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REAL ENTROPY RIGIDITY UNDER
QUASI-CONFORMAL DEFORMATIONS

KHASHAYAR FILOM

ABSTRACT. We set up a real entropy function hg on the space M:i of Mébius
conjugacy classes of real rational maps of degree d by assigning to each class the
real entropy of a representative f € R(z); namely, the topological entropy of
its restriction f [ to the real circle. We prove a rigidity result stating that hg
is locally constant on the subspace determined by real maps quasi-conformally
conjugate to f. As examples of this result, we analyze real analytic stable
families of hyperbolic and flexible Lattés maps with real coefficients along
with numerous families of degree d real maps of real entropy log(d). The
latter discussion moreover entails a complete classification of maps of maximal
real entropy.
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1. INTRODUCTION

This article focuses on the entropy of real rational maps as a function defined
on an appropriate moduli space. It is well known that a rational map f : C—=C
of degree d > 2 has topological entropy log(d) and admits a unique measure of
maximal entropy py whose support is the Julia set J(f) [Lyu82[FLMn83|Mn83].
In contrast, for f € R(z), the topological entropy

(1.1) h(f) = hiop (f [R:R—)R)

of the induced dynamics on the invariant circle R := R U {co} can take any value
between 0 and log (deg f). In this paper, we study the real entropy hg(f) both in
relation with the dynamics of the ambient map f : C — C and also as f varies in a
family of real rational maps. Our main goal is to prove a rigidity statement showing
that the real entropy is preserved in a family of quasi-conformally conjugate real
maps. Let
My4(C) = Ratd((C)/PGLg((C)
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be the moduli space of one-dimensional holomorphic dynamical systems of degree
d where the group PGLy(C) of Mébius transformations acts by conjugation on the
space Ratq(C) of rational maps of degree d. Consider the real subvariety

of dimension 2d — 2 formed by classes with real representatives. The subvariety
! is contained in the real locus My(R) of the moduli space. We have equality

"= M4(R) if and only if d is even; see Proposition
Theorem 1.1. The real entropy (1) defines a continuous and surjective function
hg : Ml — 8" — [0,1log(d)]
that for every f € R(z) is constant on connected components of M/;(\M(f)—S".

Here, M(f) is the subspace of Mébius conjugacy classes of rational maps which
are quasi-conformally conjugate to f globally. The subspace S’ is the intersection
with M/, of the symmetry locus S(C), which is the subset of conjugacy classes of
degree d maps that admit non-trivial Mobius automorphisms. In Proposition [2.4]
we prove that S(C) is a closed subvariety of M4(C) of dimension d — 1; therefore,
the domain M/, — &’ of hg is a real variety of dimension 2d — 2. Tt is irreducible as
a real variety but consists of d + 1 connected components in its analytic topology;
see Proposition The continuity of hg follows from [Mis95].

The subvariety S’ = M/ (N S(C) is excluded so that hgr is well defined: the
dynamics on R should be independent of the real representative picked from a
Mébius conjugacy class so one has to omit real maps admitting twists; that is, real
rational maps that are Mébius conjugate only over C, and it is well known that
twists are always associated with non-trivial automorphisms [Sil07, §4.8].

The dynamical moduli space M(f) associated with a rational map f has been
introduced and thoroughly studied in [MS98]. Any structurally-stable holomorphic
family {fx},ca of degree d rational maps including f comes with a canonical map
A — M(f) that to each parameter \ assigns the conformal conjugacy class (f\) €
M(f) € My(C). This is due to the fact that the notions of quasi-conformal and
topological stability coincide [MS98, Theorem 7.1]. Hence the moduli spaces M(f)
provide a natural framework for Theorem [[L.Tlwhich is concerned with the constancy
of the real entropy function hg in a structurally-stable family of real rational maps.
Nevertheless, as it is the Julia set that captures the relevant part of the dynamics
of a rational map, it is not surprising that an analogous result can be formulated
for families of real maps that are J-stable in the sense of [MnSS83|:

Proposition 1.2. The real entropy is constant along any analytic 1-parameter
J -stable family {ft}te[o,l] of real rational maps of degree d.

Hyperbolic components in M4(C) are examples of J-stable components of the
moduli space. As for the entropy values over real hyperbolic components, the claim
of Proposition will be directly proved via invoking the kneading theory of Mil-
nor and Thurston [MTS8§|] in 11 A non-hyperbolic but algebraic example of a
structurally stable family contained in a single isentrope is the family of flexible
Lattes maps for which the real entropy can be calculated explicitly; see §4.21 There
are also interesting families of quasi-conformally constant real rational maps where
hgr(f) attains its maximum log (deg f). Characterizing such rational maps turns
out to be an interesting problem in its own right:
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Theorem 1.3. Let f be a real rational map of degree d > 2 with hg(f) = log(d).
Then the Julia set J(f) is completely contained in R and either coincides with it
or is a subinterval or a Cantor subset of it.

Moreover, in terms of Blaschke products

d
- z — ay
1.2 Zmic ’ <1; ceR/Z
(12) ] (Togs) bl <15 c <R/
that preserve the unit circle instead of the real circle R:

(i) The map in ([L2) is hyperbolic with its Julia set a Cantor subset of the

unit circle if and only if there is a 6y € R/Z satisfying
d

1- |al|
(1.3) Z 627100 — ;]2 <1
for which
1 d
(1.4) c=(d+1).00 — = > arg(e®™ —a;) (mod Z).
Y
1=1

(ii) Up to conjugation with the Cayley transform (z — Z—Jr;) and a biholomor-

phism of the unit disk, hyperbolic degree d maps f with J(f) = R are the
same as Blaschke products

d—1 .
(1.5) =] (1
i=1

or their post-composition with z — %

—a;
d;Z) (|a1\,...,|ad,1\ <1)

(iii) Every non-hyperbolic degree d map with J(f) = R after conjugation with

a suitable real Mdbius map would be a map of the form e (z + PEZ§> with

non-real critical points where e € {£1} and P, Q are coprime real poly-
nomials satisfying deg P < d — 1 and deg@Q = d — 1 with the inequality
strict when € = +1.

(iv) Every degree d map [ with the Julia set a subinterval of R is semi-
conjugate to a map from one of the classes appeared in the last two parts:
up to a real Mobius conjugacy, f is either the quotient of a map such as

d—1
zZ—a; lail, ... |aq—1] <1
1.6 +z. _—
(16) =11 (1_@2) ({al,...,ad_l}—{al,...,ad_l}

by the action of z — % that commutes with it; or is the quotient of a

map of the form e (z + ggg) appeared in (iii) by the action of z — —z

provided that it commutes with € (z + ggg)) namely, either P(z) is odd

and Q(z) is even or vice versa.

Part (i) furnishes us with a J-stable family of rational maps whose Julia sets are
Cantor subsets of the unit (or equivalently real) circle while the other parts classify
all rational maps of maximal real entropy whose Julia sets are one of the other
alternatives, namely a real subinterval or the whole real circle. Rational maps with
circle or interval Julia sets have also been studied in [EvS11] and [Fat19l §25].



4 KHASHAYAR FILOM

Motivation. An important question regarding the real entropy function on the
moduli space of real rational maps is the nature of its level sets, called isentropes.
We view this article as a first step towards the study of the level sets of the function
hr defined on the moduli of real rational maps. There is an extensive literature
on the monotonicity of entropy for various families of polynomials where the cen-
tral problem is the connectedness of isentropes. The monotonicity was first estab-
lished by Milnor and Thurston for the quadratic polynomial family (in [MTS8S§];
also see [DH85,[Dou95]), and for bimodal cubic polynomials by Milnor and Tresser
in [MT00]. The general case of degree d polynomials with d real non-degenerate
critical points was settled in [BvS15] by van Strien and Bruin. The setting of ra-
tional maps is different from the polynomial setting because we are dealing with
circle maps f [: R — R instead of interval maps: In all aforementioned refer-
ences one essentially deals with a boundary-anchored map of an interval outside
which the orbits either escape to infinity or converge to a cycle of period at most
two [MTO00, Theorem 3.2]. Of course, if the restriction is not surjective, then
f g R — R can be replaced with an (not necessarily boundary-anchored) interval
map of the same entropy; as

(L7) he(f) = huop (f T R > R) = huoy (£ eyt FR) = F(R)).

For example, when the rational map f is quadratic; f [g: R — R is either a
covering map (and thus of entropy log(2) according to [MS80, Theorem 1']) or is not
surjective in which case one can work with the interval map f [, g: f (R) — f(R)
instead; cf. [Mil93] §10]. It turns out that in general the domain M/, —S&’ of the real
entropy function is disconnected (Proposition[Z3]) and thus the monotonicity has to
be studied among maps whose restrictions to R are of a common topological degree.
There are even smaller natural analytic domains in M, that are dynamically defined
according to the degree along with the modality of f [f(R); and the monotonicity of
the restriction of hg to such regions is still worthy to investigate. As an example, for
d = 2 a natural partition of M} = M»(R) = R? to degree 2, monotonic, unimodal
and bimodal regions has been outlined in [Mil93] §10]. The entropy behavior over
M, is the subject of the article [Fill9] that focuses on the monotonicity problem.

Outline. Putting the real entropy function hr (as described in Theorem [I1) on
a firm footing is the main goal of second section and is done in §§Z.TI2.2P23 The
last subsection of §2] discusses how M/, is related to the real locus Mg(R).

The main result, Theorem [[[1], is formulated in the context of the theory of Te-
ichmiller and moduli spaces of rational maps developed by McMullen and Sullivan
in [MS9§|. After a brief overview of this theory, we prove the theorem in §3] and
discuss its implications for the dimension of isentropes; see Corollary

The fourth section is devoted to various examples of (structurally or [J-) stable
families of rational maps with real coefficients that, according to our rigidity result,
should come with the same real entropy. First, in §4.1] we directly prove that hg is
locally constant on the real locus of a hyperbolic component in M 4(C); see Theorem
ATl In §42 we calculate the real entropy for families of flexible Lattés maps with
real coefficients. Finally, in §4.3] we turn to the isentrope hg = log(d) where hg :
M, — 8" — [0,log(d)] attains its maximum. A careful analysis in Theorems 7]
and .8 of the dynamics induced on the real circle by a map f € Raty(R) with
hr(f) = log(d) culminates in families of degree d maps of real entropy log(d)
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outlined in Theorem [[L3l Each of these families is structurally stable for a generic
choice of parameters and (once projected to M!;) parametrizes the real locus of a
single dynamical moduli space M(f) associated with a degree d real map f with

he(f) = log(d).

Notation and Terminology. A lap of an interval map f : I — I is defined to
be a maximal monotonic subinterval and the number of laps (i.e. modality+1) is
denoted by I(f) and is called the lap number. It is a standard fact that the entropy
of a multimodal (i.e. piecewise monotone or of finite modality) interval map is the
exponential growth rate of the number of laps of its iterates [MS80, Theorem 1]:

(18) op(f) = Jim_~log (I(7°")) = inf ~ log (I(/°")).

The result remains valid for a multimodal self-map of the circle S' as long as “laps”
are interpreted as those of the (possibly discontinuous) transformation of [0,1)
obtained from conjugating the transformation of S* with [0,1) — St : x s 27i®
[MS80, Theorem 1/]. In particular, the n'" iterate of a degree d covering S* — S!
lifts to a self-map of [0,1) with d" continuous pieces, all of them monotonic. Its
entropy is thus log(d).

Spaces C and R denote the compactifications CU {co} and RU {co} of C and R
respectively and we use z and x for the coordinates on them. When the Riemann
sphere is considered as a complex algebraic curve, the notation P!(C) is used in-
stead. The degree of a rational map is denoted by d and is always assumed to be
greater than one. The Julia set of a rational map f is shown by J(f).

For notations related to the moduli space of rational maps, we mainly follow
[Mil93] and [SilO7]: the moduli space of rational maps of degree d is an affine variety
M with a model over the rational numbers constructed by Silverman in [Sil98] as
the geometric quotient Raty / PSL, where Raty C P??*! is the parameter space of
degree d rational maps. Given a variety V over a field K, the set of its K’-points
is written as V(K') for any larger field K’ O K. So here it makes sense to write
M (K) for any subfield K of C, and the complex variety M4(C) coincides with
the orbifold Raty(C)/PGL4(C) consisting of Mébius conjugacy classes of degree d
rational maps on the Riemann sphere. The conjugacy class of a rational map f
will be denoted by (f). The subvariety S(C) of My(C), called the symmetry locus,
is the subvariety determined by rational maps f for which the group Aut(f) of
Mébius transformations commuting with f is non-trivial. The rational map f is
the map obtained by applying the complex conjugation to coefficients of f € C(z).
For the broader class of complex-valued functions on C, we use the notation f
instead which is the result of conjugating z — f(z) with z — z; cf. @BI). As
for special transformations, the antipodal involution and the Joukowsky transform
are given by v := z — ’71 and j ==z — 2z + % respectively. Finally, in speaking
of quasi-conformal (q.c. for short) homeomorphisms of the Riemann sphere, the
dilatation is always denoted by p.

2. THE REAL ENTROPY FUNCTION

The real entropy (L) can be considered as a well defined continuous function
on a certain open submanifold of M/, C M (C) obtained from omitting those
PGL2(C)-conjugacy classes of real maps that include more than one PGLy(R)-
conjugacy class. Studying this domain is the subject of the first two subsections
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421221 Properties of the real entropy function stated in Theorem [LL] will be
proved in Proposition 27 of §231 In §2.4]1 we address the natural question of how
the real locus Mg4(R) of M4(C) is related to the locus M/, determined by rational
maps that actually admit a model over R; see Proposition

2.1. Symmetries. The real entropy is assigned to rational maps with real coeffi-
cients, so it is natural to form the subspace

(2.1) ! i= PGL, (). (Rata(R)) /PGLs(C) = {(f) € Ma(C) | f € R(2)}

consisting of conjugacy classes in M4(C) that contain a real map. The real entropy
hg is not well defined as a function on the entirety of this real subvariety because
the ambiguity in picking a real representative can lead to different entropy values.

Example 2.1. Given p € R — {0}, real quadratic rational maps i (z + %) are

conjugate via z +— iz but exhibit quite different dynamical behavior on the real
circle. The critical points of % (z — %) are not real, so it induces a degree two

covering x % (z— %) of R whose entropy is therefore log(2). On the other

hand, the topological entropy of x — % (J; + %) vanishes: for |u| < 1 every orbit
is attracted to the fixed point co of multiplier u; for g > 1 orbits in the invariant
interval (0, 00) tend to the attracting fixed point \/ulTl while those in the invariant

. . . 1 .
interval (—oo,0) tend to the attracting fixed point ~ 7T and finally, for p < —1

there is no finite real fixed point and any point of R, other than the fixed point oo

. . . . . e 1
and its preimage 0, converges under iteration to the 2-cycle consisting of :I:—m

2
whose multiplier is (QJFT“) < 1.

The problem with the pair i (z + %) from the preceding example is that they are
conjugate over the complex numbers but not over the reals. We are interested in
the dynamics of f [ and that is invariant only under real conjugacies, i.e. elements
of PGLy(R). In the literature of arithmetic dynamics, such examples of rational
maps over a field K which are conjugate only over a strictly larger field K’ are
called twists and they happen only if maps admit symmetries in PGLy(K); see
[SilOT, §84.7,4.8,4.9] for details. In our context, only twists over R are relevant.

Proposition 2.2. Fiz f € R(z) with Aut(f) = {1}. If g € R(z) is PGL2(C)-
conjugate to f, then f,g are in fact PGLa(R)-conjugate.

Proof. Assume the contrary; the complex conjugacy class (f) contains at least two
distinct real conjugacy classes. This implies the existence of a Mo&bius transfor-
mation @ € PGLy(C) — PGL2(R) for which awo f o™ € R(z). But then taking
complex conjugates implies that

-1 _ 1 -1

ao foa ao foa™ o@)ofo(ailo&)flzf.

o & lies in Aut(f); a contradiction. O

= («

Hence the non-identity Mébius map o~ !

Thus, in order to have a well defined real entropy function, we should remove
from the space M/, in (Z)) the subspace of complex conjugacy classes of real maps
with non-trivial Mobius symmetries; the subspace which will be denoted by

(2.2) S":={(f) € Ma(C) | f € Rata(R), Aut(f) # {1}}
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herein. This is obviously the intersection of the complex symmetry locus

(2.3) S(C) ={(f) € Ma(C)| f € Ratq(C), Aut(f) # {1}}

with M!,. So we arrive at a well defined entropy function:

Definition 2.3. For any d > 2, the real entropy function is defined as
hg : Ml — 8" — [0,log(d)]
() = hiop (f 13 R > R)

The domain of definition is {(f) € M4(C)|f € R(z), Aut(f) = {1}} and the
codomain is [0, log(d)] since

Ba(f) = uop (1 T5: B = R) < hyop, (1€ = €) = log(d).

It would be also useful to know the dimension of the symmetry locus; this is
the content of the next proposition. See [MSW17] for a more refined version that
determines the dimension of the locus in M 4(C) of rational maps with a prescribed
automorphism group.

(2.4) (f € R(2)).

Proposition 2.4. For alld > 2 the dimension of the symmetry locus [Z3) is d—1
and, as a subvariety of My (which is a variety over Q), it has a model over Q
(so makes sense to talk of its R-points). Moreover, dimg 8’ = dimgr S(R) =d — 1.

Proof. Let f € C(z) be a rational map admitting a non-trivial automorphism « €
PGL2(C). Since Aut(f) is finite ([Sil07, Proposition 4.65]), after conjugation with
an appropriate Moébius map one may assume that the cyclic subgroup generated
by « has a generator of the form w, = z — e’ 2 where n > 2. The elements of
Rat(C) commuting with w,, form the following union:

) ) a;z"
U {Zo<z<d,nl7“1 i eRatd(C)}'

.~
0<r<n Zogigd,n\i—r biz

Observe that n cannot exceed d+1 because otherwise, the set above will be vacuous:
there must be 4, j € {0,...,d} with both i —r —1 and j —r divisible by n and these
two numbers differ by at most d+1. The dimension of each of the sets in this union
is at most d: the number of coefficients a;, b; appearing is precisely d + 1 for n = 2
and at most 2 (%] < d+1 for n > 3. Thus the projection from the affine space of
coefficients into the quasi-projective variety Raty(C) yields a d-dimensional subset
of Raty(C). There is one degree of freedom due to conjugation with scaling maps
which preserves the forms appeared above. Hence the symmetry locus S(C) is of
dimension at most d—1. Indeed, the equality is achieved; otherwise the generic fiber
of the projection map from the aforementioned d-dimensional subspace of Rat,(C)
into My4(C) is of dimension at least two. This means that there is a rational map
f € C(z) commuting with an w,, such that for any « from a two-dimensional subset
Z of PGLy(C), a o f o a™! commute with w, as well. In particular, there is a
morphism

cw—)oflownoa

{z — Aut(f)

from the two-dimensional variety Z into the finite set Aut(f). So the morphism
has to be constant over a two-dimensional subvariety which cannot be the case as
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the centralizer of w,, in PGLy(C) is the subgroup of scaling maps z +— kz which is

one-dimensional.
For the last part, notice that according to the above union, S(C) is the image of
the algebraic set

U U {[ao:--~:ad:bo:~~-:bd]

2<n<d+10<r<n
€ Ratq(C) CP***(C)|a; =0 if nfi—r—1; b; =0 if nfi—r}

defined over the rationals.
Finally, notice that the dimension count for S(C) implies upper bounds for di-
mensions of real subvarieties S’ C S(R):

dimg 8’ < dimg S(R) < dimge S(C) =d — 1.

It is not hard to show that the equality is achieved here: The complex dimension
of §(C) coincides with the real dimension of its real locus S(R) provided that the
complex variety S(C) has a smooth R-point in a highest dimensional irreducible
component. For a generic choice of complex or real numbers asi 1 and bgg, the
automorphism group of the rational map

2k+1
ZO<2k+1§d A2k+12

2k
ZO§2k§d barz

is generated by z +— —z that on coefficients acts via agg1 — —agr4+1 and bog —
bor. Hence, assuming that these numbers are furthermore positive, we get a d-
dimensional submanifold of Rat4(R) that bijects onto a (d — 1)-dimensional real
submanifold of the set of smooth points of S(C) which is a subset of S’ because every
point of it represents the conjugacy class of a real map. Therefore, dimg S(R) >
dimg &' > d — 1. O

2.2. Blaschke products. The rational maps we are interested in are those with
real coefficients; or equivalently, those that preserve the real circle R. But under
a suitable Mobius change of coordinates (e.g. the Cayley transform) R can be
identified with the unit circle; and in studying holomorphic maps preserving the
unit circle Blaschke products come up naturally. In the next proposition, we use
Blaschke products to investigate the domain of the function hg from Definition 23}
compare with [Bro76].

Proposition 2.5. The domain M/, — 8" C M4(C) of the real entropy function
) is an irreducible real variety of dimension 2d—2. Nevertheless, in its analytic
topology, it decomposes to d + 1 connected components of the same dimension
corresponding to topological degrees of self-maps of the circle R=RU {0} that
elements of Ratq(R) induce:

(2.5) M), -8' = L] (M, - 8.
—d<s<d,2|d—s

Here, M:i,s is the subspace of complex conjugacy classes of degree d real rational

maps f for which the topological degree of the restriction f [: R — R is s.
Proof. We have
dimpg le < dimg Md(R) < dime M4(C) = 2d — 2.
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The surjective morphism Raty(R) /PGLy(R) — M/, is injective on the Zariski open
subset of classes without twists (e.g. away from the preimage of the closed subva-
riety S’). The projection also indicates that M, is irreducible, being a surjective
image of Ratq(R) which is irreducible itself as it is the complement of the resultant
hypersurface in P24T1(R). Therefore, M, is irreducible in the Zariski topology; and
is of real dimension 2d — 2. The same statements hold for its Zariski open subset
M, — 8.

Since the field R is not algebraically closed, the irreducibility of Ratq(R) or
M, — 8" does not guarantee their connectedness in the analytic topology. As a
matter of fact, maps in Raty(R) whose restrictions to the real circle have different
topological degrees cannot lie in the same connected component. To see this, notice
that the integer-valued function

degyp, : My —8" = {—d,...,0,...,d}

is continuous because the topological degree can be expressed as an integral over the
circle R =R U {oo}. Hence the level sets of deg,, are disjoint unions of connected
components of Raty(R). The topological degree of a circle map is preserved under
conjugation by a diffeomorphism of the circle and Proposition implies that if
real maps f, g give rise to the same class in M4(C) away from &’, then they are
conjugate by a Mobius transformation that preserves R. Therefore, the topological
degree descends to a continuous function

degyo, : My —8" = {—d,...,0,...,d}

any level set MLLS — &' of which is a union of connected components of M/, — .
Here

(26) M, = {<f> € My(C) | f € Raty(R), deg,q, (f i R = R) - s}

as defined in the statement of the proposition.

We next show that M, | is non-vacuous if and only if d and s € {—d,...,0,...,d}
have the same parity and for any such s the subspace M/, — S’ is connected. This
will establish the partition (Z3]) of M/, — &’ to its connected components and will
conclude the proof.

Let us proceed with a parametrization of degree d real rational maps with
degy,, = s. It is more convenient to exchange R with {z eC | |z] = 1} via the
Cayley transform

2.7
27) 2 po= itz

{the unit circle — the real circle
1—z

and concentrate on degree d rational maps f € C(z) that keep the unit circle
{z € C||z| = 1} invariant instead. The reflection z —+ L with respect to the unit

circle commutes with such an f, so the roots and the poles of f on the Riemann

sphere occur in (root, pole) pairs like (q, %) where ¢ is away from the unit circle.

Therefore, assuming that f has k roots ai,...,ay inside the unit circle and d —
k roots by,...,bs—x outside of it (both written by multiplicity), its poles would
be reciprocals of ay,...,a; outside the unit circle and reciprocals of by,...,bq_ g
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inside it. The rational maps f(z) is thus a scalar multiple of the Blaschke product

by a NS,
i j
H(l—dﬂ)jl_[l (1—b_jz)

=1

that preserves the unit circle as well. We conclude that f(z) has a unique description
as

(2.8)

e r—a \ —b;
f(Z)_e%ncH(l_al >H( (; ) (|a1|, |ak|<1 |bl |bd k|

i=1

>1;ceR/Z).

The topological degree s of the restriction f [f.j=13: {|2] = 1} — {|2] = 1} of the
map in (2.8)) is k— (d—k) = 2k —d by an easy application of the argument principle.
We observe that k = % and an integer s from {—d,...,0,...,d} can be realized
as the topological degree of the restriction precisely when its parity is the same as
that of d. Now it is easy to verify that there are d + 1 choices for s.

Fixing such an s, putting k to be % in (28) and then varying a;’s, b;’s and ¢
respectively inside, outside and on the unit circle, and finally conjugating with the
Cayley transform parametrizes a submanifold of Ratg(R) diffeomorphic to R2 x S*
which is the subspace of real rational maps of degree d with deg;,, = s. This
full-dimensional submanifold of Ratq(R) surjects onto the subspace My , of Mj
appeared in (Z.0)); a subspace that is therefore connected and of codimension zero.
Finally, we argue that removing &’ in ([2.5]) cannot affect the connectedness of ./\/lfm:

If d > 3, invoking Proposition 24 the codimension of M}, /S’ in M,  is
(2d—2)—(d—1) > 2.

Taking preimages under Ratq(R) — M, we deduce that in the deg,, = s com-
ponent of Raty; — which is a manifold — the closed subset of maps with non-trivial
automorphisms is of codimension at least two, and hence the complement — which
surjects onto le,s — &’ — is connected. For d = 2, we rely on the results of [Mil93]:
S’ = S(R) is precisely the curve in My = My(R) = R? that separates Mj o,
My 5 and My o; see [Mil93) fig. 15]. O

Example 2.6. For a given 0 # s € {£1,...,£d} with s = d (mod 2), the Blaschke
product

(2.9)
dts
27ic . Z—ag b
f()=e _1_11(1_% ) ( - L) (ol el <1 ol b
>1;c€R/Z)

appeared in the proof of Proposition induces a (unramified) degree s covering
of |z| = 1 provided that a;’s and b,’s are sufficiently close to 0 and oo respectively.
Conjugation with the Cayley transform 27 then yields a degree d rational map
that restricts to a degree s cover R — R thus a degree d real map of real entropy
log(|s|). For generic choices of a;’s and b;’s, the corresponding map f will be away
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from the symmetry locus. We conclude that hg is log(|s|) over some non-empty
analytic open subset of the connected component MZL o

The dynamics of ([2Z9) on the unit circle is well understood once the map is
expanding (e.g. as a; — 0 and b; — o0o) since then, according to [Shu69|, it should
be conjugate to z — 2°. Such expanding maps do occur once |s| > 2. Notice
that for a Blaschke product f from (Z3) which is expanding on the unit circle,
the Julia set indeed contains the unit circle. Finally, we point out that although
when |s| < d the unit circle does not capture all of the entropy of the ambient
endomorphism of the Riemann sphere, the dynamics on the circle demonstrates
certain “rigidity” here in the sense that once two expanding circle maps of the form
[23) are absolutely continuously conjugate, the ambient rational maps must be
Mobius conjugate [SS85, Theorem 4].

For s =1 and d odd, this type of Blaschke product is used in a construction of
rational maps with Herman rings; see [Mil06al, §15]. In such a situation,

flgz=n: {lzl =1} = {|z| = 1}

would be an orientation-preserving analytic diffeomorphism whose rotation number
p can be any desired element in R/Z after a suitable adjustment of ¢ in (Z9)
[Mil06al, §15, Lemma 15.3]. The entropy of this subsystem is then zero. If p is
rational, then every orbit on the circle converges to a periodic orbit; and the only
possible Julia points on the invariant circle are parabolic points.

For irrational p, by Denjoy’s theorem there is a topological conjugacy between
I Tqz1=13: {12l = 1} = {|2| = 1} and the irrational rotation t € R/Z +— t+p € R/Z;
in particular, every single orbit of this subsystem is dense. So the unit circle is en-
tirely included in either the Julia set or the Fatou set. The latter situation occurs
precisely when the diffeomorphism f [1;j=1y: {|z| = 1} — {]z| = 1} is real analyti-
cally linearizable in which case the circle is in a Herman ring. There is a complete
classification based on Diophantine properties due to Yoccoz of rotation numbers
for which the existence of a real analytic linearization is guaranteed [Yoc02]. For
irrational rotation numbers p that are “too well approximated” by rational num-
bers, there are real analytic diffeomorphisms of the unit circle of rotation number
p that do not admit even C*° linearizations. Hence if in (Z9) we fix a1,...,a a1
near 0 and by,...,b d_1 near 0o and then adjust ¢ so that we get such a rotation

number for the induced self-diffeomorphism of |z| = 1, then all points on the unit
circle would be Julia despite the fact that the real entropy vanishes.

2.3. Properties of hg : M/, — 8" — [0,log(d)]. We now prove the first part of
Theorem [LT]

Proposition 2.7. For any d > 2, the function hg : M/, — S — [0,log(d)] is
surjective and continuous (in the analytic topology).

Proof. Fix an s € {—d,...,0...,d} with s =d (mod 2). As observed in the proof

of Proposition and also in Example [Z6, the component deg;,, = s of Ratq(R)
can be identified with the space of Blaschke products

d+s d—s

2 2
2mic a4 z — by (
= e s ].b e
‘ H<1—diz>jl:[1<1—bjz) s fasgs | <15 fbal, -

i=1

bdfs
2

>1; CER/Z)
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appeared in (Z9). A convergence of the parameters of the above product inside
{l2] < 1} x {|2| > 1}7° xR/Z

results in the uniform convergence of the corresponding holomorphic functions over
some thin enough annulus around the unit circle |z| = 1 and therefore, the conver-
gence of the induced maps of the unit circle in the C'*° topology. The continuity
claim follows immediately from [Mis95]: in the C! topology, the topological entropy
is continuous for circle or interval maps of bounded modality. Consequently, the
real entropy is a continuous function on the space Raty(R) of real rational maps
of degree d. This function, after being factored through the local homeomorphism
from the open subset of maps without M6bius symmetries in Ratq(R) onto M}, —S”,
descends to the function hg : M/ — & — [0,log(d)] which is thus continuous as
well.
Because of the continuity, to obtain the surjectivity of hg it suffices to construct

a family of real rational maps of degree d parametrized over a connected space
for which the real entropy gets arbitrarily close to both extremes 0 and log(d).
We invoke the result [MT00, Theorem 3.2] that allows us to parametrize the class
of boundary-anchored polynomial interval maps of full modality via their critical
values:

Given numbers vy,...,v4-1 € [—1,1] with (=1)"(v; —v;_1) > 0 for every

0 < i < d where vy := 1 and vg := (—=1)¢, there is a unique boundary-

anchored polynomial map f : [—1,1] = [—1,1] of degree d that has distinct

critical points

“1<c < - <cgo1 <1

such that f(c;) = v; for all 0 < i < d and f(—1) = vo, f(1) = vg on the

boundary.
The space of these tuples (vy,...,v4-1) € [—1,1]9"! is obviously connected. As
v; — 07 for 0 < i < d even and v; — 0~ for 0 < i < d odd, the corresponding
maps tend to x — (—x)? whose real entropy is zero, whereas when v; = (—1)? for
each 0 < i < d, the corresponding degree d polynomial map f : [-1,1] — [-1,1]
would have d surjective monotonic pieces; so the iterate f°™ needs to have d"™ laps
and therefore the exponential growth rate of modality of iterates is log(d). O

Remark 2.8. Notice that for the family exhibited at the end of the preceding proof
the topological degree s is zero for d even and is —1 for d odd. Indeed, although
surjective on M/, — ', hg is not surjective on all constituent parts of M/, —S’ that
appeared in (Z3); a well known result from [MP77] asserts that for a C! self-map
of a compact connected differentiable oriented manifold of degree s the topological
entropy is at least log (max(|s|,1)).

2.4. Comparing M/, with the real locus M,(R). Next, we elaborate more on
the domain M/, — S’ = M/, — S(R) of hg in (Z4)); we will establish that it differs
from M4(R) — S(R) by an irreducible component which is relevant only in odd
degrees. The subspace M/, defined in (ZI)) is formed by the conjugacy classes of
elements of Raty(C) for which R is a field of definition. On the other hand, R-
points of the moduli space M4 are Mébius conjugacy classes of elements of Rat(C)
whose field of moduli is included in R; see [Sil07, §§4.4, 4.10] for the background
material. So M/, € My(R) and in particular M/, —S8" € M4(R) —S(R). The latter
containment (and consequently the former) can indeed be strict: for d = 2k +1 the
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2k+1

z—1 is trivial and its field

z+1
of moduli is Q while it cannot be defined over the reals; see [Sil07, Exercise 4.39,
Example 4.85]. It is worth noting that this question of “FoM vs. FoD” is relevant
only when d is odd [Sil07, Theorem 4.92].

Let us try to see how the real variety Mg(R) — S(R) is related to its (possibly
proper) Zariski closed subset M/, — S(R) = M/, —S&’. We claim that classes in the
complement M,4(R) — (S(R) M) = My(R) — (S(C) M) can be represented

by antipodal maps; i.e. maps which commute with the anti-holomorphic involution

d
v(z) := —1. Notice that the example ¢(z) = 1(2;1) for d odd that appeared

before is indeed antipodal. For more on the dynamics of antipodal-preserving maps
see [BBM15]. They are not relevant to our treatment of entropy as a generic map
of this class does not preserve any circle.

automorphism group of the rational map ¢(z) :=1i (

Proposition 2.9. The real subvariety M/, of Mq(C) coincides with the real locus
My(R) of the moduli space for d even while for d odd, the latter is reducible
and has M/, and the (2d — 2)-dimensional real subvariety of conjugacy classes
of antipodal-preserving maps as irreducible components. Any other irreducible
component of Mg(R) has to be contained in the symmetry locus S(R) and hence
is of dimension at most d — 1.

Proof. Invoking [Sil07, Proposition 4.86], the obstruction to the field of moduli R
being a field of definition for a map f € Raty(C) with Aut(f) = {1} is encoded
by the Galois cohomology class determined by the cocycle Gal (C/R) — PGLy(C)
defined by o — « with ¢ being the complex conjugation and a a Mdbius trans-
formation with oo f o @' = f that therefore satisfies the cocycle condition
aoa = 1. These transformations have to be considered modulo modification
via a 1-coboundary, i.e. replacing a with v o a o @~' that amounts to replacing f
with % o f o u~! from the same conjugacy class. But the grou

H' (Gal (C/R),PGLy(C)) = H? (Gal (C/R),C*) = Br(R)

is of order two and is thus generated by any 1l-cocycle non-cohomologous to a
coboundary. An example of such is the 1-cocycle associated to the rational map

2%+1
d(z) =1 (Z_l) appeared before:

z+1
1 1 Lz — 1\
_¢(7_)__‘ 1, 2k+1__1(z+1) = ¢(2);
N C )
that furnishes us with the 1-cocycle determined by a(z) = —1. It is easy to

verify that this is not 1-coboundary; that is, not in the form of u o %~ for another
Mébbius transformation; see [Sil07, p. 209] for details. Hence M4(R)—(S(R) U M)
is precisely the subset of classes in My(R) — S(R) which admit a representative

f € C(z) with f(—%) = —ﬁ. Applying the complex conjugation map to both
sides, this condition means that f commutes with the anti-holomorphic involution
v(z) = —%, a Zariski closed condition over the reals cutting out the antipodal-

preserving locus of the moduli space. Notice that the constraint automatically
guarantees that the field of moduli is inside R as the complex conjugate map f is
Mébius conjugate to f via z — —%. But there might be such maps which cannot be

IHere Br(R) denotes the Brauer group of the field of real numbers.
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d
defined over the reals; e.g., the example ¢(z) = i (;‘_}) for d odd. Consequently,

the real variety My(R) —S(R) is the union of M/, —S(R) — that as discussed before
in §2.2 is irreducible and of dimension 2d — 2 — and the antipodal locus.

Here is a simple dimension count for the antipodal-preserving locus in My(C).
Picking a degree d map f which commutes with v : z — —%, after a Mobius
conjugation, without any loss of generality we may assume that the roots of f lie in
the finite plane. If ¢ is a root of f, —% has to be a pole. Thus roots and poles can

be coupled in pairs such as (qi, —%). We conclude that f(z) is a scalar multiple

of a function in the form of H‘Ll IZJ;]?_;. Now fo~y = o f is satisfied for a multiple
of such a product if and only if d is odd and the scalar factor is of norm one.
This argument indicates that any antipodal-preserving map of odd degree d, after

a suitable conjugation, can be uniquely written as

d
Z 4
uH1+in

i=1

where |u| = 1 and ¢;’s are complex numbers with ¢;¢; # —1. This parametrizes
a connected subspace of real dimension 2d + 1 of Raty(C) that projects onto the
antipodal-preserving locus in M4(C). Consequently, like M/;, the antipodal locus
is irreducible as well, being a surjective image of the irreducible real algebraic
subset S1 x (C*)? of A2¢+1(R). Let us find the dimension of the intersection of the
whole conjugacy class of a generic map of this kind with the antipodal-preserving
locus in Raty(C). Given an antipodal map f with Aut(f) = {1}, suppose for an
a € PGL3(C) the map avo f o a™! is antipodal too. Then one can write:

1

yo(aofoa71)077 :aofoofl:ao(yofo"yfl)ofl,

which indicates that the Mébius transformation (oo )~ o (y o ) is an auto-
morphism of f and thus a commutes with . It is not hard to verify that any
Mébius transformation commuting with z — —% can be uniquely written either as

Z > % with 7,5 € R/Z, a > 0 or in one of forms z — vz, z — 2 where
v lies on the unit circle. We conclude that the space of Mobius transformation
commuting with the antipodal involution is of real dimension three and thus the

antipodal locus in M4(C) is of dimension (2d + 1) — 3 = 2d — 2. O

2mir

For more on M 4(R), see [HQI5].

3. RIGIDITY OF REAL ENTROPY

Equipped with the definition of the function hg : M/, — & — [0,log(d)] from
g2l we prove Theorem [[T]in this section. Away from the antipodal and symmetry
loci, M/, can be thought of as the set of fixed points of the involution (f) + (f)
induced by conjugating coefficients in Raty(C). For future references, we record
this involution as acting not only on rational maps but on functions defined on the
Riemann sphere:

Definition 3.1. For any function h : C — CU{oo}, the function & : € = CU{oc}
is defined as:

(3.1) h:zw h(z

~—
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It is easy to check that h — h is an involution which respects the ring structure
of the set of C-valued functions on the Riemann sphere; takes homeomorphisms to

homeomorphisms and finally, it commutes with differential operators -2 and %:

Oz
Oh _Oh  Oh _Oh
0z 0z 0z 0z
We now briefly review the theory of quasi-conformal deformations of rational
maps developed in [MS98]. A concise treatment could be found in one of the
additional chapters of [AhlI06]. Let f be an arbitrary real rational function of degree

d. The quasi-conformal (q.c.) conjugacy class of f, denoted by qc(f), consists of
those rational maps g which are quasi-conformally conjugate to f. The space

M(f) == qc(f) / Mobius Equivalence

(3.2)

of Mobius conjugacy classes of maps in qc(f) is called the moduli space of the
rational map f and the natural map M(f) — My(C) is an injection of complex
orbifolds. In analogy with the theory of the moduli spaces of Riemann surfaces, the
moduli space qc(f) is the quotient of a Teichmiiller space under a discrete group
action:

(3.3)
T(f) ={(g,h)| g a rational map, h a q.c.-homeomorphism with ho f =go h}/ ~

where (g1, h1) ~ (g2, he) if in the conjugacy
_ -1
g2 = (h20h1 1) ©g10 (h20h11)

the quasi-conformal homeomorphism hs OhI1 is isotopic to a Mobius transformation
through an isotopy which preserves the conjugacy. In particular, g1, go must be
Mbobius conjugate. There is an obvious map

{T(f) — M(f) = qc(f)/ Mébius Equivalence

[(g, 1)) = {9)

sending the class [(g, h)] of a pair to the class (g). The fiber above the Mé&bius class
of f can be identified with the group of isotopy classes of q.c.-homeomorphisms
commuting with f where the isotopy has to remain within this space of q.c.-
automorphisms as well. The aforementioned group is called the modular group
of the rational map f and will be denoted by Mod(f). Clearly, Mod(f) acts (from
right) on T(f) by [(g, h)].[k] = [(9,h o k)] and the quotient T(f)/Mod(f) can be
identified with M(f) via the projection above. It is known that Mod(f) is discrete
and acts properly discontinuously on T(f). Furthermore, there is a description of
the space T(f) as a product of ordinary Teichmiiller spaces based on the dynamics
of f: € — C; see [MS98, Theorems 2.2 & 2.3].

There is a naturally defined entropy function ifLE on some appropriate subset of
T(f) sending a class [(g, h)] with Aut(g) = {1} to hr(g). This is well defined and
fits in the commutative diagram below:

(3-4) {l(g.M)] € T(f) |g € R(2), Aut(g) = {1}}

h
[(mh)]a@l \

MGOAM(f) =&

- 0, log(d)]
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Suppose g is another real rational map quasi-conformally conjugate to f; that is,
(g9,h) determines a class in T(f) for a suitable q.c.-homeomorphisms h satisfying
hof = goh. In order to compare the topological entropies of f [ and g [z, we

need to investigate how the quasi-circle h(]f%) is placed with respect to R. Pulling
back the complex conjugate map z — Z via h yields a reflection z +— A~} (h(z))

commuting with f. This differs from the usual reflection z — z — that also preserves
f € R(z) — by a q.c. automorphism of f:

(3.5) u(z) == h1 (h(z)),
a map which satisfies u (u(i)) = z or equivalently, using the notation in (3.I])

(3.6) uwt =1

holds. The homeomorphism w is identity if and only if h(Z) = z which in particular

indicates that h preserves RR. Next, we form a continuous map that assigns to a
[(g,h)] € T(f) (with g € R(2)) the class in Mod(f) of the corresponding automor-
phism « from [B35]). The appropriate domain of definition for such a map turns out

to be that of the function i’zE from ([B4) as the following proposition suggests. The
proof is straightforward and is left to the reader.

Proposition 3.2. The map
{[(g,h)] € T(f) |9 € R(2), Aut(g) = {1}} — Mod(/)

(3.7) [(g,h)] — [u 1z W}

is well defined.

The map (B.7) is obviously continuous, but attains its values in the discrete
group Mod(f), so must be constant on each connected components of the domain.

Proposition 3.3. If [(g1,h1)],[(g2, h2)] are mapped to the same element of the
modular group via (B1), then hr(g1) and hr(g2) must coincide.

Proof. By symmetry, it suffices to argue that the topological entropy of the system

g1 = hiofo hfl [z cannot exceed that of the system go = hyo f o h;l l&-

But these systems are conjugate with f [, -1 ®) and f [, ®) respectively (keep
1 2

in mind that the quasi-circles Ay *(R), hy '(R) are f-invariant as the rational maps

gi=hyofo h;l, go =hoo fo h;l are with real coefficients.). Therefore, we only

need to show that hop (f rhl—l(R)) < htop (f rhz—l(R)) .
Notice that if the automorphisms

(3.8) up iz byt (m), Uy 2+ hyt (W)

corresponding to (g1, h1) and (ga, ha) determine same classes in Mod( f), they must
differ by a third quasi-conformal automorphism v of f isotopic to the identity:
uy = uy ov. Thus there is an isotopy {v:}e(o,1) from vg = v to vy = 1 through

g.c.-automorphisms of f. Thus {vt (hl_l(R))} o is a 1-parameter family of f-
tef0,1

invariant quasi-circles terminating at t = 1 with hfl(f&). Given a periodic point
2o of f, {v¢(20)}eejo,1) is a curve of periodic points of f since v;’s commute with f.
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The set of periodic points of f is countable; therefore, all of these points coincide
with v1(z9) = z. Consequently, vg = v = ufl o ug fixes each periodic point of
f and thus restricts to identity on the Julia set of f since J(f) is the closure of
repelling periodic points. Recalling the definitions of uy,us in ([B.38), this indicates

hit (hl(:zc)> =hy' (hg(ﬂ?)) for any z € J(f) N hy7 (R). The left-hand side is just

z and hence hy(z) should be real; thus J(f) N A7 (R) is a closed subsystem of
f rhgl(R) too. Now#]

htop (f rhfl(]@)) = htop (f [j(f)mh;l([@)) < htop (f fh,;l(]g)) .

|
The same idea of Schwarz reflection appearing above can be employed to establish
the J-stable case as well.

Proof of Proposition [L2l One characterization of [J-stability is the existence of a
holomorphic motion of Julia sets [MnSS83, Theorem B]. Consequently, there is a
continuous map

(3.9) i:00,1] x J(fo) = C
such that each i; := i(¢,.) is a conjugacy
(3.10) (T (fo), fo Tacry) = (T(fo)s fe T (s)

with ig being identity. As every f; is with real coefficients, the Julia sets J(f;) are
invariant under the complex conjugation; and therefore, for any z¢g € J(fo) the
following is a well defined continuous map:

(3.11) te0,1] ;" (W)

The maps above commute with fy since f;oi; = i 0 fo and both fy and f; commute
with complex conjugation. Hence if xq is picked to be periodic, (B3] parametrizes
a curve passing through the periodic points of fy. In such a situation, (39) must
be constant of value

io (io(ﬂﬁo)) = To;
or equivalently i;(zg) = i,(Tg) for any ¢t € [0,1]. But J(fo) contains all repelling
periodic points of fy as a dense subset. So by continuity, i;(z) = 4(Z) holds for
all x € J(fo), t € [0,1]. In other words, the motion ([BII) of Julia sets respects

the complex conjugation; in particular, it preserves the real points. The conjugacy
BI0) thus restricts to a conjugacy

(7C0) VR fo Lrigyes) = (T DR e Lygges)

between two dynamical systems of topological entropies hr(fo) and hr(f:). O

This discussion culminates in the following theorem:

Theorem 3.4. Given a real rational map f € R(z) of degree d > 2, the real
entropy function hg : M, — 8" — [0,log(d)] is constant on connected components

of M,,\M(f) - S

2For any closed f-invariant subset A of the Riemann sphere, the topological entropy of f [
coincides with that of the subsystem f [ 7()na [Mil06a, Problem 19-a].
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Proof. Proposition B3] says that the lift ITL\HQ of hg is constant on level sets of the con-
tinuous map {[(g, h)] € T(f)|g € R(2), Aut(g) = {1}} — Mod(f) defined in (B7).
Since the target space is discrete, we conclude that hg : [(g,h)] — hr(g) is locally
constant on the preceding domain. Now the commutative diagram (B4]) implies
that hg is locally constant on the image M/, (M(f) — S’ of this space in the mod-
uli space My(C) and this finishes the proof. O

Proof of Theorem [Tl An immediate corollary of Proposition 27 and Theorem
B4 O

Of course, Theorem B4 is not interesting unless the intersection M/, [ M(f) is
of positive dimension or equivalently, there are plenty of classes in the Teichmiiller
space T(f) which are represented by real maps.

Corollary 3.5. For a non-antipodal rational map f € R(z) of degree d > 2 with
Aut(f) = {1}, the real entropy function hg : M/, — S’ — [0,log(d)] is constant on
a submanifold of real dimension dimc M(f) passing through (f).

Proof. The involution from Definition 3] acts on the T(f) via

(3.12) v L9, )] = 1@ B

Keep in mind that by identities B2), if h is a q.c.-homeomorphisms of dilata-
tion u then h would be another such homeomorphism of dilatation fi. Hence the
transformation ¢ from ([B12) acts on both T(f) and {[(g, k)] € T(f)|Aut(g) = {1}}
in a well defined manner because f = f and the involution in (3 respects the
composition and preserves the group of Mébius transformations. If Aut(g) = {1}
and (g,h) ~ (g, ﬁ), then the maps g and § = g are Mobius conjugate. Recalling
Proposition [Z9] this implies that g is with real coefficients if it is away from the
antipodal locus. Nonetheless, the conditions of being on the antipodal locus or
having non-trivial symmetries are closed. So if one can compute the dimension of
Fix (¢ : T(f) = T(f)) around a point [(g,h)] = [(§, h)] fixed by ¢ where g € R(z)
is non-antipodal and Aut(g) = {1}, then something can be inferred about the
dimension M/, (\M(f).

To do so, suppose f € R(z) is neither antipodal nor admits non-trivial Mdbius
symmetries. Clearly [(f,1)] is a fixed point of the C'* involution ¢ of the complex
manifold T(f). The tangent map djs 1)¢ of ¢ at this point is a real-linear involution
of the complex vector space Ty(y,1)) (T(f)). Thus the tangent space decomposes to
the direct sum of +1 and —1 eigenspaces and the former is the tangent space to
Fix (¢ : T(f) — T(f)) at [(f,1)]. We claim the dimension of these two eigenspaces
coincide. Any representative (g, h) of a point in the Teichmiiller space T(f) deter-
mines an f-invariant Beltrami differential ;1(z)$Z where p belongs to the unit ball

A

in L>°(C). So there is a C-linear surjection from the space
oo ¢ dz . .. .
we L*(C) |u(z)d— is f-invariant.
z

onto the tangent space Ty 1) (T(f)). Given the way ¢ is defined in (BI2) and
remembering that for a q.c.-homeomorphism h of dilatation p, the map h is of
dilatation fi, we deduce that the involution dy(y 1yt of Tif1y (T(f)) comes from

PN

the involution p — & acting on L*°(C). The description of this involution in (31
clearly indicates that this map is conjugate-linear and hence, so is dj(f1);t. This
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means scaler multiplication by i maps the eigenspace of +1 to that of —1 and vice
versa. S0, as real vector spaces, they are of dimension

dim@ T[(fﬁl)] (T(f)) = dim@ T(f) = dim@ M(f)
O

The complex dimension of the Teichmiiller space T(f), or equivalently that of
the moduli space M(f), can be determined in terms of certain invariants of the
holomorphic system f : C — C (JMS98, Theorem 6.8], [ALI06, p. 128]). Corollary
thus establishes a lower bound for the real dimension of the isentrope passing
through a generic real rational map f € R(z) in terms of the complex dynamics

of f.

4. EXAMPLES OF STABLE FAMILIES OF CONSTANT REAL ENTROPY

This final section is devoted to examples of stable families of rational maps with
real coefficients where, in accord with Theorem [Tl and Proposition [[L.2] the real
entropy remains constant. We first treat the case of hyperbolic maps in §41] by a
different approach utilizing the well known techniques of kneading theory [MTS8S].
In 4.2 we calculate the real entropy for the prominent family of flexible Lattes
maps. At last, 4.3 entails a detailed discussion on families where the real entropy
is the maximum log(d).

4.1. Hyperbolic components. Recall that a rational map is called hyperbolic if
each of its critical orbits converges to an attracting periodic cycle [Mil06a, Theorem
19.1]. Such maps form an open subset of the moduli space M 4(C) whose connected
components are called hyperbolic components. Hyperbolic maps are known to be
J-stable and thus, Proposition implies that each connected component of the
intersection with M/, of a hyperbolic component in Mg(C) is included in a single
isentrope. Here, we present a completely different proof of this fact that also sheds
light on the entropy values realized by real hyperbolic maps.

Theorem 4.1. Letd > 3 andU be a connected component of the intersection of a
hyperbolic component of M4(C) with the real subvariety M!,. Then the function
hg is constant over U with a value which is the logarithm of an algebraic number.

Remark 4.2. There is a thorough classification of hyperbolic components of M2 (C)
[Mil93,Rec90]. In the case of d = 2 Theorem [F] still remains valid but requires
a little bit of more work as excluding the symmetry locus might cause the real
hyperbolic component U to become disconnected; cf. [Fil19].

Proof of Theorem .1l The open subset U —S’ of M/, is connected because U (S’
is of codimension at least two; see Proposition[Z4l Any real representative f € R(2)
of a point in it restricts to a continuous multimodal circle map f [4: R — R that
satisfies the hypothesis of Lemma below. Therefore, log (hg ((f))) is always
algebraic for a point (f) from this open connected set. The continuity of hg :
M, — 8" —[0,1og(d)] then yields its constancy over U — S. O

Lemma 4.3. Let I be an interval [a,b] or a circle. Let f : I — I be a continuous
multimodal self-map of I whose turning points are attracted by periodic orbits.
Then the number e»(f) is algebraic.
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Proof. Let us first deal with the interval case. We need to use the classical kneading
theory of Milnor and Thurston developed in [MTS88]. Suppose f : [a,b] — [a,]] is
a multimodal self-map of I := [a,b] with turning points ¢; < --- < ¢_1 and
laps I1 = [a,c1], Iz = [e1,¢2)y ..., L1 = [c1—2,¢-1], I} = [ci-1,b]. The shape of
the restriction f [7, of f to the n'! lap I,, will be denoted by €, € {41} which
is +1 if the restriction is increasing and —1 when it is decreasing. To each point
x € I, one can assign infinite vectors (6;(z7)),;~, and (6;(z7));~, whose components
come from the set of symbols {+1I1,...,+I;}. Here is the definition: 6;(z") = eI,
(respectively 0;(x~) = €l,,) means that there is a half-open interval with its left
end (resp. right end) at x on which f° is monotonic of shape ¢ € {£1} and is
mapped by f°¢ into I,. Associated with them are formal power series §(z) :=
Yorcobi(z )t and 6(z ™) := >, 0;(x)t" from V[[¢]] with V being the free abelian
group Z.{I1,...,I;}. The next definition is that of the kneading increments of f
given by v, := 0(ct)—0(c;,,) for any 1 < m < [—1. One can then form the (I—1) x!
kneading matriz N of power series in Z[[t]] with N,,, being the coefficient of I, in
Um, 1.€. Uy = 22:1 NpnI,. Denoting the orientation of f [j, by €, € {£1} and the
determinant of the submatrix of N obtained from deleting the n'" column by D,, (t),
it can be proved that the formal power series (—1)"*1D,,(t)/(1—¢,t) is independent
of 1 <n <. This common power series is called the kneading invariant of f and
will be denoted by D(t). It is easy to observe that the coefficients of D(t) are
bounded integers, so D(t) defines an analytic function on the disk |¢| < 1. Here is
the main result ([MT88, Theorem 6.3]):

If hiop(f) = 0, D(t) does not have any root in the open unit disk and
otherwise, e~ "or(f) s the smallest root of D(t) in [0,1).

Thus it suffices to show that under our assumption the kneading invariant D(¢) is a
rational map with integer coefficients whose roots, including e~"+»(/) are algebraic
numbers. In order to do so, one just needs to show that kneading coordinates
(0:(ch)) >0 and (0;(c;,,));>( are eventually periodic. We will argue that (6;(c;h)),~,
is periodic; the case of (6;(c;,));>q is completely similar. Suppose for i > ¢, f°*(c,,)
is in the immediate basin of the periodic point Zimod p from the orbit xg — x; —

<+ Tp_1 > xo. We claim that for § > 0 small enough, one can take ¢’ > ¢
so large that for i > ¢ the interval f°((cm,cm +6)) is in the interior of a lap
In; oa, Of f which is dependent only on the remainder of 7 modulo p. To see this,
fix 0 < r < p. Note that foUP+")(¢,) — z, as j — oo; and so if z, is not a
turning point, f°UP*7)(c,,) and hence the image under f°UP*") of small enough
non-degenerate subintervals [¢;,, ¢y, + 9] of the basin belong to the interior of the
lap that has z, for large enough j’s; say for j > j.. The same holds even when
z, is a turning point of f; we only have to rule out the possibility of feUP+7)(c,,)
alternating between the two laps that have x, in common: if the fixed point

Ly = hm fO(jp+r) ((CTFH Cm + 6))
J—0o0

of f°P is a turning point as well, then for j large enough, f°UP*") (¢, cm + 6))
always lands to the left of z, if x, is a local maximum of f°? and to the right
if it is a local minimum. Repeating this argument for all » € {0,...,p — 1},
p. (max{jo,...,jp—1} + 1) then works as the desired ¢'.

Next, after decreasing d if necessary, suppose all iterates f, ..., fo(q/“) restrict to
monotonic maps on [¢y,, ¢y, +4]. We now show that (6;(c;)),~, is periodic of period
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2p for i > ¢’ f°' ((¢m, cm + 0)) is contained in the lap I,
for [[em.cm+5) 18 the product of the degree of the monotonic map fo(q/"’l) e scm +9]
by the degrees of f on laps I, o . Replacing i with i+ 2p does

(¢’"+1)modp? """ ? "M(i—1)modp

and the degree of

imodp)?

not affect the former while multiplies the latter product by (Hle €nimo dp)Q =1.
Finally, notice that kneading theory has also been developed for continuous
multimodal circle maps or equivalently, for multimodal interval maps with finitely
many discontinuities; see [Pre89, appendix]. Therefore, Lemma [3] is valid for
multimodal circle map too. O

Remark 4.4. Much more can be said about arithmetic properties of entropy values
of post-critically finite multimodal maps. The paper [Thuld] establishes that a real
algebraic integer arises as exp (hiop (f : I — I)) for a critically finite multimodal
map f : I — I if and only if it is a weak Perron number, i.e. at least as large as
the absolute values of its Galois conjugates.

4.2. The Lattés family. A family of flexible Lattés maps of the same degree is an
example of a quasi-conformally trivial family of non-hyperbolic maps. (A detailed
treatment of Lattés maps can be found in [MilO6b].) Conjecturally, these are the
only families of rational maps admitting invariant line fields. Any such family
forms a single dynamical moduli space of complex dimension one. The example
below verifies Theorem B.4] through calculating the real entropy of those flexible
Latteés maps that preserve the real circle. It is well known that the Julia set of
a Lattés map is the whole Riemann sphere and hence, unlike §4.7], the subsystem
obtained from restricting to the real circle can never have an attractor.

Example 4.5. Set d = m? > 4 for an integer m # 0,41 and consider a flexible
Lattes map f of degree d obtained from the multiplication by m map [m] : [z] —
[mz] on the elliptic curve E = C/Z + Z7 with 7 being in the upper half plane.
So f makes the following diagram commutative where the columns are the two-
fold ramified covering m : E — P1(C) obtained by taking the quotient of E by
the action of the involution [z] +— [—z]; the morphism which is induced by the
Weierstrass function g : C — C of the lattice A := Z + Zr.

(4.1) EzC/Z—I—ZT%E:(C/Z%-ZT
o

B/l ~ [~2) = P/(C) —L> E/[z] ~ [-2] = P'(C)

The map f preserves R if the Weierstrass function

1 1 1
CRE RV (== )
0F#wEZ+LT

commutes with the complex conjugation; for instance, when the lattice Z + Z1 is
invariant under the complex conjugation. This happens if and only if Re(7) € 1 Z.
Up to the action of SLy(Z), Re(r) can then be assumed to be 0 or 1. Let us work
with the former and in the case of Re(r) = 1 one merely needs to replace 7 with
T — % in the subsequent discussion.

Assuming that the period 7 is purely imaginary, let us investigate the induced

map f and the corresponding dynamics on the real circle. We shall do so by pulling
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back to the dynamics on p~(R) or on the invariant subset 7= !(RR) of the elliptic
curve E. Since p(Z) = (), p(z) is real if and only if either 2Re(z) or 2Im(2)i
belongs to the rectangular lattice A = Z + Z7. We conclude that p‘l(R) is the
countable set of lines parallel to axes in the complex plane whose x and y intercepts

come from %Z and 7 This collection determines a tessellation of the complex

plane with the smaller2 rectangle of vertices 0, %, % and 7 (in the counterclockwise
order) which is bijectively mapped onto R via 0.

The union pfl(f&) of lines in C projects onto two pairs of parallel circle on the
torus £ = (C/Z + Z;

(4.2)

({[xuxem},{[ﬂa ‘xeR}), ({[muxeﬂ@},{[xmﬂ ‘zeR});

that intersect each other in four points (the 2-torsion points) and constitute 7= (R).
So the topological entropy of f [ coincides with that of the restriction of [m] to
this union of circles because 7 establishes a finite degree semi-conjugacy between
these two systems. According to the parity of m, on each circle from the preimage
7~ (R) the map [m] restricts to the multiplication by m onto another circle from
this union. We conclude that hg(f) is the topological entropy of

(4.3) S'=R/Z — S* =R/Z: [z] — [mx],

i.e. log (Jm|). Notice that under 7 each circle form (2] is mapped onto a compact
subinterval of R; and if the circle is preserved by the multiplication map [m], the
dynamics on the interval is given by the quotient of ([@3]) by the involution [z] —
[—x], i.e. a Chebyshev polynomial. The dynamics on R is illustrated in Figure [l

odd degrees even degrees

©(0) = oo © ©(0) = 00 ©

FIGURE 1. The real dynamics of the map f from (1)) in odd and
even degrees. The images under 7 of circles ([{2]) on the elliptic
curve cut R into four intervals determined by the values of the
Weierstrass function at 2-torsion points. Under f, each interval is
either preserved or is mapped onto another interval. The dynamics
on invariant intervals is that of a Chebyshev polynomial.
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Example 4.6. Let us calculate the real entropy of a couple of rigid (not flexible)
Lattes maps. It is known that any Lattes map semi-conjugate to an endomorphism
of an elliptic curve E via a morphism E — P!(C) whose degree (unlike the case
of the diagram (4.1)) is greater than two must originate from elliptic curves with
extra automorphisms, i.e. the elliptic curves corresponding to square and hexagonal
lattices [MilOGh].

In the case of the square elliptic curve, the rational map f(z) := —i (z + % - 2)
fits into the commutative diagram below.

{y2 =x3—x} :C/Z+Zi${y2 =x3—x} :(C/Z-i-Zi
l(zvy)’_)zz l(z,y)—)zz
P'(C) : P'(C)

02 _

The second iterate of f would be a finite quotient of the endomorphism [1 + i
[2i]. But in the Legendre form y?> = 23 — z, the automorphism defined via the
multiplication by i is just (z,y) — (—x,%iy); so f°2 is in fact induced via the
multiplication by two endomorphism and hence, based on the discussion in Example
5 we deduce that:

ha(f) = %hR(fOZ) _ % log(2) = log(v/2).

We finish this example with the entropy calculation for a real map which is the

quotient of an endomorphism of the hexagonal elliptic curve (C/ Z + Zw where
2mi

w = e73 is a primitive third root of unity. Consider the commutative diagram
below.
1—w
(P =0 +1} =C/Z+Tw—""0 (2 =341} =C/Z+ Zw
(z,y)—~y . (z,y)—y
V3i y® —9y
y'—>—u—_1
P1(C) —- PL(C)
(z,y)—z y—y? ) y—y? (z,y)—zx
1 yo 1
PH(C) P(C)
x»—>m3+1 :m—)szrl
PY(C) = PL(C)
Ounly the map appeared in the third row, i.e. f(z) := —2i7z((;:f));, is real. The

map z — 2> + 1 from the diagram above establishes a semi-conjugacy of finite
degree between the flexible Lattés map induced by multiplication by [—3] and f°2.
The real entropy of the former has been calculated in Example as log(3). We
conclude that:

ha(f) = 5 he(f2) = 5 log(3) = log(v3).

4.3. Maps of maximal real entropy. The isentrope hg = log(d) is an interesting
one to investigate. In this subsection we carry out a thorough analysis of this
isentrope that culminates in the proof of Theorem
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Theorem 4.7. Let f € R(z) be of degree d > 2 with py its measure of mazimal
entropy. Then the following are equivalent:

N

(@) 1y (®) > 0; A
(b) the Julia set J(f) is a subset of R;

(¢) htop (f la: R — ]R) = log(d).

Proof. Tt is clear that (b)=(a),(c); because if J(f) C R, using supp(pyr) = J(f):
Psop (f f@) > hiop (f rJ(f))
>y (F 179) = Py (£ €= €) = hiop (£ : € = €) = log(a).

Next, suppose p¢ (R) > 0. According to Montel’s theorem, for any open neighbor-
hood U C C of a point of J(f), U,, f~°"(U) includes a dense open subset of J(f).
We use the properties of the measure of maximal entropy to show that this union
is of full measure with respect to py. It is known that s is ergodic and satisfies
[y = d.pyp [ELMn83]. The union (J,, f~°"(U) is backward-invariant, so must
be of zero measure if it is not of full measure. But this measure zero set is an
open subset of the Julia set; thus there is an iterate of f that maps it onto the set
J(f) with full measure [Mil06Gal, Corollary 14.2]. This contradicts f*u; = d. uy;
we deduce that py (|, f7°"(U)) = 1. Now fixing a countable collection of open
sets {Up, }m for which {U,, N J(f)},, is an open basis for the topology of J(f)
and then taking the intersection over U,,’s, we arrive at the full measure subset
N,, U,, f~°"(Uy,) which by the Baire category theorem contains a dense subset of
J(f). Furthermore, the forward iterates of any of its points form a dense subset
of J(f). As up(R) > 0, this full measure subset intersects R: There is a point
on R whose orbit is dense in J (f). But R is closed and forward-invariant so must
contain the whole J(f).

At last, we show (c)=-(b) that will yields (c)=(a) because we have already
established (a)<(b). To this end, we invoke the main result of the article [Hof81]
indicating that a multimodal transformation of an interval with positive entropy
admits a measure of maximal entropy. In that reference, multimodal maps can
be discontinuous at turning points. Thus, identifying R = S with [0,1) via the
bijection x —+ e?™% the same holds for continuous circle maps of positive entropy.
So there is a Borel probability measure, say v, on the circle R with respect to
which the metric entropy of f [4: R — R coincides with its topological entropy
log(d). Pushing forward via the inclusion i : R — @, one gets a measure i,V on the
Riemann sphere with respect to which the measure theoretic entropy of f : C—C
is at least log(d). So i.v is a measure of maximal entropy for this rational map too.
The uniqueness of the measure of maximal entropy for rational maps established

A

in [Mn83] then implies that i,v = py. Hence py(R) = v(R) = 1. O

Now that we know J(f) must be completely real once hg(f) = log(d), we will
elaborate on the dynamics on the Julia set below; compare with [EvS11, Theorem 2].

Theorem 4.8. Let f € R(z) be a rational map of degree d > 2 with hg(f) =
log(d). Then precisely one of the followings holds:

(a) There is a real fized point p of multiplier X € [—1,1] whose immediate
basin of attraction A is the only Fatou component; and a compact interval
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I C R with F~YI) € I whose complement R—1 is the largest open interval
included in A. In this case, the Julia set is a Cantor set included in I.

(b) The same as above but with f~*(I) = I. In this case, J(f) coincides
with the interval I restricted to which f [;: I — I is a boundary-anchored
(d —1)-modal map with surjective laps. The only Fatou component is the
basin A=C — 1.

(¢) The Fatou components are the open half planes and are immediate basins
either for a pair of conjugate non-real attracting periodic points, or for a
parabolic real fixed point which is either of multiplier —1 or of multiplier
+1 and multiplicity 3. In this case, the Julia set is R and f g R — R is
a d-sheeted unramified covering.

Proof. By Theorem BT the Julia set 7 (f) is contained in R. Recall that the Julia
set is always either connected or has uncountably many connected components
[Mil06a), Corollary 4.15]. So J(f) C R is either a non-degenerate subinterval of R,
the whole circle or a disjoint union of (forcibly at most countably many) compact
non-degenerate subintervals of the real circle with a (necessarily uncountable) closed
totally disconnected subset of it. We claim that in the latter case there is not any
subinterval and thus J(f) is a closed totally disconnected subset of R and hence
(given the fact that it has no isolated point) a Cantor set. Assume the contrary;
J(f) admits both interval and singleton components. But f takes a connected
component of J(f) to another such component and, being a non-constant analytic
map, cannot collapse a non-degenerate interval to a point. So the forward iterates
of an interval component never cover a singleton component. This is a contradiction
since the former contains an open subset of R and thus an open subset of J(f), and
by Montel’s theorem the union of forward images of any non-empty open subset
of the Julia set is the whole Julia set. Consequently, J(f) C R is either R, a
subinterval of it or a Cantor set on it.

Since J(f) C IR, there are at most two Fatou components with equality if and
only if 7 (f) coincides with R. Each Fatou component is periodic and cannot be a
rotation domain due to the fact that there are only finitely many Fatou component.
Hence, invoking the classification of Fatou components, each Fatou components of
f is the immediate basin of an attracting or parabolic periodic point p. If p lies
on R, its multiplier A belongs to [-1,1]. If p is not real, its complex conjugate
p determines a different Fatou component of the real map f and so the Fatou
components appear in a conjugate pair; hence J(f) = R and we are in the situation
that (c) describes. Notice that p,p cannot be parabolic as they do not belong to
J(f) = R. For p real, the only other case where J(f) coincides with R is if p is a
parabolic point with the half planes as its immediate basins. The period of p must
be one: the Fatou components appear in conjugate pairs and as there are merely
two of them, there cannot be a parabolic cycle of period larger than one. Having
two (or equivalently more than one) parabolic basins of attraction is immediate
when A = —1 ([Mil06a, Lemma 10.4]), while requires the multiplicity of the fixed
point to be 3 when A = 1.

In parts (a) and (b) the Julia set is a proper closed subset of R and hence
there is a single Fatou component which is the basin of attraction A for a fixed
point p € R of multiplier \ € [—1,1]. The connected component of A N R around
p is a forward-invariant open interval which is the immediate basin of the fixed
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point p of the real system f la: R — R. Thus its complement, denoted by I, is
a compact subinterval of R containing J(f) and satisfying f=1(I) N R C 1. We
have the equality in (b), where f~1(I) = I, while the inclusion is strict in (a).
In the latter case where f~'(I) "R C I, the proper subset J(f) of I must be
Cantor as it cannot be any smaller subinterval of I because then, the connected
component around p of the intersection of the Fatou set with R would be larger than
R—1 contradicting the definition of I. We claim that the preimage of I is totally
real again and hence f~!'(I) € I. Assume otherwise. The backward-invariant
Cantor subset J(f) of I is totally real and hence there must be a subinterval of
the complement I — J(f) C R whose preimage is not completely real. This can
be written as (yo,yo + €0) or (Yo — €0, yo) where ¢g > 0 and yg € J(f). There is
no loss of generality in going with the former and also taking ¢y > 0 so small that
there is no critical value in (yo,yo + €9). The preimage of (yo,yo + €0) under the
degree d rational map f : C — C then consists of d disjoint curves on the Riemann
sphere each homeomorphic to the open interval (0,1) and either contained in R or
completely away from it. The non-real ones among them must appear in conjugate
pairs as f is with real coefficients. But the closures of members of any such pair
must have a point of f~1(yo) C J(f) C R in common, namely a real Julia point
xo. We deduce that f is not locally injective at xg; in particular, yo is a critical
value of f. Switching to the interval (yo — €1, yo + €1) symmetric with respect to yo
with 0 < €1 < €p so small that this interval has no other critical value other than
Yo, the component S of f~1 ((yo — €1,90 + €1)) around zg € f~(yo) is a “star-
shaped” subset of the plane symmetric with respect to the real axis with “arms”
homeomorphic to open intervals that are mapped onto (yo — €1,yo + €1) via f and,
aside from the one which is a real open subinterval containing x(, the rest are curves
that intersect R only at xo. Such “non-real arms” of S C f~1 ((yo —€1,Y0 + €1))
exist since 1z is a critical point of f. But yg € J(f) C R cannot be an isolated point
of J(f), so every arm of the star S has a Julia point distinct from xg. Therefore,
there are non-real Julia points; a contradiction.

To finish the proof, we need to address the extra information that parts (b) and
(c) provide for cases where J(f) is “smooth”, namely is an interval or the whole
circle. Since the Julia set is backward-invariant, f [ 7s): J(f) = J(f) is a degree
d ramified covering whose ramification structure may be readily investigated. First,
suppose J(f) = IR. If there is a critical point of f on R, then

R—f! ({v € R|v a critical value of f: C — @})
is a disjoint union of
Hft ({v € R| v a critical value of f: C — @})
open intervals restricted to which f yields a covering map onto
R— {v € R|v a critical value of f: C — @},

a union of
# {v € R| v a critical value of f: C — @}

intervals. So f takes each of the former intervals bijectively onto one of the latter.
But J(f) = R is backward-invariant under the degree d map f, so each of the
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latter intervals has to be covered by d of the former ones. This happens only when

#f71 ({v c R\ v a critical value of f : C— @})
=d (# {’U IS R| v a critical value of f : C— @}) ;

that is, when f admits d points over each critical value lying on IR, which is absurd
and therefore, f [ 7(s): J(f) = J(f) is a degree d (unramified) covering of circles.
Finally, when J(f) is an interval, f [7s: J(f) = J(f) is a multimodal interval
map of topological entropy log(d). By (L8) this entropy cannot be realized if the
lap number is less than d. Therefore, f [7(s) is (d — 1)-modal. On each of its d
laps f [ 7(f) restricts to a surjective map onto J(f) because otherwise, there would
be a non-empty open subinterval of J(f) over points of which f [ 7(s) admits less

than d preimages. The same must hold for fibers of f : C — C above these points
due to the backward-invariance of J(f) contradicting deg f = d. The map has to
be boundary-anchored too: if f takes an endpoint of the interval J(f) to a point
of its interior, by continuity, it maps points outside the interval sufficiently close to
that endpoint inside [J(f); a contradiction since the points outside the interval are
Fatou points. ([l

Proof of Theorem [L3l As proved in Theorem 7] hg(f) = log(d) implies J(f) C
R. The detailed discussion in the subsequent Theorem 8 showed that 7 (f) must
be either a Cantor set on the real circle, a subinterval of it or the entirety of R, as
outlined in parts (a), (b) and (c) of Theorem L8 respectively. Replacing f € R(z)

with its conjugate
z—1i z—i\ !
z— |z ——)ofolz— - )
< z+ 1> ( z+ 1)

it is no loss of generality to assume that the degree d rational map f preserves
the unit circle |z| = 1 instead with its Julia set a subset of the circle. This is
in particular the case when f restricts to a degree +d self-cover of the unit circle
since then the closed backward-invariant set |z| = 1 must contain J(f) by Montel’s

theorem. Such a map f can be described by a Blaschke product
d

eI () (ol foal <35 c€R/2)

1—a;z
i=1 v

as in ([2)) or its post-composition with z — %, based on whether the degree of

the induced circle map is +d or —d. There is not any critical point on the unit
circle and hence, J(f) cannot be a subinterval of the circle because Theorem EL8|(b)
indicates that in such a situation, J(f) contains critical points. Also notice that
any degree d map with the whole unit circle as its Julia set is one of these Blaschke
products due to the fact that in such a situation f [¢.=1y: {|2] = 1} = {[z| =1}
must be a d-sheeted covering according to Theorem [L8(c). We can next address

parts (i) and (ii) of Theorem [[3t the map f given by e*7i¢ Hle ( s ) (or its

1—a;z
post-composition with z — %) is hyperbolic if and only if it either has an attracting
fixed point on |z| = 1 — in which case J(f) would be a Cantor subset of |z| =1 —or
has a fixed point (necessarily attracting by Schwartz Lemma) inside the open unit
disk — in which case J(f) coincides with the unit circle. These are the possibilities
appeared respectively in (a) and (c) of Theorem L8 with the real circle in place of
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the unit circle. Equation (IZ) means that the point ™% on the unit circle is fixed
by f(z) = 2™ H?:l ( Z—di ) and (L3) guarantees that it is attracting: a simple

1—a;z

logarithmic differentiation shows that on the unit circle (cf. [Mar83) Proposition 1])

. 12
and the multiplier of €>7% is thus of magnitude Zfl 1-lai]

i=1 [T As for the part
(ii) of Theorem [[3] where f possesses a fixed point in the open unit disk, one can
put the fixed point at the origin via conjugation with a suitable biholomorphism of
the open unit disk. Therefore, there is a conjugacy that preserves the unit circle

and transforms f(z) to another Blaschke product of the form

271'10 2. H (f:aa;) )

One can kill the only degree of freedom left by conjugating with a rotation of the
unit circle and getting rid of €2™¢'. This leaves us with a Blaschke product of the

form
. H<1_a )

(or its composition with z — ; that has 0 — oo — 0 as an attracting 2-cycle).
Part (iii) of Theorem is straightforward. (We have formulated part (iii)
for the original real circle as calculating the multiplicity of a parabolic point of
the Blaschke product (LZ) on the unit circle leads to complicated algebraic ex-
pressions.) Invoking Theorem A.8|(c), the degree d map f € R(z) here must have
non-real critical points and a parabolic fixed point of multiplier e = +1 on R whose
multiplicity should be 3 if e = +1. Without any loss of generality, we may assume

that the fixed point is co. Therefore, f can be written as f(z) = e (z + ngg) with

P, Q) coprime polynomials satisfying degP < d—1 and degQ =d—1. Fore =1
we moreover want the multiplicity of the fixed point z = oo of f(2) = z + ng; to
be more than 2 and it is not hard to see that this is equivalent to deg P < d — 1.

Finally, we turn to part (iv) of Theorem [[3l Given a degree d map f with J(f)
a subinterval of R, we claim that there is a lift of f via a two-sheeted branched
covering of 7 : C — C to another rational map g whose Julia set is an analytic
circle on the Riemann sphere. This will be proved separately in Proposition
After suitable changes of coordinates in the domain and the co-domain of w, we
may assume that J(g) is either the unit circle or the real circle and the degree two
map J(g) = J(f) induced by the semi-conjugacy = is either

" {{|z| =122

zb—>z—|—%
or
R — [0, o]
4.5
(4.5) {zr—>22
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The map g then fits in the description provided by parts (ii) and (iii) of Theorem

In the latter case (the non-hyperbolic situation) g is in the form of e (z + PEE;)
with R as its Julia set and the semi-conjugacy is the map z +— 22 from (@5]). Hence

f is the quotient of € (z + ggig) by the action of z — —z. One can easily verify

that this Mobius transformation commutes with e (z + ggzg) if and only if one of

the polynomials P(z),Q(z) is even and the other is odd. In the hyperbolic case,
the semi-conjugacy is the Joukowsky map z +— z + i from ([@4]) and thus f must
be the quotient of a Blaschke product of the form ([2) that has the unit circle as
its Julia set by the action of z — % Following previous discussions regarding the
part (ii) of Theorem [[3] ¢ must have an attracting fixed point inside the unit disk
which can assumed to be zero; and hence is in the form of

-1,
1—a;z

i=1

It is not hard to check that the map above commutes with z — % if and only if

e?™¢ = 41 and the points ay,...,aq—1 of the open unit disk are located symmetri-

cally with respect to the real axis; hence (6. O

Next, we have the proposition below that concludes the proof of Theorem [L3]
and furthermore, provides a description of rational maps with interval Julia sets.

Proposition 4.9. Given a rational map [ of degree d whose Julia set is the
interval [—2,2], there exists a rational map g of degree d with the unit circle as
its Julia set which is semi-conjugate to f

(4.6) jog=foj

via the Joukowsky map

(4.7) i(2) = 2 + %
Proof. We denote the restrictions of (471 to upper and lower unit semi-circles by
j+ and j_.
(4.8)
v {e?j0o<o<7} = [-22]  |i_:{¥|r<O<2n} = [-2,2
e?™ 1 2 cos(6) ’ 2™ 5 2 cos(6)

These diffeomorphisms are respectively orientation-reversing and orientation-
preserving once the unit semi-circles and the interval [—2,2] are equipped with
orientations inherited from the obvious positive orientations of the unit circle and
the real line. Theorem E8(b) indicates that f [[_39: [-2,2] = [~2,2] has d sur-
jective monotonic pieces. Hence indexing its turning points as

(4.9) to=-2<t; < - <tg_q1<tyg=2,

the map f takes each subinterval [t;,¢; 1] bijectively onto [—2, 2] with these bijec-
tions alternatingly increasing and decreasing. Consider the preimages of points in

(#3) under the maps in (@3):
(4.10) piv =ii (t) pim =iZ'(t;) (0<i<d).
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Clearly, one has

(4.11) i3'(2) =1 <pa-14 < <pry <jz' (=2) = -1 <p1- <+ < pa-1)-;
in the counter-clockwise direction of the unit circle. Moving along the unit circle
from 1 to —1 and then back to 1, the points above cut 2d consecutive closed
arcs C1, ...,y with the first d covering the closed upper semi-circle and the rest
covering the closed lower semi-circle. These arcs are disjoint aside from the adjacent
arcs C; and C;41 (indices considered cyclically modulo 2d) intersecting at a point
from (@II). Next, we define a self-map g of the unit circle as follows:

(1) "Yofoirle, ifl<i<d&iodd

G_)tofojyle, if1<i<d&ieven (1<i<2d)
(G4) tofoj_lg, ifd+1<i<2d&iodd - -7
G_)tofoj_lo ifd+1<i<2d&ieven

(4.12) g le,=

The map is clearly well defined since adjacent arcs overlap at points whose image
under j (and so under j, or j_, as appropriate) is a point from f~! ({£2}) in (@3);
and we have jz'(2) = {1} and ji'(—2) = {—1}. Tt is evident from (ZIZ) that g
bijects each of the arcs C1, ..., Coq alternatingly onto either the upper or the lower
semi-circle. Notice that these diffeomorphisms are of the same degree; which is, 1
if the last lap
I Ntar tal=is (C1)=i— (Caa)

is increasing and —1 if the lap is decreasing. For 1 < ¢ < d (respectively or
d+1 < i < 2d), the diffeomorphisms (j1)™* o foj; ¢, and (j—) "' o fojt e,
(resp. (i+)"to foj_ I, and (j—) "t o foj_ [¢,,,) are of the same degree as the
degrees of j+ and also those of the adjacent laps f [5c,), f [j(c,,,) are opposite. The
same is true for ¢ = d, when it comes to the degrees of g [¢,= j(jl)d_l ofoijy e,

and g [o,,, = j(*_ll)d o foj_ ¢y, they are just (—1)?~! times the degree of the lap

S rJ'Jr(cd)=i—(C'L14r1)=[t07t1] :

The discussion above implies that (£I2) defines an unramified d-sheeted self-
cover g of the unit circle satisfying ([@6]). The map is clearly real analytic away
from the endpoints of C;’s (as appeared in ([@I0))) where the formula for g changes.
Thus every interior point z on an arc C; admits an open neighborhood U, in the
complex plane on which there is an extension of g to a local biholomorphism. This
holomorphic extension of g of course satisfies jog = f oj as well. Now notice
that the unit circle is the preimage of the Julia set [—2,2] of f under j. By the
complete invariance of the Julia set, any such extension of g takes points off the
unit circle to points off the unit circle. As this holomorphic extension preserves the
orientation, it must take points out of the unit disk inside and vice versa if g [¢, is
orientation-reversing; while it keeps U, N {|z| < 1} and U, N {|z| > 1} invariant if
g ¢, is orientation-preserving. We conclude that there is a holomorphic extension
of the circle map g to the open neighborhood U := |J, U, of the complement

{lz| =1} = {p1+, -, Pa—1)x, £1}
of the endpoints ([@IT)) of arcs C, . .., Caq; and this extension, denoted by the same

symbol g, either preserves or interchanges U N {|z| < 1} and U N {|z| > 1}, based
on whether the degree of the unramified covering

(4.13) g lz1=1y: {2l = 1} = {|2| = 1}
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is positive or negative respectively. But either on the open unit disk or on its
complement the map j from (7)) restricts to a biholomorphism onto the Fatou set
o [—2,2] of f. Consequently, away from the unit circle one can solve jog = foj
for g: if the degree of the circle map @I3) is d, g [un{)z|<1} and g [ungjzj>1} are
given by

( Tt Ul < 13 5 €= [2.2) " 0 7o (3 eyt {12] < 1) » €~ [-2,2])

and

A -1 A
( Ty 12> 13 > €= [=2,21) o F o (3 Tgaonys {121 > 1} > € = [-2,2)) 5

while they are respectively given by

(3t 1l > 13 = €= [2.2]) " 0 70 (3 eyt {12] < 1) » €~ [-2,2])

and
N -1 N
( Tieny 2l < 1 > €= [=2.2]) o o (3 Igaienys {I2] > 1} > €= [-2,2]) 5

if the degree of ([AI3]) is —d. We conclude that g can be holomorphically extended
even further to C— {pli, s Pd-1)+, T1 } By the Identity Principle, the extension
again satisfies the functional equation jo g = f oj. Consequently, for any sequence
{an}» tending to one of the points of the unit circle

{pre. .. pa—nye, F1} =71 (F1 ({£2}))

excluded above, any convergent subsequence of {g(ay)}, tends to an element of
it ({£2}) = {£1}. We deduce that none of these isolated points is an essential
singularity and so g extends holomorphically to the whole Riemann sphere. There-
fore, we have constructed a rational function g € C(z) semi-conjugate to f as in
(&5). Its Julia set is of course the preimage of J(f) = [—2, 2] under the Joukowsky
map j; namely, the unit the circle. This finishes the proof. O

Remark 4.10. The dynamics on the Julia set can be easily described in many cases
of Theorem 8 In [A8(a), the Julia dynamics is conjugate to the one-sided shift
on d symbols if the critical points are away from the Julia set [Prz96]. In [L8(b),
the dynamics on the Julia set is that of a boundary-anchored expansive interval
map with d surjective laps, hence conjugate to a piecewise linear map of the same
modality. Finally, in E8(c) where J(f) = R, once f is without parabolic fixed
points, f [: R — R would be an expanding circle map of degree d and thus
conjugate to one of the self-covers z +— 2% or z —+ 2% of the unit circle [Shu69]. In
both EE8|(b) and [.8](c), the multiplier of any periodic point of period n of f is +d™
except the unique non-repelling fixed point; compare with [Mis81, Theorem 8.1].

Example 4.11. The examples of quadratic rational maps appeared in [Mil06al,
Problem 10-e] embody all possibilities for the Julia set outlined in Theorem F.8
The following examples all possess a parabolic fixed point at infinity. For maps
+ (z — %) the Julia set is R. If flz) =2+ % — 2, the Julia set is the completely
invariant interval I = [0, +oc]. Finally, for f(z) = z— 1 +1 the Julia set is a Cantor

subset of the interval I = [—o0, 1]; and we have

f_l ([_007 1]) = [—OO, _1] U [07 1] - [—007 1]'
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Notice that the first two examples above (with circle and interval Julia sets)
are semi-conjugate as predicted by Theorem (z — %)2 =22+ Z% — 2. One
other example of such semi-conjugacies is given by Chebyshev polynomials: the
d*" Chebyshev polynomial T;(z) (normalized to be monic via a linear conjugation)
satisfies Ty (z + %) = 2% + Zid; its Julia set is [—2,2], the image of the unit circle
which is the Julia set of z — 2% under the semi-conjugacy z + z + % Compare
with [Mil06al Problems 7-c¢ & 7-d].
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