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QUADRATURE DOMAINS AND

THE REAL QUADRATIC FAMILY

KIRILL LAZEBNIK

Abstract. We study several classes of holomorphic dynamical systems as-
sociated with quadrature domains. Our main result is that real-symmetric
polynomials in the principal hyperbolic component of the Mandelbrot set can
be conformally mated with a congruence subgroup of PSL(2,Z), and that this
conformal mating is the Schwarz function of a simply connected quadrature
domain.
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1. Introduction

Parallels in the study of Kleinian groups and of complex dynamics are generally
termed as entries in Sullivan’s dictionary. We refer to Section 3.5 of [BF14] for
an overview. In this paper we are concerned mainly with the following question:
when can we “combine” the dynamical plane of a quadratic polynomial with that
of a Kleinian group, and what is the resulting object? Let us introduce some
terminology in order to make this question more precise.

Associated with the family of quadratic polynomials pc(z) := z2 + c is the Man-
delbrot set M: defined as those c ∈ C for which pnc (0) �→ ∞ as n → ∞. We list
[Lyu17] as a comprehensive reference. Here we will primarily be concerned with the
principal hyperbolic component of the Mandelbrot set: namely those c ∈ C such
that pc has a finite attracting fixed point. We will denote by K(pc) the filled Julia
set of pc, and by J (pc) the Julia set of pc.

The Kleinian group relevant to our study is the congruence subgroup Γ of
PSL(2,Z) defined by generators α(z) := −1/z and β(z) := z + 2. A fundamental
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Figure 1. Pictured is a fundamental domain U for the group Γ
and images of U under several elements of the group. Images of U
under group elements consisting of words of length≤ 2 are labelled.

domain U for Γ is shown in Figure 1. Associated with Γ we define the following
function ρ : H \ intU → H:

ρ(z) :=

⎧⎨
⎩

α(z) if |z| ≤ 1,
β−1(z) if Re(z) ≥ 1,
β(z) if Re(z) ≤ −1.

(1)

We will discuss further the connection between Γ and ρ in Section 4.
Now let c belong to the principal hyperbolic component of M. An initial connec-

tion between Γ and pc is as follows: the maps pc : J (pc) → J (pc) and ρ : R̂ → R̂

are topologically conjugate (this is explained in Remark 5.1). This leads to the
following question: is there a holomorphic map pc � Γ exhibiting simultaneously
the dynamics of pc on K(pc), and Γ on H? To state this question more precisely
we will need to discuss the notion of conformal mating, which we defer to Section
5. Our first result (illustrated in Figure 2) is that for c ∈ R, the conformal mating
pc � Γ exists, and is in fact an object well studied in its own right.

Theorem A. Let c ∈ (−.75, .25). Then there exists a conformal mating pc � Γ as
the Schwarz function of a simply connected quadrature domain.

A planar domain Ω is a quadrature domain if there exists a meromorphic function
σ : Ω → Ĉ such that σ is meromorphic in Ω and has an extension to Ω satisfy-
ing σ(z) = z on ∂Ω. The function σ is then called the Schwarz function of Ω.
Quadrature domains have been studied in connection to several different areas of
analysis, including extremal problems for analytic functions, the Hele-Shaw flow in
fluid dynamics, and potential theory. We refer to [EGKP05], [LM16] for details
and a broader overview, both of quadrature domains and the aforementioned con-
nections. We mention two examples of quadrature domains. The first is that a
simply connected domain is a quadrature domain if and only if the corresponding
Riemann map is a rational function (Lemma 2.3, [AS76]). The second example (see
the left-most curve in Figure 3) is that of a disjoint union of a cardioid with the
exterior of a circle.
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Figure 2. Pictured is the dynamical plane of the mating pc�Γ as
in Theorem A with c ranging in (−.75, .25). The simply connected
quadrature domain is the complement of the turqoise region, with
Schwarz function σ = pc�Γ. In pink is the filled Julia set K(σ) (see
Definition 2.10), where σ is conformally conjugate to pc : K(pc) →
K(pc). The complement of K(σ) is the escaping set I(σ) (see
Definition 2.8) of σ, where σ is described by the action of the group
Γ on H (see Theorem 4.8). The map σ on the common boundary of
I(σ), K(σ) is topologically conjugate both to pc : J (pc) → J (pc)

and ρ : R̂ → R̂.

The study of the dynamics of the Schwarz reflection map defined by z 	→ σ(z)
was initiated in [LM16], and several works have since studied the dynamics of σ for
various classes of quadrature domains: see [LLMM18a], [LLMM18b], [LLMM19a],
[LLMM19b], [LMM19], [LMM20]. Indeed, the case c = 0 of Theorem A may
naturally be viewed as a holomorphic version of the anti-holomorphic statement in
Theorem 1.1 of [LLMM18a] (see Remark 4.5 for details). Associated with σ is a

natural dynamical partition of Ĉ. In the presence of R-symmetry, a similar partition
holds for σ (see Definitions 2.8, 2.10). Indeed, one can conclude the following from
the work of [LLMM18b] together with a variant of Theorem 4.8:

Theorem 1.1 ([LLMM18b]). Let c ∈ [−2,−.75] be such that pc is geometrically
finite. Then there exists a conformal mating pc � Γ as the Schwarz function of a
disjoint union of a cardioid and circle.

Taken together, Theorem A and Theorem 1.1 yield the following description:

Corollary 1.2. Let c ∈ [−2, .25), and assume furthermore pc is geometrically
finite if c ∈ [−2,−.75]. Then there exists a conformal mating pc �Γ as the Schwarz
function of a:

(1) simply connected quadrature domain if c ∈ (−.75, .25)
(2) disjoint union of a cardioid and circle if c ∈ [−2,−.75].
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Figure 3. Pictured are images of T under a 1-parameter family
of maps f univalent in D. The unbounded components of Ĉ \ f(T)
are quadrature domains, and the bounded components of Ĉ \ f(T)
are usually called droplets. This figure shows a phase transition in
which a family of simply connected quadrature domains converge
geometrically to a quadrature domain with two components: the
cardioid and circle, approximated by the left-most (simply con-
nected) quadrature domain.

Let us discuss cases (1) and (2) in Corollary 1.2. As c ∈ R passes through −.75,
the dynamics of pc undergo the well-known phenomenon of bifurcation: the finite
attracting fixed point of pc in case (1) “becomes” a period 2 attracting cycle as one
passes to case (2). We observe here the following for the corresponding quadrature
domains in (1) and (2): the quadrature domains in case (1) converge to those in
case (2) (see Section 9 for a more precise conjecture). This is illustrated in Figure
3. The group structure Γ, on the other hand, is the same in cases (1) and (2). We
remark that (1) of Corollary 1.2 likely holds for c = .25 as well, although this does
not follow from the methods of the present work.

In fact, we will study a broader class of holomorphic dynamical systems R (see
Section 2) associated with a simply connected quadrature domain, which includes
as a special case those systems in Theorem A. Numerical evidence indicates a rich
quadratic-like structure in the parameter space of R: see Figure 4.

Further, it is possible to draw several conclusions beyond the R-symmetric and
degree 2 setting of Theorem A. In the following, Γd denotes a Kleinian group
whose fundamental domain is a regular hyperbolic (d+ 1)-gon in D (see Definition
8.1), and Γ2 is Möbius conjugate to the group Γ of Theorem A. The generating
elements of Γd can roughly be described as Möbius transformations which map a
set of circles (Cj)

d+1
j=1 (see Definition 8.1) lying perpendicular to |z| = 1 to their

complex conjugates (Cj)
d+1
j=1 . Moreover, we denote by β(Γd) the Bers slice of Γd:

this is roughly the space of Kleinian groups which are quasiconformally conjugate
to Γd via a conjugacy which is conformal in C \ D. For a more precise definition
of the Bers slice, we refer to Definitions 2.17, 2.20 of [LMM20]. We will sketch a
proof of the following in Section 8:

Theorem B. Let d ≥ 2, and β ∈ β(Γd). Suppose p ∈ Pold is in the main hyperbolic
component in the parameter space of Pold. Then there exists a conformal mating
pc � β of pc with β.

The main idea of the proof is that of simultaneous uniformization due to Bers (see
[Ber72]): after verifying the statement of Theorem B for a “base case” of p(z) = zd
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Figure 4. Pictured on the right is a “bulb” of the Mandelbrot set.
Also indicated are Julia sets arising from several parameters in this
bulb. Pictured on the left is a parameter space of a family σf as
in Definition 2.5 arising from a 1-parameter family f of univalent
maps. Sample filled Julia sets corresponding to several parameters
are illustrated. The right-hand side figures were generated with
the program Mandel of Jung.

and Γd (where the mating is a Schwarz function σ), the more general setting of
Theorem B will follow from applying quasiconformal surgery simultaneously in the
group and polynomial parts of the dynamical plane of σ. Indeed, a similar strategy
will be applied in the proof of Theorem A, although in the setting of Theorem A
the group structure is rigid and so we can only vary the polynomial dynamics. We
emphasize that although the conformal mating pc�β is shown to exist in the proof
of Theorem B, a more concrete description of the mating is not given (unlike the
Schwarz function description given in Theorem A).

We also remark that a notion of conformal matings between Kleinian groups
and polynomials as holomorphic correspondences was introduced in [BP94] (see
also [BL20]). The definition of conformal mating used in the present work follows
more closely that of [LLMM18a]. In particular, the map pc�Γ as in Theorems A, B
is a single-valued holomorphic function, rather than a multi-valued correspondence
as in [BP94]. There is, however, a natural extension of the Schwarz function of

a simply connected domain as a correspondence on Ĉ. Thus a natural question
is whether this correspondence is a mating of pc, Γ in the sense of [BP94], some
branch of which is the Schwarz function of Theorem A. If the answer is affirmative,
this would provide a satisfying link between the two points of view.

We now briefly outline the paper. In Sections 2 and 3 we introduce the class of
dynamical systems R and establish some basic properties. In Section 4 we study
the group Γ, leading to a definition of conformal mating in Section 5. In Section
6 we study the topology of the filled Julia set of a base element in R. Section 7 is
devoted to quasiconformal deformations of this base element of R and the proof of
Theorem A. Section 8 is devoted to Theorem B, and lastly in Section 9 we remark
on some questions naturally arising from the present work.
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2. Dynamics of Schwarz functions

Notation 2.1. We use the notation:

Pold :=
{
p(z) :=adz

d + . . .+ a1z + a0 : ad, . . . , a0∈C, and ad �=0
}
,Pol :=

⋃
d

Pold,

and Ratd :=

{
p(z)

q(z)
: p, q ∈ Pol and max(deg(p), deg(q)) = d

}
.

Notation 2.2. Given three distinct points z1, z2, z3 ∈ Ĉ, we denote by Dz1,z2,z3

the open Euclidean disc such that z1, z2, z3 ∈ ∂Dz1,z2,z3 and (z1, z2, z3) is oriented
positively with respect to Dz1,z2,z3 . Given a Euclidean disc D, we denote D∗ :=

Ĉ \D.

Definition 2.3. We define a collection R whose elements are pairs (f, (c1, c2, c3)),
where f ∈ Rat3 is such that f ′ has only simple zeros, and (c1, c2, c3) are critical
points of f such that f is univalent (injective) on Dc1,c2,c3 .

Remark 2.4. We will frequently omit the triple (c1, c2, c3) from our notation and
simply write f ∈ R. Given a choice of c1, c2, c3 as in Definition 2.3, we denote by
cf the remaining critical point of f .

Definition 2.5. Let (f, (c1, c2, c3)) ∈ R, and D = Dc1,c2,c3 . Let M denote the
Möbius transformation determined by:

(1) M(c1) = c1,
(2) M(c2) = c3,
(3) M(c3) = c2.

We define σf : f(D) → Ĉ by the following diagram:

D D∗

f(D) Ĉ

M

f

σf

f−1

Remark 2.6. We note that the map M of Definition 2.5 is an involution. We also
remark that the definition of σf depends not only on f ∈ R, but also a choice (and
ordering) of the critical points c1, c2, c3.

Remark 2.7. When f is R-symmetric, and c1 ∈ R with c2 = c3, the map σf is the
Schwarz function of the quadrature domain f(D). Thus the family R contains the
Schwarz functions of simply connected R-symmetric quadrature domains.

Definition 2.8. Let f ∈ R. We define the fundamental tile of f by

Tf := Ĉ \ (f(D) ∪ {f(c1), f(c2), f(c3)}) .
The escaping set of σf is defined by:

I(σf ) := {z ∈ Ĉ : σn
f (z) ∈ Tf for some n ≥ 0}.

Proposition 2.9. Let f ∈ R, and let U := Ĉ \ Tf . Then

σf : σ−1
f (Tf ) → Tf

is a degree 3 covering map (possibly branched), and

σf : σ−1
f (U) → U
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is a degree 2 covering map (possibly branched). The only branched point of σf is
f ◦M(cf ).

Proof. Note that f : Ĉ → Ĉ is 3 : 1, and f : D → f(D) is 1 : 1. Thus the degree
statements follow from the diagram of Definition 2.5. Note that f has only four
critical points: c1, c2, c3, cf , and cf �∈ Dc1,c2,c3 since f is univalent in Dc1,c2,c3 .
Thus from the the diagram of Definition 2.5 we see that σf has exactly one critical
point at f ◦M(cf ). �
Definition 2.10. Let f ∈ R. We define the filled Julia set of σf by:

K(σf ) := Ĉ \ I(σf ).

The Julia set and Fatou set of σf are defined by

J (σf ) := ∂K(σf ), F(σf ) := intK(σf )

respectively.

Remark 2.11. We will sometimes omit the dependence on f from our notation when
f is clear from the context, and write, for instance, T in place of Tf , or σ in place
of σf .

Proposition 2.12. Let f ∈ R. Then I(σf ) is open.

Proof. We will show that I(σ) ⊂ intI(σ). Let z ∈ I(σ). Suppose first that z ∈ T . If
z �∈ f(∂D), it is clear that z ∈ intT ⊂ intI(σ), so we assume that z ∈ f(∂D). Since
f(∂D) \ {f(c1), f(c2), f(c3)} is preserved set-wise by σ, we have σ(z) ∈ f(∂D) \
{f(c1), f(c2), f(c3)}. Thus for a small neighborhood U of z, we have that

σ(U ∩ f(D)) ⊂ Ĉ \ f(D).

Thus U ∩ f(D) ⊂ I(σ), and so z ∈ intI(σ). Similar reasoning shows that if z ∈
σ−n(I(σ)) for some n > 0, then z ∈ I(σ). �
Remark 2.13. Proposition 2.12 indicates the importance of the requirement that the
Möbius transformation M of Definition 2.5 preserves (set-wise) the critical points
c1, c2, c3. Without this requirement, one would have, for instance, isolated points
in the Julia set (generically).

Proposition 2.14. Let f ∈ R. Then K(σf ) is compact, full, and

(2) K(σf ) = J (σf ) � F(σf ).

Proof. That K(σ) is closed follows from Proposition 2.12. Thus K(σ) is compact

with respect to the spherical metric on Ĉ. Relation (2) follows. Now observe once
more that f(∂D)\{f(c1), f(c2), f(c3)} is preserved set-wise by σ. Thus each of the
three components of σ−1(T ) have non-empty intersection with T , and so σ−1(T )∪T
is connected. Similar reasoning shows inductively that

k⋃
n=0

σ−n(T )

is connected for each k ≥ 0. Thus connectivity of I(σ) follows, and so K(σ) is
full. �
Proposition 2.15. Let f ∈ R. Then J (σf ) and F(σf ) are both totally invariant
under σf .
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Proof. That F(σ) is totally invariant follows from the observation that σ is an open
mapping. As

σ(J (σ)) ⊂ K(σ),

total invariance of J (σ) now follows from total invariance of F(σ). �
Corollary 2.16. Let f ∈ R. Then the family (σn

f )
∞
n=1 is normal in F(σf ).

Proof. Given z ∈ F(σ), all iterates of σn are defined in a sufficiently small neigh-

borhood U of z by definition of F(σ). As σn(U) ⊂ f(D) for all n, and Ĉ \ f(D) is
open, the result follows from elementary criteria for normality. �
Proposition 2.17. Let f ∈ R. Then K(σf ) is connected if and only if f ◦M(cf ) �∈
I(σf ).

Remark 2.18. The proof of Proposition 2.17 mimics a proof (see Problem 9-e of
[Mil06]) that the basin of infinity of a polynomial p is connected if and only if all
finite critical points of p have bounded orbit.

Proof. Let U := Ĉ \ Tf as in Proposition 2.9, and define V := int(U) = Ĉ \
Tf . Note that any component of σ−1

f (V ) is simply connected by the maximum

modulus principle, so that the Euler Characteristic χ(σ−1
f (V )) may be identified

with the number of components of σ−1
f (V ). The map σf : σ−1

f (U) → U is a degree

2 (possibly) branched cover by Proposition 2.9, so that applying the Riemann-
Hurwitz formula to σf : σ−1

f (V ) → V yields:

(3) 2 · χ(V )− χ(σ−1
f (V )) = #{critical points of σf in σ−1

f (V )}
(more precisely we apply the Riemann-Hurwitz formula to each component of
σ−1
f (V )). Since V is simply connected, (3) implies:

2−#{components of σ−1
f (V )} = #{critical points of σf in σ−1

f (V )}.
Let c := f ◦ M(cf ). Since c is the only critical point of σf by Proposition 2.9, it

follows that σ−1
f (V ) is connected if and only if c ∈ σ−1

f (V ) if and only if σf (c) �∈ Tf .

If σ−1
f (V ) is connected, we can mimic the above reasoning to conclude that then

σ−2
f (V ) is connected if and only if σ2

f (c) �∈ Tf . Inductively, we see that if σ−k
f (V )

is connected, then σ−k−1
f (V ) is connected if and only if σk+1

f (c) �∈ Tf . Thus if

c �∈ I(σf ), K(σf ) is a nested intersection of compact connected sets and hence
connected. If c ∈ I(σf ), then letting k be the smallest positive integer such that

σk
f (c) ∈ Tf , we see from the above that σ−k

f (V ) is disconnected, and hence so is

K(σf ). �
Remark 2.19. Proposition 2.17 defines a connectedness locus for the family R. Fig-
ure 4 shows a zoom of the locus for a 1-dimensional subfamily of R, in comparison
with the connectedness locus for the quadratic family.

3. Hyperbolic dynamics

Definition 3.1. Let f ∈ R, and suppose that p ∈ f(D) is such that σf (p) = p. We
will call λ := σ′

f (p) the multiplier of p. If |λ| < 1, we call p attracting, and define the

basin of attraction A = A(p) to be the set of x ∈ K(σf ) such that limn→∞ σn
f (x)

exists and is equal to p. The immediate basin of attraction A0 is defined to be the
connected component of A containing p.
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Theorem 3.2 (Kœnig’s linearization). Let f ∈ R be such that σf has a fixpoint at
p of multiplier λ where 0 < |λ| < 1. Then there is a holomorphic map φ : A → C

with φ(p) = 0 such that the diagram

A A

C C

σf

φ φ

λ·

commutes. Moreover, φ is conformal in a neighborhood of 0. Let φ−1 denote the
inverse of φ defined near 0. There is a maximal open disc Dr centered at the origin
to which φ−1 extends conformally. The map φ−1 extends homeomorphically to ∂Dr,
and φ−1(∂Dr) contains a critical point of σf .

Proof. We need only observe that for such a p, we have that p ∈ F(σf ) and hence
A ⊂ F(σf ). Thus denoting the Riemann surface S := F(σf ), we have σf : S → S
by Proposition 2.15. The conclusions listed in the theorem now follow directly from
applying Theorem 8.2, Corollary 8.4, and Lemma 8.5 of [Mil06] to the holomorphic
dynamical system σf : S → S. �

Theorem 3.3 (Böttcher). Let f ∈ R be such that σf (p) = p, σ′
f (p) = 0, and let

A := A(p). Then there is a conformal map φ : A → D such that the diagram

A A

C C

σf

φ φ

z �→z2

commutes.

Proof. As in the proof of Theorem 3.2, we consider the holomorphic dynamical sys-
tem σf : S → S with S := F(σf ). The existence of a holomorphic map φ satisfying
the conclusions of the theorem follows directly from Theorem 9.1 of [Mil06]. By
Proposition 2.9, σf has no other critical points in S, and so by Theorem 9.3 of
[Mil06], the map φ is conformal in A. �

Remark 3.4. We will refer to φ as in the conclusion of Theorem 3.2 as the Kœnig
coordinate for σf , and φ as in the conclusion of Theorem 3.3 as the Böttcher
coordinate for σf .

Theorem 3.5. Let f ∈ R, p ∈ Pol2 be such that σf and p each have an attracting
fixed point of the same multiplier, with basins of attraction Aσ, Ap, respectively.
Then there is a conformal map ψ : Aσ → Ap such that ψ ◦ σf ◦ ψ−1 ≡ p on Ap.

Proof. We first assume that λ �= 0. Let φσ, φp denote the Kœnig coordinates for
σ, p, respectively. Let Dr, as in Proposition 3.2, denote the maximal disc centered
at 0 to which φ−1

σ extends conformally. By multiplying φσ by a real number, we
may assume that Dr is also the maximal disc centered at 0 to which φ−1

p extends

conformally. Thus, by Lemma 8.5 of [Mil06], φ−1
p (∂Dr) contains a critical point

cp of p, and by Theorem 3.2, φ−1
σ (∂Dr) contains the critical point cσ of σ. By

multiplying φσ by a unimodular constant, we may assume that

(4) φ−1
p ◦ φσ(cσ) = cp.
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Now, as φσ, φp are Kœnig coordinates, we have

(5) (φ−1
p ◦ φσ) ◦ σ ◦ (φ−1

p ◦ φσ)
−1 ≡ p on φ−1

p

(
Dr

)
.

Thus by (4) and (5), we have that

(6) φ−1
p ◦ φσ(σ(cσ)) = p ◦ φ−1

p ◦ φσ(cσ) = p(cp).

Moreover, as σ has only one critical point by Proposition 2.9,

(7) σ : A \ {cσ} → A \ {σ(cσ)} and p : A \ {cp} → A \ {p(cp)}
are both (unbranched) covering maps. Thus, using (4) and (6), we have by iterative
lifting under the coverings (7), that

φ−1
p ◦ φσ : φ−1

σ (Dr) \ {σ(cσ)} → φ−1
p (Dr) \ {p(cp)}

extends to a conformal map

φ−1
p ◦ φσ : A \ {cσ, σ(cσ)} → A \ {cp, p(cp)} satisfying

(φ−1
p ◦ φσ) ◦ σ ◦ (φ−1

p ◦ φσ)
−1 ≡ p on A \ {cp, p(cp)}.

The above relation was already shown to hold at the points cp, p(cp) in (4), (6), so
that we have proven the existence of a conformal conjugacy φ−1

p ◦ φσ : Aσ → Ap

between σ|A, p|A.
Lastly, we remark that in the case λ = 0, one readily checks that ψ := φ−1

p ◦ φσ

is the desired conjugacy, where φσ, φp now denote the Böttcher coordinates for σ,
φ, respectively. �

4. Modular group structure

Notation 4.1. We will use the notation α, β to denote the maps:

(8) α(z) :=
−1

z
, β(z) := z + 2.

We denote by Γ the subgroup of PSL(2,Z) generated by α, β ∈ PSL(2,Z).

Notation 4.2. We denote by:

(9) U :=

{
z ∈ H : −1 < Re(z) < 1

}
∩ {z ∈ H : |z| > 1} , and

(10) D := U ∪ {z ∈ H : Re(z) = −1} ∪ {z ∈ H : |z| = 1,Re(z) ≤ 0}.

Proposition 4.3. The set D is a fundamental domain for Γ.

Proof. First we prove that for any z ∈ H, there exists g ∈ Γ with gz ∈ D. Note the
identity:

(11) Im

(
az + b

cz + d

)
=

Im(z)

|cz + d|2 for

(
a b
c d

)
∈ PSL(2,Z).

Let z := x + iy. Then |cz + d|2 = (cx + d)2 + (cy)2. Thus, as h ranges over all
elements of Γ and z is fixed, |cz + d|2 stays bounded away from 0. Hence, by (11),
there exists g0 ∈ Γ such that Im(hz) ≤ Im(g0z) for all h ∈ Γ. In particular, we
have Im(αg0z) ≤ Im(g0z). Thus

(12) Im (αg0z) =
Im(g0z)

|g0z|2
≤ Im(g0z),
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T−1 D̃ T

T−1S S TS

Figure 5. An overlay of the fundamental domain D̃ for the group
PSL(2,Z) with the fundamental domain for Γ outlined by the dot-
ted lines and (|z| = 1) ∩H (see also Figure 1).

and so |g0z|2 ≥ 1. It follows then that for some n ∈ Z we have βng0z ∈ D as
needed.

Secondly, we prove that if z ∈ D, then gz �∈ D for all non-identity elements
g ∈ Γ. We will appeal to the standard result that

D̃ := D ∩ {z ∈ H : −1/2 ≤ Re(z) < 1/2}
is a fundamental domain for PSL(2,Z). The proof breaks up into several cases:

namely we wish to show that if z belongs to any of the regions D̃, T−1(D̃) ∩ D,

T (D̃) ∩ D, T−1S(D̃) ∩ D or TS(D̃) ∩ D (whose union constitutes D: see Figure

5) then gz �∈ D. We focus on the case that z ∈ T−1D̃ ∩ D as the other cases are
similar.

We will use the notation T (z) := z + 1, and S(z) := α(z). Let g ∈ Γ be a

non-identity element. Since T−1D̃ is also a fundamental domain for PSL(2,Z), it

cannot be the case that gz ∈ T−1D̃. Similarly, gz �∈ D̃ since otherwise we would
have g = T �∈ Γ. If gz ∈ TD̃∩D, then g = T 2, but T 2(T−1D̃∩D)∩D = ∅. We also

have T−1ST (T−1D̃ ∩D) ∩D = ∅, so that by the same reasoning, gz �∈ T−1S(D̃).

Lastly, if gz ∈ TS(D̃), then g = TST . But then Sg = T−1S−1 ∈ Γ (where we have
used the identity (ST )3 = I), and so SgS = T−1 ∈ Γ, and this is a contradiction as

Γ � PSL(2,Z). Thus we have proven that if z ∈ T−1D̃∩D and g ∈ Γ, then gz �∈ D.

In the other cases: z ∈ D̃, z ∈ T (D̃)∩D, z ∈ T−1S(D̃)∩D or z ∈ TS(D̃)∩D, one
similarly verifies that gz �∈ D.

�

Definition 4.4. Define the map ρ : H \ intU → H by

ρ(z) :=

⎧⎨
⎩

α(z) if |z| ≤ 1,
β−1(z) if Re(z) ≥ 1,
β(z) if Re(z) ≤ −1.

(13)
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Remark 4.5. Let M denote the Möbius transformation satisfying:

• M(1) = ∞,
• M(e2πi/3) = −1,
• M(e4πi/3) = 1,

so that M−1(U) is the hyperbolic triangle in D with vertices 1, e2πi/3, e4πi/3. Then
it is readily computed that:

(1) z 	→ M−1 ◦ α ◦M(z) is reflection in the circle perpendicular to |z| = 1 and
passing through the points e2πi/3, e4πi/3.

(2) z 	→ M−1 ◦ β−1 ◦M(z) is reflection in the circle perpendicular to |z| = 1
and passing through the points 1, e4πi/3.

(3) z 	→ M−1 ◦ β ◦M(z) is reflection in the circle perpendicular to |z| = 1 and
passing through the points 1, e2πi/3.

Let us denote τ (z) := M−1 ◦ ρ ◦M(z) for z ∈ D \ M−1(U). From (1), (2),
and (3) it follows that τ is precisely the reflection map defined in Section 3.1 of
[LLMM18a] (note that the map τ is denoted in [LLMM18a] by ρ). In Theorem
1.1 of [LLMM18a], it is proven that the Schwarz reflection map of f0(D) (where
f0(z) := z/(1 + z3/2)) is a conformal mating of z 	→ z2 and τ . Since the Schwarz
function of f0(D) is the complex conjugate of the Schwarz reflection map of f0(D),
one expects that the Schwarz function of f0(D) is a conformal mating of z 	→ z2

and ρ. Indeed, this is demonstrated in the course of the proof of Theorem A, and
corresponds to the “base case” c = 0 of Theorem A as mentioned in the Introduc-
tion.

Proposition 4.6. Let g ∈ Γ, and let n be the length of the word defining g with
respect to the symmetric generating set {α, β±1}. Then ρn ◦ g(D) = D.

Proof. We induct on the length of the word defining g ∈ Γ. In the base case (if
g = α, β, or β−1) then the statement is clear (with n = 1) from the definition of ρ. In
the inductive case, we let g = g1 . . . gn with each gi ∈ {α, β, β−1}. Suppose g1 = β.
Then g2 . . . gn(D) �∈ {z ∈ H : Re(z) < −1}, and so g(D) ∈ {z ∈ H : Re(z) > 1}.
Then ρ◦g(D) := β−1◦g(D) = g2 . . . gn(D), whence the inductive hypothesis applies
to show that ρn ◦ g(D) = D. The proof in the case that g1 = β−1 or g1 = α is
similar. �
Definition 4.7. Let f = (f, (c1, c2, c3)) ∈ R. We say f is regular if

(1) c1 = 1,
(2) Dc1,c2,c3 = D,
(3) f ◦M(cf ) �∈ I(σf ), and

(4) f(z) = f(z).

Theorem 4.8. Let f ∈ R be regular. Then there exists a conformal map φ : H → If
such that φ(D) = Tf and

(14) ρ(z) = φ−1 ◦ σf ◦ φ(z) for z ∈ H \D.

Proof. As f is regular, f has two non-real critical points on T which are symmetric
with respect to R. We will denote these critical points c, c, where Im(c) > 0. We
first define, by application of the Riemann mapping theorem1, a conformal map

(15) φ : U ∩ {z ∈ H : Re(z) > 0} → H \ f(D)
1We note that a definition of φ may be computed explicitly in terms of sinh and f−1.
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Figure 6. Illustrated is the definition of the map φ in Theorem
4.8. Words in α, β on the right indicate images under φ of the
corresponding tiles in H.

with

(16) φ(∞) = f(1), φ(1) = f(c) and φ(i) = f(−1).

Next, we extend the definition of φ to U as follows (see Figure 6). Let ι : C → C

denote reflection in the imaginary axis. Then using the Schwarz reflection principle
(in the imaginary axis in the z-plane, and the real-axis in the w-plane), we may
extend the definition of φ to a conformal map

(17) φ : U → C \ f(D) satisfying φ ◦ ι(z) = φ(z) for z ∈ U.

It follows then that φ(D) = Tf , as needed.
The maps

ρ : ρ−1(U) → U and σf : σ−1
f (intTf ) → intTf

are both degree 3 covers by Proposition 2.9 and property (3) of Definition 4.7, so

that we can lift φ by the covers ρ, σf . Let φ̂ denote the unique such lift so that

the extension of φ̂ to ρ−1(U) agrees with φ at the points 0, 1, ∞. Extend the

definition of φ to ρ−1(U) by φ(z) := φ̂(z) for z ∈ ρ−1(U). In fact, we claim that

φ and φ̂ agree on the lines x = 1 and x = −1: this follows directly from relation

(17) and the fact that φ̂ is a lift of φ. Similar considerations show that φ, φ̂ agree
on the semi-circle H ∩ {z ∈ C : |z| = 1}. Thus by removability of analytic arcs for
conformal mappings, we have that:

φ : D ∪ ρ−1(D) → Tf ∪ σ−1
f (intTf ) is conformal.

Recall that f is assumed to regular (Definition 4.7), and so in particular cf �∈
I(σf ). Thus

ρ : ρ−2(U) → ρ−1(U) and σf : σ−2
f (intTf ) → σ−1

f (intTf )

are both degree 2 coverings. Thus again there is a unique lift

φ̂ : ρ−2(U) → σ−2
f (intTf ) of φ : ρ−1(U) → σ−1

f (intTf )

such that φ̂ extends the definition of φ : ρ−1(U) → σ−1
f (intTf ). Defining φ(z) :=

φ̂(z) for z ∈ ρ−2(U), we have that:

φ : D ∪
2⋃

n=1

ρ−n(D) → Tf ∪
2⋃

n=1

σ−n
f (intTf ) is conformal.
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Since cf �∈ I(σf ), we can repeat this procedure to obtain a conformal map:

φ : D ∪
∞⋃

n=1

ρ−n(D) → Tf ∪
∞⋃

n=1

σ−n
f (intTf ).

Since

D ∪
∞⋃

n=1

ρ−n(D) = H and Tf ∪
∞⋃

n=1

σ−n
f (intTf ) = I(σf )

by Proposition 4.3 and Definition 2.8, respectively, the proof is finished. �

5. Conformal mating definition

We now define the notion of conformal mating in Theorem A. Our definitions
follow [PM12] loosely, to which we refer for a more extensive discussion of conformal
mating in the polynomial setting.

Remark 5.1. Let R̂ := R ∪ {∞}. The map ρ : R̂ → R̂ admits a Markov partition
with three partition pieces:

(1) I1 := {∞} ∪ (−∞,−1],
(2) I2 := [−1, 1] and
(3) I3 := [1,∞) ∪ {∞},

such that:

(1) ρ(I1) ⊂ I1 ∪ I2,
(2) ρ(I2) ⊂ I1 ∪ I3 and
(3) ρ(I3) ⊂ I2 ∪ I3.

The map z 	→ z2 on T also admits a Markov partition with intervals at endpoints 0,
e2πi/3, e4πi/3 (see Figure 7). It is readily checked that this Markov partition yields

the same transition matrix as for ρ : R̂ → R̂ given above. Since ρ is expansive (see

(2’) of [CR80]), one can define a homeomorphism E : R̂ → T such that E(∞) = 1,
E(1) = e2πi/3, E(−1) = e4πi/3, and

E−1 ◦ (z 	→ z2) ◦ E ≡ ρ.

Remark 5.2. Let p ∈ Pol2 such that J (p) is connected and locally connected.
Denote by φp : D∗ → B∞(p) the Böttcher coordinate for p such that φ′

p(∞) = 1.
We note that since ∂K(p) = J (p) is locally connected by assumption, it follows
that φp extends to a semi-conjugacy between z 	→ z2|T and p|J (p).

Definition 5.3. Let notation be as in Remark 5.2. We define an equivalence
relation ∼ on H �K(p) by specifying ∼ is generated by t ∼ φp ◦ E(t) for all t ∈ R̂.

Definition 5.4. Let p ∈ Pol2 such that J (p) is connected and locally connected,
and f ∈ R. We say that σf is a conformal mating of Γ with p if there exist
continuous mappings

ψp : K(p) → K(σf ) and ψΓ : H → I(σf )

conformal on F(p), H, respectively, such that

(1) ψp ◦ p(w) = σf ◦ ψp(w) for w ∈ K(p),

(2) ψΓ(U) = Tf with ψΓ ◦ ρ(z) = σf ◦ ψΓ(z) for z ∈ H \ intU ,
(3) ψΓ(z) = ψp(w) if and only if z ∼ w where ∼ is as in Definition 5.3.
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Figure 7. Illustrated is the conjugacy E : R̂ → T between ρ :
R̂ → R̂ and the map z 	→ z2 on T. Also marked are the relevant
Markov partitions.

6. Topology of the filled Julia set

Notation 6.1. We will denote

f0(z) :=
z

1 + z3/2
,

and σ0 := σf0 . We let A0 denote the basin of attraction of 0 for σ0.

Remark 6.2. One readily verifies the identity

(18)
1

f0(1/z)
= z +

1

2z2
.

Let σinv denote the Schwarz function of (18). The Schwarz-reflection map of (18)
is defined exactly as in Definition 2.5, but with the map z 	→ 1/z replacing the map
M . It is straightforward to verify then that the Schwarz-reflection map of (18) is

(19) z 	→ σinv(z).

The dynamics of (19) were studied in detail in [LLMM18a]. The proof of Theorem
6.4 follows directly from results of [LLMM18a]. The rest of the results in this
Section can also be deduced directly from results in [LLMM18a], but we include
proofs (mimicking those of [LLMM18a]) for the sake of the reader.

Proposition 6.3. A0 is connected.

Proof. Suppose by way of contradiction that A0 contains more than one component.
It must be then that A0 contains a Fatou component U �= A0 such that σ(U) = A0.
But 0 is a preimage of 0 (under σ) of multiplicity two, and 0 has only two preimages
(counted with multiplicity) under σ0 by Proposition 2.9. Thus we have reached a
contradiction. �
Theorem 6.4. ∂I(σ0) is locally connected.

Proof. Consider the Schwarz reflection map σinv as in Remark 6.2. We have the
relation

I(σinv) = I(σinv).
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Thus Lemma 5.12 of [LLMM18a] applies directly to show that ∂I(σinv), and hence
∂I(σinv), is locally connected. Since ∂I(σ0) is the image of ∂I(σinv) under z 	→ 1/z,
the theorem follows. �

Proposition 6.5. ∂I(σ0) = ∂A0.

Proof. Let z ∈ ∂A0. Suppose by way of contradiction that z �∈ ∂I(σ0). Then all
iterates σn

0 are defined, and normal, in some neighborhood U of z. The family
σn
0 |U∩A0

converges uniformly on compact subsets to the constant 0, and so the
same holds true of σn

0 |U . Thus z ∈ U ⊂ A0, and this is a contradiction.
We now prove that ∂I(σ0) ⊂ ∂A0. Let 0 < x < 1, and note that:

σ0

(
x

1 + x3/2

)
=

x2

x3 + 1/2
<

x

1 + x3/2
,

where the inequality is easily checked. It follows that f((0, 1)) ⊂ A0. Thus
f(1) ∈ ∂I(σ0). Let φ : H → I0 denote the conformal map of Theorem 4.8. By
Theorem 6.4 and Carathéodory’s Theorem (see Theorem 17.14 of [Mil06]), φ ex-

tends continuously to a surjective map φ : R̂ → ∂I0. One has φ(∞) = f(1)
by definition of φ, and ρ(x) = φ−1 ◦ σf ◦ φ(x) for x ∈ R. Thus if x ∈ R is
such that ρn(x) = ∞ for n > 0, then σn

f ◦ φ(x) = f(1), and so we also have

φ(x) ∈ ∂A0. As {x ∈ R : ρn(x) = ∞ for some n > 0} is dense in R, it follows that
∂I(σ0) ⊂ ∂A0. �

Proposition 6.6. ∂I(σ0) is a Jordan curve.

Proof. By Theorem 6.4, ∂I(σ0) is locally connected. Thus any Riemann map

φ : Ĉ \ D → I(σ0) extends continuously to a surjective map φ : T → ∂I(σ0)
by Carathéodory’s Theorem. Suppose by way of contradiction that φ(z1) = φ(z2)
for z1 �= z2 where z1, z2 ∈ T. Then φ(z1) = φ(z2) is a cut-point of I(σ0), and the
curve

(20) {φ(tz1) : t ≥ 1} ∪ {φ(tz2) : t ≥ 1} ∪ {φ(z1)}

separates ∂I(σ0) \ {φ(z1)}. If z ∈ ∂I(σ0) \ {φ(z1)}, then any neighborhood of z
intersects A0 by Proposition 6.5. Thus (20) also constitutes a separation of A0,
which contradicts connectivity of A0 (Proposition 6.3). �

Corollary 6.7. J (σ0) is a Jordan curve, and J (σ0) = ∂I(σ0) = ∂A0.

Proof. Since J (σ0) := ∂K(σ0) and K(σ0) = Ĉ \ I(σ0), it follows that J (σ0) =
∂I(σ0) and so J (σ0) is a Jordan curve by Proposition 6.6. That ∂I(σ0) = ∂A0 is
the statement of Proposition 6.5. �

7. Quasiconformal surgery

Remark 7.1. In this remark, we summarize the discussion in Section 4.2.1 of [BF14],
to which we refer for more details. We let

Bλ(z) := z
z + λ

1 + λz
, where λ ∈ D.



120 K. LAZEBNIK

Let λ ∈ D \ {0}, and choose r > |λ|. Let hλ be a quasiregular interpolation defined
on D√

r \ Dr between the degree 2 maps Bλ||z|=r and z 	→ z2||z|=√
r. We define

gλ(z) :=

⎧⎨
⎩

z2 if z ∈ D \ D√
r,

hλ(z) if z ∈ D√
r \ Dr,

Bλ(z) if z ∈ Dr.
(21)

We define μλ ∈ L∞(D√
r) by μλ(z) = 0 for z ∈ Dr and μλ ≡ (hλ)z/(hλ)z in

D√
r \Dr. Lastly, we extend μλ to D by pulling back μλ|D√

r
under the map z 	→ z2

on D \ D√
r. Thus μλ ∈ L∞(D), and it is readily verified that μλ is gλ-invariant.

Proposition 7.2. Let λ ∈ D and gλ, μλ, Bλ as in Remark 7.1. Then there exists
a quasiconformal integrating map φλ : D → D for μλ such that φλ ◦ gλ ◦ φ−1

λ = Bλ.

Proof. Let φλ : D → D be an integrating map for μλ such that φλ(0) = 0 and
φλ(1) = (1 − λ)/(1 − λ). Then φλ ◦ gλ ◦ φ−1

λ is a Blaschke product, and since

φλ ◦ gλ ◦ φ−1
λ fixes (1− λ)/(1− λ), the conclusion follows. �

Definition 7.3. Let Φ : A0 → D be the Böttcher coordinate of Theorem 3.3
applied to σ0|A0

. Define νλ to be the pullback (under φ) of μλ:

νλ(z) := μλ(Φ(z))
∂zf(z)

∂zf(z)
for z ∈ A0,

and νλ(z) = 0 for z �∈ A0. Thus ||νλ||L∞(C) < 1.

Remark 7.4. Suppose λ ∈ D ∩ R. Then the interpolation hλ of Remark 7.1 can be
chosen to satisfy h(z) = h(z), and hence the Beltrami coefficient μλ will satisfy the
same relation. The Böttcher coordinate Φ : A0 → D of σ0|A0

can also be chosen to

satisfy Φ(z) = Φ(z), and hence νλ will satisfy the same relation. Thus if we denote
by ψλ : C → C an integrating map for νλ, we may ensure that

(22) ψλ(z) = ψλ(z).

Theorem 7.5. Let λ ∈ (−1, 1), and ψλ : C → C an integrating map for νλ
satisfying (22). Then ψλ ◦ f0(D) is a quadrature domain.

Proof. We define the function

Fλ(z) :=

{
σ0(z) if z ∈ f0(D) \A0,
Φ−1 ◦ gλ ◦ Φ(z) if z ∈ A0.

(23)

We claim that Fλ is quasiregular. Indeed, σ0 and Φ−1 ◦gλ ◦Φ are both quasiregular
in f0(D) \ A0, A0, respectively. Moreover, σ0 and Fλ agree on a neighborhood of
∂A0 (recall ∂A0 is locally connected by Theorem 6.4) by definition of gλ. Thus Fλ

is quasiregular. Observing that νλ is Fλ-invariant (since μλ is gλ-invariant), we see
that ψλ ◦ Fλ ◦ ψ−1

λ is holomorphic in ψλ ◦ f0(D). Let
σλ(z) := ψλ ◦ Fλ ◦ ψ−1

λ (z) for z ∈ ψλ ◦ f0(D).
By (22), we have the relation:

σλ(z) = z for z ∈ ψλ ◦ f0(T).
Thus by Lemma 2.3 of [AS76], the domain ψλ ◦ f0(D) is a quadrature domain and
hence has a Schwarz function σ. Since σ = σλ on ψλ ◦ f0(D), we have σ = σλ. �
Notation 7.6. Let ψλ be as in Theorem 7.5. As in the proof of Theorem 7.5, we
will denote the Schwarz function of ψλ ◦ f0(D) by σλ.
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Corollary 7.7. Let λ ∈ (−1, 1). Then ψλ(0) is a fixed point of σλ with multiplier
λ.

Proof. We continue with notation as in the proof of Theorem 7.5. Unravelling the
definitions, we have

(24) σλ ◦ ψλ(0) = ψλ ◦ Φ−1 ◦Bλ ◦ Φ ◦ ψ−1
λ ◦ ψλ(0).

From (24) it is evident that ψλ(0) is fixed under σλ. Noting that ψλ and Φ are both
conformal in a neighborhood of 0, it follows that σ′

λ(ψλ(0)) = λ sinceB′
λ(0) = λ. �

Proof of Theorem A. Let c ∈ (−.75, .25). Then pc has a fixed point of multiplier
λc ∈ (−1, 1). Let σ := σλc

be the Schwarz function of the quadrature domain
ψλc

◦ f0(D) as in Theorem 7.5. We will show that σ is a conformal mating of pc
and Γ, namely we will verify Conditions (1)–(3) in Definition 5.4, starting with
Condition (1).

By Corollary 7.7, σ has a fixed point of multiplier λc. Then by Theorem 3.5,
there is a conformal map ψp : F(p) → F(σ) satisfying

(25) ψp ◦ p(z) = σf ◦ ψp(z) for z ∈ F(p).

Note J (σ) is a Jordan curve since it is a quasiconformal image of the Jordan curve
∂I(σ0) (see Proposition 6.6). Thus since J (p) is a Jordan curve, the relation (25)
extends to ψp : J (p) → J (σ). Thus we have verified Condition (1).

Next we consider Condition (2) of Definition 5.4. As ψλ ◦f0(D) is a R-symmetric
quadrature domain, it is readily checked that there is a regular function (see Def-
inition 4.7) f such that σ = σf . Let ψΓ : H → I(σ) be the map obtained by
applying Theorem 4.8 to the regular map f . Then by Theorem 4.8, we have that
ψΓ(U) = Tf and

(26) ψΓ ◦ ρ(z) = σf ◦ ψΓ(z) for z ∈ H \ intU.
Since ∂I(σ) = J (σ) is a Jordan curve by Proposition 6.6, the conformal map ψΓ

extends to a homeomorphism ψΓ : R̂ → J (f) satisfying (26) for z ∈ R̂.
Lastly, we verify Condition (3) of Definition 5.4. We first show that

(27) ψΓ(t) = ψp(φp ◦ E(t)) for all t ∈ R̂.

We record the relations

E ◦ ψ−1
Γ ◦ σ(w) = (z 	→ z2) ◦ E ◦ ψ−1

Γ (w) for w ∈ J (σ), and(28)

ψp ◦ φp(z
2) = σ ◦ ψp ◦ φp(z) for z ∈ T.(29)

Using (28) and (29) we compute

(30) E ◦ ψ−1
Γ ◦ ψp ◦ φp(z

2) = (z 	→ z2) ◦ E ◦ ψ−1
Γ ◦ ψp ◦ φp(z) for z ∈ T.

In other words,

(31) E ◦ ψ−1
Γ ◦ ψp ◦ φp : T → T

is an orientation-preserving homeomorphism of T, which conjugates z 	→ z2 to
itself. The only such map is the identity, and so we have:

(32) E ◦ ψ−1
Γ ◦ ψp ◦ φp(s) = s for s ∈ T.

Thus, the relation (27) follows by taking s = E(t) in (32).



122 K. LAZEBNIK

U

γ1γ−1
1

γ2γ−1
2

Figure 8. Illustrated is a fundamental domain U of the group Γ3,
together with several images under U of elements of Γ3. The group
Γ3 is shown acting on H rather than on D (as in Definition 8.1) in
order to be consistent with the convention for Γ ≡ Γ2. Labels are
affixed to those “tiles” arising from words of length 1.

It remains to show that if ψΓ(z) = ψp(w), then z ∼ w. To this end, let us assume

that z, w are such that ψΓ(z) = ψp(w). Note then that this implies z = t ∈ R̂ and

w = φp(s) for s ∈ T. Thus t = ψ−1
Γ ◦ ψp ◦ φp(s). By (32), we also have

ψ−1
Γ ◦ ψp ◦ φp(s) = E−1(s).

We conclude that s = E(t). Thus since t ∼ φp ◦ E(t) by definition of ∼, and z = t
and w = φp(s) = φp ◦ E(t), we conclude that z ∼ w as needed. �

8. Simultaneous uniformization

Definition 8.1. Let d ≥ 2. We define a Fuchsian group Γd as follows. Let (Cj)
d+1
j=1

be the Euclidean circles such that Cj intersects |z| = 1 at right-angles at the
points exp (2πi(j − 1)/(d+ 1)), exp (2πij/(d+ 1)). Denote the common radius of
the circles (Cj) by r, and denote the center of Cj by zj . The group Γd is defined
by generators

(33) γj(z) := zj +
r2

z − zj

for 1 ≤ j ≤ d/2 + 1 or 1 ≤ j ≤ (d + 1)/2 according to whether d is even or odd,
respectively.

Remark 8.2. When d = 2, the Fuchsian group Γ2 defined in Definition 8.1 is Möbius
conjugate to the group Γ of Theorem A. See Figure 8 for an illustration of the case
d = 3.

Definition 8.3. Let U denote the component of D\∪jCj containing 0, and let intCj

denote the bounded component of Ĉ \ Cj . We note that D \ U = �j (intCj ∩ D).

We define a map ρ : D \ U → D by ρ(z) := zj + r2/(z − zj) if z ∈ intCj ∩ D.
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Remark 8.4. Definition 5.4 of conformal mating is restricted to the class R, but the
definition is readily extended to maps of higher degree, or one which is quasicon-
formally conjugate to a map in class R. This is the setting in which we will work
below.

Sketch of Proof of Theorem B. We fix p, β as in the statement of Theorem B. Let

(34) f(z) :=
z

1 + zd+1/d
.

Then f is univalent in D, and σ := σf has a critical fixed point at 0 of degree d.
Let Aσ denote the basin of attraction of 0 for σ. There is a Böttcher coordinate
Φ : Aσ → D conjugating σ : Aσ → Aσ to the map z 	→ zd on D. As p is in the
principal hyperbolic component in Pold, p has a single attracting fixed point, and
all critical points of p are in the corresponding basin of attraction Ap. Thus letting
φp : Ap → D denote a conformal map, we have that φp ◦ p ◦ φ−1

p : D → D is an
expanding Blaschke product of degree d. Denote this Blaschke product by B. By
choosing an appropriate r < 1, we can mimic the definition of (21) and define a
quasiregular interpolation h between the degree d maps z 	→ zd on |z| = √

r and B
on |z| = r, so that:

g(z) :=

⎧⎨
⎩

zd if z ∈ D \ D√
r,

h(z) if z ∈ D√
r \ Dr,

B(z) if z ∈ Dr

(35)

is a degree d quasiregular map of D. As in Section 7, we may define a g-invariant
Beltrami coefficient μ on D by letting μ ≡ 0 in Dr, μ ≡ hz/hz in D√

r \ Dr, and
pulling back elsewhere. Next we define

F (z) :=

{
σ(z) if z ∈ f0(D) \A,
Φ−1 ◦ g ◦ Φ(z) if z ∈ A.

(36)

Let ν be the Beltrami coefficient defined on A by pulling back μ under Φ.
Now we consider the group structure of σ on the escaping set I = Iσ (see

Definition 2.8). By mimicking the proof of Theorem 4.8, we can show there exists
a conformal map φΓ : D → I, such that φΓ(U) = Tf and

(37) ρ(z) = φ−1
Γ ◦ σf ◦ φΓ(z) for z ∈ D \ U.

Since β ∈ β(Γd), there is a quasiconformal mapping φβ : C → C which conjugates

Γd to the quasi-Fuchsian group φβ ◦Γd ◦φ−1
β . Let μβ be defined in I as the pullback

of the standard conformal structure in φβ(D) under φβ ◦ φ−1
Γ : I → φβ(D). Extend

ν (up to now defined only in A) to the escaping set I by defining ν ≡ μβ in I.

Lastly, we define ν(z) = 0 for z ∈ Ĉ \ (A ∪ I).
We have defined ν so that ν is F -invariant: this follows from (37), the fact that

φβ conjugates Γd to φβ ◦Γd ◦φ−1
β , and that μ is g-invariant. Let ψ : C → C denote

a straightening map for ν. Define

(38) pc � β(z) := ψ ◦ F ◦ ψ−1(z) for z ∈ ψ ◦ f(D).
Then pc � β is holomorphic since ν is F -invariant. One readily checks that pc � β :
ψ(A) → ψ(A) and p : intK(p) → intK(p) are conformally conjugate. Likewise,

φβ ◦ φ−1
Γ ◦ ψ−1 : ψ(I) → φβ(D) defines a conjugacy between pc � β : ψ(I \ Tf ) → Ĉ

and φβ◦ρ◦φ−1
β : φβ(D)\φβ(U) → φβ(D). For f as in (18), one may mimic the proofs

in Section 6 (or Lemma 4.10 of [LMM20]) to show that A and I share a common
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boundary which is a Jordan curve. Thus the same holds for the common boundary
between the filled Julia set and escaping set of pc � β. The last verification in the
definition of conformal mating thus proceeds as in the proof of Theorem A. �

9. Remarks

We remark briefly on several questions arising from the present work. The first is
that the phase transition of Figure 3 is conjectural: we have neither formulated nor
proven a precise statement. One such statement would be that any family of (ap-
propriately normalized) R-symmetric, simply connected quadrature domains whose
Schwarz functions have attracting fixed points with multipliers → −1+ converge
(in the Hausdorff metric) to a quadrature domain of connectivity 2: the cardioid
and circle (up to a Möbius transformation). Moreover, the Schwarz function of the
limiting cardioid and circle should be a conformal mating of z 	→ z2 − .75 and Γ.

Another approach to the proof of Theorem A would be to formulate explicitly
the uniformizing Riemann maps of the simply connected quadrature domains, and
calculate the multiplier of the attracting fixed point. The difficulty would then be
in proving univalence of the maps. Nevertheless, we record the formulas. Consider
the maps

(39) ft(z) :=
z + t

1 + z3/2
.

Numerical evidence suggests that there exists t0 < 0 such that for t ∈ [t0, 1), the
map ft is univalent on the interior of the circle passing through the three finite
critical points of ft. Moreover, t = t0 yields a Schwarz function with a parabolic
fixed point, and as t → 1−, one has the limiting behavior as discussed above and
shown in Figure 3 (up to inversion). One can also give formulas for an analogous
family of maps conformal in the fixed domain D.

We have focused on the holomorphic setting in this work, however there is also
interest in studying the (anti-holomorphic) Schwarz reflection maps associated to
the family (39). Let Ct denote the circle passing through the three finite critical
points of ft. Numerical evidence indicates that there is a natural homeomorphism
of (1) the C-parameters t for which the maps (39) are univalent in the interior of Ct

with (2) the principal hyperbolic component (the main deltoid) in the parameter
space of the family z 	→ z2 + c: both are parametrized by the multiplier of the
relevant attracting fixed point. The boundary is of particular interest: simple
parabolics on the boundary of the main deltoid correspond to simply connected
quadrature domains, whereas the three double parabolics correspond to the cardioid
and circle.
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