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COMBINATORICS OF CRINIFEROUS ENTIRE MAPS

WITH ESCAPING CRITICAL VALUES

LETICIA PARDO-SIMÓN

Abstract. A transcendental entire function is called criniferous if every point
in its escaping set can eventually be connected to infinity by a curve of escaping

points. Many transcendental entire functions with bounded singular set have
this property, and this class has recently attracted much attention in complex
dynamics. In the presence of escaping critical values, these curves break or split
at critical points. In this paper, we develop combinatorial tools that allow us
to provide a complete description of the escaping set of any criniferous func-
tion without asymptotic values on its Julia set. In particular, our description
precisely reflects the splitting phenomenon. This combinatorial structure pro-
vides the foundation for further study of this class of functions. For example,
we use these results in another paper to give the first full description of the
topological dynamics of a class of transcendental entire maps with unbounded
postsingular set.

1. Introduction

Let p be a polynomial of degree d ≥ 2. Then, by Böttcher’s Theorem, there is
a conjugacy between p and z �→ zd in a neighbourhood of infinity. Whenever the
orbits of all the critical points of p are bounded, or, equivalently, when its Julia
set J(p) is connected, this conjugacy can be extended to a biholomorphic map
between C \D and the basin of infinity of p, that we denote by I(p). In particular,
dynamic rays of p are defined as the curves that arise as preimages of radial rays
from ∂D to ∞ under this conjugacy, and provide a natural foliation of I(p). If J(p)
is additionally locally connected, then each ray has a unique accumulation point
in J(p), and we say that it lands. Dynamic rays and their landing behaviour are a
powerful combinatorial tool in the study of polynomial dynamics; see [DH84].

For a transcendental entire map, f , infinity is an essential singularity, and conse-
quently, Böttcher’s Theorem no longer applies. In this paper, we restrict ourselves
to the widely studied Eremenko-Lyubich class B, consisting of all transcendental
entire maps, f , with bounded singular set S(f), which is the closure of the set of
its critical and asymptotic values. Then, it is known that for some f ∈ B, every
point in their escaping set

I(f) := {z ∈ C : fn(z) → ∞ as n → ∞}
can be connected to infinity by an escaping curve, called dynamic ray by analogy
with the polynomial case, e.g. [Bar07,RRRS11,Par20a]. More precisely, we adopt
[RRRS11, Definition 2.2] and [BR20, Definition 1.2]:
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Definition 1.1 (Dynamic rays, criniferous maps). Let f be a transcendental entire
function. A ray tail of f is an injective curve γ : [t0,∞) → I(f), with t0 > 0, such
that

• for each n ≥ 1, t �→ fn(γ(t)) is injective with limt→∞ fn(γ(t)) = ∞;
• fn(γ(t)) → ∞ uniformly in t as n → ∞.

A dynamic ray of f is a maximal injective curve γ : (0,∞) → I(f) such that
the restriction γ|[t,∞) is a ray tail for all t > 0. We say that γ lands at z if
limt→0+ γ(t) = z, and we call z the endpoint of γ. Moreover, we say that f is
criniferous if for every z ∈ I(f), there is N := N(z) ∈ N so that fn(z) is in a ray
tail for all n ≥ N .

Not all functions in B are criniferous; see e.g., [RRRS11,Rem16]. Nonetheless,
it is possible to define symbolic dynamics for the points of any f ∈ B whose orbit
stays away from a neighbourhood of S(f). To this end, roughly speaking, one can
partition the preimage of a neighbourhood of infinity into topological half-strips,
and call a sequence s := F0F1F2 . . . of such domains an (external) address ; see
Example 3.1. Then, a point z ∈ J(f) is said to have address s if fn(z) ∈ Fn for
all n ∈ N, and one may study the sets of points sharing their address; see §2. In
particular, we show in Theorem 2.12 that for a criniferous function f ∈ B, these
sets contain a collection of dynamic rays to which all points in I(f) are eventually
mapped. External addresses, or variants thereof, have been extensively used with
great success in the study of functions in B, e.g., [RS08,SZ03,Rem08,BR20,EFJS19,
RRRS11,Rem16,RRS10,BK07,BF15].

Figure 1. In colour, dynamic rays of f(z) = cosh2(z) around the
critical point zero. Further iterated preimages of the real axis are
depicted in grey.1

We note that for any f ∈ B, all points in I(f) whose orbit stays sufficiently far
from the origin have a well-defined unique external address. However, it is desirable
to have combinatorics for all points in I(f). Recently, Benini and Rempe, [BR20],
developed combinatorics for escaping points of any f ∈ B with bounded postsin-
gular set P (f) :=

⋃
n≥0 f

n(S(f)). In a rough sense, their approach consists on
extending the sets of points sharing an address to some sort of maximal connected

1Original picture by L. Rempe, modified for this paper. It first appeared in [Par19a, p. 166].
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sets, named dreadlocks, that are not necessarily curves. In particular, this combi-
natorial structure allowed them to prove an analogue of Douady-Hubbard landing
theorem for periodic dynamic rays for all f ∈ B with bounded P (f).

In this paper, we develop combinatorics for certain criniferous functions with
unbounded postsingular set. We start by highlighting some challenges that escaping
critical values present in the transcendental case. First, notice that for polynomials,
the orbit of any critical value is either bounded or converges to the super-attracting
fixed point at infinity. Furthermore, in the latter case, it is still possible to define
dynamic rays as the orthogonal trajectories of level curves for the Green’s function
in a natural way; see [GM93, Appendix A] or [Kiw97, §2.2]. However, the Julia
set of any transcendental entire map contains a large set of points whose orbits are
neither bounded nor escaping [OS16], and with the essential singularity at infinity,
we find very different dynamics. In particular, concerning dynamic rays.

To illustrate the phenomena that we encounter, let us consider the map f(z) :=
cosh2(z). The dynamics of f have already been explored in [RS12], where it is
shown that I(f) (and, in fact, its fast escaping set) is connected. The singular
set of f consists of the critical values 0 and 1, with f(0) = 1, and 1 escaping to
infinity along the positive real axis. Note that 0, iπ/2 and −iπ/2 are critical points,
and it is easy to check that (−∞, 0] and [0,∞) are both ray tails. The vertical
segments [0,−iπ/2] and [0, iπ/2] are mapped univalently to [0, 1] ⊂ R+, and thus,
the union of each segment with either one of the ray tails (−∞, 0] and [0,∞), forms
a different ray tail. We can think of this structure as four ray tails that partially
overlap pairwise; see Figure 1. Then, their endpoints −iπ/2 and iπ/2 are preimages
of 0 and critical points, and so the structure described repeats twice at each point.
Hence, it can be understood as eight ray tails that overlap pairwise. By looking at
further preimages of zero, this process can be continued. Our approach suggests
considering two copies of each of the tails of f near infinity, and trying to extend
each copy in a careful and systematic way.

To fully describe the phenomenon of “splitting” or overlapping of rays at critical
points, we introduce the concept of signed addresses for every criniferous f ∈ B with
escaping critical values. More precisely, let Addr(f) be the set of external addresses
of f . Then, we consider the set of signed addresses Addr(f)± := Addr(f)×{−,+},
that we endow with a topology such that each z ∈ I(f) has at least two signed
addresses that depend continuously on z. Theorem 1.2 summarizes the main results
on this paper. For f ∈ B, we denote by AV(f) the set of its asymptotic values.

Theorem 1.2. Let f ∈ B be criniferous such that J(f) ∩ AV(f) = ∅. Then, its
escaping set is a collection of dynamic rays

{Γ(s, ∗)}(s,∗)∈Addr(f)± ,

that overlap piecewise between (preimages of) critical points. For each (s, ∗) ∈
Addr(f)±, we can write

Γ(s, ∗) =
⋃
n≥0

γn
(s,∗),

so that for every n ∈ N, γn
(s,∗) is a ray tail, γn

(s,∗) ⊂ γn−1
(s,∗), and there exists a

neighbourhood τn(s, ∗) ⊃ γn
(s,∗), on which there is a well-defined inverse branch

f
−1,[n]
(s,∗) :=

(
f |τn(s,∗)

)−1
: f(τn(s, ∗)) −→ τn(s, ∗),

that coincides for all signed addresses in an open interval of (s, ∗).
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The tools developed in this paper allow us to provide in the sequel [Par19b],
a total description of the Julia set of certain criniferous functions with escaping
critical values, introduced in [Par21] and [Par20a]; see also [Par20b] for similar
results in the cosine family.

Structure of the article. We start recalling in Section 2 the definition of (ex-
ternal) addresses in terms of fundamental domains for functions in B. We provide
the set of addresses with a topology and study, for criniferous functions, the sets of
points sharing the same external address. In Section 3 we extend this concept for
criniferous functions: we define signed addresses and show that in the absence of
asymptotic values, all points in their escaping set have at least two signed addresses.
We associate to each signed address a nested union of escaping curves that we call
canonical tails. Next, in Section 4, we introduce the concept of fundamental hands
as preimages of certain subsets of fundamental domains on which inverse branches
are well-defined, and so that for each canonical tail, we can find an inverse branch
that contains the tail on its image. In particular, the concept of fundamental hands
extends that of fundamental tails from [BR20]. Theorem 1.2 will follow from the
combination of these results.

Basic notation. As introduced throughout this section, the Julia and escaping
set of an entire function f are denoted by J(f) and I(f) respectively. The set of
critical values is CV(f), that of asymptotic values is AV(f), and the set of critical
points will be Crit(f). The set of singular values of f is S(f), and P (f) denotes
the postsingular set. We denote the complex plane by C and a disk of radius R
centred at zero by DR. We will indicate the closure of a domain U by U , which
must be understood to be taken in C. A � B means that A is compactly contained
in B. For a holomorphic function f and a set A, Orb−(A) :=

⋃∞
n=0 f

−n(A) and

Orb+(A) :=
⋃∞

n=0 f
n(A) are the respective backward and forward orbits of A

under f .

2. External addresses and symbolic dynamics

The concept of external address for functions in B allows to assign symbolic
dynamics to points whose orbit stays away from a neighbourhood of their singular
set. In this section, we review this notion, and study properties of the sets of points
sharing a same external address, with special emphasis on criniferous functions.

Definition 2.1 (Tracts, fundamental domains). Fix f ∈ B and let D be a bounded
Jordan domain around the origin, containing S(f) and f(0). Each connected com-
ponent of f−1(C \D) is a tract of f , and Tf denotes the set of all tracts. Let δ be

an arc connecting a point of D to infinity in the complement of the closure of the
tracts. Denote

(2.1) W := C \ (D ∪ δ).

Each connected component of f−1(W) is a fundamental domain of f , and we call
the collection of all of them an alphabet of fundamental domains, that we denote

A(D, δ). Moreover, for each F ∈ A(D, δ),
∞
F is the unbounded connected component

of F \D.

For basic properties of tracts and fundamental domains, see for example [Par19a,
Proposition 2.19] or [BR20, §3]. A function f ∈ B is of said to be of disjoint type if
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P (f) � C \ J(f) and C \ J(f) is connected. Alternatively, disjoint type maps can
be characterized as those for which there is a choice of tracts whose boundaries are
disjoint from the boundary of their image. More precisely:

Proposition 2.2 (Characterization of disjoint type maps). A function f ∈ B is
of disjoint type if and only if there exists a Jordan domain D ⊃ S(f) such that

f(D) ⊂ D.

See for example [Mih12, Proposition 2.8] for a proof of Proposition 2.2. The par-
tition of f−1(W) into fundamental domains allows us to assign symbolic dynamics
to those points whose orbit stays in W .

Definition 2.3 (External addresses for functions in B). Let f ∈ B and let A(D, δ)
be an alphabet of fundamental domains. An (infinite) external address is a sequence
s = F0F1F2 . . . of elements in A(D, δ). For each external address s, we let

(2.2) Js :=
{
z ∈ C : fn(z) ∈

∞
Fn for all n ≥ 0

}
.

We say that s is admissible if Js is non-empty, and we denote by Addr(f) the set
of all admissible external addresses. If z ∈ Js for some s ∈ Addr(f), then we say
that z has (external) address s. Moreover, σ stands for the one-sided shift operator
on external addresses. That is, σ(F0F1F2 . . .) = F1F2 . . .. In particular,

(2.3) f(Js) ⊆ Jσ(s) for all s ∈ Addr(f).

Notation 2.4. Let s = s0s1s2 . . . ∈ Addr(f) and suppose that there exists N ≥ 0
such that si = sN for all i ≥ N . Then we write s = s0 . . . sN−1sN .

Remark. For the reader familiar with [BR20], we note that the sets “Js” defined in
(2.2) are denoted by “J0

s (f)” in [BR20, Definition 2.4], and do not equal the sets

“Js” introduced in [BR20, Definition 4.2]. We have waived consistency in notation
across articles in favour of simplifying notation in ours. Moreover, we note that
these sets lie in J(f); see [BR20, Lemma 2.6]. Thus, we sometimes refer to them
as Julia constituents.

Observation 2.5 (Points with external address). Whenever it is defined, the exter-
nal address of a point is unique because Julia constituents are by definition pairwise
disjoint. If f is of disjoint type, then by Proposition 2.2, there is an alphabet A of

fundamental domains so that
∞
F = F for all F ∈ A. This implies that J(f) is the

disjoint union of its Julia constituents. That is,

(2.4) f is of disjoint type ⇒ J(f) =
⋃

s∈Addr(f)

Js.

In particular, all points in J(f) have an external address. However, this is not the
case for all functions in class B, as for example occurs when S(f) ∩ J(f) is not
empty; see §3.

For the rest of the section and unless otherwise stated, we assume that for each
f ∈ B, Addr(f) has been defined with respect to some alphabet of fundamental
domains. We require the following properties of Julia constituents.

Theorem 2.6 (Realisation of addresses [BR20, Theorem 2.5]). Let f ∈ B. Then,
for each external address s, the following holds.
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(a) If s is admissible, then Js contains a closed, unbounded, connected set X
on which the iterates of f tend to infinity uniformly.

(b) If X1 and X2 are unbounded, closed, connected subsets of Js with X1 � X2,
then X2 ⊆ X1 and fn|X2

→ ∞ uniformly.
(c) If s is bounded, then it is admissible, that is, Js �= ∅.

Note that Julia constituents need not be connected nor closed. Thus, we shall
usually and instead, work with the following subsets:

2.7 (Closed sets in Julia constituents). For each s ∈ Addr(f), we denote by J∞
s

the closure of the union of all closed, unbounded, connected sets X ⊂ Js on which
the iterates of f tend to infinity uniformly.

Before we continue the study of Julia constituents, we note that an advantage
that any f ∈ B presents over other transcendental entire maps is that for each
T ∈ Tf , f |T is a covering map that expands uniformly the hyperbolic metric that

sits on f(T ), which equals C \ D for some D ⊃ S(f). This well-known fact lies
behind many results on functions in B, and goes back to [EL92, Lemma 1]. We
denote by ρ

C\D the density of the hyperbolic metric in C \ D; see [BM07] for

background.

Proposition 2.8 (Hyperbolic expansion on tracts). Let f ∈ B, fix a domain D ⊃
S(f) and let Tf := f−1(D). For each tract T ∈ Tf , denote by

∞
T the unbounded

connected component of T \D, and let
∞
T :=

⋃
T∈Tf

∞
T . Then, there exists a constant

Δ > 1 such that

‖D f(z)‖
C\D := |f ′(z)| ·

ρ
C\D(f(z))

ρ
C\D(z)

> Δ

for all z ∈
∞
T . Moreover, let A(D, δ) be an alphabet of fundamental domains. If

S(f) � D′ � D for a subdomain D′, then, for each R > 0, there exists C > 0 such

that for all F ∈ A(D, δ), the Euclidean and hyperbolic diameter of
∞
F ∩ DR is less

than C, with respect to the hyperbolic metric in C \D′.

Proof. For the first part of the statement, see for example [Rem09, Lemma 5.1].

For the second part, first we note that by the assumption on D′, any
∞
F is compactly

contained in C\D′. Moreover, for each fixed R > 0, only finitely many fundamental

domains intersect DR; see [BR20, Lemma 2.1]. If F is one of those, then
∞
F ∩

DR is compactly contained in C \ D′, and so has finite Euclidean and hyperbolic
diameter. �

For each set A ⊂ C, we denote its Hausdorff dimension by dimH A; see for
example [Fal14, Chapter 3] for definitions.

Proposition 2.9 (Hausdorff dimension of non-escaping points with a given ad-
dress). Let f ∈ B. Then, for each s ∈ Addr(f), J∞

s \I(f) has Hausdorff dimension
zero.

Remark. The following proof is essentially the same as the proof of [Rem16, Propo-
sition 5.9]. Still, for completeness, we include it with the minor modifications that
adapt it to our setting.
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Proof of Proposition 2.9. For each s = F0F1F2 · · · ∈ Addr(f) and n ∈ N≥1, we
denote

fn
s := f |∞

Fn−1
◦ f |∞

Fn−2
◦ · · · ◦ f |∞

F0
and f−n

s :=
(
fn
s

)−1

.

If z /∈ I(f), then there is K > 0 such that fn(z) ∈ DK for infinitely many n ≥ 0.
Hence, the set of non-escaping points in J∞

s can be written as

J∞
s \ I(f) =

∞⋃
K=0

∞⋂
n0=0

∞⋃
n=n0

f−n
s (

∞
Fn ∩ DK).

Since a countable union of sets of Hausdorff dimension zero has Hausdorff dimension
zero, it suffices to prove that for each K > 0, the set

S(K) :=
∞⋂

n0=0

∞⋃
n=n0

f−n
s (

∞
Fn ∩ DK)

has Hausdorff dimension zero. Let us fix some arbitrary K > 0 and let A(D, δ) be
an alphabet of fundamental domains. Choose a subdomain D′ such that S(f) �
D′ � D and let TD′ and TD be the respective corresponding sets of tracts. In
particular, TD � TD′ . Then, by Proposition 2.8, there exists a constant C := C(K)

such that for all n,
∞
Fn ∩ DK has diameter at most C in the hyperbolic metric of

C \ D′. Moreover, by the same proposition, there exists a constant Δ > 1 such
that ‖D f(z)‖

C\D′ ≥ Δ. In particular, for any domain S ⊂ C \ D′ such that

f−1(S) ⊂ C \D′, diam
C\D′(f−1(S)) ≤ diam

C\D′(S) · Δ, where diam
C\D′ denotes

the hyperbolic diameter in C\D′. Let us assume that for each fundamental domain

F , the subset
∞
F is endowed with a hyperbolic metric. Then, since for each n ≥ 1,

the restriction f |∞
Fn

is a hyperbolic isometry to a subset of C \D′, by Schwarz-Pick

Lemma [BM07, Lemma 6.4], using the observation above,

(2.5) if Sn := f−n
s (

∞
Fn ∩ DK), then diam∞

F0
(Sn) ≤ C ·Δ−(n−1),

where diam∞
F0

denotes hyperbolic diameter in
∞
F0. Since 0 /∈ Tf , for each R ∈ N≥1,

the Euclidean distance between any point in
∞
F0∩DR and ∂

∞
F0 is at most 2R. Thus,

by a standard estimate on the hyperbolic metric in a simply-connected domain

[BM07, Theorem 8.6], ρ∞
F0
(z) ≥ 1/(4R) for all z ∈

∞
F0 ∩ DR. Hence, by (2.5), the

Euclidean diameter of Sn ∩DR is at most 4R ·C ·Δ−(n−1). Then, for a fixed t > 0
and for every n0 ≥ 1, the t-dimensional Hausdorff measure of S(K)∩DR is bounded
from above by

lim inf
n0→∞

∑
n≥n0

diam(Sn ∩ DR)
t ≤ lim inf

n0→∞

∑
n≥n0

(4R · C ·Δ(−(n−1)))t

= (4RC)t · lim
n0→∞

∑
n≥n0−1

(Δ−t)n = 0.

Thus, dimH(S(K) ∩ DR) ≤ t. Since t > 0 was arbitrary, dimH(S(K) ∩ DR) = 0.
Using again that a countable union of sets of Hausdorff dimension zero has Hausdorff
dimension zero, dimH(S(K)) = 0. �

We shall next see in Theorem 2.12 that for criniferous functions, the sets defined
in 2.7 are either ray tails or dynamic rays together with their endpoints. In order to
prove this theorem, we require some results on continuum theory, that we include
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here. Recall that a continuum X (i.e., a non-empty compact, connected metric
space) is indecomposable if it cannot be written as the union of two proper subcon-
tinua of X. The composant of a point x ∈ X is the union of all proper subcontinua
of X containing x, and a composant of X is a maximal set in which any two points
lie within some proper subcontinuum of X. If X is indecomposable, then there are
uncountably many different composants, every two of which are disjoint, and each
of which is connected and dense in X; see [Nad92, Exercise 5.20(a) and Theorem
11.15].

Theorem 2.10 (Boundary bumping theorem [Nad92, Theorem 5.6]). Let X be a
continuum and let E � X be non-empty. If K is a connected component of X \E,
then K ∩ ∂E �= ∅.

We will moreover make use of the following result in order to show that the
accumulation set of a dynamic ray is an indecomposable continuum:

Theorem 2.11 (Curry [Cur91]). Suppose that γ is a ray, i.e. a continuous injec-
tive image of [0, 1), and let Λ(γ) denote its accumulation set. If Λ(γ) has topological
dimension one, does not separate the Riemann sphere into infinitely many compo-
nents and contains γ, then Λ(γ) is an indecomposable continuum.

Theorem 2.12 (Criniferous functions in B). Let f ∈ B be criniferous. Then,
for each s ∈ Addr(f), J∞

s is either a ray tail or a dynamic ray together with its
endpoint. In particular,

(2.6) I(f) ⊂
⋃
n≥0

f−n

( ⋃
s∈Addr(f)

J∞
s

)
.

Proof. Fix s ∈ Addr(f) and let us choose any z ∈ J∞
s ∩ I(f). Since f is crinif-

erous, there exists N ≥ 0 so that fN (z) is the endpoint of a ray tail γ. Then,
since, by definition, ray tails escape uniformly to infinity, there exists a constant
M := M(γ) ∈ N such that fm(γ) ⊂ Tf for all m ≥ M , which in particular
implies that fm(γ) must be totally contained in a fundamental domain for each
m ≥ M . More specifically, since fN+m(z) ∈ fm(γ) for any m ≥ M , the curve
fm(γ) belongs to the same fundamental domain fN+m(z) does, which in turn is
determined by the external address s. Hence, all points in fm(γ) have external
address σm+N (s), and in particular, fM (γ) ⊂ J∞

σN+M (s). Moreover, by (2.3), it

also holds that fN+M (J∞
s ) ⊆ J∞

σN+M (s). Since the restriction of f to any Julia

constituent is injective, as they all lie outside a Jordan domain that contains S(f),
by definition of J∞

s , fM (γ) ⊆ fN+M (J∞
s ). Hence, the curve in the (N + M)-th

preimage of fM (γ) that intersects J∞
s must be a ray tail with endpoint z, that we

denote by γz. That is, γz := f−N−M (fM (γ)) ∩ J∞
s .

If z, w ∈ J∞
s ∩ I(f), then by Theorem 2.6(b) either γw ⊂ γz or γz ⊂ γw, and

thus, these curves are totally ordered by inclusion. Hence,

γ :=
⋃

z∈I(f)∩J∞
s

γz

is a maximal injective curve in I(f) that escapes uniformly to infinity, and in
particular, γ = I(f) ∩ J∞

s . If J∞
s ⊂ I(f), then γ = J∞

s is a ray tail and we

are done. Otherwise, let us parametrize γ : (0,∞) → C, and denote by Λ(γ) the
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accumulation set of γ(t) as t → 0. In particular, since J∞
s is closed, J∞

s ⊇ γ∪Λ(γ).

Let us compactify J∞
s by adding infinity, i.e., Ĵs := J∞

s ∪ {∞}. If w ∈ J∞
s \ γ,

then by the boundary bumping theorem (Theorem 2.10), if K is the connected

component of Ĵs \ γ containing w, then K ∩ γ �= ∅. But then, since K ⊂ Ĵs \ I(f),
by Proposition 2.9, the set K must be the singleton {w}, and thus w ∈ Λ(γ).
Therefore, we have shown that

J∞
s = γ ∪ Λ(γ).

Consequently, it suffices for our purposes to study the set Λ(γ). First, we note
that for every t > 0 of γ, there are pieces of other dynamic rays of f accumulating
uniformly from above and from below on γ[t,∞). This follows from a well-known

argument,2 that we sketch here. Fix z := γ(t∗) for some t∗ ≥ t. For each funda-
mental domain F , there exists a pair of fundamental domains F− and F+, that
are respectively the immediate predecessor and successor of F in the cyclic order
at infinity of fundamental domains; see 2.13. In particular, F−, F, F+ lie in the
same tract. Then, for each k ≥ 0, consider the external address s+k that equals

s except on its k-th entry, which is F+
k instead of Fk; and similarly, s−k equals s

except that its k-th entry is F−
k . Then, using the expansion property that f has in

tracts, (Proposition 2.8), one can see by mapping forward and pulling back through
appropriate inverse branches, that Js+k

(t∗) → z from above, and Js−k
(t∗) → z from

below as k → ∞.
This implies that if γ(t0) ∈ Λ(γ) for some t0 > 0, then the curve γ must also

accumulate on γ([t, t0]) for all 0 < t < t0. Hence, by letting t → 0, we see that
γ(0,t0] ⊂ Λ(γ). Let t0 be any potential such that γ(t0) ∈ Λ(γ). Then, by Theorem
2.11, Λ(γ(0,t0]) must be an indecomposable continuum. Recall that this means that
all composants of Λ(γ(0,t0]) are pairwise disjoint and dense in Λ(γ(0,t0]), and in
particular, since their closures must contain γ(0,t0], these composants must be non-
trivial. However, this would contradict Proposition 2.9, and thus, Λ(γ) must be a
singleton, namely the landing point of γ. Hence, J∞

s \ I(f) is the landing point of
the dynamic ray γ.

Finally, (2.6) follows noting that if z ∈ I(f), then, arguing as before, there is
N := N(z) ∈ N and a ray tail γ ∈ γ ⊂ J∞

τ for some τ ∈ Addr(f). �

2.13 (Cyclic order and topology in Addr(f)). Let f ∈ B, and let Addr(f) be a set
of external addresses defined from an alphabet of fundamental domains A(D, δ).
There is a natural cyclic order on A(D, δ), together with the curve δ: if X,Y, Z ∈
A(D, δ) ∪ {δ}, then we write
(2.7)

[X,Y, Z]∞ ⇔ Y tends to infinity between X and Z in positive orientation.3

From this cyclic order, it is possible to define a lexicographical order on the set
Addr(f): we can define a linear order on A(D, δ) by “cutting” δ the following way:

F < F̃ if and only if [δ, F, F̃ ]∞.

Then, A(D, δ) becomes totally ordered, and this order gives rise to a lexicographical
order “<

�
” on external addresses, defined in the usual sense. In turn, Addr(f)

2Compare to the proof of [BR20, Corollary 6.7] or [SZ03, Corollary 6.9].
3See [BR20, 13. Appendix] for details on the existence of a cyclic order on any pairwise disjoint

collection of unbounded, closed, connected subsets of C, none of which separates the plane.
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becomes a totally ordered set, and hence we can define a cyclic order induced by
<

�
the usual way:

(2.8)
[s, α, τ ]� if and only if s <

�
α <

�
τ or α <

�
τ <

�
s or τ <

�
s <

�
α.

The cyclic order on addresses specified in (2.9) allows us to provide the set Addr(f)
with a topology: given two different elements s, τ ∈ Addr(f), we define the open
interval from s to τ , denoted by (s, τ), as the set of all addresses α ∈ Addr(f) such
that [s, α, τ ]�. The collection of all these open intervals forms a base for the cyclic
order topology.4

Remark. Unless otherwise stated, from now on and when working with external
addresses, we will assume that the set Addr(f) has been endowed with the cyclic
order topology.

Observation 2.14. This cyclic order on addresses in (2.8) agrees with the cyclic
order at infinity on {J∞

s }s∈Addr(f). That is,

(2.9) [s, α, τ ]� if and only if [J∞
s , J∞

α , J∞
τ ]∞.

Proof. It follows from the cyclicity axiom of ternary relations (that is, if [a, b, c],
then [b, c, a]), together with the following claim: for any pair s, α ∈ Addr(f) such
that s <

�
α, it holds [δ, J∞

s , J∞
α ]∞, where we have considered the cyclic order at

infinity of all Julia constituents together with the curve δ.
Indeed, suppose that s := F s

0F
s
1 . . ., and α := Fα

0 F
α
1 . . ., and that s and α first

differ in their k-th entry for some k ∈ N. That is, F s
i = Fα

i for all i < k, and
F s
k �= Fα

k . Note that s <
�
α holds if and only if f i(J∞

s ), f i(J∞
α ) ⊂ F s

i for all i < k,

and
∞
F s
k �=

∞
Fα
k . Equivalently, s <�

α if and only if f i(J∞
s ), f i(J∞

α ) ⊂
∞
F s
i for all i < k

and [δ, fk(J∞
s ), fk(J∞

α )]∞. But then, since f acts as a conformal isomorphism from
each fundamental domain to W , in particular f preserves the cyclic order at infinity
of Julia constituents. Thus,

[δ, fk(J∞
s ), fk(J∞

α )]∞

⇐⇒ [δ, fk−1(J∞
s ), fk−1(J∞

α )]∞ ⇐⇒ · · · ⇐⇒ [δ, f(J∞
s ), f(J∞

α )]∞

⇐⇒ [δ, J∞
s , J∞

α ]∞,

and the claim follows. �

We would like to point out to the reader that providing Addr(f) with a topolog-
ical structure allows us to use the notion of convergence of external addresses. In
particular, for disjoint type functions, convergence of addresses is closely related to
how the corresponding unbounded components of Julia constituents accumulate on
the plane. More specifically, let f ∈ B be of disjoint type, and for every w ∈ J(f),
denote by add(w) its external address. For a sequence of points {zk}k in J(f),

(2.10) if zk → z, then add(zk) → add(z) as k → ∞,

which is a consequence of the characterization of disjoint type functions in Propo-
sition 2.2 and expansion from Proposition 2.8. See the proof of Theorem 2.12 for
details on a similar argument.

4In particular, the open sets in this topology happen to be exactly those ones which are open
in every compatible linear order.
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3. Signed addresses for criniferous functions

We have defined in Section 2 external addresses for each f ∈ B, and in particular,
for some but not all points in I(f); see Observation 2.5. In this section, given some
additional assumptions on f , we introduce a new form of address, generalizing
Definition 2.3, so that all points in I(f) have (at least) one of these new addresses,
that we call signed addresses. More specifically, our aim is to define signed addresses
for criniferous functions in class B that do not have asymptotic values in their Julia
sets. In particular, we consider functions that might contain escaping critical values.
Hence, in a very rough sense, any sensible analogue of Julia constituents, defined
in (2.2), that is, satisfying properties (2.3) and (2.10), would have to consider
“bifurcations” or “splitting” at critical points. To illustrate this, we study the map
f = cosh.

Example 3.1 (Signed addresses for cosh). For f = cosh, S(f) = CV(f) = {−1, 1},
and so we can define tracts and fundamental domains for f using a disc D ⊃ {−1, 1}
and letting δ be the piece of positive imaginary axis connecting ∂D to infinity. For
this choice of D and δ, each fundamental domain of f is contained in one of the
horizontal half-strips

SnL
:= {z : Re z < 0, Im z ∈ ((n− 1/2)π, (n+ 3/2)π)} or

SnR
:= {z : Re z > 0, Im z ∈ ((n− 3/2)π, (n+ 1/2)π)};(3.1)

see [Par20b, §5] for more details. Thus, if we label the fundamental domains of f
by the sub-index of the strip they belong to, it is easy to see that for the external
address 0R, J0R ⊂ R+. Moreover, J0R , and in fact R+, are ray tails.

We shall extend the curve J0R in different ways so that the extensions are still
ray tails. By (2.3), f(J0R) ⊂ Jσ(0R) = J0R and thus, there exists a preimage of

J0R that contains J0R . Let us denote that preimage by J0
0R

. If J0
0R

∩ Crit(f) = ∅,
then J0

0R
is by definition a ray tail. In that case, we denote by J1

0R
the preimage

of J0
0R

that contains J0
0R

. We can iterate this process until for some n ∈ N, a

preimage β of Jn
0R

contains the critical point 0. Then, β is no longer a ray tail,

but instead, β \ [0,−iπ/2] and β \ [0, iπ/2], where [0,±iπ/2] are vertical segments
in the imaginary axis, are ray tails. Thus, a choice has to be made on how to
define Jn+1

0R
. However, if we extend in the same fashion other Julia constituents

Jsi for addresses si “sufficiently close” to 0R, a more careful analysis would show

that whenever si → 0R “from above” (see 2.13), Jn+1
si

→ [0, iπ/2] ∪ R+, and

whenever si → 0R “from below”, Jsi → [0,−iπ/2] ∪ R+. Hence, for an analogue
of property (2.10) to hold, we would have to extend J0R to include both of those
two segments. But then, such extension would not be a ray tail. We resolve this
obstacle by considering two copies of Addr(f) indexed by {−,+} and defining two
ray tails Jn+1

(0R,+)
:= [0, iπ/2] ∪ R+ and Jn+1

(0R,−)
:= [0,−iπ/2] ∪ R+. By providing

Addr(f)× {−,+} with the “right” topology, an expression similar to (2.10) holds
for the elements in Addr(f)× {−,+}, that we call signed addresses.

We now formalize these ideas with more generality:

3.2 (Space of signed addresses). Let f ∈ B, and let Addr(f) be a set of admissible
external addresses. Let us consider the set

Addr(f)± := Addr(f)× {−,+},
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that we endow with a topology: let <� be the lexicographical order in Addr(f)
defined in 2.13, and let us give the set {−,+} the order {−} ≺ {+}. Define the
linear order

(3.2) (s, ∗) <
A
(τ , �) if and only if s <

�
τ or s =

�
τ and ∗ ≺ �,

where the symbols “∗, �” denote generic elements of {−,+}. This linear order gives
rise to a cyclic order: for a, x, b ∈ Addr(f)±,
(3.3)
[a, x, b]

A
if and only if a <

A
x <

A
b or x <

A
b <

A
a or b <

A
a <

A
x.

In turn, this cyclic order allows us to define a cyclic order topology τA in Addr(f)±.

Definition 3.3 (Signed external addresses for criniferous functions). Let f ∈ B
be a criniferous function and let (Addr(f)±, τA) be the corresponding topological
space defined according to 3.2. A signed (external) address for f is any element of
Addr(f)±.

For each criniferous function f ∈ B such that J(f) ∩ AV(f) = ∅, we aim to
define signed external addresses for all points in I(f) by extending subcurves of
Julia constituents in a systematic way, as described in Example 3.1. In order to
do so, we start by settling which extensions will be allowed at critical points, and
defining canonical tails as curves in the escaping set that agree with the criterion
established.

Recall that the local degree of f at a point z0 ∈ C, denoted by deg(f, z0), is the
unique integer n ≥ 1 such that the local power series development of f is of the
form

f(z) = f(z0) + an(z − z0)
n + (higher terms),

where an �= 0.

3.4 (Extensions at critical points). Let f ∈ B and let δ be either a ray tail or
a dynamic ray (possibly together with its endpoint) such that δ ∩ AV(f) = ∅ and
δ∩CV(f) �= ∅. Let β be a connected component of f−1(δ) such that β∩Crit(f) �= ∅.
Then, each critical point c ∈ β is the endpoint of 2 deg(f, c) curves in β\Crit(f). We
denote the set of all such curves by L(c) and note that topologically, each of them
is a radial line from c. See Figure 2. For each α ∈ L(c), let α−, α+ ∈ L(c) be the
respective successor and predecessor curves of α with respect to the anticlockwise
circular order of (topological) radial segments in L(c). Note that by construction,
f(α− · {c} · α) and f(α+ · {c} · α) are mapped univalently to a subcurve of δ.

Definition 3.5 (Canonical tails and rays). Following 3.4, we define:

• The curves α− and α+ are the respective left and right bristles of α.
• For any curve ξ ⊂ β such that ξ∩L(c) = α for some α ∈ L(c), the concatenations

α− · {c} · ξ and α+ · {c} · ξ
are the respective left and right extensions of ξ at c.

• Let λ ⊂ β be an unbounded curve with finite endpoint c0, and suppose that
λ ∩ Crit(f) = {c1, . . . , cn} for some n ∈ N, where the points ci are ordered from
smallest to largest potential in λ. For each i, let λi be the unbounded curve in
λ \ {ci}. If for all 0 ≤ i ≤ n − 1, λi is a right (resp. left) extension of λi+1 at
ci+1, then we say that λ is a right-extended curve (resp. left-extended curve).
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c α ξ

α+

α−

γ

Figure 2. Definition of bristles and canonical tails. In the pic-
ture, critical points are represented by black dots, and curves in
L(c) with continuous strokes. The curve γ, shown in green, is a
canonical tail, and in particular a left-extended curve. The curves
α+ and α− are the respective right and left bristles of the curve α,
that has c as an endpoint.

• If γ is ray tail (resp. dynamic ray possibly with its endpoint) for which for all
n ≥ 0 such that Crit(f) ∩ fn(γ) �= ∅, the curve fn(γ) is either a right-extended
or left-extended curve, all of the same type, then we say that γ is a canonical tail
(resp. canonical ray) of f .

Remark. If γ ⊆ J∞
s is a ray tail (resp. dynamic ray) for some s ∈ Addr(f),

then γ is a canonical tail (resp. ray), since by definition of Julia constituents,
Orb+(J∞

s ) ∩ Crit(f) = ∅.
In the forthcoming Theorem 3.8, for certain criniferous functions, we will estab-

lish a correspondence between canonical tails and signed addresses. We achieve this
by extending each of the curves J∞

s in two ways, so that all extensions are canonical

curves, and so that all points in I(f) belong to at least one canonical curve. In
certain cases, rather than extending directly the curve J∞

s , for technical reasons,
it is more convenient to extend some unbounded subcurve of J∞

s . Definition 3.6
establishes which conditions the mentioned subcurves must fulfil.

Definition 3.6 (Initial configuration of tails). Let f ∈ B and suppose that for each
s ∈ Addr(f), there exists a curve γ0

s ⊂ J∞
s that is either a ray tail or a dynamic

ray possibly with its endpoint. The set of curves {γ0
s}s∈Addr(f) is a valid initial

configuration for f if for each s ∈ Addr(f), f(γ0
s ) ⊂ γ0

σ(s) and

(3.4) I(f) ⊂ Orb−

⎛⎝ ⋃
s∈Addr(f)

γ0
s

⎞⎠ =: S.

Observation 3.7 (Existence of initial configuration equivalent to criniferous).
Note that if for a function f ∈ B there exists a valid initial configuration, by (3.4),
f is criniferous. Conversely, if f ∈ B is criniferous, by Theorem 2.12, {J∞

s }s∈Addr(f)

is a valid initial configuration for f . Moreover, note that all curves in a valid initial
configuration are canonical and pairwise disjoint, as Julia constituents are.
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Theorem 3.8 (Indexed canonical tails). Let f ∈ B be criniferous with AV(f) ∩
J(f) = ∅, and let {γ0

s}s∈Addr(f) be a valid initial configuration for f . Then, for each

n ∈ N and (s, ∗) ∈ Addr(f)±, there exists a curve γn
(s,∗), that is either a canonical

tail or dynamic ray with possibly its endpoint, with the following properties:

(a) γ0
(s,−)

:= γ0
(s,+)

:= γ0
s ⊂ J∞

s ;

(b) for all n ≥ 1, γn−1
(s,∗) ⊆ γn

(s,∗) and f : γn
(s,∗) → γn−1

(σ(s),∗) is a bijection.

In particular, if S is the set from (3.4) and, for each (s, ∗) ∈ Addr(f)±, we define
the Γ-curve Γ(s, ∗) :=

⋃
n≥0 γ

n
(s,∗), then S =

⋃
(s,∗)∈Addr(f)±

Γ(s, ∗).

Proof. Without loss of generality and for clarity of exposition, we assume that all
curves in the given initial configuration are canonical tails, since our arguments work
exactly the same way if any curve is a dynamic ray (possibly with its endpoint).
We construct canonical tails inductively on n and simultaneously for all elements
in Addr(f)±. Let n = 1 and choose any (s, ∗) ∈ Addr(f)±. Since by assumption
f(γ0

s ) ⊂ γ0
σ(s), there exists a connected component β of f−1(γ0

(σ(s),∗)) such that

γ0
(s,∗) ⊆ β. Define

γ1
(s,∗) := β,

which is a canonical tail since it is a preimage of the canonical tail γ0
(σ(s),∗), that

by definition does not contain any singular values, and hence γ1
(s,∗) ∩ Crit(f) = ∅.

Note that γ1
(s,−) = γ1

(s,+), and so the curve can be regarded both as left-extended

or right-extended. However, for the purpose of our inductive argument, we regard
γ1
(s,−) as a left-extended curve, and γ1

(s,+) is a right-extended curve.

Suppose that (b) has been proved for some n ∈ N and all elements in Addr(f)±.
We shall see that it holds for n+ 1. By the inductive hypothesis, for each (s, ∗) ∈
Addr(f)±, both γn

(s,∗) and γn
(σ(s),∗) are well-defined canonical tails, and f(γn

(s,∗)) =

γn−1
(σ(s),∗) ⊂ γn

(σ(s),∗). Moreover, γn
(σ(s),−) must be a left-extended curve, and γn

(σ(s),+)

a right-extended curve. Let β be the component of f−1(γn
(σ(s),∗)) that contains

γn
(s,∗). If (β \ γn

(s,∗)) ∩ Crit(f) = ∅, then we denote

γn+1
(s,∗) := β,

which is a canonical tail by the same argument as before. Otherwise, γn
(s,∗) must be

contained in a unique connected component L1 of β\(Crit(f)\γn
(s,∗)). In particular,

L1 \ γn
(s,∗) does not contain any critical points, but can be extended to contain a

critical point c1 ∈ β as finite endpoint. Hence, since by the inductive hypothe-
sis f |γn

(s,∗)
maps bijectively to γn−1

(σ(s),∗), f maps the curve {c1} · L1 univalently to

γn
(σ(s),∗). If f({c1} · L1) = γn

(σ(s),∗), then we define

γn+1
(s,∗) := {c1} · L1,

and the claim follows. If, on the contrary, f({c1} ·L1) � γn
(σ(s),∗), then L1 must be

a curve containing a unique element of L(c1). Thus, following Definition 3.5, we
define L2 as the respective right or left extension of L1 at c1, according to whether
∗ = + or ∗ = −. That is, if α− and α+ are the respective left and right bristles of
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L1 at c1, then we define

L2 :=

⎧⎨⎩α+ · {c1} · L1 if ∗ = +, or

α− · {c1} · L1 if ∗ = −.

Since β is the preimage of a ray tail, the curve L2 can be extended to contain an
endpoint c2, and if c2 is not a critical point, then f(c2) must be the finite endpoint
of γn

(σ(s),∗). If f({c2} · L2) = γn
(σ(s),∗), then we define

γn+1
(s,∗) := {c2} · L2

and the claim follows. This is because by construction, {c2} · L2 is either a right-
extended or left-extended curve, depending only on whether ∗ = + or ∗ = −, and by
the inductive hypothesis, the same applies to the canonical tails γn

(s,∗) and γn
(σ(s),∗),

and hence γn+1
(s,∗) is a canonical tail. Otherwise, if f({c2} · L2) �= γn

(σ(s),∗), the point

c2 must be a critical point, and we can define L3 as the right or left extension of
L2 at c2 following the same criterion as before. Iterating this process, we get a
collection · · · ⊃ Li+1 ⊃ Li ⊃ · · · of right- or left-extended curves, all of the same
type, contained in β. Since β ⊂ J(f) and, by assumption, J(f) ∩ AV(f) = ∅, this
process must converge. To see this, suppose that the piece of γn

(σ(s),∗) from its finite

endpoint p to f(c1) is parametrized from [0, 1]. Then, f−1(γn
(σ(s),∗)([0, 1])) ∩ β is

bounded, and so the sequence {Li}i≥1 converges to a canonical tail L ⊂ β such
that f(L) = γn

(σ(s),∗). Consequently, by defining

γn+1
(s,∗) := L,

(b) follows. The second part of the statement is a direct consequence of the con-
struction process together with (3.4) in Definition 3.6. �

We have shown in Theorem 3.8 that the escaping set of any function satisfying its
hypothesis consists of a collection of Γ-curves, each of them being a union of nested
canonical tails. However, we cannot assert that each of these canonical ray lands.
This is however achieved in [Par19b] for functions satisfying further assumptions.
Next, we study the overlapping occurring within the collection of canonical rays:

Proposition 3.9 (Overlapping of Γ-curves). Following Theorem 3.8, for each
(s, ∗) ∈ Addr(f)±, either Γ(s,−) = Γ(s,+) when Orb−(Crit(f)) ∩ Γ(s, ∗) = ∅,
or Γ(s, ∗) can be expressed as a concatenation

(3.5) Γ(s, ∗) = · · · · {ci+1} · γi+1
i · {ci} · · · · · γ1

0 · {c0} · γ∞
c0 ,

where {ci}i∈I = Orb−(Crit(f)) ∩ Γ(s, ∗), for each i ≥ 1, if it exists, the curve γi+1
i

is a (bounded) piece of dynamic ray, and γ∞
c0 is a piece of dynamic ray joining c0 to

infinity. In particular, in the latter case, the following properties hold for Γ(s, ∗):
(A) γ∞

c0 ∪{c0} = Γ(s,−)∩Γ(s,+) and γ∞
c0 does not belong to any other Γ-curve.

(B) For each i ≥ 0, the point ci belongs to exactly 2
∏∞

j=0 deg(f, f
j(ci)) Γ-

curves.
(C) For each i ≥ 0, γi+1

i = Γ(s, ∗)∩ Γ(τ , �), where � �= ∗ and σj(τ) = σj(s) for

some j ≥ 1. Moreover, γi+1
i does not belong to any other Γ-curve.

Remark. Note that S ⊂ J(f) by definition, and since any periodic critical point
of f is in C \ J(f), for each i ∈ I, the product 2

∏∞
j=0 deg(f, f

j(ci)) in (B) is
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always finite. More specifically, let n ∈ N such that the point ci ∈ γn
(s,∗) \ γn−1

(s,∗).

Then, by Theorem 3.8 it holds that fn(ci) ⊂ γ0
(σn(s),∗), and as since by definition

γ0
(σn(s),∗) ∩Orb−(Crit(f)) = ∅,

∏∞
j=0 deg(f, f

j(ci)) =
∏n

j=0 deg(f, f
j(ci)) < ∞.

Proof of Proposition 3.9. For a fixed (s, ∗) ∈ Addr(f)±, the dichotomy and charac-
terization of Γ(s, ∗) in the statement are a direct consequence of its definition in The-
orem 3.8; more specifically, suppose that Orb−(Crit(f))∩Γ(s, ∗) = ∅. Then, for each
n ≥ 0, there exists an inverse branch of fn defined in a neighbourhood of γ0

(σn(s),∗)
that maps γ0

(σn(s),∗) bijectively to the connected component of f−n(γ0
(σn(s),∗)) that

contains γn
(s,−) = γn

(s,+). If Orb−(Crit(f))∩ Γ(s, ∗) �= ∅, then since by Theorem 3.8

the curve Γ(s, ∗) is a union of nested canonical tails, it must be of the form specified
in (3.5).

For the rest of the proof, for each n ∈ N we refer to the elements in

L(n) :=
{
γn
(τ,�) : (τ , �) ∈ Addr(f)±

}
as curves of level n. We shall use the following observation:

Claim. Suppose that z ∈ γ ∈ L(n) for some n ∈ N. Then, z ∈ γm
(τ,�) for some

m > n and (τ , �) ∈ Addr(f)± if and only if z ∈ γn
(τ,�).

In other words, if z ∈ L(n) for some n ∈ N, then all the Γ-curves z belongs to
are determined by the curves of level n it belongs to.

Proof of Claim. If z ∈ γn
(τ,�) for some (τ , �) ∈ Addr(f)±, then by Theorem 3.8,

z ∈ γm
(τ,�) for all m ≥ n. In order to prove the converse, suppose that z ∈ γm

(τ,�)

for some (τ , �) and m > n. Then, fn(z) ∈ γ0
(σn(s),∗) ∪ γm−n

(σn(τ),�) by Theorem 3.8.

However, since curves of level 0 are pairwise disjoint and are contained only in
curves of level n that differ at most in the sign of their addresses, it must occur
that σn(s) = σn(τ). This implies that γ0

(σn(τ),�) = γ0
σn(s) and z ∈ γn

(τ,�). �

For the rest of the proof, let us fix an arbitrary (s, ∗) ∈ Addr(f)±. In order
to prove (A), we start recalling that all curves in a valid initial configuration are
pairwise disjoint, and that by definition, γ0

(s,−) = γ0
s = γ0

(s,+). Let n ∈ N be the

smallest number such that γn
(s,∗)∩Orb−(Crit(f)) �= ∅, and let c0 be the point in that

intersection of greatest potential in γn
(s,∗). Then, there exists an inverse branch of

fn defined in a neighbourhood of fn(γ∞
c0 ) ⊂ γ0

(σn(s),∗) that maps fn(γ∞
c0 ) bijectively

to γ∞
c0 , and thus, γn

(s,−) ∩ γ∞
c0 = γn

(s,+) ∩ γ∞
c0 . In particular, by the claim, γ∞

c0 does

not intersect any other canonical tails, and so (A) follows.
We prove items (B) and (C) simultaneously. Note that by the claim, all over-

lapping of γm
(s,∗) with curves of level n < m occur in γn

(s,∗) ⊂ γm
(s,∗). By this and

the definition of Γ-curves as a union of nested curves of level m, with m → ∞, in
order to prove (B) and (C), it suffices to show that for any n ≥ 0, (B) and (C) hold
replacing in the statement of the proposition each Γ(s, ∗) by its restriction to γn

(s,∗).

We proceed to do so by induction on n. For n = 0, since curves of level 0 do not
contain (preimages of) critical points, the statements hold trivially. Suppose that
(B) and (C) hold for some n ∈ N, and we shall see they hold for n+ 1.

Let us consider the curve γn+1
(s,∗). By Theorem 3.8, f(γn+1

(s,∗)) = γn
(σ(s),∗) and by the

inductive hypothesis, the statements hold for both γn
(s,∗) and γn

(σ(s),∗). In particular,
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since γn
(s,∗) ⊆ γn+1

(s,∗), for all γi+1
i and ci contained in γn

(s,∗) for some i ∈ I, by the

claim, (B) and (C) hold. Thus, if γn+1
(s,∗) = γn

(s,∗), we are done. Otherwise, it suffices

to prove that they hold for all

ci ∈ β := γn+1
(s,∗) \ γ

n
(s,∗) and γi+1

i ∩ β �= ∅ for some i ∈ I.

If β ∩ Crit(f) = ∅, then, arguing as before, there exists a neighbourhood of β that
maps injectively to γn

(σ(s),∗). In particular, for each curve of level n that contains

f(β), there exists a unique curve of level n + 1 that maps to it and also contains
β. Then, by the inductive hypothesis applied to curves of level n, (B) and (C) hold
for β ∪ γn

(s,∗) = γn+1
(s,∗).

Otherwise, let c ∈ β ∩ Crit(f) be the critical point of maximal potential in β.
Then, by definition, the map f acts like z �→ zdeg(f,c) locally around c. By the
inductive hypothesis, f(c) belongs to N := 2

∏∞
j=1 deg(f, f

j(c)) curves of level n

that by (C), overlap pairwise. Let L(c) be the set of curves in β \Crit(f) for which
c is an endpoint. Then, the cardinal of L(c) is either deg(f, c) ·N or 2 deg(f, c) ·N ,
depending on whether f(c) is or not the endpoint of γn

(σ(s),∗). We will assume

without loss of generality that the second case occurs, since the argument in the
first one is a simplified version of the one to follow. Let us subdivide the curves
in L(c) into the respective subsets Lb and Lu of curves that are mapped to the
bounded or unbounded component of γn

(σ(s),∗) \ {f(c)}.
In particular, since c ∈ β, γn

(s,∗) must belong to a curve in Lu. Moreover, by

Theorem 3.8 and the inductive hypothesis, each curve in Lu contains a pair of
curves γn

(τ,+) and γn
(α,−) for some τ , α ∈ Addr(f) such that σ(τ) = s = σ(α).

Since f maps each curve in Lu injectively to γn
(σ(s),∗) \ {f(c)}, arguing as before,

each curve in Lu belongs to two curves of level n + 1 that extend the curves of
level n they contain. In addition, since curves of level n + 1 are canonical tails, a
curve from Lb is a bristle for each of them. In particular, following the extending
criterion from 3.4, each curve in Lb is both a left bristle for a left-extended curve
in Lu and a right bristle for a right-extended curve in Lu. In particular, one of
these right and left-extended curves must belong to γn+1

(s,∗), and we have shown that

items (B) and (C) hold for the restriction of γn+1
(s,∗) to the unbounded component of

γn+1
(s,∗) \ (Crit(f) \ {c}). If we denote the bounded component by δ, repeating this

process iteratively for each critical point in δ, since δ is bounded, the process must
converge and the statements follow. �

Definition 3.10 (Signed addresses for escaping points). Under the assumptions of
Theorem 3.8, for each z ∈ S ⊃ I(f), we say that z has signed (external) address
(s, ∗) if z ∈ Γ(s, ∗), and we denote by Addr(z)± the set of all signed addresses of z.

Observation 3.11 (Escaping points have at least two signed addresses). By Propo-
sition 3.9, for each z ∈ S,

(3.6) #Addr(z)± = 2

∞∏
j=0

deg(f, f j(z)) < ∞.

Therefore, each point in S ⊃ I(f) has at least two signed addresses.

Observation 3.12 (Universality of canonical tails). We note that the concept of
canonical tail for a criniferous function f ∈ B is defined in 3.4 independently of
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the choice of fundamental domains, and thus external addresses, for f . However,
for each choice of Addr(f)±, since any canonical tail, or more generally any ray
tail, escapes uniformly to infinity, it must contain some Julia constituent. Then, it
follows from Theorem 3.8 and Proposition 3.9 that if γ ⊂ I(f) is a canonical tail,
then there exists (s, ∗) ∈ Addr(f)± such that γ = γn

(s,∗) for some n ≥ 0.

Observation 3.13 (Landing of canonical rays implies landing of all rays). For a
criniferous function f ∈ B such that J(f)∩AV(f) = ∅, showing that all its canonical
rays land suffices to conclude that all its dynamic rays land. This is because we
have shown in Theorem 3.8 that I(f) ⊂ S =

⋃
(s,∗)∈Addr(f)±

Γ(s, ∗), and so, any

dynamic ray γ must belong to S. In particular, if a ray γ is canonical, then by
Observation 3.12, it must be contained in Γ(s, ∗) for some signed address (s, ∗),
and if γ is not canonical, then γ must be a concatenation at (preimages of) critical
points of pieces of ray tails, where instead of extending as in Definition 3.5, different
choices of bristles are made.

Observation 3.14 (Equivalence of orders). We note that locally, the anticlockwise
order of radial segments used in Definition 3.5 agrees with the order in (3.3) for the
addresses in Addr(f)±, since in (2.7), we chose positive orientation. More precisely,
we aim to show in §4 that by construction, given a converging sequence of points
{zk}k ⊂ S, for each k > 0, there is (sk, ∗k) ∈ Addr(zk)± such that

(3.7) if zk → z, then (sk, ∗k) → (s, ∗) as k → ∞
for some (s, ∗) ∈ Addr(z)±. Compare to (2.10).

4. Fundamental hands and inverse branches

The standing assumptions for any f in this section are the following:

• f ∈ B is criniferous with J(f) ∩ AV(f) = ∅,
• P (f) \ I(f) is bounded and the set SI := S(f) ∩ I(f) is finite.

Recall that by Theorem 3.8, we can define for each (s, ∗) ∈ Addr(f)± and n ≥ 0,
a canonical tail γn

(s,∗) such that fn maps γn
(s,∗) bijectively to γ0

(σn(s),∗). Using this,

in this section, we define for each (s, ∗) ∈ Addr(f)± and n ≥ 0 an inverse branch
of fn in a neighbourhood U of γ0

(σn(s),∗) such that the image of this inverse branch

contains γn
(s,∗). In addition, U will be chosen so that there exists an interval of

signed addresses containing (s, ∗) such that the same inverse branch with analogous
properties can be taken for all addresses in the interval; see Theorem 4.6. We are
able to achieve this result thanks to the consistency on taking always either right or
left extensions in the definition of canonical tails, together with the equivalence of
orders pointed out in Observation 3.14. In order to define these inverse branches,
we introduce the concept of fundamental hands, that in a rough sense are n-th
preimages of certain simply connected subsets of fundamental domains, where fn

is injective; see Definition 4.2.

Remark. We suggest the reader familiar with [BR20], to compare the notion of
fundamental hands with that of fundamental tails for postsingularly bounded func-
tions, introduced in [BR20, Section 3] in order to define dreadlocks. Since for the
functions we consider in this section, we face the additional challenge of the presence
of critical points in their escaping sets, the existence of a sensible generalization of
the concept of dreadlocks for these functions is a priori not obvious to us. See
[Par19a, §5.2] for further discussion on this topic.
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We start by finding a convenient choice of parameters that determine an alphabet
of fundamental domains, with the aim of simplifying arguments in future proofs.
Recall that by Theorem 3.8, every point in SI is the endpoint of at least one
canonical tail.

Proposition 4.1 (Parameters to define fundamental domains). Let f ∈ B satisfy-
ing the standing hypotheses. For each z ∈ SI , let γz be a canonical tail with finite
endpoint z. Then, there exists a Jordan domain D ⊃ S(f) ∪ (P (f) \ I(f)) and an

arc δ ⊂ C \ f−1(C \D) connecting a point of D to infinity such that

(4.1) W−1 := C \ (D ∪ δ)

has the following property: if for some n ≥ 1, a connected component τ of f−n(W−1)
contains z ∈ SI , then γz ⊂ τ . Moreover, for any such τ , (P (f) \ I(f)) ∩ τ = ∅.

Proof. By the assumptions on f , we can choose a disk DR0
for some R0 > 0

sufficiently large so that S(f)∪ (P (f) \ I(f)) ⊂ DR0
. Let TDR0

:= f−1(C \DR0
) be

the corresponding set of tracts. Since each ray tail escapes to infinity uniformly,
see Definition 1.1, for each z ∈ SI , there exists a natural number N(z) > 0 such
that fn(γz) ⊂ TDR0

for all n ≥ N(z). Let us consider the set of ray tails

R := {fn(γz) : z ∈ SI and 0 ≤ n ≤ N(z)},
which has finitely many elements as, by assumption, #SI is finite. Note that if γ is
a ray tail, then by definition, limt→∞ f(γ(t)) = ∞, and in particular, there exists
a constant R(γ) > 0 such that γ \ DR(γ) ⊂ TDR0

. Since #R < ∞, there exists a
finite constant

R1 := max
γ⊂R

R(γ).

Thus, for all γ ∈ R, γ \DR1
⊂ TDR0

. Let us define tracts for f with respect to DR1
,

that is, TDR1
:= f−1(C\DR1

). We can assume without loss of generality that DR0
⊂

DR1
, since otherwise we can replace R1 by a bigger constant. Thus, it holds that

TDR1
⊂ TDR0

, and by construction, for all n ≥ 0 and z ∈ SI , f
n(γz) ⊂ (DR1

∪TDR0
).

Consequently, we can choose a curve δ̃ ⊂ C \ (TDR0
∪ DR1

) connecting a point in
∂DR1

to infinity. In particular,

(4.2) fn(γz) ∩ δ̃ = ∅ for all z ∈ SI and n ≥ 0.

Note that (4.2) is equivalent to⋃
z∈SI

γz ∩
⋃
n≥0

f−n(δ̃) = ∅.

However, if we defined a set W−1 as C \ (DR1
∪ δ̃), then W−1 would not satisfy

the property on connected components of its preimages specified in the statement,
since the curves {γz}z∈SI

could a priori intersect some preimage of ∂DR1
. Note

that such property is equivalent to saying that, for some appropriate D and δ, if
fn(z) ∈ C\ (D∪ δ) for some z ∈ SI and n ≥ 1, then fn(γz) ⊂ C\ (D∪ δ). Hence, in
order to define W−1 satisfying the property we are looking for, by (4.2), it suffices

to find a domain D ⊃ DR1
and a curve δ ⊂ δ̃ such that D ∩ δ is a single point, and

so that

(4.3) if z ∈ SI and fn(z) ∈ (C\D) for some n ∈ N, then fn(γz) ⊂ (C\D).

Thus, our next aim is to find a domain D for which (4.3) holds.
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Arguing as before, by definition of ray tail, for each z ∈ SI , there exists a constant
M(z) ∈ N such that fm(γz) ⊂ (C \ DR1

) for all m ≥ M(z). Hence, there exists a
constant Q ≥ R1 such that

DQ ⊃ {fn(z) : z ∈ SI and 0 ≤ n ≤ M(z)} =: P,

where the set P has only finitely many elements. As before, by definition of ray tail,
only finitely many rays that are of the form fm(γz) for some m ≥ M(z) and z ∈ SI

intersect DQ. Hence, we can find a domain D such that DR1
∪P ⊂ D ⊂ DQ, and so

that D ∩ fm(γz) = ∅ for all m ≥ M(z) and z ∈ SI . This means that since P ⊂ D,
the hypothesis in (4.3) can only hold for fm(z) with m ≥ M(z), but by construction
and since TD ⊂ TDR1

, the thesis in (4.3) always holds for these cases. Thus, (4.3) is
always true for our choice of D. Defining δ as the unbounded connected component
of δ̃ \ D, the proof of the first part of the statement is concluded. The fact that
for any connected component τ of f−n(W−1) it holds that (P (f) \ I(f)) ∩ τ = ∅,
is a consequence of (P (f) \ I(f)) ⊂ DR1

⊂ D and (P (f) \ I(f)) being forward-
invariant. �

We are now ready to define the basic objects of this section.

Definition 4.2 (Fundamental hands). Following Proposition 4.1, let W−1 be the
domain from (4.1). Then, for each n ≥ 0, define inductively

Xn :=
⋃

z∈Wn−1∩SI

γz and Wn := f−1 (Wn−1 \Xn) .

For every n ≥ 0, each connected component of Wn is called a fundamental hand of
level n.

That is, in a rough sense, we take successive preimages of W−1, removing at each
step some curves in {γz}z∈SI

whenever a point in SI belongs to some component of
a preimage. In particular, X0 = ∅ and fundamental hands of level 0 are fundamental
domains for f . The choice of W−1 in Proposition 4.1 has been made so that the
following basic properties of fundamental hands hold:

Proposition 4.3 (Facts about fundamental hands). Fundamental hands are un-
bounded, simply connected, and any two of the same level are pairwise disjoint.
Moreover, each fundamental hand of level n > 1 is mapped univalently under f to
a fundamental hand of level n− 1.

Proof. We prove all facts simultaneously using induction on n. For n = 0, funda-
mental hands are fundamental domains, and so the statement follows trivially. Let
us assume that the statement holds for some n − 1 ∈ N, and we shall see that it
holds for n. Let τ be a fundamental hand of level n. Then, by definition, its image
f(τ ) is contained in a fundamental hand τ̃ of level n− 1, and

(4.4) ∂τ̃ ⊂
(
f−n(∂W−1) ∪

⋃
0<i<n
z∈SI

f−i(γz)
)
.

By Proposition 4.1, Xn does not intersect f−n(∂W−1). Since by (4.4), all other
connected components that might form ∂τ̃ are preimages of ray tails, and thus in
I(f), Xn ∩ (∂τ̃ \ f−n(∂W−1)) must be simply connected: Otherwise, there would
be a domain enclosed by pieces of ray tails that escapes uniformly to infinity, con-
tradicting thaB, [EL92]. Thus, by this and using the inductive hypothesis, τ̃ \Xn is
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an unbounded, simply connected domain. Since f is an open map, the same holds
for τ .

In order to see that f |τ is injective, note that all singular values contained in
Wn−1 also belong to Xn, and hence τ ∩ Crit(f) = ∅. This implies that the restric-
tion f |τ is a covering map, and all inverse branches of f in the domain f(τ ) can be
continued. Moreover, as we have seen in the previous paragraph, f(τ ) = τ̃ \Xn is
simply connected. Thus, all arcs in f(τ ) with fixed endpoints are homotopic, and
hence, by the Monodromy Theorem (see [Ahl78, Theorem 2, p.295]), given any two
homotopic curves in f(τ ), for an inverse branch of f defined in a neighbourhood
of their starting endpoint, all its analytic continuations along the curves lead to
the same values at the terminal endpoint, and so f |τ is injective. By the inductive
hypothesis, fundamental hands of level n−1 are pairwise disjoint, and since funda-
mental hands of level n are the connected components of the preimages of subsets
of those hands, they are also pairwise disjoint. �

Next, we define external addresses for f using the alphabet of fundamental do-
mains A(D, δ), where D and δ are provided by Proposition 4.1. As usual, we denote
by Addr(f) the set of admissible external addresses for f .

In Proposition 4.4, that will serve us as an auxiliary result to prove Proposi-
tion 4.5, we show that fundamental hands of any level always intersect at least one
fundamental domain, and that this intersection is unbounded. As a consequence,
we obtain that fundamental hands contain Julia constituents.

Proposition 4.4 (Fundamental hands contain Julia constituents). Let τ be a fun-
damental hand of level n for some n ≥ 0. Then, there exists at least one funda-
mental domain F1 such that τ ∩ F1 is unbounded. Moreover, if Jω ⊂ τ \ Xn for
some ω ∈ Addr(f), then for each fundamental domain F0, there exists a unique
fundamental hand τ̃ of level n + 1 such that f(τ̃ ) ⊂ τ and JF0ω ⊂ F0 ∩ τ̃ . In
particular, there is s ∈ Addr(f) with Js ⊂ τ .

Proof. In order to prove the first claim, we proceed by induction on the level n of
the hand τ . For n = 0, τ is a fundamental domain and so the first claim is trivial.
Suppose that it is true for some n− 1 ∈ N. In order to see that it also holds for n,
note that by definition of fundamental hands, f(τ ) ⊂ τ2, where τ2 is a fundamental
hand of level n − 1. Then, by the inductive hypothesis, there exists at least one
fundamental domain F1 ∈ A(D, γ) such that F1 ∩ τ2 is unbounded. Let U be the

unbounded connected component of
∞
F1∩(f(τ )\D). Then, since by Proposition 4.3,

f |τ maps to f(τ ) bijectively and since U ⊂ W−1, there exists a unique fundamental
domain F0 containing the unbounded set f−1(U) ∩ τ , and so we have proved the
first claim.

For second claim, let ω = F1F2 . . . ∈ Addr(f) be as in the statement. Thus,

Jω ⊂
∞
F1. Then, for any other fundamental domain F0, by the same argument

as before, f−1(
∞
F1) ∩ F0 is an unbounded set that by definition contains JF0ω. In

particular, by definition of fundamental hands and since they are pairwise disjoint,
there is a unique fundamental hand τ̃ ⊂ f−1(τ \Xn) of level n + 1 that contains
JF0ω, as we wanted to show.

Finally, we construct s ∈ Addr(f) such that Js ⊂ τ =: τ0. Note that for each
0 ≤ j ≤ n, f j(τ ) ⊂ τj for some fundamental hand τj of level n − j. In particular,
by the first part of the proposition, for each fundamental hand τj , there exists a
fundamental domain Fj such that τj ∩ Fj is unbounded. Recall that the curves
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{γz}z∈SI
that form the sets Xj are canonical tails. Then, by Theorem 3.8 and

Proposition 3.9 together with Observation 3.12, each γz contains J∞
α for exactly

one element α ∈ Addr(f), and consequently, by (2.3), the same holds for each of
the canonical tails in

R := {f j(γz) : z ∈ SI and 0 ≤ j ≤ n}.
The set R has finite cardinality, and thus, so does the set

Addr(R) := {s ∈ Addr(f) : J∞
s ⊂ γ for some γ ∈ R}.

Since Addr(f) is an uncountable set, we can choose any bounded α ∈ Addr(f) such
that s := F0F1 . . . Fnα /∈ Addr(R). Then, since s is also a bounded address, by
Theorem 2.6, Js �= ∅, and so s ∈ Addr(f). By construction, J∞

s ∩ Xj = ∅ for all

0 ≤ j ≤ n, and in particular, JFnα ⊂ τn \ Xn. Then, by the second part of the
proposition, JFn−1Fnα ⊂ τn−1 ∩ Fn−1. Iterating this argument n− 2 further times,
we see that Js ⊂ τ . �

As discussed at the beginning of the section, we are interested in finding neigh-
bourhoods of canonical tails on which inverse branches are well-defined. These
neighbourhoods will be provided by images of closures of fundamental hands.

Let Addr(f)± the space of signed addresses, defined using our choice of Addr(f).
Moreover, let

C :=
{
γn
(s,∗) : n ≥ 0 and (s, ∗) ∈ Addr(f)±

}
be a set of canonical tails provided by Theorem 3.8 for any valid initial config-
uration. In particular, one can always use the configuration {J∞

s }s∈Addr(f); see
Observation 3.7.

Then, in the next proposition we show that each canonical tail γn
(s,∗) ∈ C belongs

to the closure of at least one and at most two fundamental hands of level n. In
addition, we assign to each canonical tail a fundamental hand that will allow us
to define the desired inverse branches in Theorem 4.6. Recall from Proposition 4.4
that given any fundamental hand, we can find a Julia constituent contained in it.

Proposition 4.5 (Fundamental hands for canonical tails). For each γn
(s,∗) ∈ C,

exactly one of the following holds:

(A) There exists a unique fundamental hand τ of level n such that γn
(s,∗) ⊂ τ .

We denote

τn(s, ∗) := τ ∪ γn
(s,∗).

(B) The curve γn
(s,∗) belongs to the boundary of exactly two fundamental hands

τ and τ̃ of level n. Let υ, ω ∈ Addr(f) such that J∞
υ ⊂ τ and J∞

ω ⊂ τ̃ .
Then, we denote

(4.5) τn(s, ∗) :=

⎧⎨⎩τ ∪ γn
(s,∗) if [υ, s, ω]� and ∗ = − or [ω, s, υ]� and ∗ = +;

τ̃ ∪ γn
(s,∗) otherwise,

where “[·]�” is the cyclic order in addresses defined in (2.8).

Remark. The definition of τn(s, ∗) in case (B) is independent of the choice of ad-
dresses υ, ω ∈ Addr(f) such that J∞

υ ⊂ τ and J∞
ω ⊂ τ̃ . To see this, note that by

definition of fundamental hands, the connected component T of ∂τ that contains
J∞
s separates the plane, and in particular, τ and τ̃ lie in different components of
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C \ T . Moreover, T must contain a (preimage of a) critical point, and so J∞
α ⊂ T

for some other α ∈ Addr(f). Then, we can define a linear order “<” in Addr(f) by
cutting α. In particular, either υ < s < ω or υ > s > ω for all pairs of addresses
υ and ω so that J∞

υ ⊂ τ and J∞
ω ⊂ τ̃ , and using the equivalence (2.9), the claim

follows.

Proof of Proposition 4.5. Firstly, recall that by Observation 3.13, each canonical
tail belongs to a curve γm

(α,�) for some m ≥ 0 and (α, �) ∈ Addr(f)±. In partic-

ular, this is the case for the canonical tails {γz}z∈SI
we chose in the definition of

fundamental hands. We remark that the curves in {γz}z∈SI
might not be pairwise

disjoint, but since f ∈ B, I(f) has empty interior [EL92], and thus, each connected
component of C \

⋃
z∈SI

γz is simply connected. Then, the boundaries of funda-

mental hands are either connected components of preimages of curves in {γz}z∈SI
,

or preimages of the boundary of the set W−1 from Proposition 4.1. In particular,
by Propositions 3.9 and 4.1, each curve γn

(s,∗) might only intersect boundaries of

fundamental hands at (preimages of) critical points, or might share with them a
segment between any two of those preimages.

Let us fix a curve γn
(s,∗) ∈ C. Since, by Theorem 3.8 and Proposition 3.9 together

with Observation 3.12, each curve in {γz}z∈SI
contains a curve γ0

α for exactly

one address α ∈ Addr(f), and the same holds for the unbounded components of
f−n(γz)\Crit(f) for all n ∈ N, the curve γ0

(s,∗) is either totally contained in a hand

of level n or belongs to the boundary of two such hands whenever f i(γ0
(s,∗)) ⊂ Xi

for some 1 ≤ i ≤ n. We subdivide the proof into these two cases:

• Suppose that γ0
(s,∗) ⊂ τ , where τ is a hand of level n. If γn

(s,∗) ⊂ τ , then case

(A) holds. Otherwise, let x ∈ γn
(s,∗) be the point of greatest potential that also

belongs to ∂τ . By Propositions 4.1 and 3.9, x must be a (preimage of a) critical
point, and there must be at least two canonical tails in ∂τ that also contain
x. Recall that bristles are defined for canonical tails as either the successor or
predecessor (bounded) segment in the circular order of segments around x; see
Figure 3. Hence, the bristles of the unbounded component of γn

(s,∗) \ {x} must

lie between this curve and two unbounded components of ∂τ \ {x} that contain
x as an endpoint. Thus, these bristles belong to either ∂τ or τ . If the bounded
component of γn

(s,∗)\{x} does not contain any other (preimage of a) critical point,

then we are done. Otherwise, γn
(s,∗) might intersect another boundary component

of ∂τ in a point y, and by the same argument, the bristles of the corresponding
unbounded component of γn

(s,∗) \ {y} must again lie in τ . Thus, case (A) holds

for γn
(s,∗).

• Suppose that γ0
(s,∗) ⊂ ∂τ ∩ ∂τ̃ , where τ and τ̃ are two hands of level n. Let

x ∈ γn
(s,∗) be the point of smallest potential that also belongs to ∂τ ∩ ∂τ̃ . If

x is the endpoint of γn
(s,∗), case (B) holds and we are done. Otherwise, by the

same argument as before, x must be a (preimage of a) critical point, and so, the
continuation of γn

(s,∗) towards points of smaller potential than the one of x, is

a nested sequence of left or right bristles. By minimality of x, the bristle that
contains x can no longer be in the boundary of both τ and τ̃ , so it is either in
the interior or in the boundary of only one of them. Then, we can argue as in
the previous case and we see that (A) holds. �
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γn
(s,−)

τ

γn
(((ss,,,−)))

τ

Figure 3. Example of a curve γn
(s,−) contained in a fundamental

hand τ of level n, shown in red. The boundary of τ is represented
with black continuous lines and is formed by ray tails. Dotted lines
show other pieces of ray tails. Canonical tails that overlap with
γn
(s,−) are displayed in different colours.

Finally, we use the sets τn(s, ∗) from the previous proposition to define, for any
given signed address (s, ∗) and n > 0, an inverse branch of f in a (not necessarily

open) neighbourhood U of γn−1
(σ(s),∗) such that f̃(U) ⊃ γn

(s,∗).

Theorem 4.6 (Inverse branches for canonical tails). Following Proposition 4.5,
for each n ≥ 0 and (s, ∗) ∈ Addr(f)±:

(1) There exists an open interval of signed addresses In(s, ∗) � (s, ∗) such that

τn(α, �) ⊆ τn(s, ∗) for all (α, �) ∈ In(s, ∗).
(2) If n ≥ 1, the restriction f |τn(s,∗) is injective and maps to τn−1(σ(s), ∗).

Hence, for all n ≥ 1, we can define the inverse branch

(4.6) f
−1,[n]
(s,∗) :=

(
f |τn(s,∗)

)−1
: f(τn(s, ∗)) −→ τn(s, ∗).

Proof. We start by showing (2). Recall that by Theorem 3.8, f |γn
(s,∗)

maps in-

jectively to γn−1
(σ(s),∗), and by Proposition 4.3, f |int(τn(s,∗)) maps injectively into a

fundamental hand of level n− 1, where int(τn(s, ∗)) denotes the interior of τn(s, ∗).
Suppose for the sake of contradiction that there exist x ∈ int(τn(s, ∗))\γn

(s,∗) and y ∈
γn
(s,∗) \ int(τn(s, ∗)) so that f(x) = f(y). In particular, f(y) ∈ (Xn ∪ ∂f(τn(s, ∗))),

but this would contradict x ∈ int(τn(s, ∗)). Thus, f |τn(s,∗) is injective.
If γ0

(s,∗) ⊂ int(τn(s, ∗)), then case (A) in Proposition 4.5 must occur for both

γn
(s,∗) and γn−1

(σ(s),∗). Then, since f is continuous, f(τn(s, ∗)) ⊂ τn−1(σ(s), ∗) and

(2) follows. Otherwise, γ0
(s,∗) ⊂ ∂τn(s, ∗) ∩ ∂τ̃ for τ̃ another hand of level n. If

γ0
(s,∗) ⊂ f−1(Xn), then f(γ0

(s,∗)) is totally contained in a fundamental hand of level

n − 1, namely τn−1(σ(s), ∗). Then, by continuity of f , both τn(s, ∗) and τ̃ are
mapped under f to τn−1(σ(s), ∗), and (2) follows. Hence, we are left to study
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the case when γ0
(s,∗) � f−1(Xn), which implies that γ0

(σ(s),∗) must also belong to

∂τn−1(σ(s), ∗). By Proposition 4.4, we can choose a pair of addresses a, b ∈ Addr(f)
such that γ0

a ⊂ τn(s, ∗) and γ0
b ⊂ τ̃ . In particular, by Proposition 4.5, it must occur

that τn(a, ∗) = τn(s, ∗) and τn(b, ∗) = τ̃ . We may assume without loss of generality
that [a, s, b]� holds, since the case when [b, s, a]� does is analogous. Note that by
(2.9), this is equivalent to [γ0

a, γ
0
s , γ

0
b ]∞, and since, by continuity of f , the circular

order at infinity of these curves is preserved under iteration of f , by (2.3), it holds
that [f(γ0

a), f(γ
0
s ), f(γ

0
b )]∞. Moreover, by definition of valid initial configurations,

f(γ0
α) ⊂ γ0

σ(α) for all α ∈ Addr(f). Hence, it holds [γ0
σ(a), γ

0
σ(s), γ

0
σ(b)]∞, and thus

(4.7) [σ(a), σ(s), σ(b)]�.

Recall that the sign ∗ ∈ {−,+} is preserved in the curve γn
(s,∗) under the action of

f , as f(γn
(s,∗)) = γn−1

(σ(s),∗). Then, (4.7) together with continuity of f implies that

if case (B) in Proposition 4.5 holds for either γn
(s,∗), γ

n−1
(σ(s),∗), or both curves, then

τn(s, ∗) and τn−1(σ(s), ∗) are chosen so that (2) holds.
We prove (1) by induction on n. If n = 0, then for any (s, ∗) ∈ Addr(f)±,

τ0(s, ∗) = F0 for some fundamental domain F0. By Theorem 2.6, we can choose a
pair of bounded addresses a, b whose first entry is F0 and so that [a, s, b]�, and define
I0(s, ∗) := ((a,−), (b,+)). Then, γ0

(α,�) ⊂ F0 for all addresses (α, �) ∈ I0(s, ∗), and
so τ0(α, �) = F0 and (1) follows.

Let us assume that the statement holds for all addresses in Addr(f)± and some
n − 1 ∈ N. Suppose that s = F0F1 . . . and note that by the inductive hypothesis,
the interval In−1(σ(s), ∗) � (σ(s), ∗) is defined. If
(4.8) γ0

(σ(s),∗) ⊂ int(τn−1(σ(s), ∗)) \Xn,

we can choose I ′ ⊆ In−1(σ(s), ∗) such that γ0
(α,�) ⊂ int(τn−1(σ(s), ∗)) \Xn for all

(α, �) ∈ I ′ and (σ(s), ∗) ∈ I ′. Then, for each (α, �) ∈ I ′, by Proposition 4.5, there
exists a unique fundamental hand τ̃ of level n such that f(τ̃ ) ⊂ int(τn−1(σ(s), ∗))
and γ0

F0α
⊂ τ̃ , and by continuity of f , the hand τ̃ must equal τn(F0α, �) = τn(s, ∗).

Hence, all the addresses in the set

S := {(F0α, �) ∈ Addr(f)± : (α, �) ∈ I ′}
satisfy the property required. Moreover, (s, ∗) ∈ S and S is an interval of ad-
dresses, since by continuity, f preserves the order at infinity of extensions of
level 0. More specifically, if I ′ = ((a, ∗), (b, �)) for some a, b ∈ Addr(f), then
S = ((F0a, ∗), (F0b, �)) =: In(s, ∗).

Otherwise, if (4.8) does not hold for γ0
(σ(s),∗), then either γ0

(σ(s),∗) ⊂ Xn or

γ0
(σ(s),∗) ⊂ ∂τn−1(σ(s), ∗). In the second case, the interval of addresses In−1(σ(s), ∗)

must be of the form

In−1(σ(s), ∗) =

⎧⎨⎩((s,−), (a, �)) if ∗ = +

((a, �), (s,+)) if ∗ = −
for some (a, �) ∈ Addr(f)±. To see this, we might assume without loss of generality
that ∗ = +. Then, since γ0

(σ(s),−) ∈ ∂τn−1(σ(s), ∗), any open interval of addresses

containing (σ(s),−) would also have to contain signed addresses whose correspond-
ing Julia constituents lie in another fundamental hand. Thus, In−1(σ(s), ∗) must be
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an open interval containing (s,+) but not (s,−), and so must be of the form claimed.
Then, arguing as before, we can find a subinterval of addresses I ′ ⊆ In−1(σ(s), ∗)
such that the curve γ0

(α,�) ⊂ int(τn−1(σ(s), ∗)) \ Xn for all (α, �) ∈ I ′ \ {(s,+)}.
By the analysis of the previous case, if we let I ′ := ((s,+), (b,+)), then for all
addresses (α, �) ∈ ((F0s,+), (F0b,+)), it holds that γn

(α,∗) ⊂ τn(α, �) = τn(s, ∗).
Then, for the statement to hold, we include the address (s,+) on the interval by
defining In

(s,∗) := ((s,−), (F0b,+)).

We are left to consider the case when γ0
(σ(s),∗) ⊂ Xn. Note that by definition of

fundamental hands, this implies that γ0
(s,∗) ⊂ ∂τn(s, ∗). For the purposes of defining

the desired interval, we can regard γ0
(σ(s),∗) as if it belonged to the boundary of its

fundamental hand in order to apply the same reasoning as before. That is, we
choose a subinterval I ′ ⊂ In−1(σ(s), ∗) of the form

I ′ :=

⎧⎨⎩((s,−), (a, �)) if ∗ = +

((a, �), (s,+)) if ∗ = −

for some a ∈ Addr(f), and proceed as in the previous case. �

We can now make explicit and justify the idea from the beginning of the section
of finding for each n ≥ 0, inverse branches of fn defined on neighbourhoods of
canonical tails satisfying certain properties:

Observation 4.7 (Chains of inverse branches). Following Theorem 4.6, for each
n ≥ 0 and (s, ∗) ∈ Addr(f)±, we denote

f−n
(s,∗) :=

(
fn|τn(s,∗)

)−1
: fn(τn(s, ∗)) → τn(s, ∗).

Then, by Theorem 4.6(2), the following chain of embeddings holds:

τn(s, ∗)
f

↪−−−−→ τn−1(σ(s), ∗)
f

↪−−−−→ τn−2(σ(s), ∗)
f

↪−−−−→ · · · f
↪−−−−→ τ0(σ

n(s), ∗).

This means that we can express the action of f−n
(s,∗) in fn(τn(s, ∗)) as a composition

of functions defined in (4.6). That is,

τn(s, ∗)
f
−1,[n]

(s,∗)←−−−− f(τn(s, ∗))
f
−1,[n−1]

(σ(s),∗)←−−−−−− f2(τn(s, ∗))
f
−1,[n−2]

(σ2(s),∗)←−−−−−− · · ·
f
−1,[1]

(σn−1(s),∗)←−−−−−−−− fn(τn(s, ∗)).

More precisely,

f−n
(s,∗) ≡

(
f
−1,[n]
(s,∗) ◦ f−1,[n−1]

(σ(s),∗) ◦ · · · ◦ f−1,[1]
(σn−1(s),∗)

)∣∣∣
fn(τn(s,∗))

.

Moreover, combining this with Proposition 4.5 and Theorem 4.6, for all (α, �) ∈
In(s, ∗),

fn(τn(α, �)) ⊆ fn(τn(s, ∗)) and f−n
(s,∗)

∣∣
fn(τn(α,�))

≡ f−n
(α,�)

∣∣
fn(τn(α,�))

.

Proof of Theorem 1.2. It follows from Theorem 3.8, Observation 3.13 and Propo-
sition 4.5. �
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