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FABER AND GRUNSKY OPERATORS CORRESPONDING

TO BORDERED RIEMANN SURFACES

MOHAMMAD SHIRAZI

Abstract. Let R be a compact Riemann surface of finite genus g > 0 and
let Σ be the subsurface obtained by removing n ≥ 1 simply connected regions
Ω+

1 , . . . ,Ω+
n from R with non-overlapping closures. Fix a biholomorphism fk

from the unit disc onto Ω+
k for each k and let f = (f1, . . . , fn). We assign

a Faber and a Grunsky operator to R and f when all the boundary curves
of Σ are quasicircles in R. We show that the Faber operator is a bounded
isomorphism and the norm of the Grunsky operator is strictly less than one
for this choice of boundary curves. A characterization of the pull-back of the
holomorphic Dirichlet space of Σ in terms of the graph of the Grunsky operator

is provided.

1. Introduction and main results

Let C denote the complex plane, let D denote the open unit disc in C, and let
C = C ∪ {∞} denote the Riemann sphere. Let also D− = {z ∈ C : |z| > 1} ∪ {∞},
and let S1 be the unit circle in C. We use g for the genus of a Riemann surface to
distinguish it from its Green’s function g.

Let Σ be a bordered Riemann surface (in the sense of L. V. Ahlfors and L. Sario
[1, II. 3A]) obtained from a compact Riemann surface R of genus g ≥ 0 from
which n ≥ 1 simply connected domains Ω+

1 , . . . ,Ω
+
n , with non-overlapping closures

removed. We assume the boundary curves Γ1, . . . ,Γn (of Σ) are homeomorphic to
S
1. We call Σ a bordered surface of genus g ≥ 0 with n borders. We further assume

that there exist biholomorphisms fk : D → Ω+
k , k = 1, . . . , n. The map fk may be

normalized by assuming fk(0) = pk for some point pk ∈ Ω+
k . Moreover, we assume

each fk admits a quasiconformal extension to an open neighbourhood of D. In this
case Γk = fk(S

1) is a quasicircle in R (see Section 2.2 for a definition). Define
Ω−

k = R\cl(Ω+
k ), where by cl we mean the closure in the topology of R. It is clear

that Ω−
k includes Σ. Let f = (f1, . . . , fn), O =

⋃n
k=1Ω

+
k , and Γ =

⋃n
k=1 Γk.

In this paper,1 we will define the Faber and Grunsky operators corresponding
to the surface R and f assuming that g > 0. These operators were defined in the
case n > 1, and g = 0, by D. Radnell, E. Schippers, and W. Staubach [8]. They
used these two operators to define a period map on the Teichmüller space of such a
surface. Also in the case n = 1, and g > 0, D. Radnell, E. Schippers, W. Staubach,
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and the author defined the Faber, Grunsky (and Schiffer) operators corresponding
to Σ in [7].

The main results in this paper are the following two. First, we will show that the
Faber operator (as an operator on some Dirichlet spaces) is a bounded isomorphism
when all the boundary curves are quasicircles (Corollary 4.5); also for this choice
of boundary curves the Grunsky operator (between some Dirichlet spaces) is a
bounded operator of norm strictly less than one (Theorem 5.9). Secondly, we will
provide a characterization of the pull-back of D(Σ) (the holomorphic Dirichlet space
of Σ) under f as the graph of the Grunsky operator (Theorem 6.1).

To motivate the topic, we recall the classical Grunsky coefficients and Grunsky
operator and some of their relationships here. Let

g(z) = z +

∞∑
n=0

bnz
−n

be an analytic function in some neighbourhood of ∞ (in the Riemann sphere) and
one-to-one for |z| > ρ for some ρ > 0. The coefficients {ckl} defined by

log
g(z)− g(ζ)

z − ζ
= −

∞∑
k=1

∞∑
l=1

ckl z
−kζ−l

are called the Grunsky coefficients of g. Furthermore, if g(∞) = ∞ with residue
one, the so-called Grunsky inequalities for g, are as follows:

∞∑
k=1

k

∣∣∣∣∣
∞∑
l=1

cklλl

∣∣∣∣∣
2

≤
∞∑
k=1

|λk|2

k
,

∣∣∣∣∣
∞∑
k=1

∞∑
l=1

ckl λkλl

∣∣∣∣∣ ≤
∞∑
k=1

|λk|2

k
,

for arbitrary complex variables λk’s, provided that the right hand side series con-
verges.

The Grunsky operator, corresponding to the map g, is defined by

Grg : �2(C) → �2(C)

(xk) →
( ∞∑

l=1

√
kl ckl xl

)
.

It was shown that (see Ch. Pommerenke [6]) the Grunsky inequalities have the
following operator theoretic forms:

‖Grgx‖ ≤ ‖x‖ , |〈x,Grgx〉| ≤ ‖x‖2 .
Therefore, the Grunsky operator is a bounded operator of norm less than or equal
to one for g defined above. It has been known that when the domain g(D−) is a
quasidisc the Grunsky operator norm is strictly less than one.

Some applications of the Grunsky inequalities in the Teichmüller spaces date
back to the 1980s; I. V. Žuravlev [23] seems to be the first to work in this subject.
Another early work is H. Shiga [18] who used the Grunsky inequalities to investigate
the boundaries of Teichmüller spaces. More recently, L. A. Takhtajan and L.-P. Teo
[22], and then later Y. Shen [20], defined a map on the universal Teichmüller space
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using the Grunsky operator; see also Y. Shen [21] for defining a Grunsky map on
the asymptotic universal Teichmüller space using the Grunsky operator. A question
that naturally arises here is how the Faber and Grunsky operators defined in this
paper can be used to investigate some properties of the Teichmüller space of Σ.
This is a motivation for the results of the paper.

Outline. In Section 2 we go through basic definitions and theorems of function
theory on Riemann surfaces. In Section 3 we define the ingredients required to
define the Faber and Grunsky operators on the Riemann surface R described above.
In Section 4 we define the Faber operator and show some of its properties. In
Section 5 we define the Grunsky operator and prove that its norm is strictly less
than one when all the boundary curves are quasicircles. In Section 6 we provide a
characterization of the pull-back of D(Σ) under f .

Remark 1.1. In the case n = 1 we simply use Ω, and Γ instead of Ω+
1 and Γ1,

respectively. Therefore, O = Ω is simply connected, and Σ = Ω−. If R is a
compact Riemann surface which is in general divided by a Jordan curve Γ into two
connected subsurfaces, then we use Σ1 and Σ2 to indicate these subsurfaces; that
is, Σi’s are not necessarily simply connected subsurfaces.

2. Preliminaries

By a domain on a Riemann surface R we mean an open connected subset of R.
For a complex-valued function h on a domain, by h we mean h(z) = h(z) for every
z in that domain. We use [h]A ([α]A) to indicate the restriction of the function h
(1-form α) to a set A.

2.1. Harmonic functions, forms, and Dirichlet spaces. Here we review some
standard definitions on a Riemann surface R with atlas {(U, φ)} of holomorphic
charts; see H. L. Royden [9] or H. M. Farkas and I. Kra [4] for more detail.

For a holomorphic chart (U, φ) the map z = φ(w), w ∈ U is called a uniformizer.
Let Σ be a domain of R, which in some cases could be R. Given a 1-form

α = a dx+ b dy on Σ the dual of α is defined by

�α = �(a dx+ b dy) = a dy − b dx,

which is easily seen to be independent of the choice of coordinates. The conjugate
of α is defined by ᾱ = ā dx + b̄ dy. A 1-form α is called harmonic on Σ if both α
and �α are closed 1-forms (i.e., dα = d � α = 0).

The operators ∂ and ∂ denote the Wirtinger derivatives where the output is
understood to be a 1-form. That is, for a function f(z) = f(x+ iy) with continuous
first order partial derivatives in Σ, one has

∂f

∂z
:=

1

2

(
∂f

∂x
− i

∂f

∂y

)
, ∂f :=

∂f

∂z
dz,

∂f

∂z̄
:=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
, ∂f :=

∂f

∂z̄
dz̄.

We use ∂z or ∂z when derivatives are taken with respect to a specific variable z.
Let d denote ∂ + ∂.

A function u is said to be harmonic on Σ if u is C2 in Σ and d � du = 0 (the
Laplace equation).
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On the vector space of all harmonic 1-forms on Σ, we define the following inner
product and subspaces:

‖α‖Aharm(Σ) =
1

2

∫∫
Σ

α ∧ �α, α harmonic 1-form on Σ,

Aharm(Σ) :=
{
α : α is a harmonic 1-form on Σ and ‖α‖Aharm(Σ) < ∞

}
,

Dharm(Σ) :=
{
h : h is a harmonic function on Σ, dh = ∂h+ ∂̄h ∈ Aharm(Σ)

}
.

We call Aharm(Σ) theBergman space of harmonic 1-forms on Σ which is a Hilbert
space equipped with the inner product

〈α, β〉Aharm(Σ) =
1

2

∫∫
Σ

α ∧ �β, α, β ∈ Aharm(Σ),

and Dharm(Σ) the Dirichlet space of harmonic functions on Σ, or simply the
harmonic Dirichlet space of Σ which is also a Hilbert space equipped with
〈h, g〉Dharm(Σ) = 〈dh, dg〉Aharm(Σ).

Let A(Σ) denote the subspace of holomorphic 1-forms in Aharm(Σ). Similarly,

A(Σ) contains all the anti-holomorphic ones. We naturally have

Aharm(Σ) = A(Σ)⊕A(Σ).

We use Dharm(Σ)q to indicate the set of functions in Dharm(Σ) which vanish

at q ∈ Σ. D(Σ)q and D(Σ)q are defined similarly. Aharm(Σ)e contains the exact

elements in Aharm(Σ); that is, if α ∈ Aharm(Σ)e, then there exists h ∈ Dharm(Σ)

such that dh = α. A(Σ)e and A(Σ)e are defined in the same way.
If α is an element in Aharm(Σ), then the Dirichlet semi-norm of α is defined by

||α||2Aharm(Σ) := 〈α, α〉Aharm(Σ) .

Similarly, for an element h ∈ Dharm(Σ), we have

‖h‖Dharm(Σ) := ‖dh‖Aharm(Σ).

This implies that the operators

∂ : D(Σ) → A(Σ)e

h → ∂h

and

∂ : D(Σ) → A(Σ)e

h̄ → ∂h̄

preserve the Dirichlet semi-norm.

Remark 2.1. ∂ and ∂ are isomorphisms if restricted to D(Σ)q and D(Σ)q for some
q ∈ Σ, respectively.

Suppose A and B are two domains in some Riemann surfaces and φ : A → B
is a biholomorphism. It is easy to show that h ∈ Dharm(B) if and only if h ◦ φ ∈
Dharm(A). In particular, the composition with φ (i.e., pull-back by φ) preserves
the Dirichlet semi-norm. Thus, the composition operator

Cφ : Dharm(B) → Dharm(A)

h → h ◦ φ
is an isometric isomorphism (with respect to Dirichlet semi-norm).
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Every harmonic function h ∈ Dharm(G) on a simply connected domain G (on a
Riemann surface), can be decomposed as h1 + h2 for some h1, h2 ∈ D(G) where h1

and h2 are determined uniquely by the condition that h1(p) = 0 for some p ∈ G.
Define the holomorphic projection operator

PG : Dharm(G) → D(G)p

taking h to h1. Similarly, define the anti-holomorphic projection operator

PG : Dharm(G) → D(G)

taking h to h2. In particular, by PD and PD (PD− and PD−) we mean the projection
operators for D (D−) in C where p = 0 (p = ∞). Note that PG(a) = 0 and
PG(a) = a for any constant a ∈ C. It is clear that we have the identity

(2.1) I = PG + PG,

where I is the identity operator on Dharm(G). We may need to project a harmonic
1-form on a given domain G (not necessarily simply connected) to its holomorphic
and anti-holomorphic parts. By P (G) and P (G) we mean the projection operators
of harmonic 1-forms on G to the holomorphic and the anti-holomorphic parts,
respectively.

2.2. Transmission and bounce operators, and CNT boundary limits. Def-
initions and notation in this section are taken from recent papers of E. Schippers
and W. Staubach [16,17]. Let R be a compact Riemann surface. Then we have the
following definitions:

• A Jordan curve in R is a homeomorphic image of S1.
• An open connected subset G of R containing a Jordan curve Γ is called a

doubly connected neighbourhood of Γ in R if G is bounded by two non-
intersecting Jordan curves, each one homotopic to Γ within the closure of G.

• The pair (G,φ) where G is as above and φ : G → A is a biholomorphism to
some annulus A in C is called a doubly connected chart for Γ. Although we use
the same notation here as the one used for a general uniformizer, it should be clear
from the context which one is the case.

• Every Jordan curve Γ in R which has a doubly connected chart is called a
strip-cutting Jordan curve.

• A collar neighbourhood of a Jordan curve Γ in R is an open connected
subset A of R bordered by Γ and Γ′, where Γ′ is a Jordan curve in R which is
homotopic to Γ from within the closure of A and such that Γ ∩ Γ′ is empty.

• A collar chart for a Jordan curve Γ in R is a collar neighbourhood A together
with a biholomorphism φ : A → A for some annulus A in C.

• A Jordan curve Γ on a Riemann surface R is called a quasicircle if there exists
a biholomorphism φ : A → B, where A is a doubly connected neighbourhood of Γ
in R and B is a doubly connected domain in C, such that φ(Γ) is a quasicircle in
C. See O. Lehto [5] for a definition of a quasicircle in C.

We define the following conformally non-tangential (abbreviated by CNT)
boundary limits for harmonic functions defined on simply connected domains of
a compact Riemann surface R. This is similar to the well-known notion of the
non-tangential limit of harmonic functions defined on D in C.

Definition 2.2 (CNT boundary limit). Let R be as above and let also Ω be a
simply connected domain of R bounded by a Jordan curve Γ. Let also s ∈ Γ and
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let f : D → Ω be a biholomorphism map. We say that h : Ω → C has CNT limit
at s if Cfh = h ◦ f has non-tangential limit at f−1(s). It can be shown that this is
independent of the choice of f .

Now suppose Γ is a strip-cutting Jordan curve dividing R into two connected
subsurfaces Σ1 and Σ2. Suppose Γ is positively oriented with respect to Σ1. Us-
ing Green’s function of Σ1 with singularity at some q ∈ Σ1 (see Section 2.3), it
was shown in [16] that there exists A, a collar neighbourhood of Γ in Σ1, with a
biholomorphism

φ0 : A → A,

where A is an annulus in C, such that φ0(Γ) = S1. φ0 is called the canonical
collar chart with respect to q and Σ1. Now we have the following definition.

Definition 2.3 (Null set). Let Γ be as above. A Borel set I in Γ is called a null
set (with respect to Σ1 and q) if φ0(I) has logarithmic capacity zero in S1.

It can be shown that this definition is independent of the choice of q ∈ Σ1.
Moreover, when Γ is a quasicircle the definition is also independent of the choice
of Σ1. That is, I is a null set with respect to Σ1 if and only if it is a null set with
respect to Σ2; see [17, Theorems 3.2, 3.3] for a proof.

Lemma 2.4. Let R, Γ, Σ1, Σ2, and φ0 be as above. Then a finite union of null
sets in Γ is a null set in Γ.

The above was proven inside the proof of [17, Theorem 2.14]. Briefly, it follows
from the sub-additivity of the outer capacity under countable unions and Choquet’s
theorem, which says that for bounded Borel sets in S1 the outer capacity is the
capacity.

The following theorem shows the existence and uniqueness of the CNT boundary
limits for harmonic functions on simply connected domains of R.

Theorem 2.5 ([3, Theorem 3.2.1]). Let R, Γ, Ω, and f be the same as in Definition
2.2. Then for every h ∈ Dharm(Ω), h has CNT limit at s for all s except possibly
on a null set in Γ with respect to Ω. If h1, h2 ∈ Dharm(Ω) have the same CNT
boundary limits except possibly on a null set in Γ, then h1 = h2 on Ω.

For the existence of the CNT boundary limits of a function h in Dharm(Ω), under
some conditions, h is required to be defined only on a collar neighbourhood of Γ in
Ω.

Theorem 2.6 ([17, Theorem 3.17]). Let R,Γ,Σ1, and Σ2 be as above. Let A be a
collar neighbourhood of Γ in Σ1. Then for any h ∈ Dharm(A), h has CNT boundary
limits on Γ except possibly on a null set in Γ. Furthermore, there exists a unique
H ∈ Dharm(Σ1) whose CNT boundary limits agree with those of h except possibly
on a null set in Γ.

Suppose h1 ∈ Dharm(Σ1) with CNT boundary limit function H1 on Γ. Then a
question that naturally arises here is, Is there any function h2 ∈ Dharm(Σ2) with
CNT boundary limit function H2 on Γ such that H1 = H2 on Γ except possibly on
a null set in Γ? It is worth mentioning that for a Jordan curve, the notion of null
set may change from one side to the other.

The notation O(Σ1,Σ2)h1 is used for h2 if such h2 exists and we say h2 is the
transmission of h1 through the Jordan curve Γ. O(Σ1,Σ2) is clearly linear on
elements in Dharm(Σ1) for which the transmission exists.
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Example 2.7. If R = C and Γ = S1, then such a transmission can be written
explicitly. That is, for every h1 ∈ Dharm(D−), and z ∈ D, we have

[O(D−,D)h1](z) = h1

(
1

z̄

)
.

In particular, O(D−,D)(1/zn) = z̄n, where by 1/zn we mean the harmonic function
h1(z) = 1/zn, n ≥ 0. The operator O(D,D−) on Dharm(D) can be written similarly.

Remark 2.8. For a polynomial h ∈ Dharm(D), the above example and the density
of polynomials C[z, z] in Dharm(D) show that O(D,D−)h admits a holomorphic
extension to every annulus A with outer boundary equal to S

1.

The work [17, Theorem 3.29] showed the existence and the boundedness of the
transmission operator for quasicircles on compact Riemann surfaces. Here is the
theorem.

Theorem 2.9. Let R,Γ,Σ1, and Σ2 be as above, where Γ is a quasicircle. O(Σ1,Σ2)
is a bounded linear operator from Dharm(Σ1) onto Dharm(Σ2) with respect to the
Dirichlet semi-norm.

In other words, they proved that for every h1 ∈ Dharm(Σ1) there exists a unique
h2 ∈ Dharm(Σ2) such that h1 and h2 have same CNT boundary limits on Γ except
possibly on a null set in Γ. A similar result for O(Σ2,Σ1) is valid due to the
symmetry of the definition.

To define the bounce operator let R,Γ,Σ1, and Σ2 be as above. For a given
harmonic function h on a collar neighbourhood A of Γ in Σ1, Theorem 2.6 ensures
that the following operator is well-defined:

G(A,Σ1) : Dharm(A) → Dharm(Σ1)

h → h̃,

where h̃ and h have the same CNT boundary limits on Γ except possibly on a null
set in Γ.

It was shown that [17, Theorem 3.22] if Γ is a quasicircle, then G(A,Σ) is a
bounded operator.

2.3. Cauchy kernel and Green’s function on Riemann surfaces. The gen-
eralization of the Cauchy kernel to compact (and non-compact) Riemann surfaces
is classical; here we follow H. L. Royden [10]. A function f on R is said to have a
logarithmic pole of mass m at the point q ∈ R if in some holomorphic chart (U, φ)
about q one has

f(p) = −m log |φ(p)− φ(q)|+ ψ(p),

where p ∈ U , and ψ is a smooth function on U .

Definition 2.10 (Green’s function). A function g on R which is harmonic on R

except at the points q and q0 and has logarithmic poles there with masses +1 and
−1, respectively, is called Green’s function for R (with poles at q and q0).

If such a function exists, then it is unique up to additive constants. Royden,
therefore, suggested the notation g(p, p0; q, q0) which indicates the normalization in
which g is zero at p0 �= q, q0. Green’s function exists [10, Proposition 1, 2]. We
changed the notation to g(w; z, q) indicating that the poles are at the points z and q.
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Consequently, ∂wg(w; z, q) which has a pole of order one at z and q with residues
+1 and −1, respectively, is our Cauchy kernel. Furthermore, ∂wg(w; q, q) = 0.

For a domain G in R Green’s function can be defined as in the planar case. That
is, gG( . , z) is called Green’s function of G if

• gG(w, z) is a harmonic function in w everywhere on G\{z}.
• If (U, φ) is a holomorphic chart containing z inG, then gG(w, z)+log |φ(w)−
φ(z)| is harmonic in w for w ∈ U .

• limw→w0
gG(w, z) = 0 for every w0 on the boundary G.

Such a function exists; see, e.g., Ahlfors and Sario [1] for a proof of its existence
in the case that R is compact and no boundary component reduces to a point in
R. Each domain Ω+

k has Green’s function with singularity at pk ∈ Ω+
k which is

denoted by gΩ+
k
(., pk). By Γpk

ε , we mean the level curves of Green’s function of Ω+
k ;

that is,

Γpk
ε =

{
w ∈ Ω+

k : gΩ+
k
(w, pk) = ε

}
.

For fixed k, these are simple closed analytic curves which approach Γk from within
Ω+

k as ε > 0 approaches zero.

2.4. Cauchy-type integral operators. We usually deal with a domain G such
that its boundary curve Γ is a quasicircle. Since quasicircles might not be rectifiable
we cannot calculate a line integral by traversing through Γ. We, therefore, use
limiting integrals in order to define an integral operator on Γ.

Definition 2.11 (Cauchy-type integral operator). Let R be a compact Riemann
surface and let Γ be a Jordan curve dividing R into two connected subsurfaces Σ1

and Σ2. Let p ∈ Σ1 and Γp
ε be the level curves of gΣ1

(·, p). For a fixed q ∈ R\Γ,
the operator

Jq(Γ) : Dharm(Σ1) → Dharm(Σ1 ∪ Σ2)q

h → − lim
ε→0+

1

πi

∫
Γp
ε

∂wg(w; z, q)h(w),

where z ∈ R\Γ, is called the Cauchy-type integral operator (corresponding to Γ).

Remark 2.12. For a proof of the existence of the above limiting integral, its inde-
pendence of the choice of p ∈ Σ1, and its boundedness see [16, Section 4.1].

The Cauchy-type integral operator for other components of R\Γ is defined sim-
ilarly. We use the notation [Jq(Γ)h]A or simply Jq(Γ)Ah (or both once we have a
double restriction) to indicate that Jq(Γ)h is restricted to a set A.

Remark 2.13. There are some connections between the above Cauchy-type integral
operators and the Riemann boundary value problem for quasicircles on Riemann
surfaces; see [7, Section 3.2] and the references therein.

We may restrict the Cauchy-type integral operator to holomorphic functions in
a collar neighbourhood of a curve Γ in R [16, Section 4.3 ]. Let R, Γ, Σ1, Σ2, and
Γp
ε be as in Definition 2.11. Let A be a collar neighbourhood of Γ in Σ1. Define

J ′
q(Γ) : D(A) → Dharm(Σ1 ∪ Σ2)q

h → − lim
ε→0+

1

πi

∫
Γp
ε

∂wg(w; z, q)h(w),
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where h ∈ D(A) and q ∈ R\Γ. J ′
q(Γ) is defined for holomorphic functions in A

whereas Jq(Γ) is defined for harmonic functions in Σ1. By the holomorphicity of
the integrand the integral is independent of the choice of the analytic curve Γp

ε

provided that ε is small enough so that Γp
ε ∈ A. The following shows a relationship

between these two Cauchy-type integral operators.

Theorem 2.14 ([16, Theorem 4.9]). Let R, Γ, Σ1, Σ2, and Γp
ε be as in Definition

2.11. Let A be a collar neighbourhood of Γ in Σ1. If Γ is a Jordan curve, then

[J ′
q(Γ)h](z) = [Jq(Γ)G(A,Σ1)h](z)

for every z, q ∈ R\Γ.

2.5. Kernel functions on Riemann surfaces. Consider a bounded multiply
connected domain G in C bounded by n pairwise disjoint closed analytic curves
with Green’s function g. M. Schiffer [11] and S. Bergman and M. Schiffer [2] defined
the following two kernels, which we call kernel functions:

K(z, w) = − 2

π

∂2g(z, w)

∂z ∂w
,

L(z, w) = − 2

π

∂2g(z, w)

∂z ∂w
.

Analogous to the above, kernel functions may be defined on compact Riemann
surfaces. For a compact Riemann surface R (g > 0) with Green’s function g(w; z, q)
having singularities at z and q, the following two bi-differential forms, also called
kernel functions, are well known. The Schiffer kernel is defined by

LR(z, w) =
1

πi
∂z∂wg(w; z, q),

and the Bergman kernel is defined by

KR(z, w) = − 1

πi
∂z∂wg(w; z, q).

Here are some important properties of these kernels; see M. Schiffer and D. Spencer
[13, Chapter 4] or [16, Proposition 3.3] for a proof.

• LR and KR are independent of the choice of the points q and w0.
• LR(z, w) is holomorphic in both variables, except for a pole of order two
when w = z. KR(z, w) is holomorphic in z for fixed w, and is anti-
holomorphic in w for fixed z.

• LR(w, z) = LR(z, w), and KR(w, z) = −KR(z, w).

2.6. Schiffer operator. Here we recall the definition of the Schiffer operator and
some of its essential properties; see [7] for the Schiffer operators corresponding to the
one boundary curve case and [14] for the one corresponding to the many boundary
curve case. The work of Schippers and Staubach [16] includes many important facts
about this operator including identities involving its adjoint.

We define the Schiffer operator for the many boundary curve case based on the
Schiffer operators T (Ω;Σ) and T (Σ;Ω) corresponding to the one boundary curve
case.
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Let R, Σ, Ω±
k and Γk, k = 1, . . . , n, and let O be the same as in Section 1. For

fixed j = 1, . . . , n, the Schiffer operators are defined by

T (Ω+
j ; Ω

−
j ) : A(Ω+

j ) → A(Ω−
j )

α → 1

πi

∫∫
Ω+

j ,w

∂z∂wg(w; z, q) ∧ α(w),

where z ∈ Ω−
j , and

T (Ω+
j ; Ω

+
j ) : A(Ω+

j ) → A(Ω+
j )

α → 1

πi

∫∫
Ω+

j ,w

∂z∂wg(w; z, q) ∧ α(w),

where z ∈ Ω+
j . The following is, therefore, well-defined.

Definition 2.15 (Schiffer operator for n > 1). Define the Schiffer operator T (O; Σ)
by

T (O; Σ) :
n⊕

k=1

A(Ω+
k ) → A(Σ),

where for (α1, . . . , αn) ∈
⊕n

k=1A(Ω+
k ) and z ∈ Σ one has

[T (O; Σ)(α1, . . . , αn)](z) :=
1

πi

n∑
k=1

∫∫
Ω+

k ,w

∂z∂wg(w; z, q) ∧ αk(w)

=

n∑
k=1

[T (Ω+
k ; Ω

−
k )αk]Σ(z).

For fixed j = 1, . . . , n, the Schiffer operator T (O; Ω+
j ) is defined by

T (O; Ω+
j ) :

n⊕
k=1

A(Ω+
k ) → A(Ω+

j ),

where for z ∈ Ω+
j one has

[T (O; Ω+
j )(α1, . . . , αn)](z) :=

n∑
k=1
k �=j

[T (Ω+
k ; Ω

−
k )αk]Ω+

j
(z)

+ [T (Ω+
j ; Ω

+
j )αj ](z).

Generalizing the notation of [16, Definition 4.17] let us define

V =

{
(α1, . . . , αn) ∈

n⊕
k=1

A(Ω+
k ) :

n∑
k=1

∫∫
Ω+

k

β ∧ αk = 0 ∀β ∈ A(R)

}
.

The integral condition for elements in V is equivalent to

<
n∑

k=1

αk, β >Aharm(Σ)= 0,

that is,
∑n

k=1 αk is perpendicular to the restriction of elements in A(R) into Σ.
This condition is required for the existence of a solution to the jump problem. See
[14, Corollary 2.17] and/or [14, Theorem 2.15] for a proof of the following theorem.
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Theorem 2.16. Let R, Σ, Ω±
k and Γk, k = 1, . . . , n, and let O be the same as

in Section 1. The restriction of the Schiffer operator T (O; Σ) to V is a bounded
isomorphism from V onto A(Σ)e.

3. Some operators and subspaces of functions and 1-forms

We generalize the operators and theorems from one boundary curve case to
finitely many ones. Let R, Σ, Ω±

k and Γk, fk, k = 1, . . . , n, and let O be the
same as in Section 1. The composition operator for the set of biholomorphisms
f = (f1, . . . , fn) is defined by

C̃f :
n⊕

k=1

Dharm(Ω+
k ) −→ Dharm(D)n

(g1, . . . , gn) −→ (Cf1g1, . . . , Cfngn),
where Cfk is the one defined in Section 2.1.

Similar definitions for the inverse functions, C̃f−1 , can be given. These operators
are clearly bounded isometries with respect to Dirichlet semi-norm.

Definition 3.1. Let Gk, k = 1, . . . , n, be a collection of pairwise disjoint simply
connected domains of a Riemann surface R. Let G =

⋃n
k=1Gk. Pick a point

pk ∈ Gk for each k = 1, . . . , n. Define

P̃G :
n⊕

k=1

Dharm(Gk) −→
n⊕

k=1

D(Gk)

(h1, . . . , hn) −→ (PG1
h1, . . . , PGn

hn),

where PGk
was defined in Section 2.1. In particular, (PGk

hk)(pk) = 0.

The projection to the anti-holomorphic part P̃G is defined similarly. The pro-

jections P̃ (G) and P̃ (G) on harmonic 1-forms may be defined.
Let Ak be a collar neighbourhood of Γk in Σ and let

Res(Σ, Ak) : Dharm(Σ) → Dharm(Ak)

be the restriction operator from Σ to Ak.

Definition 3.2 (Transmission operator). Let Ak and Res be as above; then define
O(Σ,Ω+

k ) by

O(Ω−
k ,Ω

+
k )G(Ak,Ω

−
k )Res(Σ, Ak).

The transmission operator for Σ is defined by

Õ(Σ,O) : Dharm(Σ) −→
n⊕

k=1

Dharm(Ω+
k )

h −→
(
O(Σ,Ω+

1 )h, . . . ,O(Σ,Ω+
n )h
)
.

We generalize the subspace W defined for one boundary curve case in [7, Section
3.2] to a many boundary curve case as follows.

Definition 3.3. Define

W :=

{
(h1, . . . , hn) ∈

n⊕
k=1

Dharm(Ω+
k ) :

n∑
k=1

∫∫
Ω+

k

β ∧ ∂hk = 0 ∀β ∈ A(R)

}
.



188 MOHAMMAD SHIRAZI

Similarly, the above integral condition can be replaced with

〈
n∑

k=1

∂hk, β〉Aharm(Σ) = 0.

Here is how we define a Cauchy-type integral operator corresponding to Ω+
1 , . . . ,Ω

+
n .

Definition 3.4 (Cauchy-type integral operator). Let R, Σ, Ω±
k , Γk, k = 1, . . . , n,

and let O be the same as in Section 1. Let also z, q ∈ R\Γ. The Cauchy-type
integral operator for domains Ω+

1 , . . . ,Ω
+
n , is defined by

Jq(Γ) :

n⊕
k=1

Dharm(Ω+
k ) → Dharm(R\Γ)q

(h1, . . . , hn) →
n∑

k=1

[Jq(Γk)Ω−
k
hk]R\Γ,

where

[Jq(Γk)Ω−
k
hk](z) = − lim

ε→0+

1

πi

∫
Γ
pk
ε

∂wg(w; z, q)hk(w).

Recall Γ here is understood as
⋃n

k=1 Γk. By Dharm(R\Γ)q we mean the output
of the Jq(Γ) operator is a harmonic function on Σ if z ∈ Σ and is a harmonic
function on Ω+

k if z ∈ Ω+
k for some k = 1, . . . , n. The output does not extend to a

continuous function on R.

Theorem 3.5. Let Jq(Γ) be defined as above. Then we have

(1) The operator [Jq(Γ)]Σ is a bounded operator from
⊕n

k=1 Dharm(Ω+
k ) equipped

with norm ‖.‖⊕n
k=1 Dharm(Ω+

k ) to Dharm(Σ) equipped with norm ‖.‖Dharm(Σ).

The same result is true for [Jq(Γ)]Ω+
k
, k = 1, . . . , n.

(2) If the domain of [Jq(Γ)]Σ is restricted to W, then the output will be a
holomorphic function on Σ. The same result is true for [Jq(Γ)]Ω+

k
, k =

1, . . . , n.

See [16, Corollary 4.3] for a proof of the above. Fix pk ∈ Ω+
k for each k and

define

W ′ = W ∩
n⊕

k=1

D(Ω+
k )pk

.

For notational simplicity we define

K : W ′ → D(Σ)q

by

K(h1, . . . , hn) = [Jq(Γ)(h1, . . . , hn)]Σ =
n∑

k=1

[Jq(Γk)Ω−
k
hk]Σ.

The operator ∂̃ (similarly ∂̃) is defined naturally by

∂̃ :
n⊕

k=1

Dharm(Ω+
k ) →

n⊕
k=1

D(Ω+
k )

(h1, . . . , hn) → (∂h1, . . . , ∂hn).

The proof of the following lemma is straightforward.
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Lemma 3.6. The restriction of the operator ∂̃ to W ′ is an isometric isomorphism
onto V.

The relationship between the operator T and the derivatives of the Jq(Γ) is the
following.

Theorem 3.7 ([14, Theorem 2.2]). If (h1, . . . , hn) ∈
⊕n

k=1Dharm(Ω+
k ) and q ∈

R\Γ, then

∂[Jq(Γ)(h1, . . . , hn)]Σ = −T (O; Σ)(∂h1, . . . , ∂hn),

∂[Jq(Γ)(h1, . . . , hn)]Ω+
j
= −T (O; Ω+

j )(∂h1, . . . , ∂hn) + ∂hj .

For the domain of the Faber operator in the many boundary curve case (Defini-
tion 4.1), we define

Dv(D)
n
:=
{
(H1, . . . , Hn) ∈ (D(D)0)

n : C̃f−1(H1, . . . , Hn) ∈ W ′
}
.

In particular, Hk(0) = 0 for each k.
The bounce operator G (in Section 2.2) can be extended to the many boundary

curve case as follows. Let Ak be a collar neighbourhood of Γk in Ω+
k , k = 1, . . . , n.

Let A =
⋃
Ak. Define G̃(A,O) by

G̃(A,O) :

n⊕
k=1

D(Ak) →
n⊕

k=1

Dharm(Ω+
k )

(h1, . . . , hn) →
(
G(A1,Ω

+
1 )h1, . . . ,G(An,Ω

+
n )hn

)
.

G̃(A,O) is clearly a bounded operator as G(Ak,Ω
+
k ) is bounded for each k.

The following lemma will be used to show that K has a left inverse.

Lemma 3.8. Let Γ be a quasicircle in R separating R into two connected subsur-
faces Σ1 and Σ2. If A is a collar neighbourhood of the curve Γ in Σ1, then for all
h ∈ D(cl(Σ2) ∪A) one has

O(Σ2,Σ1)(h|Σ2
) = G(A,Σ1)(h|A).

Proof. By Theorem 2.5 we need to show that both sides of the above equality have
the same CNT boundary limits except possibly on a null set in Γ. The harmonic
function O(Σ2,Σ1)(h|Σ2

) has the same CNT boundary limits on Γ as h|Σ2
has

except possibly on a null set in Γ.
On the other hand, G(A,Σ1)(h|A) is the unique element in Dharm(Σ1) for which

its CNT limits equal to h|A except possibly on a null set in Γ. Furthermore, the
equality h|A = h|Σ2

on Γ is clearly true since h is defined on cl(Σ2)∪A. Therefore,
O(Σ2,Σ1)(h|Σ2

) = G(A,Σ1)(h|A) except possibly on a null set in Γ by Lemma 2.4,
and they are equal on Σ1 by Lemma 2.4 and Theorem 2.5. �

We recall the following theorem (the jump decomposition formula) which is a
result of [10, Theorem 4]. Note that because of long formulas in this paper equality
always refers to the right hand side of the previous line.

Theorem 3.9 ([14, Theorem 2.12]). For all (h1, . . . , hn) ∈ W ′, we have

(3.1) −O(Σ,Ω+
j )[Jq(Γ)(h1, . . . , hn)]Σ = hj − [Jq(Γ)(h1, . . . , hn)]Ω+

j
.
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Theorem 3.10. The operator −P̃OÕ(Σ,O) : D(Σ)q → W ′ is a bounded left in-
verse of K.

Proof. Let (h1, . . . , hn) ∈ W ′. Then

− P̃OÕ(Σ,O)K(h1, . . . , hn) = −P̃OÕ(Σ,O)
[
Jq(Γ)(h1, . . . , hn)

]
Σ

= −P̃O
(
O(Σ,Ω+

1 )[Jq(Γ)(h1, . . . , hn)]Σ, . . . ,O(Σ,Ω+
n )[Jq(Γ)(h1, . . . , hn)]Σ

)
= P̃O

(
h1 − [Jq(Γ)(h1, . . . , hn)]Ω+

1
, . . . , hn − [Jq(Γ)(h1, . . . , hn)]Ω+

n

)
= (h1, . . . , hn),

where we have used Theorem 3.9 to show the third equality, and Theorem 3.5 and
Definition 3.1 to show the last equality. �

The above theorem has an important consequence. Apply projection to both
sides of equation (3.1); that is,

−PΩ+
j
O(Σ,Ω+

j )[Jq(Γ)(h1, . . . , hn)]Σ = PΩ+
j
hj − PΩ+

j
[Jq(Γ)(h1, . . . , hn)]Ω+

j
.

Since [Jq(Γ)(h1, . . . , hn)]Ω+
j
is holomorphic (by Theorem 3.5) and hj is anti-holomor-

phic it follows that

−PΩ+
j
O(Σ,Ω+

j )[Jq(Γ)(h1, . . . , hn)]Σ = hj .

So by the definition of the Cauchy-type integral operator one has

−PΩ+
j
O(Σ,Ω+

j )
n∑

k=1

[Jq(Γk)Ω−
k
hk]Σ = hj .(3.2)

Note that for fixed j = 1, . . . , n and every k �= j one has Ω+
j ⊂ Ω−

k , hence the
transmission operator can be simplified; that is,

−PΩ+
j

∑
k �=j

[Jq(Γk)Ω−
k
hk]Ω+

j
− PΩ+

j
O(Ω−

j ,Ω
+
j )[Jq(Γj)Ω−

j
hj ] = hj .

Therefore, for all (h1, . . . , hn) ∈ W ′ one has the following important equation:

−
∑
k �=j

PΩ+
j
[Jq(Γk)Ω−

k
hk]Ω+

j
− PΩ+

j
O(Ω−

j ,Ω
+
j )[Jq(Γj)Ω−

j
hj ] = hj .(3.3)

We also require a density theorem stated and proven in [14, Theorem 3.6].

Theorem 3.11. Let R, Σ, Ω±
k , Γk, k = 1, . . . , n, and let O be the same as in Section

1. Suppose that each boundary curve Γk is a quasicircle. For each k = 1, . . . , n,
and let ε > 0 sufficiently small, define

Ω+
kε =

{
w ∈ Ω+

k : gΩ+
k
(w, pk) < ε

}
for some pk fixed in Ω+

k . Then the set of the restrictions of functions in D(cl(Σ) ∪
Ω+

1ε ∪ · · · ∪ Ω+
nε) to Σ is dense in D(Σ).
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4. Faber operator

We are now ready to define the Faber operator. Recall f = (f1, . . . , fn).

Definition 4.1 (Faber operator). Define the Faber operator corresponding to R

and f by

If : Dv(D)
n → D(Σ)q

(H1, . . . , Hn) → −KC̃f−1(H1, . . . , Hn).

In other words, for z ∈ Σ, one has

If (H1, . . . , Hn)(z) = −
n∑

k=1

[Jq(Γk)Ω−
k
Cf−1

k
Hk]Σ(z).

Corollary 4.2. The Faber operator If is a bounded operator from Dv(D)
n
equipped

with the norm ‖.‖Dharm(D)n to D(Σ)q equipped with the norm ‖.‖Dharm(Σ).

Here is a corollary to Theorem 3.10.

Corollary 4.3. The operator C̃f P̃OÕ(Σ,O) is a bounded left inverse for the Faber
operator If . Therefore, If is one-to-one.

Theorem 4.4. Let R, Σ, Γk, Ω
±
k , fk, k = 1, . . . , n, and let O be the same as in

Section 1. Assume that all the boundary curves are quasicircles. Then the Faber

operator If : Dv(D)
n → D(Σ)q is onto.

Proof. Suppose h ∈ D(Σ)q; we then have ∂h ∈ A(Σ)e. By the surjectivity of
T (O; Σ)|V (Theorem 2.16) there exists (α1, . . . , αn) in V such that

T (O; Σ)(α1, . . . , αn) = dh = ∂h ∈ A(Σ)e.

Furthermore by Lemma 3.6 there exists a unique (h1, . . . , hn) ∈ W ′ such that

∂̃(h1, . . . , hn) = (α1, . . . , αn) and

∂−1T (O; Σ)(α1, . . . , αn) = −[Jq(Γ)Σ(h1, . . . , hn)],

or equivalently h = K(−h1, . . . ,−hn) by Theorem 3.7. Therefore, for an arbitrary
h ∈ D(Σ)q there exists (−h1, . . . ,−hn) ∈ W ′ such that

h = K(−h1, . . . ,−hn).

This proves that K is onto.

On the other hand, C̃f−1 is a bounded isomorphism (with respect to the Dirichlet
semi-norm) which completes the proof. �

The following is the first main result of the paper.

Corollary 4.5. Let R, Σ, Γk, Ω
±
k , fk, k = 1, . . . , n, and let O be the same as in

Section 1. If all the boundary curves of Σ are quasicircles, then the Faber operator

If : Dv(D)
n → D(Σ)q is a bounded isomorphism.

Remark 4.6. Y. L. Shen [19] assigned a Faber operator to a holomorphic map f
(of the form f(z) = z + b1/z + b2/z

2 + . . . , and one-to-one on D−) on l2(C). Shen
showed that the Faber operator is a bounded isomorphism if and only if f admits a
quasiconformal extension to D. E. Schippers and W. Staubach [15] defined a Faber
operator corresponding to a biholomorphism map f (from D to a finite Jordan
domain Ω+ in C) on some Dirichlet spaces. They also showed that the Faber
operator is a bounded isomorphism precisely for quasiconformally extendible f .
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5. Grunsky operator

Definition 5.1 (Grunsky operator). Assume all the boundary curves of Σ are
quasicircles. First, define

Grjk(f) : D(D) → D(D)0

by

Grjk(f)H =

{
−PDCfj [Jq(Γk)Ω−

k
Cf−1

k
H ]Ω+

j
if k �= j,

−PDCfjO(Ω−
j ,Ω

+
j )[Jq(Γj)Ω−

j
Cf−1

j
H] if k = j.

Then the Grunsky operator corresponding to R and f is defined by

Grf : Dv(D)
n → D(D)n0(

H1, . . . , Hn

)
→
(

n∑
k=1

Gr1k(f)Hk, . . . ,
n∑

k=1

Grnk(f)Hk

)
.

Remark 5.2. In the case g = 0 this agrees up to some normalizations with [8,
Definition 4.6].

Here is the second main theorem of the paper.

Theorem 5.3. Let R, Σ, Γk, Ω
±
k , fk, k = 1, . . . , n, and let O be as in Section 1.

Assume all the boundary curves of Σ are quasicircles. Then the Grunsky operator

Grf : (Dv(D)
n
, ‖.‖Dharm(D)n) −→ (D(D)n0 , ‖.‖Dharm(D)n)(
H1, . . . , Hn

)
−→

(
n∑

k=1

Gr1k(f)Hk, . . . ,
n∑

k=1

Grnk(f)Hk

)
is a bounded operator of norm less than or equal to one. Furthermore one has

(5.1)

∥∥If (H1, . . . , Hn)
∥∥2
Dharm(Σ)

= −
∥∥Grf (H1, . . . , Hn)

∥∥2
Dharm(D)n

+
∥∥(H1, . . . , Hn)

∥∥2
Dharm(D)n

.

To prove the above we require a few lemmas. We start with the following lemma
which has a straightforward proof.

Lemma 5.4. Let Ω be a simply connected domain in a Riemann surface. Let
f : D → Ω be a biholomorphism such that f(0) = p for some p ∈ Ω. Then

PD Cf = CfPΩ.

Lemma 5.5. Let Γ be a strip-cutting Jordan curve on a compact Riemann surface
R dividing R into two connected subsurfaces Σ and Ω. Assume Ω is simply con-
nected. Let f : D → Ω be a biholomorphism onto Ω and let A be an annulus in
D whose outer boundary is S1. Suppose f maps A biholomorphically onto a collar
neighbourhood A = f(A) of Γ in Ω. Then for h ∈ Dharm(A) one has

G(A,D)Cfh = CfG(A,Ω)h.

Proof. First note that the operator Cf on the left hand side is in fact Cf |A ; we,
however, use the same notation as Cf for simplicity. The existence of the CNT
limits of h on Γ follows from Theorem 2.6.
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If h ∈ Dharm(A), then by definition of G(A,D), G(A,D)Cfh is the unique func-
tion in Dharm(D) such that G(A,D)Cfh and Cfh have the same non-tangential
limits on S

1 except possibly on a set of logarithmic capacity zero in S
1.

Similarly, G(A,Ω)h is the unique function in Dharm(Ω) such that G(A,Ω)h and
h have the same CNT boundary values on Γ except possibly on a null set in Γ. By
Definition 2.2 this means that CfG(A,Ω)h and Cfh have the same non-tangential
limits on S1 except possibly on a set of logarithmic capacity zero in S1.

Therefore, G(A,D)Cfh and CfG(A,Ω)h have the same non-tangential limits on
S1 except possibly on a finite union of sets of logarithmic capacity zero in S1, so
they are equal on D by Lemma 2.4. �

Lemma 5.6 (Laurent decomposition). Let A be an annulus with outer boundary
equal to S1. A function h ∈ D(A) can be decomposed to h+ + h− where

h+ = PDG(A,D)h ∈ D(D),

h− = O(D,D−)PDG(A,D)h ∈ D(D−).

Proof. Note that G(A,D)zn=zn for n≥1, G(A,D)z−n= z̄n for n≥0, O(D,D−)zn

=
(
1
z̄

)n
for n ≥ 1, and O(D,D−)z̄n =

(
1
z

)n
for n ≥ 0. Then the density of the

polynomials in zn and z−n in the Dirichlet space D(A) and the boundedness of the
O and G operators completes the proof. �

Lemma 5.7. The transmission operator O(D,D−) has norm one so it is an isom-
etry with respect to the Dirichlet semi-norm. That is,

‖O(D,D−)h‖Dharm(D−) = ‖h‖Dharm(D)

for every h ∈ Dharm(D). A similar result is true for O(D−,D).

Proof. It can be shown that this is true for monomials. Thus the identity follows by
the density of these elements in Dharm(D) and the boundedness of the transmission
operator. �

Lemma 5.8. Let H and G be holomorphic functions on D. Then∫
γr

(
O(D,D−)H

)′
(z) G(z) dz = 0,∫

γr

(
O(D,D−)H

)
(z) G′(z) dz = 0,

where γr = {z ∈ C : |z| = r} for 0 < r < 1.

The above lemma can be proven by using the Taylor expansion of the functions
inside the integrals. We now give the proof of Theorem 5.3.

Proof. (Theorem 5.3). We first prove the claim for the set of all (H1, . . . , Hn) in

Dv(D)
n
such that If (H1, . . . , Hn) ∈ D(Σ)q has a holomorphic extension past the

boundary of Σ. More precisely, we assume that If (H1, . . . , Hn) carries a holomor-
phic extension to a collar neighbourhood Ak of the boundary curve Γk in Ω+

k for
each k = 1, . . . , n. The proof on this set of functions is rather straightforward.
Then by the density theorem, Theorem 3.11, and the boundedness of the operators
involved in the proof, the claim holds for every element in D(Σ)q.

To apply the density theorem assume Ak = Ω+
kε for some sufficiently small ε > 0

depending on (H1, . . . , Hn). By the above assumption and the finiteness of the
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number of the curves, there is a number R ∈ (0, 1) such that the image of γR =
{z ∈ C : |z| = R} under fk is entirely in Ak for all k = 1, . . . , n. Let A =
{z ∈ C : R < |z| < 1}. Shrink the Ak’s (but keep using the same notation) so
that fk|A : A → Ak is a biholomorphism, k = 1, . . . , n. Then f(γr), r ∈ (R, 1),
are simple closed analytic curves in Ω+

kε which approach Γk from within Ω+
kε as r

approaches one. By Green’s identity and the fact that Γk’s are negatively oriented
with respect to surface Σ it follows that

‖If (H1, . . . , Hn)‖2Dharm(Σ)

=

∫∫
Σ

|If (H1, . . . , Hn)
′|2

= − 1

2i
lim

r→1−

∫
∪fj(γr)

If (H1, . . . , Hn)
′(z) If (H1, . . . , Hn)(z) dz

= − 1

2i
lim

r→1−

n∑
j=1

∫
fj(γr)

If (H1, . . . , Hn)
′(z) If (H1, . . . , Hn)(z) dz

= − 1

2i
lim

r→1−

n∑
j=1

∫
fj(γr)

(
−

n∑
k=1

[Jq(Γk)Ω−
k
Cf−1

k
Hk]Aj

(z)

)′

×
(
−

n∑
k=1

[Jq(Γk)Ω−
k
Cf−1

k
Hk]Aj

(z)

)
dz

= − 1

2i
lim

r→1−

n∑
j=1

∫
γr

(
−

n∑
k=1

[Jq(Γk)Ω−
k
Cf−1

k
Hk]Aj

(fj(w))

)′

×
(
−

n∑
k=1

[Jq(Γk)Ω−
k
Cf−1

k
Hk]Aj

(fj(w))

)
dw.

We used (Ω+
j , fj) as holomorphic charts to set up the integrals on the Riemann

surface R, which defines the variable zj = fj(wj) in each term. For simplicity we

denote z = zj , and w = wj . By h′ for a function h on Ω+
j , we mean ∂h/∂z in the

holomorphic chart (Ω+
j , fj). We continue simplifying the above integral using the

composition operator. Cfj here is Cfj |A . The above is equal to

− 1

2i
lim

r→1−

n∑
j=1

∫
γr

(
−Cfj

n∑
k=1

[Jq(Γk)Ω−
k
Cf−1

k
Hk]Aj

(w)

)′

×
(
−Cfj

n∑
k=1

[Jq(Γk)Ω−
k
Cf−1

k
Hk]Aj

(w)

)
dw.

(5.2)

The assumption of the existence of a holomorphic extension of If past the bound-
ary of Σ implies that for fixed j = 1, . . . , n, the sum

∑n
k=1[Jq(Γk)Ω−

k
Cf−1

k
Hk] has

a holomorphic extension past the boundary curve Γj to Aj . For k �= j, each term

Jq(Γk)Ω−
k
Cf−1

k
Hk in the sum automatically admits such a holomorphic extension

to Aj by its definition. So our assumption, in fact, implies that Jq(Γj)Ω−
j
Cf−1

j
Hj

admits a holomorphic extension to Aj .
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We proceed by simplifying the integrand in (5.2). The choice of annulus A implies
that −Cfj

∑n
k=1[Jq(Γk)Ω−

k
Cf−1

k
Hk]Aj

∈ D(A). Therefore, by applying Lemma 5.6,

we have the identity

− Cfj
n∑

k=1

[Jq(Γk)Ω−
k
Cf−1

k
Hk]Aj

=
[
O(D,D−)PDG(A,D)(−Cfj

n∑
k=1

[Jq(Γk)Ω−
k
Cf−1

k
Hk]Aj

)
]

+
[
PDG(A,D)(−Cfj

n∑
k=1

[Jq(Γk)Ω−
k
Cf−1

k
Hk]Aj

)
]
.

By applying Lemma 5.5 and splitting the series into two parts, the above is

−
[
O(D,D−)PDCfjG(Aj ,Ω

+
j )(
∑
k �=j

[Jq(Γk)Ω−
k
Cf−1

k
Hk]Aj

)
]

−
[
O(D,D−)PDCfjG(Aj ,Ω

+
j )[Jq(Γj)Ω−

j
Cf−1

j
Hj ]Aj

]
−
[
PDCfjG(Aj ,Ω

+
j )(
∑
k �=j

[Jq(Γk)Ω−
k
Cf−1

k
Hk]Aj

)
]

−
[
PDCfjG(Aj ,Ω

+
j )[Jq(Γj)Ω−

j
Cf−1

j
Hj ]Aj

]
.

Lemma 3.8 (let Σ1 = Ω+
j , Σ2 = Ω−

j ) and the definition of G(Aj ,Ω
+
j ) (or Theorem

2.5) imply that the above is equal to

−
[
O(D,D−)PDCfj

∑
k �=j

[Jq(Γk)Ω−
k
Cf−1

k
Hk]Ω+

j

]
−
[
O(D,D−)PDCfjO(Ω−

j ,Ω
+
j )[Jq(Γj)Ω−

j
Cf−1

j
Hj ]Ω−

j

]
−
[
PDCfj

∑
k �=j

[Jq(Γk)Ω−
k
Cf−1

k
Hk]Ω+

j

]
−
[
PDCfjO(Ω−

j ,Ω
+
j )[Jq(Γj)Ω−

j
Cf−1

j
Hj ]Ω−

j

]
.

By Lemma 5.4 (note that fj(0) = pj , j = 1, . . . , n) and Definition 5.1, the above is

O(D,D−)Cfj
[
−
∑
k �=j

(PΩ+
j
[Jq(Γk)Ω−

k
Cf−1

k
Hk]Ω+

j
)

− PΩ+
j
O(Ω−

j ,Ω
+
j )[Jq(Γj)Ω−

j
Cf−1

j
Hj ]Ω−

j

]
+
∑
k �=j

Grjk(f)Hk +Grjj(f)Hj .
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We know that (Cf−1
1

H1, . . . , Cf−1
n

Hn) ∈ W ′, so applying equation (3.3) implies that

the above is

O(D,D−)Cfj
[
−
∑
k �=j

(PΩ+
j
[Jq(Γk)Ω−

k
Cf−1

k
Hk]Ω+

j
)

− PΩ+
j
O(Ω−

j ,Ω
+
j )[Jq(Γj)Ω−

j
Cf−1

j
Hj ]Ω−

j

]
+

n∑
k=1

Grjk(f)Hk

= O(D,D−) Cfj
(
Cf−1

j
Hj

)
+

n∑
k=1

Grjk(f)Hk.

= O(D,D−)Hj +

n∑
k=1

Grjk(f)Hk.

Therefore, we obtained the following important identity:

−Cfj
n∑

k=1

[Jq(Γk)Ω−
k
Cf−1

k
Hk]Aj

= O(D,D−)Hj +
n∑

k=1

Grjk(f)Hk.(5.3)

Now by inserting equation (5.3) in (5.2) and also by the extension property of
O(D,D−)Hj explained in Remark 2.8, we have

‖If (H1, . . . , Hn)‖2Dharm(Σ)

= − 1

2i
lim

r→1−

n∑
j=1

∫
γr

(
O(D,D−)Hj(w) +

n∑
k=1

Grjk(f)Hk(w)

)′

×
(
O(D,D−)Hj(w) +

n∑
k=1

Grjk(f)Hk(w)

)
dw

= − 1

2i
lim

r→1−

n∑
j=1

∫
γr

(
O(D,D−)Hj(w)

)′ (
O(D,D−)Hj(w)

)
dw

− 1

2i
lim

r→1−

n∑
j=1

∫
γr

(
n∑

k=1

Grjk(f)Hk(w)

)′( n∑
k=1

Grjk(f)Hk(w)

)
dw

− 1

2i
lim

r→1−

n∑
j=1

∫
γr

(
O(D,D−)Hj(w)

)′( n∑
k=1

Grjk(f)Hk(w)

)
dw

− 1

2i
lim

r→1−

n∑
j=1

∫
γr

(
n∑

k=1

Grjk(f)Hk(w)

)′ (
O(D,D−)Hj(w)

)
dw.

(5.4)

The first integral in the above identity can be simplified as follows:

− 1

2i
lim

r→1−

n∑
j=1

∫
γr

(
O(D,D−)Hj(w)

)′ (
O(D,D−)Hj(w)

)
dw

=

n∑
j=1

‖O(D,D−)Hj‖2Dharm(D−)

=
n∑

j=1

‖Hj‖2Dharm(D),
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where we have used Lemma 5.7, the Green’s identity, and the fact that O(D,D−)Hj

is in Dharm(cl(D−)∪A), and γr’s are negatively oriented with respect to cl(D−)∪A.
For the second term in (5.4), we similarly have

− 1

2i
lim

r→1−

n∑
j=1

∫
γr

(
n∑

k=1

Grjk(f)Hk(w)

)′( n∑
k=1

Grjk(f)Hk(w)

)
dw

= −
n∑

j=1

∫∫
D

∣∣∣∣∣
(

n∑
k=1

Grjk(f)Hk(w)

)′∣∣∣∣∣
2

dw = −
n∑

j=1

∥∥∥∥∥
n∑

k=1

Grjk(f)Hk

∥∥∥∥∥
2

Dharm(D)

,

as γr’s are positively oriented with respect to the domain of integration.
Now consider the fourth term in (5.4)

− 1

2i
lim

r→1−

n∑
j=1

∫
γr

(
n∑

k=1

Grjk(f)Hk(w)

)′ (
O(D,D−)Hj(w)

)
dw = 0,

by Lemma 5.8 and the fact that Gj :=
∑n

k=1Grjk(f)Hk is holomorphic on D.
Applying Lemma 5.8 one more time shows that the third term in (5.4) is also zero.
Therefore, (5.4) becomes

= −
n∑

j=1

∥∥∥∥∥
n∑

k=1

Grjk(f)Hk

∥∥∥∥∥
2

Dharm(D)

+
n∑

j=1

∥∥Hj

∥∥2
Dharm(D)

= −
∥∥Grf (H1, . . . , Hn)

∥∥2
Dharm(D)n

+
∥∥(H1, . . . , Hn)

∥∥2
Dharm(D)n

.

Finally, by the above equation and (5.2) we have the following identity:∥∥If (H1, . . . , Hn)
∥∥2
Dharm(Σ)

= −
∥∥Grf (H1, . . . , Hn)

∥∥2
Dharm(D)n

+
∥∥(H1, . . . , Hn)

∥∥2
Dharm(D)n

.

This completes the proof for those (H1, . . . , Hn)∈Dv(D)
n
for which If (H1, . . . , Hn)

admits a holomorphic extension past the boundary of Σ.
By Theorem 3.11 and the boundedness of the operators used here one has the

identity (5.1) for all elements in Dv(D)
n
; this completes the proof. �

The proof of the norm of the Grunsky operator is strictly less than one when
all the boundary curves are quasicircles is a consequence of the fact that the Faber
operator is a bounded isomorphism.

Theorem 5.9. Let R, Σ, Γk, Ω
±
k , fk, k = 1, . . . , n, and let O be as in Section 1.

If all the boundary curves are quasicircles, then the norm of the Grunsky operator
is strictly less than one.

Proof. By Corollary 4.5 there exists a constant 0 < c < 1 such that

c‖(H1, . . . , Hn)‖Dharm(D)n ≤ ‖If (H1, . . . , Hn)‖Dharm(Σ).

Now the identity (5.1) and the above inequality complete the proof. �

Remark 5.10. It is well known that the norm of the Grunsky operator for a planar
domain G is less than one precisely when the boundary of G is a quasicircle (i.e.,
G is a quasidisc); see Pommerenke [6, Sec 3.1 and 9.4].
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6. Characterization of CfD(Σ) as the graph of the Grunsky operator

Let (ak)
n
k=1 denote the n-tuple (a1, . . . , an). Here is our third main result.

Theorem 6.1. Let R, Σ, Γk, Ω
±
k , fk, k = 1, . . . , n, and let O be as in Section 1.

Assume all the boundary curves are quasicircles. Then

C̃f Õ(Σ,O)D(Σ)q = graph(Grf ).

In other words, the set of pull-back of the transmission of functions in D(Σ)q under
f = (f1, . . . , fn) is the graph of the Grunsky operator Grf .

Proof. By Corollary 4.5, we know that If is a bounded isomorphism from Dv(D)
n

onto D(Σ)q. We split the proof into two steps.

Step 1. We calculate the composition of Õ(Σ,O) with If
(
H1, . . . , Hn

)
. Then

Õ(Σ,O)If (H1, . . . , Hn) = Õ(Σ,O)(−
n∑

k=1

[
Jq(Γk)Ω−

k
Cf−1

k
Hk

]
Σ
)

= −
(
O(Σ,Ω+

j )
n∑

k=1

[
Jq(Γk)Ω−

k
Cf−1

k
Hk

]
Σ

)n

j=1

= −

⎛⎜⎝ n∑
k=1
k �=j

[
Jq(Γk)Ω−

k
Cf−1

k
Hk

]
Ω+

j

+O(Ω−
j ,Ω

+
j )[Jq(Γj)Ω−

j
Cf−1

j
Hj ]

⎞⎟⎠
n

j=1

,

where O(Σ,Ω+
j )
∑n

k=1

[
Jq(Γk)Ω−

k
Cf−1

k
Hk

]
Σ
in the second line is the jth component

of n-tuple Õ(Σ,O)If (H1, . . . , Hn).
The identity above can be justified as follows. Note that for fixed j = 1, . . . , n,

if k �= j, the function Jq(Γk)Ω−
k
Cf−1

k
Hk is harmonic on Ω+

j ⊂ Ω−
k . Therefore, by

Definition 3.2 the transmission through Γj of this term to Ω+
j is itself. For k = j,

the function Jq(Γj)Ω−
j
Cf−1

j
Hj is defined and is harmonic on Ω−

j ; this implies that

O(Σ,Ω+
j )[Jq(Γj)Ω−

j
Cf−1

j
Hj ]Σ = O(Ω−

j ,Ω
+
j )G(Aj ,Ω

−
j )[Jq(Γj)Ω−

j
Cf−1

j
Hj ]Aj

= O(Ω−
j ,Ω

+
j )[Jq(Γj)Ω−

j
Cf−1

j
Hj ],

where Aj is defined in the same way as Definition 3.2, for each j = 1, . . . , n. The
second identity above is by Theorem 2.5.
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Step 2. Now we calculate P̃D C̃f Õ(Σ,O)If and P̃D C̃f Õ(Σ,O) If . Let (H1, . . . , Hn)

be in Dv(D)
n
. Then

[
P̃D C̃f Õ(Σ,O)If

]
(H1, . . . , Hn) = P̃D C̃f Õ(Σ,O)

(
−

n∑
k=1

[
Jq(Γk)Ω−

k
Cf−1

k
Hk

]
Σ

)

= −P̃D C̃f

⎛⎜⎝ n∑
k=1
k �=j

[
Jq(Γk)Ω−

k
Cf−1

k
Hk

]
Ω+

j

+O(Ω−
j ,Ω

+
j )[Jq(Γj)Ω−

j
Cf−1

j
Hj ]

⎞⎟⎠
n

j=1

= −P̃D

⎛⎜⎝ n∑
k=1
k �=j

Cfj
[
Jq(Γk)Ω−

k
Cf−1

k
Hk

]
Ω+

j

+ CfjO(Ω−
j ,Ω

+
j )[Jq(Γj)Ω−

j
Cf−1

j
Hj ]

⎞⎟⎠
n

j=1

=

⎛⎜⎝ n∑
k=1
k �=j

(−PD Cfj
[
Jq(Γk)Ω−

k
Cf−1

k
Hk

]
Ω+

j

)− PDCfjO(Ω−
j ,Ω

+
j )[Jq(Γj)Ω−

j
Cf−1

j
Hj ]

⎞⎟⎠
n

j=1

=

⎛⎜⎝ n∑
k=1
k �=j

Grjk(f)Hk +Grjj(f)Hj

⎞⎟⎠
n

j=1

=

(
n∑

k=1

Grjk(f)Hk

)n

j=1

=

(
n∑

k=1

Gr1k(f)Hk, . . . ,

n∑
k=1

Grnk(f)Hk

)
= Grf (H1, . . . , Hn).

Therefore, we obtained the identity P̃D C̃f Õ(Σ,O) If = Grf .
On the other hand, by applying Lemma 5.4 to each map fj , we have

[
P̃D C̃f Õ(Σ,O) If

]
(H1, . . . , Hn) = P̃D C̃f Õ(Σ,Ω)

(
−KC̃f−1(H1, . . . , Hn)

)
= P̃D C̃f

(
−O(Σ,Ω+

j )KC̃f−1(H1, . . . , Hn)
)n
j=1

= P̃D

(
−CfjO(Σ,Ω+

j )KC̃f−1(H1, . . . , Hn)
)n
j=1

=
(
−PD CfjO(Σ,Ω+

j )KC̃f−1(H1, . . . , Hn)
)n
j=1

=
(
−Cfj PΩ+

j
O(Σ,Ω+

j )KC̃f−1(H1, . . . , Hn)
)n
j=1

=
(
Cfj (Cf−1

j
Hj)
)n
j=1

=
(
H1, . . . , Hn

)
= IDv(D)

n(H1, . . . , Hn),

where the sixth equality is a result of equation (3.2). Therefore,

IDv(D)
n = P̃D C̃f Õ(Σ,Ω) If .
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Finally, by the above two equalities proven in Step 2 and equation (2.1) it follows
that

C̃f Õ(Σ,Ω)If (H1, . . . , Hn)

=
[
(P̃D + P̃D)C̃f Õ(Σ,Ω)If

]
(H1, . . . , Hn)

=
[
P̃D C̃f Õ(Σ,Ω)If

]
(H1, . . . , Hn) +

[
P̃D C̃f Õ(Σ,Ω)If

]
(H1, . . . , Hn)

= Grf (H1, . . . , Hn) + IDv(D)
n

(
H1, . . . , Hn

)
which is in graph(Grf ). This completes the proof. �
Remark 6.2. The result of the paper for the Riemann sphere and n = 0 or n = 1
reduces to those of [8, Theorem 4.1] and [8, Theorem 4.10].
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