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UNIFORMIZATION OF CANTOR SETS

WITH BOUNDED GEOMETRY

VYRON VELLIS

Abstract. In this note we provide a quasisymmetric taming of uniformly
perfect and uniformly disconnected sets that generalizes a result of MacManus
[Rev. Mat. Iberoamericana 15 (1999), pp. 267–277] from 2 to higher dimen-
sions. In particular, we show that a compact subset of Rn is uniformly perfect
and uniformly disconnected if and only if it is ambiently quasiconformal to the
standard Cantor set C in Rn+1.

1. Introduction

The (quasisymmetric) uniformization problem asks for necessary and sufficient
conditions under which a metric space X is quasisymmetrically homeomorphic to
a “standard” space X0. Roughly speaking, quasisymmetric homeomorphisms are
a generalization of conformal maps which preserve relative distances; see §2 for
precise definitions. The uniformization problem has been extensively studied in
literature for a variety of “standard” spaces: the unit circle S1 [20], the unit sphere
S2 [3], and geodesic trees [4]. See also [2] for a general overview.

Some of the most simple metric spaces, from a topological point of view, are Can-
tor sets, i.e., homeomorphic images of the standard ternary Cantor set C. Brouwer’s
topological characterization of Cantor sets [13, Theorem 7.4] states that a metric
space is a Cantor set if and only if it is compact, perfect, and totally disconnected.

In [6], David and Semmes solved the uniformization problem in the case that the
standard space X0 is C. Contrary to Brouwer’s uniformization, in the quasisym-
metric case one has to assume some quantitative versions of perfectness and total
disconnectedness.

A closed nondegenerate metric space X is called uniformly perfect if there exists
a constant c ≥ 1 such that for all x ∈ X and all r ∈ (0, diamX), there exists a
point in B(x, r) \B(x, r/c). Every uniformly perfect space is perfect; on the other
hand, the planar set [0, 1]×

⋃∞
n=1{n!} is perfect but not uniformly perfect.

A metric space X is uniformly disconnected if there is a constant c ≥ 1 such that
for all x ∈ X and all positive r < 1

4 diamX, there exists E ⊂ X containing x such
that diamE ≤ r and dist(E,X \ E) ≥ r/c. All uniformly disconnected spaces are
totally disconnected; on the other hand, Z is totally disconnected but not uniformly
disconnected.
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Based on these scale-invariant notions, the David and Semmes uniformization is
as follows.

Theorem 1.1 ([6, Proposition 15.11]). A metric space is quasisymmetrically home-
omorphic to C if and only if it is compact, doubling, uniformly disconnected and
uniformly perfect.

Recall that a metric space X is doubling if there exists a constant C > 1 such
that for all x ∈ X and all r > 0, the ball B(x, r) can be covered by at most C
many balls of radius r/2. Since all Euclidean spaces Rn are doubling, the doubling
condition in Theorem 1.1 can be dropped if X ⊂ Rn.

Later, MacManus [15] proved a stronger uniformization result for Cantor sets
contained in R

2. The improvement here is that the quasisymmetric homeomorphism
can be in fact assummed to be defined on the ambient space R2 and not just C.

Theorem 1.2 ([15, Theorem 3]). For a compact set X ⊂ R2 there exists a qua-
sisymmetric mapping F : R2 → R2 with F (C) = X if and only if X is uniformly
perfect and uniformly disconnected.

Note that Theorem 1.2 is false in R
3 due to the existence of a self-similar wild

Cantor set in R3 called Antoine necklace; see [5, pp. 70–75]. By self-similarity,
this set is both uniformly perfect and uniformly disconnected, but there exists no
homeomorphism of R3 (let alone a quasisymmetric homeomorphism) that maps
this set onto C. See also [16, Appendix A] for recent examples in R

4.
Additionally, the wildness of X is not the only obstruction in the generalization

of MacManus’ result. In particular, there exists a compact uniformly perfect and
uniformly disconnected set X ⊂ R3 which is “topologically tame and quasisym-
metrically wild”, that is, it is ambiently homeomorphic to C but not ambiently
quasisymmetric to C; see [9, Proposition 1.4].

In our main result, we provide a quasisymmetric taming of Cantor sets with
bounded geometry. In particular, we show that by increasing the dimension by 1,
MacManus’ result generalizes to all dimensions n ≥ 3.

Theorem A. Let n ∈ N. For a compact set X ⊂ Rn there exists a quasisymmetric
map F : Rn+1 → Rn+1 with F (C) = X if and only if X is uniformly perfect and
uniformly disconnected.

Here and for the rest, given n ∈ N, we identify Rn with the plane Rn × {0} =
{(x1, . . . , xn, 0) : xi ∈ R} ⊂ R

n+1.
One application of Theorem A is in conformal dynamics. A uniformly quasireg-

ular map (abbv. UQR map) f : Rn → Rn is a map for which there exists K ≥ 1
such that for any m ∈ N, the m-th iterate fm = f ◦ · · · ◦ f is in the Sobolev space
W 1,n

loc (R
n) and satisfies

|f ′
m(x)| ≤ KJfm , for a.e. x ∈ R

n.

Due to the rigidity of conformal maps in dimensions n ≥ 3, UQR maps play the role
of holomorphic maps in the study of conformal dynamics in higher dimensions. A
well known problem in conformal dynamics is the characterization of closed sets in
Rn that arise as Julia sets of UQR maps. Iwaniecz and Martin [12] showed that the
Cantor set C is a Julia set of a UQR map of R2, and Fletcher and Wu [10] showed
that the Antoine necklace is a Julia set of a UQR map of R3. Note that both C
and the Antoine necklace are uniformly perfect and uniformly disconnected because
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they are self-similar. In general, it is unknown whether self-similar Cantor sets in
dimensions n ≥ 3 are always Julia sets of UQR maps. In [9] we apply Theorem
A to show that every uniformly perfect and uniformly disconnected subset of Rn,
n ≥ 3, is the Julia set of a UQR map of Rn+1.

Moreover, Theorem 1.2 and Theorem A yield the following quasiconformal em-
bedding result for uniformly disconnected sets.

Corollary A. Let n ≥ 2 be an integer and let X ⊂ R
n be a bounded uniformly

disconnected set. There exists a quasisymmentric homeomorphism of RN that maps
X into C, where N = 2 if n = 2 , and N = n+ 1 if n ≥ 3.

Corollary A has an application in hyperbolic geometry. If X ⊂ S2 is a Cantor
set, then by the Uniformization Theorem, S := S

2 \X is necessarily a hyperbolic
Riemann surface. Hence, S has a pants decomposition, that is, S =

⋃∞
i=1 Pi,

where each Pi is a topological sphere with three disks removed. The collection of
boundary curves of the pairs of pants, called the cuffs of the decomposition, may
be enumerated by (αj)

∞
j=1. Each αj is a simple closed curve on S and generates a

class [αj ] of simple closed curves that are freely homotopic to αj . Denote by �S [αj ]
the infimum of hyperbolic lengths of curves in [αj ]. Pommerenke [17] proved that
the Cantor set X is uniformly perfect if and only if inf �[αj ] > 0. In a recent paper
with Fletcher [8], we apply Corollary A to show that a similar statement holds for
uniformly disconnected sets: a Cantor set X ⊂ R

2 is uniformly disconnected if and
only if there exists a pair of pants decomposition such that the associated cuffs
satisfy sup �[αj ] < ∞.

By properties of quasisymmetric homeomorphisms, one direction of Theorem A
is clear. Namely, if there exists a quasisymmetric map F : Rn+1 → R

n+1 with
F (C) = X, then X is compact, uniformly perfect and uniformly disconnected. For
the converse, which is the content of this paper, we use the existence of a quasisym-
metric homeomorphism f : C → X, and we extend this mapping quasisymmetrically
to R

n+1. In §2 we give some basic definitions, in §3 we discuss some bi-Lipschitz
Schoenflies theorems in higher dimensions, and in §4 we prove Theorem A and
Corollary A.

2. Preliminaries

For n ∈ N, a point x ∈ R
n, and r > 0 we denote by Bn(x, r) and Bn(x, r) the

open and closed, respectively, ball centered at x and with radius r.
A homeomorphism f : D → D′ between two domains in Rn is called K-quasi-

conformal for some K ≥ 1 if, for all x ∈ D, f satisfies the distortion inequality

lim sup
r→0

supy∈∂Bn(x,r) |f(x)− f(y)|
infy∈∂Bn(x,r) |f(x)− f(y)| ≤ K.

A homeomorphism f : (X, dX) → (Y, dY ) between metric spaces is said to be
η-quasisymmetric if there exists a homeomorphism η : [0,∞) → [0,∞) such that
for all x, a, b ∈ X with x 	= b

dY (f(x), f(a))

dY (f(x), f(b))
≤ η

(
dX(x, a)

dX(x, b)

)
.

A quasisymmetric mapping between two domains in R
n is quasiconformal. The

converse holds true for the smaller class of uniform domains which contains Rn.
For a systematic treatment of quasiconformal mappings see [23].
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It follows easily from the definitions above that quasisymmetric maps preserve
the notions of uniform perfectness and uniform disconnectedness quantitatively.

Lemma 2.1 ([14, Theorem 1.3.4]). If f : X → Y is η-quasisymmetric and X is
c-uniformly perfect (resp. c-uniformly disconnected), then Y is c′-uniformly perfect
(resp. c′-uniformly disconnected) with c′ depending only on η and c.

A map f : X → Y between metric spaces is L-bi-Lipschitz for some L ≥ 1 if

L−1dX(x, y) ≤ dY (f(x), f(y)) ≤ LdX(x, y)

for all x, y ∈ X. Note that an L-bi-Lipschitz mapping is L2t-quasisymmetric.
A weaker notion of bi-Lipschitz mappings is that of bounded length distortion

(BLD) mappings. A mapping f : (X, dX) → (Y, dY ) is L-BLD if there exists L ≥ 1
such that

L−1�(γ) ≤ �(f(γ)) ≤ L�(γ)

for all paths γ : [0, 1] → X. Here and for the rest, � denotes the length of a path.
Clearly, L-bi-Lipschitz mappings are L-BLD mappings but BLD mappings need not
be bi-Lipschitz even if they are homeomorphisms. However, BLD homeomorphisms
between geodesic spaces are bi-Lipschitz.

Lemma 2.2. Let f : X → Y be an L-BLD homeomorphism between two geodesic
metric spaces. Then f is L-bi-Lipschitz.

An embedding f : (X, dX) → (Y, dY ) is a (λ, L)-quasisimilarity for some λ > 0
and L ≥ 1 if

L−1λdX(x, y) ≤ dY (f(x), f(y)) ≤ LλdX(x, y) for all x, y ∈ X.

Note that (λ, 1)-quasisimilarities are similarities with scaling factor λ, while (1, L)-
quasisimilarities are L-bi-Lipschitz, and (1, 1)-quasisimilarites are isometries.

While similarities preserve relative distances between nondegenerate sets, qua-
sisymmetric maps quasi-preserve relative distances between nondegenerate sets.
Specifically, if f : X → Y is η-quasisymmetric and E,E′ ⊂ X are nondegenerate
closed sets, then

(2.1)
1

2
φ

(
dist(E,E′)

diamE

)
≤ dist(f(E), f(E′))

diam f(E)
≤ η

(
2
dist(E,E′)

diamE

)
,

where φ(t) = (η(t−1))−1; see for example [22, p. 532]. Moreover, if f : X → Y is
η-quasisymmetric and A ⊂ B ⊂ X are such that 0 < diamA ≤ diamB < ∞, then
diam f(B) is finite and

(2.2)

(
2η

(
diamB

diamA

))−1

≤ diam f(A)

diam f(B)
≤ η

(
2
diamA

diamB

)
.

For the proof of (2.2) see [11, Proposition 10.8].

3. Bi-Lipschitz Schoenflies theorems for multiply connected domains

The classical Schönflies theorem states that every embedding of S1 in R2 extends
to a homeomorphism of R2. Tukia [19] proved a bi-Lipschitz version of Schönflies
theorem.

Theorem 3.1 ([19]). If f : S1 → R2 is L-bi-Lipschitz, then f extends in an L′-bi-
Lipschitz way to R2 with L′ depending only on L.
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It is well known that in higher dimensions Theorem 3.1 fails even under strong
topological assumptions. In particular, Tukia [19, §15] constructed a bi-Lipschitz
embedding of S2 into R

3 that can be extended as a homeomorphism of R3 but not
as a quasisymmetric (let alone bi-Lipschitz) homeomorphism of R3.

Theorem 3.1 was generalized for annuli in R2 and annuli in higher dimensions by
Sullivan [18]. Given L > 1 and integer n ≥ 2, we say that a domain D ⊂ Rn is an L-
bi-Lipschitz ball, if it is the image of the unit ball Bn under a (λ, L)-quasisimilarity
homeomorphism of Rn. For the proof of the following theorem see Theorem 3.17
and §5.9 in [21].

Theorem 3.2. Given n ∈ {2, 3, . . . }, L0, L > 1, and δ ∈ (0, 1) there exists L′ > 1
with the following property. Let D1 ⊂ D2 ⊂ R

n be two L0-bi-Lipschitz balls such
that

dist(D1, ∂D2) ≥ δ diamD2 and diamD1 ≥ δ diamD2.

If f : ∂D1 ∪ ∂D2 → R
n is an L-bi-Lipschitz embedding that can be extended home-

omorphically to D2 \D1 then f extends in an L′-bi-Lipschitz way to D2 \D1.

In this section, we generalize Theorem 3.2 to multiply connected domains with
controlled topology and geometry.

For d > 1, λ > 1, and n ∈ {2, 3, . . . } denote by Un(λ, d) the collection of bounded
domains U ⊂ Rn whose boundary components are boundaries of λ-bi-Lipschitz balls
of diameters and mutual distances bounded below by d−1 diamU .

Proposition 3.3 is the main result of this section.

Proposition 3.3. Let U ∈ Un(λ, d) and f : ∂U → R
n be an L-bi-Lipschitz map

that extends homeomorphically to U . Then f extends in an L′-bi-Lipschitz way to
U with L′ depending only on L, λ, d, and n.

We start with the simple observation that every domain in Un(λ, d) has a finite
number of boundary components.

Lemma 3.4. Every domain U ∈ Un(λ, d) contains at most N boundary compo-
nents with N depending only on n, d.

Proof. Let D1, . . . , Dm be some bounded components of R
n \ U . For each i ∈

{1, . . . ,m}, choose xi∈Di. Then, for each distinct i, j, we have xi∈Bn(x1, diamU)
and |xi − xj | ≥ d−1 diamU . By the doubling property of Rn, we have that m ≤
N0d

−n for some universal N0. �

Below, for a domain U ∈Un(λ, d), we write U=U(D0;D1, . . . , Dm) ifD0, . . . , Dm

are λ-bi-Lipschitz balls with

(1) U = D0 \
⋃m

i=1 Di;

(2) D1, . . . , Dm are contained in D0 and are mutually disjoint;
(3) for all i ∈ {1, . . . ,m} we have diamDi ≥ d−1 diamD0;
(4) for all distinct i, j ∈ {0, . . . ,m} we have dist(∂Di, ∂Dj) ≥ d−1 diamD0.

For the rest of §3 we denote by S0 the open n-cube (−1, 1)n in Rn. For each
m ∈ N and k ∈ {1, . . . ,m} define the open cubes

Sm,k :=

(
4k − 2m− 3

2m+ 1
,
4k − 2m− 1

2m+ 1

)
×
(

−1

2m+ 1
,

1

2m+ 1

)n−1

⊂ R
n
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Figure 1. The profile of cubes S0, Sm,k, S ′
0, and S ′

m,k in the first
two dimensions in the case m = 3

and the domains

U0 := S0, Um := S0 \
m⋃

k=1

Sm,k, for m ∈ N.

In Lemma 3.5, we show that every domain U ∈ Un(λ, d) is quasisimilar to Um

for some m ∈ N. This allows us to reduce the proof of Proposition 3.3 to the case
U = Um.

Lemma 3.5. For n ∈ {2, 3, . . . }, λ > 1, and d > 0 there exists L ≥ 1 with the
following property. If U = U(D0;D1, . . . , Dm) is in Un(λ, d) and has diameter
equal to 1, then there exists an L-bi-Lipschitz homeomorphism f : U → Um with
f(∂D0) = ∂S0 and f(∂Di) = ∂Sm,i for i = 1, . . . ,m.

Note that the order of domains Di, i ∈ {1, . . . ,m} is arbitrary. Therefore,
Lemma 3.5 implies that we can bi-Lipschitz map U onto Um and match the cubes
∂Sm,i with the inner boundary components of of U , in any order.

For the proof of Lemma 3.5, given k ∈ N we say that a point x ∈ Rn is a k-dyadic
point if there exists (i1, . . . , in) ∈ Zn such that x = (i12

−k, . . . , in2
−k).

Remark 3.6. For any k ∈ N and any x ∈ Rn, there exists a k-dyadic point x′ ∈ Rn

such that |x− x′| < 2−k
√
n.

To prove Lemma 3.5 we require the following result.

Lemma 3.7. Let {p1, . . . , pm} and {q1, . . . , qm} be two families of distinct k-dyadic
points in S0. Given r = 1

102
−k, there exists L > 1 depending only on n and k, and

there exists an L-bi-Lipschitz homeomorphism

f : S0 \
m⋃
i=1

Bn(pi, r) → S0 \
m⋃
i=1

Bn(qi, r)

such that for all i, f maps ∂Bn(pi, r) onto ∂Bn(qi, r).

Proof. Let l1 denote the line segment [p1, q1]. Then dist(l1, ∂S0) ≥ 2−k. We modify
l1 on its intersections with balls Bn(pi, 5r) for i 	= 1 replacing l1 ∩ Bn(pi, 5r) (if
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nonempty) by an arc on ∂Bn(pi, 5r) of minimal length. We denote the new curve
by γ1. Since we have chosen r small enough, it follows that the set

D1 =
⋃
x∈γ1

Bn(x, 2r)

is a λ1-bi-Lipschitz ball. In fact, since there are a finite number of arrangement
for the points {p1, . . . , pm, q1} in S0 (depending only on k and n), we have that
λ1 depends only on n and k. Moreover, D1 contains Bn(p1, r) and Bn(q1, r) and
does not intersect any of the balls Bn(pi, r) for i 	= 1. Applying Theorem 3.2 on
D1 \ Bn(p1, r), there exists L1 > 1 depending only on k, n and an L1-bi-Lipschitz
map

f1 : S0 \
m⋃
i=1

Bn(pi, r) → S0 \
(
Bn(q1, r) ∪

m⋃
i=2

Bn(pi, r)

)

such that f1 is identity on S0 \D1 and maps ∂B(p1, r) onto ∂B(q1, r).
Working as above, for each j ∈ {2, . . . ,m}, there exists an Lj-bi-Lipschitz map

fj : S0 \

⎛
⎝ m⋃

i=j

Bn(pi, r) ∪
j−1⋃
i=1

Bn(qi, r)

⎞
⎠ → S0 \

⎛
⎝ j⋃

i=1

Bn(qi, r) ∪
m⋃

i=j+1

Bn(pi, r)

⎞
⎠

such that Lj depends only on n, k, the map fj is identity on

m⋃
i=j+1

Bn(pi, r) ∪
j−1⋃
i=1

Bn(qi, r),

and fj maps ∂B(pj , r) onto ∂B(qj , r). Here we use the convention
⋃m

i=j+1B
n(pi, r)

= ∅ if j = m. Define now

f = fm ◦ · · · ◦ f1 : S0 \
m⋃
i=1

Bn(qi, r) → S0 \
m⋃
i=1

Bn(pi, r).

Note that f maps each ∂Bn(pi, r) onto ∂Bn(qi, r). Since m ≤ (2k+1 + 1)n, the
bi-Lipschitz constant of f depends only on n, k. �

We can now show Lemma 3.5.

Proof of Lemma 3.5. By Lemma 3.4, m ≤ N for some N depending only on d and
n. Applying a λ0-bi-Lipschitz homeomorphism of Rn for some λ0 > 1 depending
only on λ and n, we may assume that D0 = S0.

Let us outline the proof. In the first step we shrink the domains Di isotopically
to small balls with dyadic centers. In the second step we apply Lemma 3.7 to move
these balls to some arranged positions and in the third step we move the balls from
these positions to balls inside the cubes Sm,k. In the fourth and final step we inflate
these balls isotopically to cubes Sm,i.

To this end, we define three collections {x1, . . . , xm}, {y1, . . . , ym}, {z1, . . . , zm}
of dyadic points. Let k ∈ N be the smallest integer such that

2−k ≤ (2λ2
√
n(2m+ 1)d)−1.

First, there exists x0 ∈ U such that

dist(x0, ∂U) ≥ (2d)−1 diamU = (2d)−1 diamS0 = d−1
√
n.
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By Remark 3.6, there exists a k-dyadic point x′
0 such that |x′

0 − x0| < 2−k
√
n. By

the choice of k, the k-dyadic points

xi = x′
0 + 2−k(i− 1)(1, 0, . . . , 0), i = 1, . . . ,m

satisfy

dist(xi, ∂U) ≥ dist(x0, ∂U)− |x0 − x′
0| − |x′

0 − xi|
≥ d−1

√
n− 2−k

√
n− (m− 1)2−k

≥ 1
2

√
nd−1.

Second, since each domain Di is a λ-bi-Lipschitz ball of diameter at least d−1
√
n,

there exist for each i a point y′i ∈ Di such that dist(y′i, ∂Di) ≥ λ−2d−1
√
n. By

Remark 3.6, there exists a k-dyadic point yi such that |yi − y′i| < 2−k
√
n. By the

choice of k, we have that yi ∈ Di and

dist(yi, ∂Di) ≥ dist(y′i, ∂Di)− |yi − y′i| ≥ 1
2λ

−2d−1
√
n.

Third, for each i let z′i be the center of the open cube Sm,i. By Remark 3.6, there
exists a k-dyadic point zi such that |zi − z′i| < 2−k

√
n. By the choice of k,

dist(zi, ∂Sm,i) ≥ (2m+ 1)−1 − 2−k
√
n ≥ 1

2 (2m+ 1)−1.

We now construct four bi-Lipschitz homeomorphisms. Let

r = 1
10 min

{
2−k, 1

2 (2m+ 1)−1, 1
2λ

−2d−1
√
n
}
= 1

102
−k.

First, for each i, let Bn(ai, Ri) be a ball and let gi be a λ-bi-Lipschitz homeo-

morphism of Rn mapping Bn(ai, Ri) onto Di. Note that 2
√
n

λd ≤ Ri ≤ 2λ
√
n. Let

D′
i = gi(B(ai, (1+(2λ2d)−1)). Then, D′

i is a λ-bi-Lipschitz ball containing Di such
that the Hausdorff distance

1
2 (λd)

−2
√
n ≤ distH(∂Di, ∂D

′
i) ≤ 1

2d
−1

√
n.

Therefore, for each i we have that ∂D′
i ⊂ U and for all distinct i, j we have

dist(∂D′
i, ∂D

′
j) ≥ d−1

√
n. Applying Theorem 3.2 on each annulus Di \ D′

i we
obtain an L1-bi-Lipschitz map

F1 : U → S0 \
m⋃
i=1

Bn(yi, r)

so that F1 is the identity on S0 \
⋃m

i=1 D
′
i and maps each ∂Di onto ∂Bn(yi,

3
2r),

with L1 depending only on n, λ, d.
Second, for each i = 1, . . . ,m following the same ideas as above, we can construct

an L2-bi-Lipschitz map

F2 : Um → S0 \
m⋃
i=1

Bn(zi, r)

with F2(∂Sm,i) = ∂B(zi, r), and L2 depending only on n and d.
Third, by Lemma 3.7, there exists an L3-bi-Lipschitz homeomorphism

F3 : S0 \
m⋃
i=1

Bn(yi, r) → S0 \
m⋃
i=1

Bn(xi, r)

with F3(∂B
n(yi, r)) = ∂Bn(xi, r), and with L3 > 1 depending only on n, k, hence

only on n, λ, d.
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Fourth, by Lemma 3.7, there exists an L4-bi-Lipschitz homeomorphism

F4 : S0 \
m⋃
i=1

Bn(zi, r) → S0 \
m⋃
i=1

Bn(xi, r)

with F4(∂B
n(zi, r)) = ∂Bn(xi, r) and L4 depending only on n, λ, d.

The map F−1
2 ◦ F−1

4 ◦ F3 ◦ F1 : U → Um is an L-bi-Lipschitz homeomorphism
such that F (∂Di) = ∂Sm,i for all i ∈ {1, . . . ,m}, and with L depending only on n,
λ, and d. �

We are now ready to prove Proposition 3.3.

Proof of Proposition 3.3. Proposition 3.3 is trivial if ∂U has only one component.
For the rest, we assume that ∂U has at least two components.

Since the embedding f can be extended homeomorphically to U , there exists a
domain U ′ ⊂ Rn such that ∂U ′ = f(∂U) and f can be extended to a homeomor-
phism of U onto U ′. Applying two similarities with comparable scaling factors, we
may assume that diamU = diamU ′ = 1. Since f is L-bi-Lipschitz, we have that
U ′ ∈ Un(λ

′, d′) for some λ′, d′ > 1 depending only on n, λ, d. By Lemma 3.5, apply-
ing two L0-bi-Lipschitz maps, with L0 depending only on n, λ, d, we may assume
that U = U ′ = Um, that f maps ∂S0 onto ∂S0, and for each k ∈ {1, . . . ,m}, f
maps ∂Sm,k onto ∂Sm,k.

Define the open cube

S ′
0 :=

(
1/2

2m+ 1
− 1, 1− 1/2

2m+ 1

)n

and for each k = 1, . . . ,m define the open cube

S ′
m,k :=

(
4k − 2m− 7/2

2m+ 1
,
4k − 2m− 1/2

2m+ 1

)
×
(
− 3/2

2m+ 1
,

3/2

2m+ 1

)n−1

so that Sm,k ⊂ S ′
m,k ⊂ S ′

0 ⊂ S0 for each k = 1, . . . ,m; see Figure 1. Extend f

to ∂S ′
0 and to each S ′

m,k with identity and note that the new embedding, which
we still denote by f , is L1-bi-Lipschitz with L1 depending only on L and m, hence
only on L, n, and d.

Applying Theorem 3.2 on each S ′
k,m \ Sk,m we obtain L′

1-bi-Lipschitz extensions

gk on S ′
k,m \ Sk,m with L′

1 depending only on n, d and L. Similarly, we obtain an

L′′
1 -bi-Lipschitz extension g0 on S0 \ S ′

0. The map

f : Um → Um with f(x) =

⎧⎪⎨
⎪⎩
g0(x), if x ∈ S0 \ S ′

0

x, if x ∈ S ′
0 \

⋃
k S ′

m,k

gk(x), if x ∈ S ′
m,k \ Sm,k

is L′-BLD for some L′ depending only on n, L and d. By Lemma 2.2, f is L′-bi-
Lipschitz. �

4. Proof of Theorem A and Corollary A

Here we prove the following quantitative version of Theorem A. The proof of
Corollary A is given in §4.1.
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Theorem 4.1. Let n ∈ N and let X ⊂ Rn be a compact c-uniformly perfect and
c-uniformly disconnected set. There exists an η′-quasisymmetric homeomorphism
F : Rn+1 → R

n+1 with F (C) = X, and with η′ depending only on n and c.

We define W to be the set of finite words formed from the letters {1, 2}, including
the empty word ε. Define WN to be the set of words in W whose length is exactly
N . Given w ∈ W , we denote by |w| the number of letters that w has, with |ε| = 0.

Let Iε = [0, 1] and given Iw = [a, b] let Iw1 = [a, a+ 1
3 (b−a)], Iw2 = [b− 1

3 (b−a), b].
For each w ∈ W , let Cw = Iw ∩ C.

Lemma 4.2. Let X be a metric space and let f : C → X be an η-quasisymmetric
homeomorphism. For each D > 1, there exists k ∈ N depending only on η and D
with the following property. For any integer m ≥ log k/ log 2, there exists a partition
E1, . . . ,Ek of Wm such that for any i ∈ {1, . . . , k} and any distinct w,w′ ∈ Ei,

(4.1) dist(f(Cw), f(Cw′)) ≥ Dmax{diam f(Cw), diam f(Cw′)}.

Proof. Set d = (η−1((2D)−1))−1. We show that the lemma holds for k being the
integer part of 2dlog 2/ log 3 +1. Fix an integer m ≥ log k/ log 2. Let l be the integer
part of log d/ log 3 + 1. By definition, k ≥ 2l. For distinct u, u′ ∈ Wm−l we have

dist(Cu, Cu′) ≥ 3−(m−l) ≥ d3−m.

Therefore, for all w ∈ Wm, there exist at most 2l (hence at most k) words w′ ∈ Wm

such that dist(Cw, Cw′) ≥ d3−m.
Let now {w1, . . . , w2m} be an enumeration of Wm such that for all 1 ≤ i < j ≤

2m, the set Cwi
lies to the left of the set Cwj

. For each i = 1, . . . , k define Ai to
be the integers in {1, . . . , 2m} that are of the form i+ rk with r ∈ N ∪ {0} and set
Ei = {wj : j ∈ Ai}. It is now straightforward to see that the sets Ei form a partition
of Wm and that for all i ∈ {1, . . . , k} and all distinct w,w′ ∈ Ei,

dist(Cw, Cw′) ≥ d3−m = dmax{diam Cw, diam Cw′}.

Now inequality (4.1) follows by quasisymmetry of f and (2.1). �

We are now ready to prove Theorem 4.1. Let us first give an informal outline
of the proof. The proof consists of two steps. The first step is the construction of
a bi-Lipschitz mapping Φ : Rn+1 → Rn+1 that unlinks X. Roughly speaking, we
apply Lemma 4.2 to break X into several pieces which we lift in specific heights
with those being close lifted to different heights while those being far lifted to the
same height. Then, we repeat the same process to each of these pieces breaking
them into further smaller pieces and lifting them to specific heights. The heights
will be of the form of Lipschitz functions φi that we define during the proof.

The subsets and heights from the first step are chosen carefully to make sure
that the lifted subsets are contained in disjoint cubes. In the second step, we apply
Proposition 3.3 to construct a quasiconformal mapping G : Rn+1 → Rn+1 that
maps the unlinked image Φ(X) onto C. The composition G ◦ Φ is the desired map
F of Theorem A.

Proof of Theorem 4.1. Let X be a compact, c-uniformly perfect and c-uniformly
disconnected subset of R

n. By Theorem 1.1, there exists an η-quasisymmetric
homeomorphism f : C → X with η depending only on n and c. Without loss
of generality, we assume that diamX = 1. For the rest of the proof we write
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Xw = f(Cw). Let k be the number obtained by Lemma 4.2 for D := 1 + 8
√
n+ 1

and for η. Let also N be the smallest positive integer such that

3−N ≤ 1
2η

−1
(
(20k

√
n)−1

)
and N ≥ log k/ log 2.

By (2.1) and (2.2), for any two distinct w,w′ ∈ W with |w| = |w′|, and any u ∈ WN ,

(2η(3N ))−1 diamXw ≤ diamXwu ≤ η(2 · 3−N ) diamXw,(4.2)

dist(Xw, Xw′) ≥ (2η(1))−1max{diamXw, diamXw′}.(4.3)

Let E ε
1 , . . . ,E

ε
k be the sets of Lemma 4.2 corresponding to f , D, and m = N .

Define φ1 : X → R by

φ1|Xw
(x) = (4k)−1(i− 1), for w ∈ E ε

i and i ∈ {1, . . . , k}.

Inductively, suppose that for some j ∈ N we have defined φj : X → R such that
φj |Xw

is constant whenever w ∈ WjN . For each w ∈ WjN , let ζw : C → Cw be a
similarity and note that f |Cw

◦ ζw : C → Xw is η-quasisymmetric. Let E w
1 , . . . ,E w

k

be the sets of WN from Lemma 4.2 applied to f |Cw
◦ ζw, D, and m = N . Define

φj+1 : X → R such that

φj+1|Xwu
(x) = φj |Xw

(x) + (4k)−1(i− 1) diamXw,

where w ∈ WjN , u ∈ E w
i and i ∈ {1, . . . , k}.

By (4.2), for positive integers j < j′ we have

‖φj − φj′‖∞ ≤
j′−1∑
l=j

‖φl − φl+1‖∞ ≤
j′−1∑
l=j

(4k)−1(k − 1) max
w∈WlN

diamXw

≤
j′−1∑
l=j

1
4

(
η(2 · 3−N )

)l

≤
(
η(2 · 3−N )

)j
4− 4η(2 · 3−N )

which, by choice of N , goes to 0 as j → ∞. Therefore, the mappings φj converge
uniformly to a mapping φ : X → R.

We claim that φ is Lipschitz with the Lipschitz constant depending only on n
and c. To see that, let x, y ∈ X and let j ∈ N be the unique integer such that there
exists w ∈ WjN and there exist distinct u, u′ ∈ WN with x ∈ Xwu and y ∈ Xwu′ .
On the one hand, by (4.2), (4.3),

|x− y| ≥ dist(Xwu, Xwu′) ≥ 1

2η(1)
min

v∈WN
diamXwv ≥ diamXw

4η(1)η(3N )
.

On the other hand, by (4.2) and the fact that φj(x) = φj(y),

|φ(x)− φ(y)| ≤ |φ(x)− φj(x)|+ |φj(x)− φj(y)|+ |φ(y)− φj(y)|

≤ 2(4k)−1(k − 1) diamXw

∞∑
l=0

(η(2 · 3−N ))l

≤ 1

2− 2η(2 · 3−N )
diamXw.
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Therefore,

|φ(x)− φ(y)| ≤ 2η(1)η(3N )

1− η(2 · 3−N )
|x− y|

and the claim follows.
Fix x0 ∈ X, set B0 = Bn(x0, 5 diamX) and set φ|Rn\B0

≡ 0. Then, the map

φ : (Rn \B0) ∪X → R

is L-Lipschitz for some L depending only on n, c and, by the Kirszbraun Theorem
[7, 2.10.43], there exists an L-Lipschitz extension of φ to Rn which we also denote
by φ. Then, the mapping

Φ : Rn+1 → R
n+1, defined by Φ(x, z) = (x, φ(x) + z)

is L′-bi-Lipschitz with L′ = 2(L+ 2) [24, Lemma 5.3.2].
For each j = 0, 1, . . . and each w ∈ WjN fix xw ∈ Xw and set

Kw := xw + [−2 diamXw, 2 diamXw]
n = {xw + (2 diamXw)y : y ∈ [−1, 1]n}.

We claim that if w ∈ WjN and u ∈ WN , then

(4.4) Kwu ⊂ Kw and dist(Kwu, ∂Kw) ≥
1

2
diamXw.

Indeed, if x ∈ Kwu, then by (4.2) and the choice of N ,

|x− xw| ≤ |x− xwu|+ |xwu − xw| ≤ 2
√
ndiamXwu + diamXw

≤ (1 + 2
√
nη(2 · 3−N )) diamXw

<
3

2
diamXw

which proves both claims.
We remark that if w,w′ ∈ WjN are distinct, then Kw may intersect Kw′ . This

is why we lift different sets Xw to different heights.
For each j = 0, 1, . . . and each w ∈ WjN define

Kw := Kw × [φj(xw)− 2 diamXw, φj(xw) + 2 diamXw] ⊂ R
n+1.

We first claim that for all j ∈ N, for all w ∈ WjN and for all u ∈ WN ,

(4.5) Kwu ⊂ Kw and dist(Kwu, ∂Kw) ≥ (8
√
n+ 1)−1 diamKw.

Let z = (z1, . . . , zn+1) ∈ Kwu. By (4.2) and the choice of N ,

|zn+1 − φj(xw)| ≤ |zn+1 − φj+1(xwu)|+ |φj(xw)− φj+1(xwu)|
≤ 2 diamXwu + (4k)−1(k − 1) diamXw

≤ 2η(2 · 3−N ) diamXw + 1
4 diamXw

≤ 1

2
diamXw.

Therefore, z ∈ Kw and

dist(z, ∂Kw) ≥ max {dist(Kwu, ∂Kw), 2 diamXw − |zn+1 − φj(xw)|} ≥ 1

2
diamXw

and the claim follows.
Second, we claim that for all integers j ≥ 0, all w ∈ WjN and all distinct

u, u′ ∈ WN ,
(4.6) dist(Kwu,Kwu′) ≥ (8η(3N )

√
n+ 1)−1 diamKw.

To prove (4.6), let x ∈ Kwu and x′ ∈ Kwu′ . There are two cases to consider.
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Case 1. Suppose that u, u′ ∈ E w
i . Then φj+1(xwu) = φj+1(xwu′) and by the

choice of D we have

|x− x′| ≥ |xwu − xwu′ | − diamKwu − diamKwu′

≥ dist(Xwu, Xwu′)− 2max{diamKwu, diamKwu′}
≥ (D − 8

√
n+ 1)max{diamXwu, diamXwu′}

= max{diamXwu, diamXwu′}.

Case 2. Suppose that u ∈ E w
i and u′ ∈ E w

i′ with i 	= i′. By the choice of N , we
calculate the vertical difference of x, x′

|x− x′| ≥ |φj+1(xwu)− φj+1(xwu′)| − 2 diamXwu − 2 diamXwu

≥ (4k)−1 diamXw − 4max{diamXwu, diamXwu′}

≥
(

1

4kη(2 · 3−N )
− 4

)
max{diamXwu, diamXwu′}

≥ max{diamXwu, diamXwu′}.

In either case, (4.6) follows now from (4.2).
Third, by (4.2), we have that for all j ∈ N, for all w ∈ WjN and for all u ∈ WN ,

(4.7) diamKwu ≥ (2η(3N ))−1 diamKw.

Finally, by design of Φ,

(4.8) Kw ∩ Φ(X) = Φ(Xw) and dist(Φ(Xw), ∂Kw) ≥ diamXw.

For each j = 0, 1, . . . and w ∈ WjN , let zw be the center of Iw, define the cube

Qw =
[
zw − 5

63
−jN , zw + 5

63
−jN

]
×
[
− 5

63
−jN , 5

63
−jN

]n
,

and let gw : ∂Kw → ∂Qw be an orientation preserving similarity map. By (4.5),
(4.6) and (4.7), Proposition 3.3 applies and there exists Λ > 1 depending only on
n, η, (hence only on n, c) such that gw extends as a (diamQw

diamKw
,Λ)-quasisimilarity

homeomorphism of Kw \ (
⋃

u∈WN Kwu) onto Qw \ (
⋃

u∈WN Qwu).

Define now G : Rn+1 \ Φ(X) → R
n+1 \ C so that

(1) G : Rn+1 \ Kε → Rn+1 \ Qε is a similarity,
(2) for each w ∈ WjN , the restriction of G on Kw \ (

⋃
u∈WN Kwu) is gw.

Since the diameters of cubes Kw and Qw go to zero as |w| → ∞, the map G extends
to a homeomorphism G : Rn+1 → Rn+1 mapping Φ(X) onto C.

Let

E = C ∪
⋃
j≥0

⋃
w∈Wjn

∂Qw.

Then E is a closed set of σ-finite Hn-measure in Rn+1 and for some K ≥ 1 de-
pending only on c and n, G−1 is K-quasiconformal on Rn+1 \ E. Therefore, by a
theorem of Väisälä on removability of singularities [23, Theorem 35.1], G−1 extends
to a K-quasiconformal homeomorphism of Rn+1, hence G is quasiconformal. Set
F = G ◦ Φ and note that F extends f . Therefore, F (X) = C. �
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4.1. Proof of Corollary A. For the proof of Corollary A, recall that a set E ⊂
[0, 1] is porous if there exists c ≥ 1 such that for any interval I ⊂ [0, 1], there exists
an interval J ⊂ I \ E of length |J | ≥ c−1|I|.

Proof of Corollary A. Let X ⊂ R
n be bounded and c-uniformly disconnected. It

now suffices to show that X is contained in a compact uniformly perfect and uni-
formly disconnected set and Theorem 4.1 applies.

Replacing X by X, we may assume that X is compact. By Theorem 1 in [15] (see
also [15, p. 275] for discussion and [1, Theorem 3.8] for a more general statement),
there exists an η-quasisymmetric map f : [0, 1] → Rn such that X ⊂ f([0, 1]),
{f(0), f(1)} ⊂ X, and η depending only on c. Set E = f−1(X) ⊂ [0, 1] which is
uniformly disconnected and contains 0 and 1.

For each component I of [0, 1]\E, let φI : R → R be a similarity that maps [0, 1]
onto I. Define now

E′ := E ∪
⋃
I

φI(C) =
⋃
I

φI(C),

where the union is over all components I of [0, 1]\X. We claim that E′ is uniformly
perfect and uniformly disconnected. Assuming the latter, X ′ = f(E′) is a compact
uniformly perfect, and uniformly disconnected set that contains X. By Theorem A,
there exists an η-quasisymmetric map F : Rn+1 → R

n+1 with F (X) ⊂ F (X ′) = C.
To prove the claim, recall that C is C0-uniformly perfect and C0-uniformly dis-

connected for some C0 > 1.
To show that E′ is uniformly perfect, fix x ∈ E′ and r ∈ (0, 1). We claim that

there exists universal C ≥ 1 such that

E′ ∩ ((x− r, x+ r) \ (x− r/C, x+ r/C)) 	= ∅.

If (x−r, x+r)∩E = ∅, then there exists I as above such that (x−r, x+r) ⊂ I and
(x−r, x+r)∩E′ = (x−r, x+r)∩φI(C) and the claim is true for C = C0. Suppose now
that (x− r, x+ r)∩E 	= ∅. If there exists z ∈ (x− r, x+ r)∩E with |z − x| ≥ r/2,
then the claim is true for C = 2. Suppose now that (x − r/2, x + r/2) ∩ E =
(x− r, x+ r)∩E 	= ∅ and let z ∈ [x, x+ r/2)∩E such that z− x is maximal. That
is, z is the left endpoint of a component I as above and by the uniform perfectness
of C,

φI(C) ∩ (x+ (2C0)
−1r, x+ r) ⊃ φI(C) ∩ (z + (2C0)

−1r, z + r/2) 	= ∅

and the claim holds true for C = 2C0.
To show that E′ is uniformly disconnected, by [15, Theorem 1], we need to show

that E′ is porous. Fix an interval I ⊂ [0, 1]. The porosity of E implies that there
exists an interval J ′ ⊂ I \ E such that |J ′| ≥ |I|/c1 where c1 depends only on C.
Now, the porosity of J ′ ∩E′ (since it is a subset of a copy of C) implies that there
exists an interval J ⊂ J ′ \E′ such that |J | ≥ |J ′|/c0 where c0 depends only on C0.
Alltogether, J ⊂ I \ E′ and |J | ≥ (c1c0)

−1|I|. �

Acknowledgment

We thank the anonymous referee whose comments and suggestions greatly im-
proved the exposition of the paper.



102 VYRON VELLIS

References

[1] Matthew Badger and Vyron Vellis, Geometry of measures in real dimensions via Hölder
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[20] P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn.
Ser. A I Math. 5 (1980), no. 1, 97–114, DOI 10.5186/aasfm.1980.0531. MR595180
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