× (−4/3, 1/3) ⊂ (−3, 2)× (−2, 1)

contains points (1,−1), (0, 0), (−1,−1), and (−2, 0). The function

g(u, v) = u2 + 3v2 − u(t
√
3− 1) + v(3 + t

√
3) + (t2 + 1)− (t2 + 1)

= u2 + 3v2 + u+ 3v − (u− v)t
√
3

is non-negative:

g(0, 0) = g(−1,−1) = 0, g(1,−1) = 2− 2t
√
3 � 0, g(−2, 0) = 2 + 2t

√
3 � 0.

In all cases we have shown that g(u, v) � 0, hence |p+xv1+yv2|2 � 3r2. Under the

assumption that m � loge(3) we have 3r2 = 3 cosh2
(
m
2

)
� 4. Therefore |f(0)| � 2

for all f �= Id in 〈j1, j2〉. Hence all conditions of Lemma 1 are satisfied, and we can
conclude that the group 〈ι1, ι2, ι3〉 is discrete. �
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8. Proof of Proposition 2

Let Γ = 〈ι1, ι2, ι3〉 be an ultra-parallel [m,m, 0; 3, 3, 2]-triangle group as in sec-
tion 5. In this section we will use the following complex hyperbolic version of
Shimizu’s lemma introduced in [P92, P94, P97] to find conditions for the group Γ
not to be discrete.

Lemma 2. Let Γ be a discrete subgroup of PU(2, 1). Let g ∈ Γ be a Heisen-
berg translation by (ξ, ν) and let h = (hij)1�i,j�3 ∈ Γ be an element that satisfies
h(∞) �= ∞. Then

r2h � ρ0(g(h
−1(∞)), h−1(∞))ρ0(g(h(∞)), h(∞)) + 4 |ξ|2 ,

where ρ0 is the Cygan metric on N and

rh =

√
2

|h22 − h23 + h32 − h33|

is the radius of the isometric sphere of h.

We will now prove Proposition 2:

Proof. We will apply Lemma 2 to the vertical Heisenberg translation g = (ι1ι2)
3

and the element h = ι3 in Γ = 〈ι1, ι2, ι3〉. The matrix of the element h = ι3 = ι−1
3

is

h = h−1 =

⎛
⎜⎜⎝
−1 0 0

0 1 0

0 0 −1

⎞
⎟⎟⎠ .

The radius of the isometric sphere of h is rh = 1. To calculate h(∞) we first map
∞ from the Heisenberg space to the boundary of complex hyperbolic 2-space. That
is,

∞ �→ [0 : 1 : −1] ∈ ∂H2
C.

We apply h to this point:

h([0 : 1 : −1]) = [0 : 1 : 1] ∈ ∂H2
C.

Note that h(∞) �= ∞. Mapping this point back to the Heisenberg space,

[0 : 1 : 1] �→ (0, 0) ∈ N .

For a vertical Heisenberg translation g, we have ξ = 0 and ρ0(g(ζ, ω), (ζ, ω)) = |ν| 12
for all (ζ, ω) ∈ N . Substituting these values into the inequality given in Lemma 2,
we obtain that if |ν| < 1, then the group is not discrete. From Proposition 5
we know that g = (ι1ι2)

3 is a vertical Heisenberg translation by (0, ν) with ν =

24
√
3r2 cos2(θ). Hence the group Γ is not discrete if

cos2(θ) <
1

24
√
3r2

.

Using cos(α) = 1− 2 cos2(θ), we conclude that the group Γ is not discrete provided
that

cos(α) > 1− 1

12
√
3r2

= 1− 1

12
√
3 cosh2

(
m
2

) . �
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