
CONFORMAL GEOMETRY AND DYNAMICS
An Electronic Journal of the American Mathematical Society
Volume 25, Pages 79–87 (June 30, 2021)
https://doi.org/10.1090/ecgd/359

UNICRITICAL POLYNOMIAL MAPS

WITH RATIONAL MULTIPLIERS

VALENTIN HUGUIN

Abstract. In this article, we prove that every unicritical polynomial map
that has only rational multipliers is either a power map or a Chebyshev map.
This provides some evidence in support of a conjecture by Milnor concerning
rational maps whose multipliers are all integers.

1. Introduction

Given a polynomial map f : C → C and a point z0 ∈ C, we study the sequence
(f◦n (z0))n≥0 of iterates of f at z0. The set {f◦n (z0) : n ≥ 0} is called the forward
orbit of z0 under f .

The point z0 is said to be periodic for f if there exists an integer n ≥ 1 such that
f◦n (z0) = z0; the least such integer n is called the period of z0. The forward orbit
of z0, which has cardinality n, is said to be a cycle for f . The multiplier of f at z0
is the derivative of f◦n at z0; equivalently, it is the product of the derivatives of f
along the cycle. In particular, f has the same multiplier at each point of the cycle.

The multiplier is invariant under conjugacy: if f and g are two polynomial maps,
φ is an invertible affine map such that φ ◦ f = g ◦φ and z0 is a periodic point for f ,
then φ (z0) is a periodic point for g with the same period and the same multiplier.

In this paper, we wish to examine the polynomial maps that have only integer –
or rational – multipliers.

Definition 1. A polynomial map f : C → C of degree d ≥ 2 is said to be a power
map if it is affinely conjugate to z �→ zd.

For every d ≥ 2, there exists a unique polynomial Td ∈ C[z] such that

Td

(
z + z−1

)
= zd + z−d .

The polynomial Td is monic of degree d and is called the dth Chebyshev polynomial.

Example 2. We have T2(z) = z2 − 2 and T3(z) = z3 − 3z.

Definition 3. A polynomial map f : C → C of degree d ≥ 2 is said to be a
Chebyshev map if it is affinely conjugate to ±Td.

Remark 4. For every d ≥ 2, the polynomials −Td and Td are affinely conjugate if
and only if d is even.

These conjugacy classes of polynomials share the following well-known property:

Proposition 5 ([Mil06, Corollary 3.9]). Suppose that f : C → C is a power map
or a Chebyshev map. Then f has only integer multipliers.
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1.1. Statement of the results. We are interested in the converse of Proposition 5.
More precisely, we wish to show that every polynomial map that has only integer –
or rational – multipliers is either a power map or a Chebyshev map.

We restrict ourselves to unicritical polynomial maps – that is, polynomial maps
of degree d ≥ 2 that have a unique critical point in the complex plane.

Theorem 6. Assume that f : C → C is a unicritical polynomial map that has only
rational multipliers. Then f is either a power map or a Chebyshev map.

Remark 7. For every d ≥ 2, the polynomial Td has exactly d−1 critical points given
by 2 cos

(
πj
d

)
for j ∈ {1, . . . , d− 1}. In particular, a Chebyshev map is unicritical if

and only if it has degree 2.

Using similar arguments, we also obtain a result concerning cubic polynomial
maps with symmetries – that is, cubic polynomial maps that commute with a
nontrivial invertible affine map.

Theorem 8. Assume that f : C → C is a cubic polynomial map with symmetries
that has only integer multipliers. Then f is a power map or a Chebyshev map.

1.2. Motivation. In a more general setting, Milnor conjectured in [Mil06] that
power maps, Chebyshev maps and flexible Lattès maps are the only rational maps
whose multipliers are all integers. We may even extend his question as follows:

Question 9. Let K be a number field, and denote by OK its ring of integers.

Assume that f : Ĉ → Ĉ is a rational map whose multipliers all lie in OK – or K.
Is f necessarily a finite quotient of an affine map – that is, either a power map, a
Chebyshev map or a Lattès map?

We give here a positive answer in the case of rational numbers and unicritical
polynomial maps. To the author’s knowledge, this question has not been studied
before. This one can be viewed as an analog of questions concerning rational prepe-
riodic points for a rational map, which have received a lot of attention (see [BIJ+19]
and [Sil07]).

In [EvS11], Eremenko and van Strien investigated the rational maps that have

only real multipliers: they proved that, if f : Ĉ → Ĉ is such a map, then either f is
a Lattès map or its Julia set Jf is contained in a circle; they also gave a description
of these maps.

2. Proofs of the results

We shall prove here Theorem 6 and Theorem 8. Our proofs rely on the result
below, which states that our problem comes down to examining the factorizations
of certain polynomials related to the multipliers of a monic polynomial.

Fix an integer d ≥ 2. Since every polynomial map f : C → C is affinely conjugate
to a monic polynomial map and the multiplier is invariant under conjugacy, we may
restrict our attention to monic polynomials.

Proposition 10. Assume that f : C → C is a monic polynomial map of degree d.
Then

(1) there exists a unique sequence
(
Φf

n

)
n≥1

of elements of C[z] such that, for

every n ≥ 1, we have

f◦n(z)− z =
∏
k|n

Φf
k(z) ;
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(2) for every n ≥ 1, there is a unique monic polynomial Mf
n ∈ C[λ] such that

Mf
n (λ)

n = resz
(
Φf

n(z), λ− (f◦n)′ (z)
)
,

where resz denotes the resultant with respect to z;
(3) given a subring R of C and n ≥ 1, the multipliers of f at its cycles with

period n all lie in R if and only if Mf
n splits into linear factors of R[λ].

Definition 11. Suppose that f : C → C is a monic polynomial map of degree d.
For n ≥ 1, the polynomial Φf

n is called the nth dynatomic polynomial of f and the
polynomial Mf

n is called the nth multiplier polynomial of f .

Proof of Proposition 10. For a proof of (1), we refer the reader to [MP94, Section 2]
or [VH92, Section 2]). For a proof of (2), see [MP94, Section 5] or [VH92, Section 4].
Now, suppose that n ≥ 1. Then we have

Mf
n (λ)

n =

r∏
j=1

(
λ− (f◦n)

′
(zj)

)
,

where z1, . . . , zr are the – not necessarily distinct – roots of the polynomial Φf
n.

By [MS95, Proposition 3.2], a point z0 ∈ C is a root of Φf
n if and only if either z0

is a periodic point for f with period n or z0 is a periodic point for f with period
a proper divisor k of n and multiplier a primitive n

k th root of unity. Note that, if
z0 ∈ C is a periodic point for f with period a divisor k of n and multiplier a n

k th

root of unity, then we have (f◦n)′ (z0) = 1 by the chain rule. This completes the
proof of (3). �

For c ∈ C, let fc : C → C be the polynomial map

fc : z �→ zd + c .

For every c ∈ C, the map fc is unicritical with critical point 0 and critical value c.
Furthermore, if f : C → C is a unicritical polynomial map of degree d, then there
exists a parameter c ∈ C – which is unique up to multiplication by a (d− 1)th root
of unity – such that f is affinely conjugate to fc.

Consequently, to prove Theorem 6, we are reduced to determining the parameters
c ∈ C for which the polynomials Mfc

n ∈ C[λ], with n ≥ 1, have only rational roots.
Note that, if c ∈ C is such a parameter, then, for every n ≥ 1, the polynomial Mfc

n

lies in Q[λ] and its discriminant

Δn(c) = discMfc
n

is the square of a rational number. In fact, we shall see that, to prove Theorem 6,
it suffices to examine the polynomials Mfc

n for only a few small values of n.

2.1. Quadratic polynomial maps. Let us examine here the quadratic polyno-
mials that have only integer – or rational – multipliers.

Suppose that d = 2. Then, for every c ∈ C, the map fc is a power map if and
only if c = 0 and is a Chebyshev map if and only if c = −2. Using the software
SageMath, we can compute Mfc

n and Δn(c) for c ∈ C and small values of n.
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Example 12. For every c ∈ C, we have

Mfc
1 (λ) = λ2 − 2λ+ 4c ,

Mfc
2 (λ) = λ− 4c− 4 ,

Mfc
3 (λ) = λ2 + (−8c− 16)λ+ 64c3 + 128c2 + 64c+ 64 ,

Mfc
4 (λ) = λ3 +

(
16c2 − 48

)
λ2 +

(
−256c4 − 256c3 + 256c2 + 768

)
λ

− 4096c6 − 12288c5 − 12288c4 − 12288c3 − 8192c2 − 4096 .

Remark 13. For every n ≥ 1, the coefficients of Mfc
n are polynomials in 4c with

integer coefficients (see [Bou14, Lemma 1] or [Hug21]).

Example 14. For every c ∈ C, we have

Δ1(c) = −22(4c− 1) ,

Δ2(c) = 1 ,

Δ3(c) = −26(4c+ 7)c2 ,

Δ4(c) = −224
(
64c3 + 144c2 + 108c+ 135

)
(c+ 2)2c6 .

Remark 15. It follows from [Mor96, Proposition 9] that, for every n ≥ 1, the roots
of Δn that have an odd multiplicity are precisely the parameters c0 ∈ C for which
the map fc0 has a cycle with period n and multiplier 1.

First, let us examine the quadratic polynomials whose multipliers are integers.
By Proposition 10, for every c ∈ C, the map fc has an integer multiplier at each

cycle with period 1 or 2 if and only if the polynomials Mfc
1 and Mfc

2 split into linear

factors of Z[λ], which occurs if and only if there exists m ∈ Z such that c = 1−m2

4 .
In particular, there exist infinitely many such parameters c ∈ C. In contrast, by
considering also the multipliers at the cycles with period 3, we obtain the following:

Proposition 16. Assume that f : C → C is a quadratic polynomial map that has
an integer multiplier at each cycle with period less than or equal to 3. Then f is
either a power map or a Chebyshev map.

Proof. There exists a parameter c ∈ C such that f is affinely conjugate to fc. By
Proposition 10, the polynomials Mfc

n , with n ∈ {1, 2, 3}, split into linear factors of
Z[λ], and hence 4c is an integer and

Δ1(c) = −22(4c− 1) and Δ3(c) = −26(4c+ 7)c2

are the squares of integers. Therefore, either c = 0 or there exist a, b ∈ Z≥0 such
that

−(4c− 1) = a2 and − (4c+ 7) = b2 .

In the latter case, we have (a− b)(a+ b) = 8, and hence{
a− b = 1
a+ b = 8

or

{
a− b = 2
a+ b = 4

,

which yields (a, b) = (3, 1) and c = −2. Thus, the proposition is proved. �

Let us now study the quadratic polynomial maps whose multipliers are rational.
There exist infinitely many parameters c ∈ C for which the map fc has a rational
multiplier at each cycle with period less than or equal to 3. More precisely, a
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parameter c ∈ C has this property if and only if c is rational and Δ1(c) and Δ3(c)
are the squares of rational numbers, which occurs if and only if c = 0 or there

exists r ∈ Q�=0 such that c =
−(r4+3r2+4)

4r2 . In contrast, by considering also the
multipliers at the cycles with period 4, we are led to examine the rational points
on a certain elliptic curve and we obtain the following result, which is a stronger
version of Theorem 6 in the case of quadratic polynomials:

Proposition 17. Assume that f : C → C is a quadratic polynomial map that has
a rational multiplier at each cycle with period less than or equal to 4. Then f is
either a power map or a Chebyshev map.

Proof. There exists a parameter c ∈ C such that f is affinely conjugate to fc. By
Proposition 10, the polynomials Mfc

n , with n ∈ {1, . . . , 4}, split into linear factors
of Q[λ], and hence c is rational and

Δ4(c) = −224
(
64c3 + 144c2 + 108c+ 135

)
(c+ 2)2c6

is the square of a rational number. Note that, if there exists r ∈ Q such that

−
(
64c3 + 144c2 + 108c+ 135

)
= r2 ,

then we have r2 = (−4c − 3)3 − 108, which contradicts the fact that the group of
rational points of the elliptic curve defined by y2 = x3−108 is trivial (see [LMF20]).
Therefore, we have c ∈ {−2, 0}. Thus, the proposition is proved. �
Remark 18. By a change of variables, proving that the elliptic curve appearing in
the proof of Proposition 17 has a trivial group of rational points is equivalent to
showing that the Diophantine equation x3+ y3 = 4z3 has no solution (x, y, z) ∈ Z3

with z �= 0. This latter fact can be proved by infinite descent (see [Hug21]).

Remark 19. It follows from [EvS11, Theorem 1] that, for every c ∈ C, the map fc
has a real multiplier at each cycle if and only if c ∈ (−∞,−2] ∪ {0}. In particular,
the property of having only real multipliers does not characterize power maps and
Chebyshev maps among the quadratic polynomials.

2.2. Unicritical polynomial maps of degree at least 3. We shall see here that,
unlike in the case of quadratic polynomials, power maps are the only unicritical
polynomial maps of degree at least 3 that have only real multipliers. Note that, for
every c ∈ C, the map fc is a power map if and only if c = 0.

First, suppose that d = 3. Using the software SageMath, we can compute Mfc
n

and Δn(c) for c ∈ C and n ∈ {1, 2}.
Example 20. For every c ∈ C, we have

Mfc
1 (λ) = λ3 − 6λ2 + 9λ− 27c2

and
Mfc

2 (λ) = λ3 − 27λ2 +
(
162c2 + 243

)
λ− 729c4 − 1458c2 − 729 .

Example 21. For every c ∈ C, we have

Δ1(c) = −36
(
27c2 − 4

)
c2 and Δ2(c) = −312

(
27c2 + 32

)
c6 .

It follows from Proposition 10 that, for every c ∈ C, the map fc has a real
multiplier at each fixed point if and only if c2 is real and Δ1(c) ≥ 0, which occurs if
and only if c2 ∈

[
0, 4

27

]
. In particular, power maps are not the only cubic unicritical

polynomial maps whose multiplier at each fixed point is real.
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Remark 22. There also exist infinitely many parameters c ∈ C for which the map
fc has a rational multiplier at each fixed point. More precisely, a parameter c ∈ C

has this property if and only if the polynomial Mfc
1 has a rational root and its

discriminant Δ1(c) is the square of a rational number, which occurs if and only if

there exists r ∈ Q such that c2 =
4(r2−1)2

(r2+3)3
.

In contrast, by considering also the multipliers at the cycles with period 2, we
obtain the result below, which immediately implies Theorem 6 in the case of cubic
unicritical polynomials.

Proposition 23. Assume that f : C → C is a cubic unicritical polynomial map
that has a real multiplier at each cycle with period 1 or 2. Then f is a power map.

Proof. There exists a parameter c ∈ C such that f is affinely conjugate to fc. By

Proposition 10, the polynomials Mfc
1 and Mfc

2 split into linear factors of R[λ], and
hence c2 is real and

Δ1(c) = −36
(
27c2 − 4

)
c2 ≥ 0 and Δ2(c) = −312

(
27c2 + 32

)
c6 ≥ 0 .

Therefore, we have

c2 ∈
[
−32

27
, 0

]
∩
[
0,

4

27

]
= {0} .

Thus, the proposition is proved. �
Let us now investigate the unicritical polynomial maps of degree at least 4 whose

multipliers are real. We shall see that, unlike in the case of cubic unicritical poly-
nomials, the property of having a real multiplier at each fixed point characterizes

here power maps. Our result relies on the calculation of Mfc
1 for c ∈ C.

Example 24. Suppose that d ≥ 2 and c ∈ C. Then we have

Mfc
1 (λ) = resz

(
zd − z + c, λ− dzd−1

)
= (−d)d

d−1∏
j=1

(
zdj − zj + c

)
,

where z1, . . . , zd−1 are the roots of dzd−1 − λ ∈ C[z]. It follows that

Mfc
1 (λ) = (−d)d

d−1∏
j=1

(
d−1(λ− d)zj + c

)

= (−d)d

⎛
⎝cd−1 +

d−1∑
j=1

d−j(λ− d)jσjc
d−1−j

⎞
⎠ ,

where σ1, . . . , σd−1 are the elementary symmetric functions of z1, . . . , zd−1. There-
fore, by the relations between roots and coefficients of a polynomial, we have

Mfc
1 (λ) = λ(λ− d)d−1 + (−d)dcd−1 .

Remark 25. For every n ≥ 1, the coefficients of Mfc
n are polynomials in ddcd−1

with integer coefficients (see [Hug21] and compare [Mil14, Theorem 2.1]).

The following result is a stronger version of Theorem 6 in the case of unicritical
polynomials of degree at least 4.

Proposition 26. Assume that f : C → C is a unicritical polynomial map of degree
d ≥ 4 that has a real multiplier at each fixed point. Then f is a power map.
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Proof. There exists a parameter c ∈ C such that f is affinely conjugate to fc. By
Proposition 10, the polynomial

Mfc
1 (λ) = λ(λ− d)d−1 + (−d)dcd−1

splits into linear factors of R[λ], and hence the same is true of the polynomial

L(λ) = λdMfc
1

(
λ−1 + d

)
= (−d)dcd−1λd + dλ+ 1

and, by Rolle’s theorem, of its derivative

L′(λ) = (−1)ddd+1cd−1λd−1 + d .

Therefore, we have c = 0 since the set of roots of L′ is invariant under multiplication
by a (d− 1)th root of unity and d ≥ 4. Thus, the proposition is proved. �

Finally, we have proved Theorem 6, which follows immediately from Proposi-
tion 17, Proposition 23 and Proposition 26.

2.3. Cubic polynomial maps with symmetries. We shall use here the same
strategy to study the cubic polynomial maps with symmetries whose multipliers
are integers and prove Theorem 8.

For a ∈ C, let ga : C → C be the cubic polynomial map

ga : z �→ z3 + az .

For every a ∈ C, the map ga fixes 0 with multiplier a and commutes with z �→ −z.
Furthermore, if f : C → C is a cubic polynomial map with symmetries, then there
exists a unique parameter a ∈ C such that f is affinely conjugate to ga.

Unlike the family of cubic unicritical polynomial maps, the family of cubic poly-
nomial maps with symmetries contains both power maps and Chebyshev maps.
More precisely, for every a ∈ C, the map ga is a power map if and only if a = 0 and
is a Chebyshev map if and only if a = ±3.

Using the software SageMath, we can compute Mga
n for a ∈ C and n ∈ {1, 2, 3}.

Example 27. For every a ∈ C, we have

Mga
1 (λ) = (λ− a)(λ+ 2a− 3)2 ,

Mga
2 (λ) =

(
λ− 4a2 − 12a− 9

) (
λ+ 2a2 − 9

)2
,

Mga
3 (λ) = N3(a, λ)

2 ,

where N3 ∈ Z[a, λ] is given by

N3(a, λ) = λ4 +
(
2a3 + 12a2 − 18a− 108

)
λ3

+
(
−48a6 − 72a5 + 396a4 + 486a3 − 324a2 + 1458a+ 4374

)
λ2

+
(
32a9 − 792a7 − 432a6 + 5832a5 + 5832a4 − 7290a3 − 8748a2

− 39366a− 78732
)
λ+ 256a12 + 384a11 − 4608a10 − 6912a9

+ 24624a8 + 36936a7 − 23328a6 − 34992a5 − 131220a4

− 196830a3 + 236196a2 + 354294a+ 531441 .

Moreover, we have

discλ N3(a, λ) = 212312D3(a)
(
4a3 + 12a2 − 3a− 27

)2
(a− 3)4(a+ 3)4a12 ,
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where discλ denotes the discriminant with respect to λ and D3 ∈ Z[a] is given by

D3(a) = 4a8 + 16a7 − 35a6 − 206a5 − 113a4 + 376a3 + 715a2 + 1690a+ 2197 .

It follows from Proposition 10 that, for every a ∈ C, the map ga has an integer
multiplier at each cycle with period 1 or 2 if and only if a is an integer. By
considering also the multipliers at the cycles with period 3, we obtain the following
stronger version of Theorem 8:

Proposition 28. Assume that f : C → C is a cubic polynomial map with symme-
tries that has an integer multiplier at each cycle with period less than or equal to
3. Then f is either a power map or a Chebyshev map.

Proof. There exists a parameter a ∈ C such that f is affinely conjugate to ga. By
Proposition 10, the polynomials Mga

n , with n ∈ {1, 2, 3}, split into linear factors of
Z[λ], and hence a is an integer and

discλ N3(a, λ) = 212312D3(a)
(
4a3 + 12a2 − 3a− 27

)2
(a− 3)4(a+ 3)4a12

is the square of an integer. Now, note that, if

D3(a) = 4a8 + 16a7 − 35a6 − 206a5 − 113a4 + 376a3 + 715a2 + 1690a+ 2197

is the square of an integer, then its residue class in Z/32Z is a square, and hence
a ≡ 1 (mod 8). Moreover, observe that D3(1 + 8b) is not the square of an integer
whenever b ∈ {−7, . . . , 13} and we have

L(b)2 < D3(1 + 8b) < (L(b) + 1)2

for all b ∈ Z \ {−7, . . . , 13}, where

L(b) = 8192b4 + 6144b3 + 720b2 − 252b− 50 .

Therefore, D3(a) is not the square of an integer, and hence a ∈ {−3, 0, 3}. Thus,
the proposition is proved. �

Using the software SageMath, we obtain thatD3(a) is not the square of a rational
number whenever a is a rational number with height at most 104. Thus, it seems
likely that the question below has a negative answer, which would imply that every
cubic polynomial map with symmetries that has a rational multiplier at each cycle
with period less than or equal to 3 is either a power map or a Chebyshev map.

Question 29. Does the hyperelliptic curve of genus 3 over Q given by b2 = D3(a)
have a rational point other than the two points at infinity?

Remark 30. Note that the curve of genus 1 given by N3(a, λ) = 0 together with
the point

(
9
2 ,

1647
4

)
defines an elliptic curve E over Q. Using the software Magma,

we obtain that its group of rational points E(Q) is a free abelian group of rank
1. In particular, there exist infinitely many parameters a ∈ C for which the map
ga has a rational multiplier at each cycle with period 1 or 2 and at a cycle with
period 3. Another approach to proving that power maps and Chebyshev maps are
the only cubic polynomial maps with symmetries that have a rational multiplier
at each cycle with period less than or equal to 3 could be to show that the group
E(Q) does not contain 4 distinct points with the same a-coordinate.
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