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INTEGRAL BINARY HAMILTONIAN FORMS

AND THEIR WATERWORLDS

JOUNI PARKKONEN AND FRÉDÉRIC PAULIN

Abstract. We give a graphical theory of integral indefinite binary Hamilton-
ian forms f analogous to the one of Conway for binary quadratic forms and
the one of Bestvina-Savin for binary Hermitian forms. Given a maximal or-
der O in a definite quaternion algebra over Q, we define the waterworld of f ,
analogous to Conway’s river and Bestvina-Savin’s ocean, and use it to give a
combinatorial description of the values of f on O ×O. We use an appropriate
normalisation of Busemann distances to the cusps (with an algebraic descrip-
tion given in an independent appendix), the SL2(O)-equivariant Ford-Voronoi
cellulation of the real hyperbolic 5-space, and the conformal action of SL2(O)
on the Hamilton quaternions.

1. Introduction

In the beautiful little book [Con] (see also [Wei,Hat]), Conway uses Serre’s tree
XZ of the modular lattice SL2(Z) in SL2(R) (see [Ser2]), considered as an equivari-
ant deformation retract of the upper halfplane model of the hyperbolic plane H2

R,
in order to give a graphical theory of binary quadratic forms f . The components C
of H2

R −XZ consist of points closer to a given cusp p/q ∈ P1(Q) of SL2(Z) than to
all the other ones. When f is indefinite, anisotropic and integral over Z, Conway
constructs a line R(f) in XZ, called the river of f , separating the components C
of H2

R − XZ such that f(p, q) > 0 from the ones with f(p, q) < 0. This allows a
combinatorial description of the values taken by f on integral points.

Bestvina and Savin in [BeS] have given an analogous construction when R is
replaced by C, Z by the ring of integers OK of a quadratic imaginary extension K
of Q, H2

R by H3
R and XZ by Mendoza’s spine XOK

in H3
R for the Bianchi lattice

SL2(OK) in SL2(C) (see [Men], and also [Ash, §4]). They construct a subcomplex
O(f) of XOK

, called the ocean of f , for any indefinite anisotropic integral binary
Hermitian form f over OK , separating the components of H3

R−XOK
on whose point

at infinity f is positive from the negative ones, and prove that it is homeomorphic
to a 2-plane.

In this paper, we give analogs of these constructions and results for Hamilton’s
quaternions and maximal orders in definite quaternion algebras over Q.
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Let H be the standard Hamilton quaternion algebra over R, with conjugation
x �→ x, reduced norm n and reduced trace tr. Let O be a maximal order in
a quaternion algebra A over Q, which is definite (that is, A ⊗Q R = H), with
class number hA and discriminant DA. An example is given by the Hurwitz order
O = Z + Zi + Zj + Z

1+i+j+k
2 , in which case hA = 1 and DA = 2. We refer

for more information to [Vig] and Subsection 2.1. The Hamilton-Bianchi group
SL2(O), which is defined using Dieudonné determinant, is a lattice in SL2(H). It
acts discretely on the real hyperbolic 5-space H5

R with finite volume quotient, and
conformally on its space at infinity ∂∞H5

R = H∪ {∞}. The number of cusps of the

hyperbolic orbifold SL2(O)\H5
R is hA

2 by [KO, Satz 2.1, 2.2]; see also [PP2, §3].
Analogously to [Men] in the complex case, we give in Section 3 an appropri-

ate normalisation of the Busemann distance to the cusps, and we construct the
Ford-Voronoi cell decomposition of H5

R for SL2(O), so that the interior of the Ford-
Voronoi cell Hα consists of the points in H5

R closer to a given cusp α ∈ P1
r(A)

of SL2(O) than to all the others. If XO is the codimension 1 skeleton of the
Ford-Voronoi cellulation, called the spine of SL2(O), then the hyperbolic 5-orbifold
SL2(O)\H5

R retracts by strong deformations onto the finite 4-dimensional orbihe-
dron SL2(O)\XO . As explained in Appendix B, this orbihedron coincides (up to a
natural cellular isomorphism) with one of the “well-rounded” retracts of arithmetic
locally symmetric spaces of general linear groups constructed in [Ash] (extended to
retracts of their Borel-Serre compactifications in [AshC]), but our construction is
different and much more geometric. Actually, as in [Ash], we construct in Appendix
B an (h2

A − 1)-dimensional family of spines of SL2(O)\H5
R.

Using uniform 3-, 4- and 5-polytopes, we give in Example 4.4 whenDA = 2 and in
Example 4.5 when DA = 3 a complete description of the quotient SL2(O)\XO and
of the link of its vertex. For instance, if O is the Hurwitz order, then SL2(O)\XO is
obtained by identifying opposite faces and taking the quotient of any 4-dimensional
cell of XO by its stabilizer. In this case, a 4-dimensional cell of XO identifies with
the 24-cell (the self-dual convex regular Euclidean 4-polytope with Schläfli symbol
{3, 4, 3}), and its stabilizer is isomorphic with an index 2 subgroup of the Coxeter
group [3, 4, 3].

Following H. Weyl [Wey], we will call Hamiltonian form a Hermitian form over
H with anti-involution the conjugation. We refer to Subsection 2.3 and for instance
to [PP2] for background. See [PP2] also for a sharp asymptotic result on the
average number of their integral representations. Let f : H × H → R be a binary
Hamiltonian form, with

f(u, v) = a n(u) + tr(u b v) + c n(v),

which is integral over O (its coefficients a, b, c satisfy a, c ∈ Z and b ∈ O) and
indefinite (its discriminant Δ(f) = n(b)− ac is positive). We choose this definition
of integrality for simplicity as in [PP2], in order to avoid half-integral coefficients
in the matrix of the form. The group of automorphs of f is the arithmetic lattice

SUf (O) = {g ∈ SL2(O) : f ◦ g = f}.

If C is a Ford-Voronoi cell for SL2(O), let F (C) = f(a,b)
n(Oa+Ob) where ab−1 ∈ P1

r(A)

is the cusp of C. We will say that C is respectively positive, negative or flooded
if F (C) > 0, F (C) < 0 or F (C) = 0. Contrarily to the real and complex cases,
there are always flooded Ford-Voronoi cells, since by taking a Z-basis of O, the
Hamiltonian form f becomes an indefinite integral quadratic form over Z with
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8 ≥ 5 variables, hence always represents 0 by Meyer’s theorem. Our countably
many flooded Ford-Voronoi cells are thus the analogues of Conway’s two lakes for
an indefinite isotropic integral binary quadratic form over Z. On the components
of H2

R −XZ along the lakes, Conway proved that the values of such a form consist
of an infinite arithmetic progression. An analogous result holds in our case that we
only state when the class number is one in this introduction in order to simplify
the statement (see Proposition 5.3 for the general result.)

Proposition 1.1. If hA = 1, given a flooded Ford-Voronoi cell C, there exists a
finite set of nonconstant affine maps {ϕi : H → R : i ∈ F} defined over Q such
that the set of values of F on the Ford-Voronoi cells meeting C is

⋃
i∈F ϕi(O).

In order to simplify the next statement, assume from now on in this introduction
that the flooded Ford-Voronoi cells are pairwise disjoint. We define the waterworld
W (f) of f as the subcomplex of the spine XO separating positive Ford-Voronoi
cells from negative ones, that is, W (f) is the union of the cells of XO contained in
(the boundary of) both a positive and a negative Ford-Voronoi cell. The coned-off
waterworld CW (f) is the union of W (f) and, for all cells σ of W (f) contained in
a flooded Ford-Voronoi cell Hα, of the geodesic cone with base σ and vertex at
infinity α. The following result (see Section 5) in particular says that C W (f) is
a piecewise hyperbolic polyhedral 4-plane contained in the spine of SL2(O) except
for its ideal cells.

Let C (f) be the hyperbolic hyperplane of H5
R whose boundary is the projective

set of zeros {[u : v] ∈ P1
r(H) : f(u, v) = 0} of f .

Theorem 1.2. The closest point mapping from the coned-off waterworld CW (f)
to C (f) is an SUf (O)-equivariant homeomorphism.

Section 2 recalls the necessary information on the definite quaternion algebras
over Q, the Hamilton-Bianchi groups, and the binary Hamiltonian forms. Section 3
gives the construction of the normalized Busemann distance to the cusp, and uses
it in order to give a quantitative reduction theory à la Hermite (see for instance
[Bor2]) for the arithmetic group SL2(O). We describe the Ford-Voronoi cellulation
for SL2(O) and its spine XO in Section 4. We define the waterworlds and prove
their main properties in Section 5. The noncommutativity of H and the isotropic
property of f require at various points of this text a different approach than the
one in [BeS].

Recall (see for instance [PP2, §7] and Section 3) that there is a correspondence
between positive definite binary Hamiltonian forms with discriminant −1 and the
upper halfspace model of the real hyperbolic 5-space. In the independent Appendix
A, we give an algebraic formula for the Busemann distance of a point x ∈ H5

R to
a cusp α ∈ P1

r(A) in terms of the covolume of the O-flag associated with α, with
respect to the volume of the positive definite binary Hamiltonian form associated
with x, analogous to the one of Mendoza in the complex case. Furthermore, in the
proof of Theorem 3.5, we use the upper bound on the minima of positive definite
binary Hamiltonian forms given in [ChP]: If γ2(O) is the upper bound, on all
such forms f with discriminant −1, of the lower bound of f(u, v) on all nonzero
(u, v) ∈ O × O, then

(1) γ2(O) ≤
√
DA.
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2. Backgrounds

We refer to [PP2] for more informations on the objects considered in this paper,
and we only recall what is strictly needed.

2.1. Background on definite quaternion algebras over Q. A quaternion al-
gebra over a field F is a four-dimensional central simple algebra over F . We refer
to [Vig] for generalities on quaternion algebras. A real quaternion algebra is iso-
morphic either to M2(R) or to Hamilton’s quaternion algebra H over R, with basis
elements 1, i, j, k as an R-vector space, with unit element 1 and i2 = j2 = −1,
ij = −ji = k. We define the conjugate of x = x0 + x1i + x2j + x3k in H by
x = x0−x1i−x2j−x3k, its reduced trace by tr(x) = x+x, and its reduced norm by
n(x) = xx = xx. Note that n(xy) = n(x) n(y), tr(x) = tr(x) and tr(xy) = tr(yx)
for all x, y ∈ H. For every matrix X = (xi,j)1≤i≤p, 1≤j≤q ∈ Mp,q(H), we denote
by X∗ = (xj,i)1≤i≤q, 1≤j≤p ∈ Mq,p(H) its adjoint matrix. We endow H with the

Euclidean norm x �→
√
n(x), making the R-basis 1, i, j, k orthonormal.

Let A be a quaternion algebra over Q. We say that A is definite (or ramified
over R) if the real quaternion algebra A⊗QR is isomorphic to H, and we then fix an
identification between A and a Q-subalgebra of H. The reduced discriminant DA of
A is the product of the primes p ∈ N such that the quaternion algebra A⊗QQp over
Qp is a division algebra. Two definite quaternion algebras over Q are isomorphic if
and only if they have the same reduced discriminant, which can be any product of
an odd number of primes (see [Vig, page 74]).

A Z-lattice I in A is a finitely generated Z-module generating A as a Q-vector
space. An order in A is a unitary subring O of A which is a Z-lattice. In particular,
A = QO = OQ. Each order of A is contained in a maximal order. For instance
O = Z + Zi + Zj + Z

1+i+j+k
2 is a maximal order, called the Hurwitz order, in

A = Q+Qi+Qj +Qk with DA = 2. Let O be an order in A. The reduced norm
n and the reduced trace tr take integral values on O. The invertible elements of
O are its elements of reduced norm 1. Since x = tr(x)− x, any order is invariant
under conjugation.

The left order O�(I) of a Z-lattice I is {x ∈ A : xI ⊂ I}. A left fractional ideal
of O is a Z-lattice of A whose left order is O. A left ideal of O is a left fractional
ideal of O contained in O. A (left) ideal class of O is an equivalence class of nonzero
left fractional ideals of O for the equivalence relation m ∼ m′ if m′ = mc for some
c ∈ A×. The class number hA of A is the number of ideal classes of a maximal
order O of A. It is finite and independent of the maximal order O, and we have
hA = 1 if and only if DA = 2, 3, 5, 7, 13 (see for instance [Vig]).

The reduced norm n(m) of a nonzero left ideal m of O is the greatest common
divisor of the norms of the nonzero elements of m. In particular, n(O) = 1. By
[Rei, p. 59], we have

(2) n(m) = [O : m]
1
2 .

The reduced norm of a nonzero left fractional ideal m of O is n(cm)
n(c) for any c ∈ N−{0}

such that cm ⊂ O. By Equation (2), if m,m′ are nonzero left fractional ideals of O
with m′ ⊂ m, we have

(3)
n(m′)

n(m)
= [m : m′]

1
2 .
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For K = H or K = A, we consider K × K as a right module over K and we
denote by P1

r(K) = (K × K − {0})/K× the right projective line of K, identified
as usual with the Alexandrov compactification K ∪ {∞} where [1 : 0] = ∞ and
[x : y] = xy−1 if y 
= 0.

2.2. Background on Hamilton-Bianchi groups. Referring to [Fue, Die, Asl],
the Dieudonné determinant is the group morphism Det from the group GL2(H)
of invertible 2 × 2 matrices with coefficients in H to R∗

+, defined by, for every

g =

(
a b
c d

)
∈ GL2(H),

(4) (Det g)2 = n(a d) + n(b c)− tr(a c d b).

An easy computation allows to check that

(5) g−1 =
1

(Det g)2

(
a n(d)− c d b c n(b)− a b d

b n(c)− d c a d n(a)− b a c

)
.

If c 
= 0, we have (see loc. cit.)

(6) (Det g)2 = n(ac−1dc− bc).

The Dieudonné determinant is invariant under the adjoint map g �→ g∗. Let SL2(H)
be the group of 2 × 2 matrices with coefficients in H and Dieudonné determinant
1. We refer for instance to [Kel] for more information on SL2(H).

The group SL2(H) acts linearly on the left on the right H-module H × H. The
projective action of SL2(H) on P1

r(H), induced by its linear action on H×H, is the
action by homographies on H ∪ {∞} defined by

( a b
c d

)
· z =

⎧⎨
⎩

(az + b)(cz + d)−1 if z 
= ∞,−c−1d,
ac−1 if z = ∞, c 
= 0,
∞ otherwise.

We use the upper halfspace model {(z, r) : z ∈ H, r > 0} with Riemannian

metric ds2(z, r) =
ds2

H
(z)+dr2

r2 for the real hyperbolic space H5
R with dimension 5. Its

space at infinity ∂∞H5
R is hence H ∪ {∞}. The action of SL2(H) by homographies

on ∂∞H5
R extends to a left action on H5

R by

(7)
( a b

c d

)
· (z, r) =

( (az + b) (cz + d) + a c r2

n(cz + d) + r2 n(c)
,

r

n(cz + d) + r2 n(c)

)
.

In this way, the group PSL2(H) = SL2(H)/{± id} is identified with the group of
orientation preserving isometries of H5

R.
For any order O in a definite quaternion algebra A over Q, we define the

Hamilton-Bianchi group by

ΓO = SL2(O) = SL2(H) ∩ M2(O).

We have

(8) GL2(O) = SL2(O),

that is, M2(O)× = SL2(H) ∩ M2(O), which in particular proves that SL2(O) is a
subgroup of SL2(H). Indeed, if x ∈ M2(O)×, then x−1 ∈ M2(O), and by Equation
(4), since the ring O is stable by conjugation, and as n and tr take integral values
on O, the numbers (Detx)2 and (Detx−1)2 are positive integers, and inverses one
of the other. This proves the inclusion of the set on the left-hand side into the one
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on the right-hand side in Equation (8). Conversely, if x ∈ SL2(H) ∩ M2(O), then
by Equation (5), we have x−1 ∈ M2(O), thus proving the opposite inclusion.

Note that ΓO is a nonuniform arithmetic lattice in the connected real Lie group
SL2(H) (see for instance [PP1, page 382] for details). In particular, the quotient
real hyperbolic orbifold ΓO\H5

R has finite volume.

Remark. It would be very interesting to know if the image in PSL2(H) of SL2(O) is
commensurable (up to conjugation) to one of the lattices in SO0(1, 5) � PSL2(H)
studied by Vinberg [Vin], Allcock [All], Everitt [Eve], Ratcliffe-Tschantz [RaT] and
others.

Recall that the maximal order O is left-Euclidean if for all a, b ∈ O with b 
= 0,
there exists c, d ∈ O with a = cb+ d and n(d) < n(b), or, equivalently, if for every
α ∈ A, there exists c ∈ O such that n(α − c) < 1. By for instance [Vig, p. 156],
O is left-Euclidean if and only if DA ∈ {2, 3, 5}. The following elementary lemma
gives a nice set of generators for SL2(O) when O is left-Euclidean. For us, it will
be useful in Section 4. See also [Spe, §4] and [JW, §8] for the first claim for the
Hurwitz order.

Lemma 2.1. If O is left-Euclidean, then the group SL2(O) is generated by the el-

ements J =

(
0 1
1 0

)
, Tw =

(
1 w
0 1

)
for w ∈ O and Cu,v =

(
u 0
0 v

)
for u, v ∈ O×.

In particular, the anti-homography z �→ z normalizes the action by homographies of
SL2(O) on H.

Proof. The last claim follows from the first one, since we have J−1 = J , T−1
w = T−w,

C−1
u,v = Cu−1,v−1 and for all z ∈ H, we have

J · z = J · z, Tw · z = Tw · z, Cu,v · z = Cv−1,u−1 · z.

LetG be the subgroup of SL2(O) generated by the matrices J, Tw, Cu, v for w ∈ O
and u, v ∈ O× (their Dieudonné determinant is indeed 1). Let us prove that any

element M =

(
a b
c d

)
∈ SL2(O) belongs to G, by induction on the integer n(c). If

c = 0, then M = Ca, d Ta−1b belongs to G. Otherwise, since O is left-Euclidean,
there exists w, c′ ∈ O such that a = wc+ c′ and n(c′) < n(c). Hence

M =

(
1 w
0 1

)(
0 1
1 0

)(
c d
c′ b− w d

)
belongs to G by induction. �

Corollary 2.2. If O is left-Euclidean, if {w1, w2, w3, w4} is a Z-basis of O and if
S is a generating set of the group of units O×, then the set

{J, Tw1
, Tw2

, Tw3
, Tw4

} ∪ {Cu,v : u, v ∈ S}

is a generating set for SL2(O).

The action by homographies of the group ΓO = SL2(O) preserves the right
projective space P1

r(A) = A∪ {∞}, which is the set of fixed points of the parabolic
elements of ΓO acting on H5

R ∪ ∂∞H5
R. In particular, the topological quotient space

ΓO\(H5
R ∪ P1

r(A)) is the compactification of the finite volume hyperbolic orbifold
ΓO\H5

R by its (finite) space of ends.
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2.3. Background on binary Hamiltonian forms. A binary Hamiltonian form
f is a map H×H → R with

f(u, v) = a n(u) + tr(u b v) + c n(v)

whose coefficients a = a(f), b = b(f) and c = c(f) satisfy a, c ∈ R, b ∈ H. Note
that f((u, v)λ) = n(λ)f(u, v) for all u, v, λ ∈ H.

The matrix M(f) of f is the Hermitian matrix
( a b

b c

)
, so that

f(u, v) =
( u
v

)∗ ( a b

b c

) ( u
v

)
.

The discriminant of f is

Δ(f) = n(b)− ac.

An easy computation shows that the Dieudonné determinant of M(f) is equal to
|Δ(f)|. A binary Hamiltonian form is indefinite if takes both positive and negative
values. It is easy to check that a form f is indefinite if and only if Δ(f) is positive;
see [PP2, §4].

The linear action on the left on H×H of the group SL2(H) induces an action on
the right on the set of binary Hamiltonian forms f by precomposition. The matrix
of f ◦ g is M(f ◦ g) = g∗ M(f) g. For every g ∈ SL2(H), we have

(9) Δ(f ◦ g) = Δ(f).

For every indefinite binary Hamiltonian form f , with a = a(f), b = b(f) and
Δ = Δ(f), let

C∞(f) = {[u : v] ∈ P1
r(H) : f(u, v) = 0}.

In P1
r(H) = H ∪ {∞}, the set C∞(f) is the 3-sphere of center − b

a and radius
√
Δ

|a|
if a 
= 0, and it is otherwise the union of {∞} with the real affine hyperplane
{z ∈ H : tr(zb)+ c = 0} of H. The values of f are positive on (the representatives
in H × H in) one of the two components of P1

r(H) − C∞(f) and negative on the
other one. The set

C (f) = {(z, r) ∈ H× ]0,+∞[ : f(z, 1) + a r2 = 0}

is the (4-dimensional) hyperbolic hyperplane inH5
R with boundary at infinity C∞(f).

For every g ∈ SL2(H), we have

(10) C∞(f ◦ g) = g−1 C∞(f) and C (f ◦ g) = g−1 C (f).

Given an order O in a definite quaternion algebra over Q, a binary Hamiltonian
form f is integral over O if its coefficients belong to O. Note that such a form f
takes integral values on O × O, but the converse might not be true. The lattice
ΓO = SL2(O) of SL2(H) preserves the set of indefinite binary Hamiltonian forms
f that are integral over O. The stabilizer in ΓO of such a form f is its group of
automorphs

SUf (O) = {g ∈ ΓO : f ◦ g = f}.
If f is integral over O, then SUf (O)\C (f) is a finite volume hyperbolic 4-orbifold,
since SUf (O) is arithmetic and by Borel-Harish-Chandra’s theorem (though it
might have been known before this theorem).
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3. On the reduction theory of binary Hamiltonian forms

and Hamilton-Bianchi lattices

In this section, we study the geometric reduction theory of positive definite
binary Hamiltonian forms, as in Mendoza [Men] for the Hermitian case. The results
will be useful in Section 5. We start by recalling the correspondence between H5

R

and positive definite binary Hamiltonian forms with discriminant −1.
Let Q be the 6-dimensional real vector space of binary Hamiltonian forms, and

Q+ its open cone of positive definite ones. The multiplicative group R×
+ of positive

real numbers acts on Q+ by multiplication. We will denote by R×
+f the orbit of

f ∈ Q+ and by P+Q+ the quotient space Q+/R×
+. It identifies with the image of

Q+ in the projective space P(Q) of Q.
Let 〈·, ·〉Q be the symmetric R-bilinear form (with signature (5, 1)) on Q such

that for every f ∈ Q,

〈f, f〉Q = −2Δ(f).

That is, for all f, f ′ ∈ Q, we have

(11) 〈f, f ′〉Q = a(f) c(f ′) + c(f) a(f ′)− tr( b(f) b(f ′) ).

By Equation (9), we have, for all f, f ′ ∈ Q and g ∈ SL2(H)

(12) 〈f ◦ g, f ′ ◦ g〉Q = 〈f, f ′〉Q.

Let Q+
1 the submanifold of Q+ consisting of the forms with discriminant −1,

and let Θ : H5
R → Q+

1 be the homeomorphism such that, for every (z, r) ∈ H5
R,

M(Θ(z, r)) =
1

r

(
1 −z

−z n(z) + r2

)
.

The fact that this map is well defined and is a homeomorphism follows by checking
that its composition by the canonical projection Q+ → P+Q+ is the inverse of the
homeomorphism denoted by

Φ : R×
+f �→

(
− b(f)

a(f)
,

√
−Δ(f)

a(f)

)
in [PP2, Prop. 22]. By loc. cit., the map Θ is hence (anti-)equivariant under the
actions of SL2(H): For all x ∈ H5

R and g ∈ SL2(H), we have

(13) Θ(gx) = Θ(x) ◦ g−1.

Let O be a maximal order in a definite quaternion algebra A over Q. For every
α ∈ A, let

Iα = Oα+ O,

which is a left fractional ideal of O. Let fα be the binary Hamiltonian form with
matrix

M(fα) =
1

n(Iα)

(
1 −α

−α n(α)

)
.

Note that fα is a positive scalar multiple of the norm form associated with α: for
all z ∈ H,

fα(u, v) =
(
u v

)
M(fα)

(
u
v

)
=

1

n(Iα)
n(u− αv).

Besides depending on α, the form fα does depend on the choice of the maximal
order O. But its homothety class R×fα depends only on α.
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Let f∞ be the binary Hamiltonian form whose matrix is M(f∞) =

(
0 0
0 1

)
,

that is, f∞ : (u, v) �→ n(v). Note that for every α ∈ P1
r(A) = A ∪ {∞}, the

form fα is nonzero and degenerate (its discriminant is equal to 0), and R×fα be-
longs to the boundary of P+Q+ in P(Q). The map Φ−1 : H5

R → P(Q) given
by x �→ R×

+Θ(x) extends continuously to an SL2(A)-(anti-)equivariant homeomor-
phism between H5

R ∪ P1
r(A) and its image in P(Q) by sending α to R×fα for every

α ∈ P1
r(A). Proposition 3.2 makes precise the scaling factor for the action of

SL2(A) on the forms fα for α ∈ P1
r(A). Its proof will use the following beautiful

(and probably well-known) formula.

Lemma 3.1. For all g =

(
a b
c d

)
∈ SL2(H) and z, w ∈ H such that g ·z, g ·w 
= ∞,

we have

n(g · z − g · w) = n(z − w)

n(cz + d) n(cw + d)
.

Proof. Since (
az + b aw + b
cz + d cw + d

)
= g

(
z w
1 1

)
and by taking the square of the Dieudonné determinant (see Equation (6)), we have

n(g · z − g · w) = n((az + b)(cz + d)−1 − (aw + b)(cw + d)−1)

=
1

n(cw + d)
n((az + b)(cz + d)−1(cw + d)− (aw + b))

=
1

n(cz + d) n(cw + d)
n((az + b)(cz + d)−1(cw + d)(cz + d)− (aw + b)(cz + d))

=
1

n(cz + d) n(cw + d)
n(z − w). �

Proposition 3.2. For all g =

(
a b
c d

)
∈ SL2(A) and α = [x : y] ∈ P1

r(A), we have

fg·α ◦ g =
n(Ox+ Oy)

n(O(ax+ by) + O(cx+ dy))
fα.

Note that this implies that fg·α ◦ g = fα if g ∈ SL2(O).

Proof. The result is left to the reader when α = ∞ or g · α = ∞; hence we assume
that α, g · α 
= ∞. By Lemma 3.1, for all z ∈ H such that g · z 
= ∞, we have

fg·α ◦ g(z, 1) = n(cz + d) fg·α(g · z, 1) =
n(cz + d)

n(Ig·α)
n(g · z − g · α)

=
1

n(Ig·α) n(cα+ d)
n(z − α) =

n(Iα)

n(Ig·α) n(cα+ d)
fα(z, 1).

The result easily follows. �

For all α ∈ P1
r(A) = A ∪ {∞} and x ∈ H5

R, let us define the distance from x to
the point at infinity α by

dα(x) = 〈fα,Θ(x)〉Q.

See Appendix A for an alternate description of the map dα : H5
R → R.
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The next result gives a few computations and properties of these maps dα (which
depend on the choice of the maximal order O). We will see afterwards that ln dα
is an appropriately normalised Busemann function for the point at infinity α.

Proposition 3.3.
(1) For all (z, r) ∈ H5

R and α ∈ A, we have

dα(z, r) =
1

r n(Iα)

(
n(z − α) + r2

)
,

and d∞(z, r) = 1
r .

(2) For all x ∈ H5
R and α = [u : v] ∈ P1

r(A), we have

dα(x) =
Θ(x)(u, v)

n(Ou+ Ov)
.

(3) For all g =

(
a b
c d

)
∈ SL2(A) and α = [x : y] ∈ P1

r(A), we have

dg·α ◦ g =
n(Ox+ Oy)

n(O(ax+ by) + O(cx+ dy))
dα.

In particular, if g ∈ SL2(O) and α ∈ P1
r(A), then dg·α ◦ g = dα.

Proof. (1) As M(fα) =
1

n(Iα)

(
1 −α

−α n(α)

)
and M(Θ(z, r)) = 1

r

(
1 −z

−z n(z) + r2

)
,

we have, by Equation (11),

dα(z, r) = 〈fα,Θ(z, r)〉Q =
1

r n(Iα)

(
(n(z)+r2)+n(α)−tr(α z)

)
=

n(z − α) + r2

r n(Iα)
.

The computation of d∞ is similar and easier.
(2) Let x = (z, r) ∈ H5

R and f = Θ(x). If v 
= 0, then α = uv−1, and by the
definition of Θ and Assertion (1),

f(u, v)

n(Ou+ Ov)
=

f(α, 1)

n(Iα)
=

1

n(Iα)

(
α 1

)
M(f)

(
α
1

)

=
n(α)− α z − z α+ n(z) + r2

r n(Iα)
=

n(z − α) + r2

r n(Iα)
= dα(x).

Similarly, if v = 0, then f(u,v)
n(Ou+Ov) = f(1, 0) = 1

r = dα(x).

(3) For every w ∈ H5
R, using the (anti-)equivariance property (13) of Θ, Equation

(12) and Proposition 3.2, we have

dg·α ◦ g(w) = 〈fg·α,Θ(gw)〉Q = 〈fg·α,Θ(w) ◦ g−1〉Q = 〈fg·α ◦ g,Θ(w)〉Q

=
n(Ox+ Oy)

n(O(ax+ by) + O(cx+ dy))
〈fα,Θ(w)〉Q

=
n(Ox+ Oy)

n(O(ax+ by) + O(cx+ dy))
dα(w). �

Since SL2(O) is a noncocompact lattice with cofinite volume in SL2(H) and set
of parabolic fixed points at infinity P1

r(A), there exists (see for instance [Bow])
a Γ-equivariant family of horoballs in H5

R centered at the points of P1
r(A), with

pairwise disjoint interiors. Since SL2(O)\H5
R may have several cusps as mentioned

in Section 1, there are various choices for such a family (see also Appendix B).
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We now use the normalized distance to the points of P1
r(A) in order to define a

canonical such family, and we give consequences on the structure of the orbifold
SL2(O)\H5

R.
For all α ∈ P1

r(A) and s > 0, we define the normalized horoball centered at α
with radius s as

Bα(s) = {x ∈ H5
R : dα(x) ≤ s}.

The above terminology is justified by the following result, which proves in partic-
ular that Bα(s) is indeed a (closed) horoball. Recall that the Busemann cocycle
β : ∂∞H5

R × H5
R × H5

R → R is defined, with t �→ ξt any geodesic ray with point at
infinity ξ ∈ ∂∞H5

R, by
(ξ, x, y) �→ βξ(x, y) = lim

t→+∞
d(x, ξt)− d(y, ξt).

Proposition 3.4. Let α ∈ P1
r(A) and s > 0.

(1) There exists cα ∈ R such that ln dα(x) = βα(x, (0, 1))+ cα for every x ∈ H5
R.

(2) If α ∈ A, then Bα(s) is the Euclidean ball of center
(
α, s n(Iα)

2

)
and radius

s n(Iα)
2 . If α = ∞, then Bα(s) is the Euclidean halfspace consisting of all (z, r) with

r ≥ 1
s .

(3) For all g ∈ SL2(O), we have g(Bα(s)) = Bg·α(s).

Proof. (1) If α = ∞, then for every (z, r) ∈ H5
R, we have dα(z, r) =

1
r and

β∞((z, r), (0, 1)) = β∞((0, r), (0, 1)) = − ln r,

hence the result holds with c∞ = 0.

If α ∈ A, since SL2(A) acts transitively on P1
r(A), let g =

(
a b
c d

)
∈ SL2(A)

be such that α = g · ∞. Recall that the Busemann function is invariant under the
diagonal action of SL2(H) on ∂∞H5

R×H5
R×H5

R and is an additive cocycle in its two
variables in H5

R. By Proposition 3.3(3) since ∞ = [1 : 0], we hence have, for every
x ∈ H5

R,

ln dα(x) = ln dg·∞(g(g−1x)) = ln
d∞(g−1x)

n(Oa+ Oc)

= β∞(g−1x, (0, 1))− ln n(Oa+ Oc) = βg·∞(x, g(0, 1))− ln n(Oa+ Oc)

= βα(x, (0, 1)) + βα((0, 1), g(0, 1))− ln n(Oa+ Oc).

Hence the result holds, and taking x = (0, 1), we have by Proposition 3.3(1)

cα = ln
n(α) + 1

n(Iα)
.

(2) If α ∈ A, for every (z, r) ∈ H5
R, by Proposition 3.3(1), we have dα(z, r) ≤ s

if and only if n(z − α) + r2 ≤ s r n(Iα), that is, if and only if

n(z − α) + (r − s n(Iα)

2
)2 ≤

(s n(Iα)
2

)2
.

The second claim of Assertion (2) is immediate.
(3) This follows from Proposition 3.3(3). �

The following result extends and generalizes a result for DA = 2 of [Spe, §5].

Theorem 3.5. Let O be a maximal order in a definite quaternion algebra A over
Q.



INTEGRAL BINARY HAMILTONIAN FORMS 137

(1) For all distinct α, β ∈ P1
r(A), the normalized horoballs Bα(1) and Bβ(1) have

disjoint interior. Furthermore, their intersection is nonempty if and only if α = ∞
and β ∈ O, or β = ∞ and α ∈ O, or α, β 
= ∞ and IαIβ = O(α − β), in which
case they meet in one and only one point.

(2) We have

H5
R =

⋃
α∈P1

r(A)

Bα

(√
DA

)
.

Before proving this result, let us make two remarks.
(i) Note that B0(1) and B∞(1) intersect (exactly at their common boundary

point (0, 1)) whatever the definite quaternion algebraA overQ is. Thus the constant
s = 1 in Assertion (1) is optimal. The family (Bα(1))α∈P1

r(A) is a (canonical) family
of maximal (closed) horoballs centered at the parabolic fixed points of SL2(O) with
pairwise disjoint interiors. Since SL2(O) is a lattice (hence is geometrically finite
with convex hull of its limit set equal to the whole H5

R), the quotient orbifold with
boundary SL2(O)\(H5

R −
⋃

α∈P1
r(A)Bα(1)

)
is compact (see for instance [Bow]).

(ii) Assertion (2) is a quantitative version of the standard geometric reduction
theory (see for instance [GR,Bor1,Leu]) for the structure of the arithmetic orbifold
SL2(O)\H5

R. It indeed implies that if R is a finite subset of SL2(A) such that R ·∞
is a set of representatives of SL2(O)\P1

r(A), and if Dγ is a fundamental domain for
the action on H of the stabilizer of ∞ in γ−1 SL2(O)γ for every γ ∈ R, then a weak
fundamental domain for the action of SL2(O) on H5

R is the finite union
⋃

γ∈R γSγ

where Sγ is the Siegel set

Sγ = (Dγ× ]0,+∞[ ) ∩ γ−1Bγ·∞(
√
DA).

Proof. (1) Note that two horoballs centered at distinct points at infinity, which are
not disjoint but have disjoint interior, meet at one and only one common boundary
point. Hence the last claim of Assertion (1) follows from the first two ones.

First assume that α = ∞, so that β ∈ A. By Proposition 3.4(2), we have
B∞(1) = {(z, r) ∈ H5

R : r ≥ 1} and Bβ(1) is the horoball centered at β with
Euclidean diameter n(Iβ) (see Figure 1). They hence meet if and only if n(Iβ) ≥ 1,
and their interiors meet if and only if n(Iβ) > 1. But since O ⊂ Iβ , by Equation
(3), we have n(Iβ) ≤ n(O) = 1 with equality if and only if Iβ = O, that is, β ∈ O.
The result follows.

H
βα

n(Iβ)
2

n(Iβ)

B∞(1)

n(Iα)
2

Figure 1. Disjointness of normalized horoballs Bα′(1) for α′ ∈ P1
r(A)
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Up to permuting α and β and applying the above argument, we may now assume
that α, β 
= ∞. The Euclidean balls Bα(1) and Bβ(1) meet if and only if the distance
dαβ between their Euclidean center is less than or equal to the sum of their radii
rα and rβ, and their interiors meet if and only if dαβ < rα + rβ. By Proposition
3.4(2) and by the multiplicativity of the reduced norms (see [Rei, Thm. 24.11 and
p. 181]), we have (see Figure 1)

dαβ
2 − (rα + rβ)

2 =
(
n(α− β) +

(n(Iα)
2

− n(Iβ)

2

)2)−
(n(Iα)

2
+

n(Iβ)

2

)2
= n(α− β)− n(Iα) n(Iβ) = n(α− β)− n(IαIβ).

Since α − β ∈ IαIβ and again by Equation (3), we have n(α − β) ≥ n(IαIβ), with
equality if and only if IαIβ = O(α− β). The result follows.

(2) For every x ∈ H5
R, let (u, v) in O ×O − {0} be a pair realizing the minimum

on O × O − {0} of the positive definite binary Hamiltonian form Θ(x), whose
discriminant is −1. Let α = [u : v]. Then by Proposition 3.3(2) and by Equation
(1), we have, since the norm of an integral left ideal is at least 1,

dα(x) =
Θ(x)(u, v)

n(Ou+ Ov)
≤

√
DA.

This proves the result. �

The following observation, which is closely related with the proof of Assertion
(1) of Theorem 3.5, will be useful later on.

Lemma 3.6. For all α 
= β in A, the hyperbolic distance between Bα(1) and Bβ(1)
is

d(Bα(1), Bβ(1)) = ln
n(α− β)

n(IαIβ)
.

Proof. This follows from the easy exercise in real hyperbolic geometry saying that
the distance in the upper halfspace model of the real hyperbolic n-space between
two horospheres H ,H ′ with Euclidean radius r, r′, and with Euclidean distance

between their points at infinity equal to λ, is d(H ,H ′) = ln λ2

4rr′ , if the interiors
of H and H ′ are disjoint.

This exercise uses the facts
that the common perpendicular
between two disjoint horoballs is
the geodesic line through their
points at infinity and that the
(signed) hyperbolic length of an
arc of Euclidean circle centered
at a point at infinity with angles
with the horizontal hyperplane
between θ and π/2 is − ln tan θ

2
(see Figure 2). �

λ0

r′
r

r

r′

H

λ/2

θ′θ

H ′− ln tan θ
2 − ln tan θ′

2

Figure 2

4. The spine of SL2(O)

Let A be a definite quaternion algebra over Q and let O be a maximal order in
A. In this section, we describe a canonical SL2(O)-invariant cell decomposition of
the 5-dimensional real hyperbolic space H5

R. We follow [Men,BeS] when the field
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H is replaced by C, the order O by the ring of integers of a quadratic imaginary
extension of Q, and H5

R by H3
R.

For every α ∈ P1
r(A), the Ford-Voronoi cell of α for the action of SL2(O) on H5

R

is the set Hα of points not farther from α than from any other element of P1
r(A):

Hα = {x ∈ H5
R : ∀ β ∈ P1

r(A), dα(x) ≤ dβ(x)}.
In the complex case, this set is called the minimal set of α; see [Men, Def. 1.3.1].

Proposition 4.1. Let α ∈ P1
r(A).

(1) For all g ∈ SL2(O), we have g(Hα) = Hg·α.
(2) We have Bα(1) ⊂ Hα ⊂ Bα(

√
DA).

(3) The Ford-Voronoi cell Hα is a noncompact 5-dimensional convex hyperbolic
polytope, whose proper cells are compact, and the stabilizer of α in SL2(O) acts
cocompactly on its boundary ∂Hα.

(4) For every β ∈ P1
r(A) − {α}, let Sα, β = {x ∈ H5

R : dα(x) = dβ(x)}. Then
Sα, β is a hyperbolic hyperplane that intersects perpendicularly the geodesic line with
points at infinity α and β. Furthermore, the Ford-Voronoi cells Hα and Hβ have
disjoint interior and their (possibly empty) intersection is contained in Sα, β.

Thus
H5

R =
⋃

α∈P1
r(A)

Hα

is an SL2(O)-invariant cell decomposition of H5
R, whose codimension 1 skeleton will

be studied in the remainder of this section. We will see in Examples 4.4 and 4.5 that
the inclusions in Assertion (2) of this proposition, as well as the value s =

√
DA

such that H5
R =

⋃
α∈P1

r(A) Bα(s) in Theorem 3.5(2), are sharp when DA = 2, 3.

Proof. (1) This follows from Proposition 3.3(3).
(2) The inclusion on the left-hand side follows from Theorem 3.5(1): If x ∈ Bα(1)

and x /∈ Hα, then there exists β ∈ P1
r(A)− {α} such that dβ(x) < dα(x) ≤ 1; thus

the interiors of Bα(1) and Bβ(1) have nonempty intersection, a contradiction. If
x /∈ Bα(

√
DA), then by Theorem 3.5(2), there exists β ∈ P1

r(A) − {α} such that
x ∈ Bβ(

√
DA). Hence dβ(x) ≤

√
DA < dα(x), so that x /∈ Hα.

(3) and (4) Since ln dα is a Busemann function with respect to the point at infinity
α by Proposition 3.4(1), for every β ∈ P1

r(A) − {α}, the subset of H5
R defined by

Hα,β = {x ∈ H5
R : dα(x) ≤ dβ(x)} is a (closed) hyperbolic halfspace. Its boundary

is Sα, β , which is hence a hyperbolic hyperplane that intersects perpendicularly the
geodesic line with points at infinity α and β. Being the intersection of the family
of hyperbolic halfspaces (Hα,β)β∈P1

r(A)−{α} with locally finite family of boundaries
(Sα,β)β∈P1

r(A)−{α}, and containing the horoball Bα(1), the Ford-Voronoi cell Hα

is a noncompact 5-dimensional convex hyperbolic polytope. Since α is a bounded
parabolic fixed point of the lattice SL2(O) and by Assertion (2), the stabilizer of
α in SL2(O) acts cocompactly on ∂Hα, and hence the boundary cells of Hα are
compact. �

The horoballs B0(1) and B∞(1) with disjoint interiors meet at (0, 1) ∈ H5
R,

and at most two horoballs with disjoint interior can meet at a given point of H5
R.

Thus, the Ford-Voronoi cells at 0 and at ∞ have nonempty intersection, which is a
compact 4-dimensional hyperbolic polytope. This intersection

(14) ΣO = H0 ∩ H∞
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is called the fundamental cell of the spine of SL2(O). It is contained in the hy-
perbolic hyperplane S0,∞ = {(z, r) ∈ H5

R : n(z) + r2 = 1}. We will describe it in
Example 4.4 when DA = 2 and in Example 4.5 when DA = 3.

Lemma 4.2. Let α ∈ P1
r(A) be such that e = H∞ ∩ H0 ∩ Hα is a 3-dimensional

cell in the boundary of ΣO . Then

min{n(Iα), n(Iα−1)} ≥ 1

DA
,

and the horizontal projection of e to H is contained in the Euclidean hyperplane

{z ∈ H : tr(α z) = 1 + n(α)− n(Iα)}.

Proof. Note that we have α 
= 0,∞. By Proposition 4.1(2), the triple intersection
B∞(

√
DA) ∩ B0(

√
DA) ∩ Bα(

√
DA) contains the 3-cell e; hence both intersections

B∞(
√
DA)∩Bα(

√
DA) and B0(

√
DA)∩Bα(

√
DA) are nonempty. Since B∞(

√
DA)

is the Euclidean halfspace of points (z, r) with r ≥ 1√
DA

and Bα(
√
DA) is a Eu-

clidean ball tangent to the horizontal plane with diameter
√
DA n(Iα) by Propo-

sition 3.4(2), this implies that
√
DA n(Iα) ≥ 1√

DA
, so that DA n(Iα) ≥ 1. Since

g =

(
0 1
1 0

)
belongs to SL2(O) and maps 0 to ∞ and α to α−1, and by Proposi-

tion 3.4(3), the intersection B∞(
√
DA)∩Bα−1(

√
DA) is nonempty, hence similarly

DA n(Iα−1) ≥ 1.

B∞(1)

H
λα

1
n(Iα)

0

√
n(Iα)

α

Figure 3

The set of points equidistant to 0 and ∞ is the open Euclidean upper hemisphere
of radius 1 centered at 0, and the set of points equidistant to α and ∞ is the open
Euclidean upper hemisphere of radius

√
n(Iα) centered at α. The projection to

H of the intersection of these hemispheres is contained in the affine Euclidean
hyperplane of H perpendicular to the real vector line containing α that passes
through the projection, which we denote by λα with λ > 0, to that line of any
point at Euclidean distance 1 from 0 and at Euclidean distance

√
n(Iα) from α.

An easy computation (considering the two cases when n(α) > 1 as in Figure 3 or

when n(α) ≤ 1) using right-angled triangles gives that λ = 1+n(α)−n(Iα)
2 n(α) . Since

(u, v) �→ 1
2 tr(u v) is the standard Euclidean scalar product on H, this gives the

result. �
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The spine XO of SL2(O) is the codimension 1 skeleton of the cell decomposition
into Ford-Voronoi cells of H5

R, that is,

XO =
⋃

α	=β∈P1
r(A)

Hα ∩ Hβ =
⋃

α∈P1
r(A)

∂Hα.

It is an SL2(O)-invariant piecewise hyperbolic polyhedral complex of dimension 4.
We refer for instance to [BrH] for the definitions related to polyhedral complexes,
CAT(0) spaces and orbihedra. Note that the stabilizers in SL2(O) of the cells of
XO may be nontrivial. The spine is called the minimal incidence set in the complex
case in [Men] and [ScV], and the cut locus of the cusp in [HP, §5] when the class
number is one.

For every hyperbolic cell C of XO and every α ∈ P1
r(A) such that C ⊂ ∂Hα,

the radial projection along geodesic rays with point at infinity α from C to the
horosphere ∂Bα(1) is a homeomorphism onto its image, and the pull-back of the flat
induced length metric on this horosphere endows C with a structure of a compact
Euclidean polytope. This Euclidean structure does not depend on the choice of α,
since the (possibly empty) intersection Hα∩Hβ is equidistant to Bα(1) and Bβ(1)
for all distinct α, β in P1

r(A). It is well known (see for instance [Ait]) that these
Euclidean structures on the cells of XO endow XO with the structure of a CAT(0)
piecewise Euclidean polyhedral complex.

Furthermore, XO is an SL2(O)-invariant deformation retract of H5
R along the

geodesic rays with points at infinity the points in P1
r(A). Since the quotient orb-

ifold with boundary SL2(O)\
(
H5

R−
⋃

α∈P1
r(A)Bα(1)

)
is compact, the quotient space

SL2(O)\XO is a finite locally CAT(0) piecewise Euclidean orbihedral complex.
The following result gives a description of the cell structure of SL2(O)\XO when

O is left-Euclidean. See Examples 4.4 and 4.5 for a more detailed study when
DA = 2, 3.

Proposition 4.3. The Hamilton-Bianchi group SL2(O) acts transitively on the set
of 4-dimensional cells of its spine XO if and only if DA ∈ {2, 3, 5}. In these cases,
the horizontal projection of the fundamental cell ΣO to H is the Euclidean Voronoi
cell of 0 for the Z-lattice O in the Euclidean space H.

Proof. If SL2(O) acts transitively on the set of 4-dimensional cells of XO , then
XO = SL2(O) ΣO , and the stabilizer of ∞ in SL2(O) acts transitively on the set of

4-dimensional cells in ∂H∞, since

(
0 1
1 0

)
∈ SL2(O) preserves ΣO = H∞∩H0 and

exchanges H∞ and H0. This stabilizer consists of the upper triangular matrices
with coefficients in O, hence with diagonal coefficients in O×. The orbit of 0 ∈ H

under this stabilizer is exactly O. Since ΣO is compact and contained in the open
Euclidean upper hemisphere centered at 0 with radius 1, by horizontal projection
on H, this proves that H is covered by the open balls of radius 1 centered at the
points of O. Hence O is left-Euclidean.

Conversely, if O is left-Euclidean, then the class number of A is 1, and SL2(O)
acts transitively on the Ford-Voronoi cells. In order to prove that SL2(O) acts
transitively on the 4-dimensional cells of XO , we hence only have to prove that
the stabilizer of ∞ in SL2(O) acts transitively on the 4-dimensional cells of ∂H∞.
For this, let α ∈ A be such that H∞ ∩ Hα is a 4-dimensional cell in ∂H∞. Let
us prove that α ∈ O, which gives the result. Due to problems caused by the
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noncommutativity of H, the proof of [BeS, Prop. 4.3] does not seem to extend
exactly. We will use instead Lemma 2.1.

H

1

0 α α
n(α)

S α

n(α)
,∞

S0,∞

Sα,∞

Figure 4

Assume for a contradiction that α /∈ O. Since O is left-Euclidean, there exists
c ∈ O such that n(α − c) < 1. Up to replacing α by α − c, since translations
by O preserve H∞, we may assume that 0 < n(α) < 1. For every β ∈ A and
β′ ∈ P1

r(A)− {β}, let us denote by Sβ,β′ the Euclidean upper hemisphere centered
at β equidistant from the points at infinity β and β′. In particular, S0,∞ has radius
1. The inversion with respect to the sphere containing S0,∞ acts by an orientation-
reversing isometry on H5

R, and acts on the boundary at infinity P1
r(H) = H ∪ {∞}

by z �→ z
n(z) = 1

z . By Lemma 2.1, it hence normalizes SL2(O) and, in particular,

sends Sα,∞ to S α
n(α) ,0

, and fixes S0,∞ (see Figure 4). Since n(α) < 1, the hemisphere

Sα,∞ is therefore below the union of S0,∞ and S α
n(α)

,0, which contradicts the fact

that H∞ ∩ Hα, which is contained in Sα,∞, is a 4-dimensional cell in ∂H∞.
In order to prove the last claim of Proposition 4.3, note that n(Iα) = 1 if α ∈ O,

and that the above proof shows that the 4-dimensional cells contained in ∂H∞ and
meeting the fundamental cell along a 3-dimensional cell are contained in spheres
centered at points in O. Therefore, by Lemma 4.2, the horizontal projection of ΣO

is the intersection of the halfspaces containing 0 and bounded by the Euclidean
hyperplanes with equation tr(α z)=n(α) for all α∈O. Since this hyperplane is the
set of points z in the Euclidean space H equidistant to 0 and α, this proves that the
horizontal projection of ΣO is indeed the Voronoi cell at 0 of the Z-lattice O. �
Example 4.4. Let A = Q+Qi+Qj +Qk ⊂ H be the definite quaternion algebra
over Q with DA = 2, and let O = Z+Zi+Zj+Z

1+i+j+k
2 be the (maximal) Hurwitz

order in A. The Hurwitz order O is the lattice of type F4 = D∗
4 . The group of unit

Hurwitz quaternions, called the binary tetrahedral group, has 24 elements

O× =
{
± 1,±i,±j,±k,

±1± i± j ± k

2

}
.

The Voronoi cell ΣH
O of 0 for the lattice O in H is (up to homothety) the 24-

cell, which is the (unique up to homothety) self-dual, regular, convex Euclidean
4-polytope, whose Schläfli symbol is {3, 4, 3}. The vertices of ΣH

O are the 24 quater-
nions

1 + i

2
O× =

{±1± i

2
,
±1± j

2
,
±1± k

2
,
±i± j

2
,
±i± k

2
,
±j ± k

2

}
.

See for instance [CoS, p. 119] for more details and references.
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Let H×
1 be the subgroup of H× that consists of the quaternions of norm 1. The

group morphism H×
1 ×H×

1 → SO(4) that associates to (u, v) ∈ H×
1 ×H×

1 the orthog-
onal transformation z �→ uzv−1 of the Euclidean space H endowed with the basis
(1, i, j, k) is surjective with kernel {±(1, 1)}; see for instance [Ber2, Thm. 8.9.8].
The group of Euclidean symmetries of the 24-cell is the exceptional Coxeter group
F4 = [3, 4, 3]. It consists of the 1152 elements z �→ uzv−1, z �→ u z v−1 of O(4),

where either both u and v are unit Hurwitz integers or both u/
√
2 and v/

√
2 are

in 1+i
2 O×.

By Equation (14) and Proposition 4.3, the fundamental cell of SL2(O) is

ΣO = {(z, t) ∈ H5
R : z ∈ ΣH

O , n(z) + t2 = 1}.

With the notation of Lemma 2.1, the stabilizer of ΣO in SL2(O) consists of the

1152 matrices Ca,d =

(
a 0
0 d

)
and JCa,d =

(
0 d
a 0

)
with a, d ∈ O×. When ΣO

is identified with ΣH
O by the horizontal projection, the diagonal matrices induce by

Equation (7) 288 rotational symmetries of ΣH
O , and the antidiagonal ones induce

another 288 orientation-reversing symmetries, together forming a subgroup of index
2 in the Coxeter group [3, 4, 3].

The quotient SL2(O)\XO is obtained by identifying the opposite 3-dimensional
cells of ΣO (which are 24 regular octahedra) by translations by elements of O, and
by forming the quotient by the stabilizer of ΣO . In particular, all the vertices of
XO are in the same orbit under SL2(O).

Speiser [Spe, §5] observed that the estimate of Proposition 4.1(2) is sharp in this

example: H5
R is indeed contained in

⋃
α∈P1

r(A) Bα(
√
2), but the SL2(O)-orbit that

contains all the vertices of ΣO is not contained in the union of the interiors of the
horoballs Bα(

√
2). Furthermore, Speiser proved that the point

v0 =
( 1 + i

2
,
1√
2

)

belongs to the boundary of exactly 10 horoballs Bα(
√
2), the ones with α in

E =
{
∞, 0, 1, i, 1 + i,

1 + i± j ± k

2
,

1

1− i
=

1 + i

2

}
.

In particular, v0 is a vertex of the spine XO , contained in the boundary of exactly
10 Ford-Voronoi cells Hα for α in this set.

The set E contains exactly 5 pairs {α, β} of distinct elements such that the inte-

riors of the horoballs Bα(
√
2) and Bβ(

√
2) are disjoint, these pairs being {∞, 1

1−i},
{0, 1 + i}, {1, i}, { 1+i+j+k

2 , 1+i−j−k
2 } and { 1+i+j−k

2 , 1+i−j+k
2 }. If {α, β} is one of

these pairs, the Ford-Voronoi cells Hα and Hβ intersect only at v0. For all other
pairs in E, the intersection is a higher-dimensional cell.

As 0, 1, i, 1 + i, 1+i±j±k
2 are in O and 1+i

2 is not in O, there are 8 Ford-Voronoi
cells incident to v0 that intersect H∞ in a 4-dimensional 24-cell (see Figure 5, which
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0

i

1

1 + i

S∞, 1+i+j+k
2

S∞,i S∞,1+i

S∞,1S∞,0
S1,i

S0,i

S0,1 S0,1+i

Figure 5. Boundary of equidistant hemispheres and halfplanes in
C ⊂ H

represents the intersection with the plane in H containing 0, 1, i of the closures
of the equidistant spheres and planes between some pairs of elements in the set
{∞, 0, 1, i, 1 + i, 1+i+j+k

2 }, so that the horizontal projection of v0 is the common
intersection points of the straight lines). A similar property holds for all the other
Ford-Voronoi cells incident to v0: For example, H0 intersects in a 4-dimensional
cell the Ford-Voronoi cells H∞,H1,Hi,H 1+i±j±k

2
,H 1+i

2
, but not Hi+1 by Theorem

3.5(1), since I0Ii+1 = O 
= O(1+ i). Thus the pattern of pairwise intersections into
4-dimensional cells of these 10 Ford-Voronoi cells is given by Figure 6 and the
number of 24-cells containing v0 is exactly 40 = (10 × 8)/2, one for each edge of
this intersection pattern.

0

1

1+i+j+k
2

1+i+j−k
2 ∞

1 + i

i

1+i−j−k
2

1+i−j+k
2

1+i
2

Figure 6. Pattern of intersections into 4-dimensional cells of
Ford-Voronoi cells centered at {∞, 0, 1, i, i+ 1, 1+i±j±k

2 , 1+i
2 }
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The boundary of each Hα is tiled by 24-cells, combinatorially forming the 24-
cell honeycomb. The dual of this honeycomb is the 16-cell honeycomb. Therefore,
the link of the vertex v0 in the tessellation of ∂Hα for all α ∈ E is the dual of
the boundary of the 16-cell, which is the boundary of the 4-cube, such that the
intersection of the link with each of the eight 24-cells is a 3-cube.

Gluing together the ten boundaries of 4-cubes (which have been subdivided in
eight 3-cubes each) according to the above intersection pattern proves that the link
of v0 in the spine XO is the 3-skeleton of the 5-cube (which is the 5-dimensional
regular polytope with Schläfli symbol {4, 3, 3, 3}).

Example 4.5. The (unique up to conjugation) maximal order of the definite

quaternion algebra
(−1,−3

Q

)
of discriminant DA = 3 is Z[1, i, i+j

2 , 1+k
2 ]; see [Vig,

p. 98]. Using the unique Q-linear map from
(−1,−3

Q

)
to H sending 1 to 1, i to

j, j to k
√
3 and k to −i

√
3, we identify

(−1,−3
Q

)
with the Q-subalgebra A of H

generated by 1, i
√
3, j and k

√
3, and the maximal order is then identified with

O = Z[1, ρ, j, ρj], where

ρ =
1 + i

√
3

2
.

The group of units of O is the binary dihedral group of order 12

O× = {±1, ±j, ±ρ, ±ρ2, ±ρj, ±ρ2j}.

The elements of the maximal order O = Z[1, ρ] + Z[1, ρ]j of A are the vertices
of the 3 -3 duoprism honeycomb in the 4-dimensional Euclidean space H, seen as

the orthogonal product C
⊥
⊕ C j of its two Euclidean subspaces C = R + R i and

C j = R j + R k. The 9 elements of the set

V3,3 = {0, 1, j, 1 + j, ρ, ρj, 1 + ρj, j + ρ, ρ(1 + j)},

contained in O, are the vertices of its fundamental 3 -3 duoprism, which is a uniform
4-polytope with Schläfli symbol {3}×{3} (the Cartesian product of two equilateral
triangles, whose 1-skeleton is given in Figure 7). We refer to Coxeter’s three papers
[Cox1,Cox2,Cox3] for notation and references about uniform polytopes and their
Coxeter groups, with the help of the numerous and beautiful articles in Wikipedia
and Polytope Wiki.

0

ρj

j

ρ ρ+ ρj

ρ+ j

i

1 + ρj

1 + j

Figure 7. The 1-skeleton of the 3 -3 duoprism
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The Voronoi cell ΣH
O of 0 for the lattice O in H is the 6 -6 duoprism whose Schläfli

symbol is {6} × {6}. It is the Cartesian product of two copies of the Voronoi cell
of 0 for the hexagonal lattice of the Eisenstein integers in C whose set of vertices
is V6 = {± i√

3
,± 1

2 ± i
2
√
3
}. Thus, the set of vertices of ΣH

O is V6 + V6 j. These 36

vertices, including

z0 =
1

2
+

i

2
√
3
+

j

2
+

k

2
√
3
= (j + ρ)(1 + ρ)−1,

belong to A and all have reduced norm 2
3 .

By Proposition 4.3, the fundamental cell ΣO of SL2(O) is the subset of the
Euclidean unit sphere in Hn

C whose horizontal projection is ΣH
O . In particular, all

the vertices of ΣO have Euclidean height 1√
3
. Let u and v be either both in O×

or both in ρ
1
2 O×. The 288 mappings z �→ uzv−1 and z �→ u z v−1 are Euclidean

symmetries of ΣH
O , and they form the Coxeter group [[6, 2, 6]] of the symmetries of

the 6 -6 duoprism ΣH
O .

With the notation of Lemma 2.1, the stabilizer of ΣO in SL2(O) consists of the

288 matrices Ca,d =

(
a 0
0 d

)
and JCa,d =

(
0 d
a 0

)
with a, d ∈ O×. When ΣO is

identified with ΣH
O by the horizontal projection, the diagonal matrices induce by

Equation (7) 72 rotational symmetries of ΣH
O , and the antidiagonal ones induce

another 72 orientation-reversing symmetries, together forming a subgroup of index
2 in [[6, 2, 6]]].

A straightforward computation using Mathematica gives that the subgroup of
[[6, 2, 6]] that arises from the diagonal matrices in SL2(O) acts transitively on the
vertices of ΣH

O . Thus, this subgroup acts transitively on the vertices of the fun-
damental cell ΣO , which implies that all vertices of the spine XO are in the same
orbit.

We will now turn to a study of the link of a vertex in XO . Let

v0 =
(
z0,

1√
3

)
,

which is the vertex of ΣO whose projection to H is z0. Let

g =

(
1 z0
0 1

)(
0 1
3 −3z0

)
=

(
3z0 1− 3z20
3 −3z0

)
∈ GL2(A),

inducing the homography z �→ 1
3 (z − z0)

−1 + z0.

Lemma 4.6. The element g belongs to the normalizer of SL2(O) in SL2(H).

Proof. Computations (using Mathematica and SAGE) show that g conjugates all
the generators of SL2(O) given in Corollary 2.2 to elements of SL2(O), as follows.
We have

gJg−1 =

(
3 + ρ+ j + ρj 1− 2ρ− 2j − 2ρj
4− j − ρ− ρj −3− ρ− j − ρj

)
,

gT1g
−1 =

(
2 + ρ+ j + ρj 1− ρ− j − ρj

3 −ρ− j − ρj

)
,

gTjg
−1 =

(
−ρ+ j + ρj 1 + ρ− j + ρj

3j 3− ρ− 2j + ρj

)
,

gTρg
−1 =

(
2ρ+ 2j − ρj 2− 2ρ

3ρ 2− 2ρ+ j − 2ρj

)
,
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gTρjg
−1 =

(
−1 + ρ− j + 2ρj 1 + ρ+ j − ρj

3ρj 2 + ρ− j − ρj

)
.

Since Cu,vCu′,v′ = Cuu′,vv′ and JCu,vJ = Cv,u for all units u, v, u′, v′ of O, it
suffices to check the following elements:

gC1,−1g
−1 =

(
−3 + 2ρ+ 2j + 2ρj 4
2 + 2ρ+ 2j + 2ρj 3− 2ρ− 2j − 2ρj

)
,

gC1,jg
−1 =

(
2ρ+ 3j 3− 2ρ− j
2 + 2ρ 1− 2ρ− 2ρj

)
,

and

gC1,ρg
−1 =

(
2ρ− j + 2ρj 1 + j − 2ρj

2− ρ− j + 2ρj ρ− j − ρj

)
.

Thus, g belongs to the normalizer of SL2(O) in SL2(H). �

Proposition 4.7. If DA = 3, then the set V of α ∈ A such that v0 belongs to the
boundary of Bα(

√
3) is

V = V3,3 ∪ g(V3,3) ∪ {∞, z0}.

For every α ∈ A, the point v0 of H5
R does not belong to the interior of Bα(

√
3).

The second claim implies that when r <
√
3, the family

(
Bα(r)

)
α∈A

does not

cover H5
R. In particular, the inclusions in Proposition 4.1(2) are also sharp when

DA = 3.

Proof. First observe that v0 as well as all the vertices of ΣO is in the horizontal
plane {(z, t) ∈ H5

R : t = 1√
3
}, which is the boundary of B∞(

√
3).

For every α ∈ A, recall from Proposition 3.4(2) that the horoball Bα(
√
3) is the

Euclidean ball tangent to H at α with Euclidean radius
√
3 n(Iα)

2 . Writing α = pq−1

with p, q ∈ O relatively prime, we have n(Iα) = n(q)−1. Thus if v0 ∈ Bα(
√
3), then

the Euclidean diameter
√
3 n(Iα) of Bα(

√
3) is at least the Euclidean height 1√

3
of

v0, that is n(q) ≤ 3. Equality is only possible if α is the vertical projection to H of
v0, that is α = z0. Since z0 = (j + ρ)(1+ ρ)−1 and j + ρ, 1 + ρ are relatively prime
(their norms are 2 and 3), we have z0 ∈ A and n(Iz0) =

1
3 . Hence the point v0 does

belong to the boundary of Bz0(
√
3), and if α 
= z0, then n(q) = 1 or n(q) = 2.

First assume that n(q) = 1, or equivalently that α ∈ O. Then n(Iα) = 1;

hence Bα(
√
3) is the Euclidean ball of center (α,

√
3
2 ) and radius

√
3
2 that intersects

the horizontal plane at height 1√
3
in a horizontal ball centered at (α, 1√

3
) and of

radius
√

2
3 . The 9 vertices of the fundamental 3 -3 duoprism of O are exactly at

this distance from z0, and all other elements of O are at greater distance from z0.
Hence (see Figure 8 on its left), v0 belongs to the boundary of Bα(

√
3) for every

α ∈ V3,3 and v0 /∈ Bα(
√
3) if α ∈ O − V3,3.
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Bα(
√
3)

1√
3

Bβ(
√
3)

Bz0(
√
3)

√
3
2

α ∈ V3, 3 z0 β ∈ g(V3, 3)

√
3
4

v0 B∞(
√
3)

1√
6√

2
3

Figure 8. Intersection pattern at v0 of the covering family of
horoballs

(
Bα(

√
3)
)
α∈A

We begin the treatment of the remaining case n(q) = 2 by geometric observations.
The homography g defined before Lemma 4.6 maps ∞ to z0, z0 to ∞, and the
sphere in H of center z0 and radius r to the sphere in H of center z0 and radius
1
3r , for every r > 0. In particular, g maps the sphere in H of center z0 and radius
1√
3
to itself and the Poincaré extension of g to H5

R (again denoted by g) fixes v0.

Thus, g(B∞(
√
3)) = Bz0(

√
3) and Lemma 4.6 implies that g preserves the SL2(O)-

equivariant family (Bα(
√
3))α∈A of horoballs.

Now let β = pq−1 ∈ A be such that v0 ∈ Bβ(
√
3) and n(q) = 2. Note that the

Euclidean perpendicular projection from H5
R to H does not increase the Euclidean

distances, and that the projection of the Euclidean center of Bβ(
√
3) is β and the

projection of v0 is z0 (see Figure 8). Since the radius of Bβ(
√
3) is

√
3
4 , we hence

have d(z0, β) ≤
√
3
4 < 1√

3
. Since g fixes v0 and gBβ(

√
3) = Bg(β)(

√
3) by Lemma

4.6, the element α = g−1(β), which satisfies v0 ∈ Bα(
√
3) and is outside the ball of

center z0 and radius 1√
3
, hence cannot have a denominator of norm 2. Therefore

α has denominator (of norm) 1 and by the previous case, it belongs to V3,3 and v0
lies in the boundary of Bα(

√
3). So β = g(α) belongs to g(V3,3) and v0 lies in the

boundary of Bβ(
√
3). �

An easy computation gives

g(V3,3) =
{1 + j

2
=

1

1− j
,
1 + ρj

2
=

1

1− jρ̄
,
ρ+ j

2
=

1

ρ̄− j
,
ρ(1 + j)

2
=

1

(1− j)ρ̄
,

1 + j + ρj

2
=

1

1− j(ρ̄− 1)
+ j ,

ρ+ j + ρj

2
,
1 + ρ+ j

2
,
1 + ρ+ ρj

2
,
1 + ρ+ j + ρj

2

}
.

As any element β in g(V3,3) is the sum of an element of O with the inverse of an

element of O with reduced norm 2, we have n(Iβ) = 1
2 and the horoball Bβ(

√
3)

has Euclidean radius
√
3
4 . Note that this horoball intersects the horizontal plane
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{(z, t) ∈ H5
R : t = 1√

3
} in a horizontal ball of Euclidean radius 1√

6
. In particular,

the points in g(V3,3) are at Euclidean distance 1√
6
of z0 and the horoballs tangent

to v0 are positioned as in Figure 8.

∞
0

1

i

1 + j

1 + ρj

ρ

ρj

j + ρ

ρ+ ρj 1+j
2

1+ρj
2

ρ+j
2

1+ρ+ρj
2

1+ρ+j
2

1+ρ+ρj
2

ρ+ρj
2

1+ρ+j+ρj
2

ρ+j+ρj
2

z0

Figure 9. Intersection pattern into 4-dimensional cells of Ford-
Voronoi cells Hα for α ∈ V

By Proposition 4.7, the link of v0 in the cellulation of H5
R by the Ford-Voronoi

cells of O has 20 4-dimensional cells, which are the intersections of a small sphere
centered at v0 with the Ford-Voronoi cells Hα for α in V = V3,3∪g(V3,3)∪{∞, z0}.
Furthermore, for all α 
= β in V , the horoballs Bα(

√
3) and Bβ(

√
3) are tangent at

v0 if and only if {α, β} is one of the 10 pairs

{∞, z0} ,
{
0,

1 + ρ+ j + ρj

2

}
,

{
1,

ρ+ j + ρj

2

}
,

{
ρ,

1 + j + ρj

2

}
,

{
j,

1 + ρ+ ρj

2

}
,

{
1 + j,

ρ+ ρj

2

}
,

{
1 + ρj,

ρ+ j

2

}
,

{
ρj,

1 + ρ+ j

2

}
,

{
j + ρ,

1 + ρj

2

}
,

{
ρ+ ρj,

1 + j

2

}
.

By computing (using Mathematica) the intersections of the horoballs Bα(1) con-
tained in the Ford-Voronoi cells incident to v0, we find that each Ford-Voronoi
cell containing v0 intersects 9 others in 4-dimensional cells that are images under
SL2(O) of the fundamental cell ΣO , combinatorially equal to the 6 -6 duoprism
{6} × {6}. The graph in Figure 9 shows the intersection pattern of the Hα for
α ∈ V .

Thus the number of (6 -6 duoprismatic) 4-dimensional cells of XO containing v0
is exactly 90 = (20× 9)/2, one for each edge of this diagram.

The dual tiling of the 6-6-duoprismatic tiling of H is the 3-3-duoprismatic tiling.
Therefore, the link of v0 in ∂H∞ (hence in all ∂Hα containing v0) is the 3-skeleton
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of the dual of the 3-3 duoprism, namely the 3-3 duopyramid (also known as the
triangular duotegum), whose Schläfli symbol is {3} + {3} and whose symmetry
group has order 8 × 33 = 72. The link of v0 in H5

R is constructed of 20 copies of
the 3-3 duopyramid that are glued together according to the intersection pattern
described in Figure 9. Let us describe the symmetries of this link.

Let Gv0,∞ be the stabilizer of v0 and∞ in SL2(O). The stabilizer of∞ in SL2(O)

consists of the upper triangular matrices. An element

(
a b
0 d

)
∈ SL2(O) fixes z0

if and only if az0 + b = z0d. It is easy to check (using Mathematica) that this
equation has 36 solutions. The elements of the intersection of the stabilizers of ∞
and z0 preserve the geodesic line between z0 and ∞ and the horospheres centered
at ∞; hence fix v0. Thus

Gv0,∞ =

{(
a b
0 d

)
∈ SL2(O) : az0 + b = z0d

}
.

Using the facts that z0 = 1+j+ρ+ρj
3 and ρj = jρ−1, it is easy to check that the three

matrices g∞,1 =

(
ρ ρ−1

0 ρ−1

)
, g∞,2 =

(
ρ jρ
0 ρ

)
and h∞ =

(
ρj 0
0 j

)
are elements of

Gv0,∞. As g∞,1 and g∞,2 are elements of order 6 that commute and the intersection
of the cyclic groups generated by their squares is trivial, the group generated by
g2∞,1 and g2∞,2 is isomorphic to Z/3Z × Z/3Z. The element h∞ has order 4 and
conjugates g∞,1 to its inverse, as well as for g∞,2. Hence h∞ conjugates each
element of the abelian group generated by g2∞,1 and g2∞,2 to its inverse. Thus these
three elements actually generate a group isomorphic to the semi-direct product
(Z/3Z× Z/3Z) � Z/4Z, where the generator of Z/4Z acts by the opposite on the
abelian group (Z/3Z)2. This group has 36 elements that therefore is all of Gv0,∞.
For i = 1, 2, note that g3∞,i = h2

∞ = − id; hence g∞,i = h2
∞(g2∞,i)

−1 does belong to
the above semi-direct product. The group Gv0,∞ is a subgroup of index 4 in the
stabilizer in SL2(O) of the 3-3 duopyramid corresponding to ∞ in the link of v0.

The subgroup Gv0,∞ acts transitively on V3,3 : The graph in Figure 10 shows
how the points of V3,3 are mapped by g∞,1 (in continuous green) and g∞,2 (in
dotted red).

0

j

1 + j

ρj

ρ+ j 1

1 + ρj

ρ+ ρj

ρ

Figure 10. Transitive action of Gv0,∞ on V3,3
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Since the inversion g conjugates g∞,1 and g∞,2 to −g∞,1 and −g∞,2 respectively,
the group Gv0,∞ also acts transitively on g(V3,3).

The element gρ =

(
0 1

−1 1

)
, inducing the homography z �→ (1 − z)−1, is an

element of the stabilizer of v0 in SL2(O); it fixes ρ ∈ V3,3 and 1+j+ρj
2 ∈ g(V3,3),

maps ∞ to 0 ∈ V3,3 and ρj ∈ V3,3 to 1+ρj
2 ∈ g(V3,3), and does not fix z0. Since

Gv0,∞ acts transitively on V3,3 and on g(V3,3), it follows that the stabilizer of v0 acts
transitively on V = V3,3 ∪ g(V3,3) ∪ {∞, z0}. One can check (using Mathematica)
that the group generated by Gv0,∞ and gρ has 720 elements. This induces a group

Gv0 of 360 isometries in the stabilizer of v0 in the group of isometries of Hn
R.

The intersection pattern of Figure 9 and the type of the 4-dimensional cells
coincide with those of the boundary of the bidodecateron, dual to the dodecateron
(also called the birectified 5-simplex); see [Wik]. The full group of symmetries of
the bidodecateron, whose Coxeter notation is [[34]], has 1440 = 4 × 360 elements.
Assuming that the link of v0 is the bidodecateron (we have not checked this), the
group Gv0 would be a subgroup of index 4 in [[34]], and the stabilizer of v0 in
SL2(O) would coincide with the group generated by g∞,1, g∞,2, h∞ and gρ. This
concludes the study of Example 4.5.

Remark. When DA ∈ {2, 3, 5}, let PO be the hyperbolic 5-polytope that consists
of the points in the halfspace H∞0 whose horizontal projection to H is ΣH

O . The
quotient orbifold SL2(O)\H5

R is obtained from PO by gluing the vertical sides of PO

by the translations in the stabilizer of ∞ in SL2(O), and then folding by the action
of the stabilizer of ΣO . The quotient space SL2(O)\XO obtained by making the
above identifications in ΣO is a 4-dimensional cellular retract of SL2(O)\H5

R that
could be used to study the homology of SL2(O) and PSL2(O) analogously to the
study of the Bianchi groups in [Men] and [ScV].

5. Waterworlds

Let A be a definite quaternion algebra over Q and let O be a maximal order in
A. Let f be an indefinite integral binary Hamiltonian form over O.

The form f defines a function F = Ff : P1
r(A) → Q by

F ([x : y]) =
f(x, y)

n(Ox+ Oy)
.

This definition does not depend on the representative (x, y) ∈ A×A of the projective
point [x : y] ∈ P1

r(A), and f is uniquely determined by its associated function F .
In particular, we may take x, y ∈ O in order to compute F ([x : y]), so that the
numerator of the fraction defining F ([x : y]) belongs to Z. Note that SL2(O) acts
with finitely many orbits on P1

r(A), since the number of cusps is finite, and that the
denominator defining F ([x : y]) is invariant under SL2(O). Therefore there exists
N ∈ N−{0} such that F has values in 1

NZ; hence the set of values of F is discrete.
Note that for every g ∈ SL2(O), the function Ff◦g associated with the form f ◦g

is F ◦g (where we again denote by g the projective transformation of P1
r(A) induced

by g). In particular, F ◦ g = F if g ∈ SUf (O).
As in [Con] for integral indefinite binary quadratic forms, we will think of F as a

map which associates a rational number to (the interior of) any Ford-Voronoi cell.
For instance, if DA = 2 and O is the Hurwitz order, then the values of F on the two
Ford-Voronoi cells H∞,H0 containing the fundamental cell ΣO are f(1, 0), f(0, 1)
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and the values of F on the 24 Ford-Voronoi cells meeting ΣO in a 3-dimensional
cell are f(u, 1) for u ∈ O× (see Figure 11).

f(u, 1)f(−u, 1) c(f) = f(0, 1)

a(f) = f(1, 0)

0 u−u

∞

ΣO

Figure 11. Values of F on Ford-Voronoi cells meeting ΣO

Let m be a left fractional ideal of O. For every s ≥ 0, let

ψF,m(s) = Card SUf (O)\
{
(u, v) ∈ m×m : |F (u, v)| ≤ s, Ou+ Ov = m

}
,

which is the number of nonequivalent m-primitive representations by F of rational
numbers in 1

NZ with absolute value at most s. We showed in [PP2, Theo. 1] and
[PP3, Cor. 5.6] that there exists κ > 0 such that, as s tends to +∞,

ψF,m(s) =
45 DA Covol(SUf (O))

2π2 ζ(3) Δ(f)2
∏

p|DA
(p3 − 1)

s4(1 + O(s−κ)).

Lemma 5.1. The function F takes all signs 0,+,−.

Proof. It takes positive and negative values since f is indefinite. The values of
F are actually positive at the points in P1

r(A) in one of the two components of
P1
r(H) − C∞(f) and negative at the ones in the other component. But contrarily

to the cases of binary quadratic and Hermitian forms, all indefinite integral binary
Hamiltonian forms f over O represent 0, since by taking a Z-basis of O, the form
f becomes an indefinite integral quadratic form over Z with 8 variables and all
indefinite integral quadratic forms over Z with at least 5 variables represent 0 by
Meyer’s theorem; see for instance [Ser1, p. 77] or [Cas, p. 75]. �

A Ford-Voronoi cell will be called flooded for f if the value of F on its point at
infinity is 0. Lemma 5.1 says that there are always flooded Ford-Voronoi cells. See
also [Vul, Cor. 4.8]. The flooded Ford-Voronoi cells for f correspond to Conway’s
lakes for an isotropic integral indefinite binary quadratic form over Z; see [Con, page
23]. There were only two lakes, whereas there are now countably infinitely many
flooded Ford-Voronoi cells for f , one for each parabolic fixed point of the group of
automorphs of f .

Example 5.2. Consider the definite quaternion algebra A with DA = 2, O the
Hurwitz order and a Hamiltonian form f with a(f) = 0, b = b(f), c = c(f) ∈ Z−{0}
such that b does not divide c nor 2c. Then H∞ is flooded. Let α = xy−1 with
x ∈ O and y ∈ O − {0} relatively prime. If n(y) ≤ 2, then the Ford-Voronoi cell
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Hα is not flooded, since otherwise the equation b tr(x̄ y) + c n(y) = 0 would imply

that b divides c or 2c. If n(y) > 2, then n(Iα) =
n(Ox+Oy)

n(y) = 1
n(y) < 1

2 . Hence by

Proposition 3.4(2), we have Bα(
√
2) ∩ B∞(

√
2) = ∅. Therefore Hα ∩ H∞ = ∅ by

Proposition 4.1(2). This proves that H∞ does not meet any other flooded Ford-
Voronoi cell. Thus if the hyperbolic 4-orbifold SUf (O)\C (f) has only one cusp,
then the flooded Ford-Voronoi cells are pairwise disjoint. We actually do not know
when SUf (O)\C (f) has only one cusp.

We have the following analog of the statement of Conway (loc. cit.) that the
values of the binary quadratic form along a lake are in an infinite arithmetic pro-
gression.

Proposition 5.3. Let α0 ∈ P1
r(A) be such that the Ford-Voronoi cell Hα0

is flooded
for f . If α0 belongs to the SL2(O)-orbit of ∞, let Λα0

= O. Otherwise, let

Λα0
= O ∩ α−1

0 O ∩ Oα−1
0 ∩ α−1

0 Oα−1
0 .

Then there exists a finite set of nonconstant affine maps {ϕj : H → R : j ∈ J ′}
defined over Q such that the set of values of F on the Ford-Voronoi cells meeting
Hα0

is
⋃

j∈J′ ϕj(Λα0
).

Proof. For every α ∈ P1
r(A), let Eα = {β ∈ P1

r(A)− {α} : Hα ∩ Hβ 
= ∅}. Note
that Eg·α = g · Eα for every g ∈ SL2(O), by Proposition 4.1(1).

First assume that α0 belongs to the SL2(O)-orbit of ∞. Then up to replacing f
by f ◦ g for some g ∈ SL2(O) such that g · ∞ = α0, we may assume that α0 = ∞.

Let a = a(f), b = b(f) and c = c(f). Note that H∞ is flooded for f if and only
if f(0, 1) = 0, that is, if and only if a = 0. We then have b 
= 0 since f is indefinite.

Hence F (E∞) =
{ tr(u b)+c

n(Iu)
: u ∈ E∞

}
. Since the stabilizer of ∞ in SL2(O) acts

with finitely many orbits on the cells of ∂H∞, its finite index subgroup O acts by
translations with finitely many orbits on E∞. Hence there exists a finite subset J ′

of A such that E∞ = J ′ + O. Since Iα+o = Iα for all α ∈ A and o ∈ O, the result

follows with ϕj : u �→ tr(b(j+u))+c
n(Ij)

for all j ∈ J ′.

Assume now that α0 does not belong to the SL2(O)-orbit of ∞, so that in
particular α0 ∈ A−{0}. Let Γα0

be the stabilizer of α0 in SL2(O), which acts with

finitely many orbits on Eα0
. Let g =

( α0 −1
1 0

)
, which belongs to SL2(A) and

whose inverse projectively maps α0 to ∞. Then (see for instance [PP2, §5]), Λα0
is

a Z-lattice in H, such that the group of unipotent upper triangular matrices with
coefficient 1-2 in Λα0

is a finite index subgroup of g−1Γα0
g. A similar argument

concludes. �
By a projective real hyperplane in ∂∞H5

R = P1
r(H) = H ∪ {∞}, we mean in

what follows the boundary at infinity of a hyperbolic hyperplane in H5
R. The ones

containing ∞ = [1 : 0] are the union of {∞} with the affine real hyperplanes in H.
The ones not containing ∞ are the Euclidean spheres in the affine Euclidean space
H.

Lemma 5.4. The form f is uniquely determined by the values of its associated
function F at six points in P1

r(A) that do not lie in a projective real hyperplane.

Proof. Let a = a(f), b = b(f) and c = c(f). Let us first prove that we may assume
that the six points in A ∪ {∞} are ∞ = [1 : 0], 0, α0 = 1 and α1, α2, α3 ∈ A− {0}.
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Note that for all x, y ∈ A and g ∈ GL2(A), if g1, g2 are the components of the
linear selfmap g of A×A, then

(15) Ff◦g([x : y]) = Ff ◦ g([x : y])
n(Og1(x, y) + Og2(x, y))

n(Ox+ Oy)
.

Given six points in P1
r(A) not in a projective real hyperplane of P1

r(H), the first
three of them constitute a projective frame of the projective line P1

r(A). Hence
by the existence part of the fundamental theorem of projective geometry (see
[Ber1, Prop. 4.5.10]), there exists an element g ∈ GL2(A) mapping them to ∞, 0, 1.
Note that this existence part does hold in the noncommutative setting, though the
uniqueness part does not. The initial claim follows by Equation (15).

Now, the values of F at the points ∞, 0, α0, α1, α2, α3 give a system of six
equations on the unknown a, b, c, of the form a = A1, c = A2, a + tr b + c = A3,
a n(αi)+tr(αi b)+c = Ai+3 for i ∈ {1, 2, 3}. Thus a and c are uniquely determined,
and b belongs to the intersection of four affine real hyperplanes in H orthogonal to
α0, α1, α2, α3 with equations tr(αi b) = A′

i for i ∈ {0, 1, 2, 3}. The result follows
since if α0, α1, α2, α3 are linearly independent over R, then for all A′

0, A
′
1, A

′
2, A

′
3∈R,

such an intersection contains one and only one point of H. �

Proposition 5.5. Let v be a vertex of the spine XO . The form f is uniquely
determined by the values of its associated function F on the Ford-Voronoi cells
containing v, that is, on the points α ∈ P1

r(A) such that v ∈ Hα.

Proof. A dimension count shows that there are at least six Ford-Voronoi cells meet-
ing at each vertex v of the spine. Their points at infinity cannot all be on the same
projective real hyperplane P . Otherwise, the intersection of the equidistant hyper-
bolic hyperplanes between the pair of them yielding a 4-dimensional cell containing
v would have dimension at least 1: It would contain a germ of the orthogonal
through v to the convex hull of P in H5

R. The result follows by Lemma 5.4. �

The waterworld of f is

W (f) =
⋃

α	=β∈P1
r(A), F (α)F (β)<0

Hα ∩ Hβ.

As F ◦ g = F if g ∈ SUf (O), the waterworld W (f) is invariant under the group of
automorphs SUf (O) of f .

Since f is always isotropic over A, the arguments of Conway and Bestvina-Savin
for the anisotropic case no longer apply, and the waterworld of f could be empty.
We do not know precisely when the waterworlds are nonempty, and we now study
some examples.

Example 5.6. The binary Hamiltonian form f(u, v) = tr(u v) is indefinite with
discriminant 1. The coefficients of f are rational integers so it is integral over any
maximal order O of any definite quaternion algebra A over Q. Let us prove that
the waterworld W (f) is not empty.

It is easy to check that C∞(f) = {z ∈ H : tr z = 0} ∪ {∞}. Let a ∈ O be such
that tr(a) = 1 (which does exist since O is maximal, hence tr : O → Z is onto; see
for instance the proof of Proposition 16 in [ChP]). In particular a 
= 0, a 
= −ā, and
a,−ā are in two different components of ∂∞H5

R − C∞(f), so that F (a)F (−ā) < 0.
Let us prove that Ha and H−ā intersect in a 4-dimensional cell of XO , which thus
belongs to W (f). By Proposition 4.1(2), it is sufficient to prove that Ba(1) and
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B−ā(1) meet. By Theorem 3.5(1), this is equivalent to proving that IaIā = O(tr a).
But this holds since tr a = 1 and Ib = O when b ∈ O.

Figure 12 illustrates the analogous case of the ocean in H3
R of the isotropic binary

Hermitian form f(u, v) = tr(u v) considered as an integral form over the Eisenstein

integers Z[ 1+i
√
3

2 ]. The blue hexagons are the components of the ocean of f in the

hyperplane C (f) = {(z, t) ∈ H3
R : Im z = 0} which is a copy of the (upper halfplane

model of the) real hyperbolic plane.

Figure 12. Ocean of the Hermitian form f(u, v) = tr(u v) over Z[ 1+i
√
3

2 ]

We do not have an example of an empty waterworld and, in fact, it may be that
no such example exists. However, the ocean of the isotropic binary Hamiltonian
form f(u, v) = tr(u v) considered over the Gaussian integers Z[i] is empty (see
Figure 13). In order to prove this, let α ∈ Q(i) with trα 
= 0. Note that in the
commutative case, n(Iα) = n(I−α), so that the Euclidean balls Bα(1) and B−α(1)
have the same radius. By symmetry, C (f) is the equidistant hyperbolic hyperplane
of Bα(1) and B−α(1). Since Z[i] is Euclidean, the spine of SL2(Z[i]) has only one
orbit of 2-cells (see [BeS]). Hence all the intersections of the Ford-Voronoi cells are
in the orbit of the fundamental cell, and therefore, Hα and H−α intersect if and
only if Bα(1) and B−α(1) are tangent, that is, if and only if Bα(1) intersects C (f).

Since the hyperbolic 3-orbifold SL2(Z[i])\H3
R has only one cusp, there exists an

element g =

(
a b
c d

)
∈ SL2(Z[i]) such that α = g · ∞ = ac−1. Since g · (−c−1d) =

∞, the point g · (−c−1d, 1) = (α, 1
n(c) ) is the highest point in Bα(1) = gB∞(1).

Thus the Euclidean radius of Bα(1) is
1

2 n(c) . As the Euclidean distance of α from

C∞(f) = {z ∈ C : Re z = 0}∪{∞} is | trα2 |, this implies that Bα(1) intersects C (f)

if and only if
∣∣ trα

2

∣∣ ≤ 1
2 n(c) , that is, if and only if tr a c̄ = ±1. This is impossible

since the trace of any Gaussian integer is even.

Figure 13. Empty ocean of the Hermitian form f(u, v) = tr(u v)
over Z[i]
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Proposition 5.7. If the union of the flooded Ford-Voronoi cells does not separate
H5

R, and in particular if the flooded Ford-Voronoi cells are pairwise disjoint, then
the waterworld of f is nonempty.

Proof. The assumption says that the topological space

X = H5
R −

⋃
α∈P1

r(A), F (α)=0

Hα

is connected. If W (f) = ∅, then

X =
( ⋃

α∈P1
r(A), F (α)<0

Hα

)
∪
( ⋃

α∈P1
r(A), F (α)>0

Hα

)

would be a partition into two nonempty (since f is indefinite) locally finite, hence
closed, unions of closed polyhedra, contradicting the connectedness of X. �
Proposition 5.8. The quotient SUf (O)\W (f) is compact, and the set of flooded
Ford-Voronoi cells consists of finitely many SUf (O)-orbits.

Proof. The points at infinity of the flooded Ford-Voronoi cells are the parabolic
fixed points of SL2(O) contained in C∞(f), hence are the parabolic fixed points of
the group of automorphs SUf (O). Since SUf (O) is a lattice in the real hyperbolic
4-space C (f), the quotient SUf (O)\C (f) has only finitely many cusps. This proves
the second claim.

Let α, β ∈ P1
r(A) be such that F (α)F (β) < 0 and the intersection Hα ∩ Hβ is

nonempty. Then the intersection Bα(
√
DA)∩Bβ(

√
DA) is nonempty by Proposition

4.1(2); hence the hyperbolic distance between the horoballs Bα(1) and Bβ(1) is at

most lnDA. By Lemma 3.6, we hence have n(α−β)
n(IαIβ)

≤ DA.

Let a = a(f), b = b(f), c = c(f) and Δ = Δ(f). Write α = [x : y] and β = [u : v]
with x, y, u, v ∈ O and y, v ∈ Z. Note that(

x u
y v

)∗ (
a b

b c

)(
x u
y v

)
=

(
f(x, y) z

z f(u, v)

)
,

for some z ∈ O. Since y, v ∈ R, an easy computation of Dieudonné determinants
thus gives ∣∣ n(z)− f(x, y)f(u, v)

∣∣ = n(xv − uy)Δ.

Hence 0 ≤ −f(x, y)f(u, v) ≤ n(z)− f(x, y)f(u, v) = n(xv − uy)Δ and

0 ≤ −F (α)F (β) =
−f(x, y)f(u, v)

n(Ox+ Oy) n(Ou+ Ov)
≤ n(α− β)

n(Iα) n(Iβ)
Δ ≤ DA Δ.

Since the set of values of F is discrete in R, this implies that F takes only finitely
many values on the Ford-Voronoi cells that intersect W (f).

Given any vertex v ∈ W (f), for every g ∈ SL2(O), if F (α) = F (g · α) for all
α ∈ A such that the Ford-Voronoi cell Hα contains v, then f = f ◦g by Proposition
5.5. Since there are only finitely many orbits of SL2(O) on the vertices of the spine
XO and since F takes only finitely many values on the Ford-Voronoi cells meeting
the waterworld W (f), this implies that SUf (O) has only finitely many orbits of
vertices in W (f). The result follows. �
Remark. We claim there exists a positive constant and finitely many pairs {α, β} in
A such that, for all indefinite integral binary Hamiltonian forms f over O up to the
action of SL2(O), the distance between Hα and Hβ is at most this constant and
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F (α)F (β) < 0. This follows, even if the waterworld W (f) could be empty, from
the fact that the flooded Ford-Voronoi cells only have their points at infinity on the
3-sphere C∞(f) in P1

r(H), and by the cocompactness of the action of SL2(O) on its
spine XO . The above arguments hence allow to give another proof of Corollary 25
in [PP2], saying that the number of SL2(O)-orbits in the set of indefinite integral
binary Hamiltonian forms over O with given discriminant is finite.

We introduce two variants of W (f). The sourced waterworld W+(f) of f is the
union of its waterworld and of its flooded Ford-Voronoi cells

W+(f) = W (f) ∪
⋃

α∈P1
r(A), F (α)=0

Hα.

The coned-off waterworld C W (f) of f is obtained from W (f) by adding geodesic
rays from its boundary points to the points at infinity of the corresponding flooded
Ford-Voronoi cells

C W (f) = W (f) ∪
⋃

α∈P1
r(A), x∈W (f)∩Hα : F (α)=0

[x, α].

Both the sourced waterworld W+(f) and the coned-off waterworld C W (f) of f are
invariant under the group of automorphs SUf (O) of f .

Before stating the main result of this paper, we give two lemmas and refer to
Section 6 of [BeS] for the proofs

Lemma 5.9. Let P, P ′ be hyperbolic hyperplanes in Hn
R that do not intersect per-

pendicularly. Then the closest point mapping from P to P ′ is a homeomorphism
onto a convex open subset of P ′, which maps any hyperbolic polyhedron of P to a
hyperbolic polyhedron of P ′.

Lemma 5.10. Let f be an indefinite integral binary Hamiltonian form over O.
If � is a geodesic line in H5

R that is perpendicular to the hyperbolic hyperplane
C (f), oriented such that �(±∞) ∈ {[x : y] ∈ P1

r(H) : ±f(x, y) > 0}, if � meets
transversally at a point z the interior of a 4-dimensional cell Hα− ∩ Hα+

of XO

with F (α−) ≤ 0 and F (α+) ≥ 0 and (F (α−), F (α+)) 
= (0, 0), then a germ of � at
z pointing towards �(±∞) is contained in Hα± .

Proof. The proof of Claim 2 page 12 of [BeS] applies. �

The following result implies Theorem 1.2 in Section 1.

Theorem 5.11. Let A be a definite quaternion algebra over Q and let O be a
maximal order in A. For every indefinite integral binary Hamiltonian form f over
O, the closest point mapping π : W+(f) → C (f) is a proper SUf (O)-equivariant
homotopy equivalence. If the flooded Ford-Voronoi cells for f are pairwise disjoint,
then the closest point mapping π : CW (f) → C (f) is an SUf (O)-equivariant home-
omorphism and its restriction to the waterworld W (f) is an SUf (O)-equivariant
homeomorphism onto a contractible 4-manifold with a polyhedral boundary compo-
nent homeomorphic to R3 contained in every flooded Ford-Voronoi cell.

Proof. The SUf (O)-equivariance properties are immediate. We will subdivide this
proof into several steps. Unless otherwise stated, polyhedra are compact and con-
vex.

Claim 1. The closest point mapping π : W+(f) → C (f) has the following properties.
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(1) The restriction of π to any cell of W (f) is a homeomorphism onto its image,
which is a hyperbolic polyhedron in the hyperbolic hyperplane C (f).

(2) The restriction of π to any flooded Ford-Voronoi cell Hα of f is a proper
map onto a noncompact convex hyperbolic polyhedron in C (f) containing
Bα(1) ∩ C (f) and contained in Bα(

√
DA) ∩ C (f).

(3) If the flooded Ford-Voronoi cells for f are pairwise disjoint, then the re-
striction of π to any cell in the boundary of a flooded Ford-Voronoi cells for
f is a homeomorphism onto its image, which is a hyperbolic polyhedron in
the hyperbolic hyperplane C (f).

Proof. (1) Any 4-dimensional cell, hence any cell, of W (f) is a hyperbolic polyhe-
dron in the equidistant hyperbolic hyperplane

Sα, β = {x ∈ H5
R : dα(x) = dβ(x)}

for some α 
= β in P1
r(A) with F (α)F (β) < 0. Note that Sα, β is not perpendicular

to C (f); otherwise α and β, which are the points at infinity of a geodesic line
perpendicular to Sα, β, would belong to the closure of the same component of
∂∞H5

R − C∞(f), which contradicts the fact that F (α)F (β) < 0. Hence Assertion
(1) of Claim 1 follows from Lemma 5.9.

(2) The closest point mapping from a horoball H to a hyperbolic hyperplane P
passing through the point at infinity of H is a proper map (since the intersection
of H with any geodesic line not passing through its point at infinity is compact),
whose image is H ∩P , and which maps the geodesic segment between two points to
the geodesic segment between their images. Assertion (2) of Claim 1 hence follows
from Proposition 4.1(2).

(3) If the flooded Ford-Voronoi cells for f are pairwise disjoint, any 4-dimensional
cell, hence any cell, in the boundary of a flooded Ford-Voronoi cell for f is a
hyperbolic polyhedron in the hyperbolic hyperplane Sα, β for some α 
= β in P1

r(A)
with F (α) = 0 and F (β) 
= 0. Note that Sα, β is again not perpendicular to C (f);
otherwise α and β would both belong to C∞(f), and the Ford-Voronoi cells Hα

and Hβ would both be flooded for f and not disjoint. The last assertion of Claim
1 follows. �

Claim 2. We have the following parity properties.

(1) Any 3-dimensional cell σ of W (f) not contained in a flooded Ford-Voronoi
cell for f belongs to an even number of 4-dimensional cells of W (f).

(2) If the flooded Ford-Voronoi cells for f are pairwise disjoint, then any
3-dimensional cell σ′ of W (f) contained in a flooded Ford-Voronoi cell for
f belongs to an odd number of 4-dimensional cells of W (f).

Proof. (1) Since σ has codimension 2, the link of σ in the Ford-Voronoi cellulation
of the manifold H5

R is a circle. Considering its intersection with the 4-dimensional
cells, this circle subdivides into closed intervals with disjoint interiors, each one of
them contained in some Ford-Voronoi cell. By the assumption on σ, these Ford-
Voronoi cells are nonflooded. Hence the sign of F on each one of them is either +
or −. In such a cyclic arrangement of signs, the number of sign changes is even.
Assertion (1) follows.

(2) Similarly, the link of σ′ is subdivided into at least 3 closed intervals with
disjoint interiors carrying a sign +, 0,−. By the assumptions, exactly one of them,
denoted by I0, belongs to a flooded Ford-Voronoi cell Hα0

for some α0 ∈ P1
r(A), that
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is, carries the sign 0. Assume for a contradiction that the two intervals adjacent to
I0 carry the same sign. Let β1, β2 ∈ P1

r(A) be such that Hα0
∩Hβ1

and Hα0
∩Hβ2

are the 4-dimensional cells corresponding to the endpoints of I0. Note that the
points at +∞ of the geodesic lines starting from a given point α0 of C∞(f), passing
through a geodesic line both of whose endpoints β1, β2 are contained in the same
component C of ∂∞H5

R − C∞(f), also belong to C. Hence all intervals except I0
in the link of σ′ carry the same sign, which contradicts the fact that σ′ belongs to
W (f). As for σ, this proves that the number of sign changes between + and − in
the link of σ′ is odd. �
Claim 3. If σ and τ are distinct 4-dimensional cells of W (f) or flooded Ford-Voronoi
cells for f , then π(σ) and π(τ ) have disjoint interiors.

Proof. Note that no 4-dimensional cell of W (f) is contained in a flooded Ford-
Voronoi cell for f .

For a contradiction, assume that a point p ∈ C (f) is contained in the interior
of both π(σ) and π(τ ) and, up to moving it a little bit, is not in the (measure 0)
image by π of the codimension 1 skeleton of XO . Let � be the geodesic line through
p perpendicular to C (f), meeting σ and τ at interior points x and y respectively.
Since the cell complexXO is locally finite, we may assume that the geodesic segment
[x, y] does not meet any 4-dimensional cell of W (f) or flooded Ford-Voronoi cell for
f other than σ and τ .

Assume for a contradiction that [x, y] is contained in σ ∪ τ . Then σ and τ
are flooded Ford-Voronoi cells, meeting in a 4-dimensional cell C, which is crossed
transversally by [x, y] since � does not meet the 3-skeleton of XO . Since σ, τ are
flooded, their points at infinity α, β ∈ P1

r(A) belong to C∞(f). Hence the hyperbolic
hyperplane Sα,β equidistant to α and β, which contains C, is perpendicular to
C (f). In particular, �, which is perpendicular to C (f), is contained in the closure
of one of the two connected component of H5

R − Sα,β . This contradicts the fact
that � meets transversally C.

Hence [x, y] is not contained in σ ∪ τ . Let ]x′, y′[ = [x, y] − (σ ∪ τ ) ∩ [x, y] with
x, x′, y′, y in this order on [x, y], so that [x′, y′] is contained in a Ford-Voronoi cell
Hα for some α ∈ P1

r(A). Let σ′ and τ ′ be the 4-dimensional cells ofXO containing x′

and y′ respectively (note that for instance x = x′ and σ = σ′ if σ is a 4-dimensional
cell of W (f), but x 
= x′ if σ is a flooded Ford-Voronoi cell).

Now Lemma 5.10 implies that, since the two germs of the segment [x′, y′] at its
endpoints have opposite direction, the sign of F (α) should be both positive and
negative, a contradiction. �
Claim 4. The 3-dimensional cells of the waterworld satisfy the following properties.

(1) No 3-dimensional cell of W (f) is contained in two distinct flooded Ford-
Voronoi cells.

(2) Any 3-dimensional cell σ of W (f) not contained in a flooded Ford-Voronoi
cell for f belongs to exactly two 4-dimensional cells τ and τ ′ of W (f), and
π embeds their union.

(3) Any 3-dimensional cell σ of W (f) contained in a flooded Ford-Voronoi cell
Hα for f belongs to exactly one 4-dimensional cell τ of W (f), and π embeds
the union of τ and τ ′ =

⋃
x∈σ[x, α[.

Proof. (1) Assume for a contradiction that σ is a 3-dimensional cell of W (f) con-
tained in the flooded Ford-Voronoi cells Hα and Hβ with α 
= β in P1

r(A). Let τ
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be a 4-dimensional cell of W (f) containing σ. Then the interiors of the images by
π of τ and either Hα or Hβ are not disjoint, which contradicts Claim 3.

Let us prove Assertions (2) and (3). Three n-dimensional polytopes in Hn
R having

a common codimension 1 face cannot have pairwise disjoint interiors, so that the
claims on the number of 4-dimensional cells of W (f) containing σ follows from
Claim 3. Since the polyhedra π(τ ) and π(τ ′) are convex, the result follows. �

Claim 5. The 2-dimensional cells of the waterworld satisfy the following properties.

(1) For every 2-dimensional cell σ of W (f) not contained in a flooded Ford-
Voronoi cell for f , the link of σ in W (f) is a circle and the union of the
4-dimensional cells of W (f) containing σ embeds in C (f) by π.

(2) If the flooded Ford-Voronoi cells for f are pairwise disjoint, for every
2-dimensional cell σ′ of W (f) contained in a flooded Ford-Voronoi cell Hα,
the link of σ′ in W (f) is an interval and the union of the 4-dimensional
cells of W (f) containing σ′ and of the geodesic rays [x, α[ for x in the two
3-dimensional cells of W (f) ∩ ∂Hα containing σ′ embeds in C (f) by π.

Proof. (1) By Claim 4, the link Lk(σ) of σ in W (f) is a disjoint union of circles.
Each component of Lk(σ) corresponds to a finite set of 4-dimensional cells cyclically
arranged around σ. By Claim 4 again, their images by π are not folded, hence are
cyclically arranged around π(σ). If Lk(σ) was not connected, the image of two
4-dimensional cells of W (f) by π would have intersecting interiors, contradicting
Claim 3.

(2) An analogous proof gives that the link of σ′ in CW (f) is a circle. �

Claim 6. The 1-dimensional cells of the waterworld satisfy the following properties.

(1) For every 1-dimensional cell σ of W (f) not contained in a flooded Ford-
Voronoi cell for f , the link of σ in W (f) is a 2-sphere and the union of the
4-dimensional cells of W (f) containing σ embeds in C (f) by π.

(2) If the flooded Ford-Voronoi cells for f are pairwise disjoint, for every
1-dimensional cell σ′ of W (f) contained in a flooded Ford-Voronoi cell Hα,
the link of σ′ in W (f) is a 2-disc and the union of the 4-dimensional cells
of W (f) containing σ′ and of the geodesic rays [x, α[ for x in any 3-cell of
W (f) ∩ ∂Hα containing σ′ embeds in C (f) by π.

Proof. (1) By Claim 5, the links of the vertices of the link Lk(σ) of σ in W (f) are
circles; hence Lk(σ) is a compact surface, mapping locally homeomorphically to
Lk(π(σ)) by π, which is a 2-sphere. Hence Lk(π(σ)) is a union of 2-spheres, again
with only one of them by Claim 3.

(2) The proof that the link of σ′ in C W (f) is a 2-sphere is similar. �

Claim 7. The vertices of the waterworld satisfy the following properties.

(1) For every vertex v of W (f) not contained in a flooded Ford-Voronoi cell for
f , the link of v in W (f) is a 3-sphere and the union of the 4-dimensional
cells of W (f) containing v embeds in C (f) by π.

(2) If the flooded Ford-Voronoi cells for f are pairwise disjoint, for every vertex
v′ of W (f) contained in a flooded Ford-Voronoi cell Hα, the link of v′ in
W (f) is a 3-disc and the union of the 4-dimensional cells of W (f) containing
v′ and of the geodesic rays [x, α[ for x in any 3-cell of W (f)∩Hα containing
v′ embeds in C (f) by π.
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Proof. The proof is similar to the previous one. �

Now, the properness of π : W+(f) → C (f) follows from the fact that π is SUf (O)-
equivariant, that SUf (O) acts cocompactly on W (f) and with finitely many orbits
on the set of flooded Ford-Voronoi cells by Proposition 5.8, and from its properness
when restricted to each flooded Ford-Voronoi cell (see Claim 1).

Claim 7 proves that when the flooded Ford-Voronoi cells for f are pairwise
disjoint, the map π : C W (f) → C (f) is a proper local homeomorphism between
locally compact spaces, hence is a covering map. Since C (f) is simply connected,
π is hence a homeomorphism on each of the connected components of CW (f).
But since π is injective outside the codimension 1 skeleton by Claim 3, it follows
that C W (f) is connected and π is a homeomorphism. This concludes the proof of
Theorem 5.11. �

Appendix A. An algebraic description of the distance to the cusps

Let A be a definite quaternion algebra over Q and let O be a maximal order in
A. In this independent appendix, following Mendoza [Men] in the Hermitian case,
we give an algebraic description of the distance functions dα to the rational points
at infinity α ∈ P1

r(A), defined just before Proposition 3.3.
An O-flag is a right O-submodule L of the right O-module O × O, with rank

one (that is, LA is a line in the A-vector space A × A), such that the quotient
(O × O)/L has no torsion. We denote by FO the set of O-flags.

For all right O-submodules M of A×A and v ∈ A×A− {0}, let us define
Mv = {x ∈ A : vx ∈ M}.

Note that for every λ ∈ A− {0}, we immediately have

(16) λMvλ = Mv.

Example A.1. Recall that the inverse I−1 of a left fractional ideal I of O is the
right fractional ideal of O

I−1 = {x ∈ A : IxI ⊂ I}.
It is well known and easy to check that for every a, b ∈ O, if ab 
= 0, then

(17) (Oa+ Ob)−1 = a−1O ∩ b−1O.

We claim that if v = (a, b), then

(18) (O × O)v = (Oa+ Ob)−1.

Indeed, if ab 
= 0, then by Equation (17)

(O × O)v = {x ∈ A : (ax, bx) ∈ O × O} = a−1O ∩ b−1O = (Oa+ Ob)−1.

The result is immediate if a = 0 or b = 0.

Proposition A.2.
(1) For every right O-submodule M of A × A and v ∈ A × A − {0}, the subset

Mv of A is a right fractional ideal of O.
(2) For every v ∈ A×A− {0}, the subset v(O × O)v of O × O is an O-flag.
(3) For all O-flags L and all v ∈ L− {0}, we have

L = v(O × O)v.
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(4) The map SL2(A)× FO → FO defined by

(g, L) �→ (gv)(O × O)gv

for any v ∈ L− {0} is an action on the set FO of O-flags of the group SL2(A).
(5) The map Θ′ : P1

r(A) → FO defined by [a : b] �→ (a, b)(O × O)(a,b) is an
SL2(A)-equivariant bijection.

Proof. (1) This follows immediately from the fact that M is stable by addition and
by multiplications on the right by the elements of O.

(2) Let L = v(O ×O)v ⊂ vA. Then L is contained in O ×O by the definition of
(O ×O)v and is a right O-submodule of O ×O by Assertion (1). Since v 
= 0, note
that (O ×O)v is a nonzero right fractional ideal, so that L 
= 0 and L has rank one.

Assume that w ∈ O × O has its image in (O × O)/L which is torsion. Then
there exists y ∈ O − {0} and x ∈ A such that wy = vx. Hence w = vxy−1. Since
w ∈ O × O, this implies that xy−1 ∈ (O × O)v, so that w ∈ L, and the image of w
in (O × O)/L is zero.

(3) As L has rank one and v ∈ L−{0}, we have L ⊂ vA∩ (O ×O) = v(O ×O)v.
Conversely, for every x ∈ (O×O)v so that vx ∈ O×O, let us prove that vx ∈ L.

Since x belongs to A which is the field of fractions of O, there exists y ∈ O such
that xy ∈ O. Hence (vx)y = v(xy) belongs to L, since v ∈ L and L is a right
O-module. In particular, the image of vx in (O × O)/L is torsion. Since L is an
O-flag, this implies that this image is zero, as wanted. This proves that v(O ×O)v
is contained in L, hence is equal to L by the previous inclusion.

(4) Let us prove that this map is well defined. If v, w ∈ L − {0}, since L has
rank one, there exists x ∈ A− {0} such that w = vx. Thus, for every g ∈ SL2(A),
by the linearity on the right of g and by Equation (16), we have

(gw)(O × O)gw = (gv)x(O × O)(gv)x = (gv)(O × O)gv.

The fact that this map is an action is then immediate: for all g, g′ ∈ SL2(A) and
L ∈ FO , let v ∈ L− {0} and λ ∈ A be such that gvλ ∈ (gv)(O × O)gv − {0}; then
using twice Equation (16) and the linearity, we have

g′(gL) = g′
(
gv(O × O)gv

)
= g′

(
gvλ(O × O)gvλ

)
= g′(gvλ)(O × O)g′(gvλ)

= (g′g)vλ(O × O)(g′g)vλ = (g′g)v(O × O)(g′g)v = (g′g)L.

(5) For every α = [a : b] ∈ P1
r(A), the subset (a, b)(O × O)(a,b), which is an

O-flag by Assertion (2), does not depend on the choice of homogeneous coordinates
of α by Equation (16). Hence the map Θ′ is well defined, and equivariant by the
definition in Assertion (4) of the action of SL2(A) on FO .

The fact that Θ′ is onto follows from Assertion (3). Clearly, it is one-to-one
since if (a, b)(O × O)(a,b) = (c, d)(O × O)(c,d), then there is λ ∈ A− {0} such that
(a, b) = (c, d)λ. �

Let f : H×H → R be a positive definite binary Hamiltonian form and let L be
a rank one right O-submodule of O × O. Then L is a rank 4 free Z-submodule of
H × H, and we denote by 〈L〉R the 4-dimensional real vector subspace of H × H

generated by L, endowed with the restriction of the scalar product 〈·, ·〉f on H×H

defined by f , hence with the induced volume form. Recall that for all z, z′ ∈ H×H,
we have

(19) 〈z, z′〉f =
1

2

(
f(z + z′)− f(z)− f(z′)

)
.
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We define the covolume of L for f as

Covolf L = Vol(〈L〉R/L).

Recall that if G = (〈ei, ej〉f )1≤i,j≤4 is the Gram matrix of a Z-basis (e1, e2, e3, e4)
of L for the scalar product 〈·, ·〉f , then

(20) Covolf L = (detG)
1
2 .

See for instance [Ber2, Vol 2, prop. 8.11.6].

Theorem A.3. For all x ∈ H5
R and α ∈ P1

r(A), we have

dα(x) =
2√
DA

(
CovolΘ(x) Θ

′(α)
) 1

2 .

Proof. Fix a, b ∈ O such that α = [a : b]. Let f = Θ(x),

L = Θ′(α) = (a, b)(O × O)(a,b)

and L′ = (a, b)O. Since a, b ∈ O, we have O ⊂ (O×O)(a,b); hence L
′ is a finite index

Z-submodule in L. Furthermore, by Equation (18) and the relation (see Equation
(2)) between the norm and reduced norm of a left integral ideal of O, we have

[L : L′] = [(O × O)(a,b) : O] = [(Oa+ Ob)−1 : O] = [O : Oa+ Ob]

= n(Oa+ Ob)2.(21)

Let (x1, x2, x3, x4) be a Z-basis of O, so that ( (a, b)xi)1≤i≤4 is a Z-basis of L′.
Using Equation (19) and the fact that f((u, v)λ) = n(λ)f(u, v) for all u, v, λ ∈ H,
we have for 1 ≤ i, j ≤ 4,

〈(a, b)xi, (a, b)xj〉f =
1

2

(
f
(
(a, b)(xi + xj)

)
− f((a, b) xi)− f((a, b) xj)

)
=

f(a, b)

2
(n(xi + xj)− n(xi)− n(xj)) =

f(a, b)

2
tr( xi xj).

Note that (u, v) �→ 1
2 tr( u v) is the standard Euclidean scalar product on H (making

the standard basis (1, i, j, k) orthonormal); hence
(
1
2 tr( xi xj)

)
1≤i,j≤4

is the Gram

matrix of the Z-lattice O in the Euclidean space H. Therefore, by Equation (20)
and by [KO, Lem. 5.5], we have

(22)
(
det

(
tr( xi xj)

)
1≤i,j≤4

) 1
2 = (24)

1
2 Vol(H/O) = 4

DA

4
= DA.

Thus using Equations (20), (21) and (22), we have

Covolf (L) =
1

[L : L′]
Covolf (L

′) =
1

[L : L′]

(
det

(
〈(a, b)xi, (a, b)xj〉f

)
1≤i,j≤4

) 1
2

=
1

[L : L′]

(f(a, b)
2

)2(
det

(
tr( xi xj)

)
1≤i,j≤4

) 1
2 =

DA

4

f(a, b)2

n(Oa+ Ob)2
.

By Proposition 3.3(2), this proves Theorem A.3. �
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Appendix B. Relation with Ash’s classifying spaces

for the arithmetic group SL2(O)

Let A be a definite quaternion algebra over Q and let O be a maximal order in A.
In this appendix, as suggested by the referee, we relate the spine XO constructed
in Section 4 with one of the retracts defined in the paper [Ash] for the arithmetic
subgroups of general linear groups.

We apply the construction in loc. cit. in the special case when its notation n,
D, A, S, G and Γ is respectively our notation 2, A, O, H, GL2(H) and GL2(O) =
SL2(O), using Equation (8). We will follow [Ash, §4], which relates one of the
retracts of the paper [Ash] with Mendoza’s minimal incidence set IK in the paper
[Men], which is a PGL2(O)-equivariant retract of H3

R. We identify H5
R with Q+

1

by the SL2(H)-equivariant homeomorphism Θ of Section 3. We denote by K a
maximal compact subgroup of SL2(H), say the stabilizer of the point (0, 1) ∈ H5

R for
the action by homographies of SL2(H) on H5

R, so that the orbital map g �→ g · (0, 1)
induces an SL2(H)-equivariant homeomorphism SL2(H)/K → H5

R. Note that K is
also a maximal compact subgroup of GL2(H). We use the standard homeomorphism
SL2(H)/K → K\ SL2(H) induced by the inverse map, and the homeomorphism

K\ SL2(H)× R∗
+ → K\GL2(H) defined by Kg �→ Kg

(√
λ 0

0
√
λ

)
.

Let ϕ : P1
r(A) → R∗

+ be any SL2(O)-invariant map, called a set of weights in

[Ash, Def. 2.9]. Then the GL2(O)-equivariant retract W̃ in K\GL2(H) constructed
in [Ash, page 466] is, through the above isomorphisms, the graph in Q+

1 ×R∗
+ of a

continuous map
˜̃
W → R∗

+ where
˜̃
W is the set of f ∈ Q+

1 such that the map from
O × O − {(0, 0)} to R∗

+ defined by

(a, b) �→ ϕ([a : b]) f(a, b)

attains its minimum at least in two elements that generate A×A as a right A-vector
space.

Note that the space
˜̃
W depends on the choice of ϕ, and actually only on ϕmodulo

a positive multiplicative constant. This gives, since Card
(
SL2(O)\P1

r(A)
)
= h2

A, a

real (h2
A − 1)-dimensional family of GL2(O)-equivariant retracts W̃ of K\GL2(H).

We start by introducing an analogous real (h2
A− 1)-dimensional family of deforma-

tions of our spine XO .
The smallest discriminant for which our construction gives different cellulations

of H5
R for the same arithmetic group is DA = 11. Up to isomorphism, A is then

the Q-algebra generated by elements i and j satisfying i2 = −1, j2 = −11 and
ij = −ji (see [Vig, p. 98]). Note that A has class number hA = 2 and contains
exactly two conjugation classes of maximal orders (see the table [Vig, p. 154]). For

instance, if t = 1+j
2 , then the order O = Z[t]+ iZ[t] in A has discriminant 11, hence

is maximal.
We fix an SL2(O)-invariant map χ : P1

r(A) → R∗
+, and denote it α �→ χα. For

every α ∈ P1
r(A), we can define a new distance to the cusp α function

d′α = χα dα,

a new family of horoballs for s > 0

B′
α(s) = {x ∈ H5

R : d′α(x) ≤ s} = Bα

( s

χα

)
,
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a new family of Ford-Voronoi cells

H ′
α = {x ∈ H5

R : ∀ β ∈ P1
r(A), d′α(x) ≤ d′β(x)},

and a new spine

X ′
O =

⋃
α	=β∈P1

r(A)

H ′
α ∩ H ′

β =
⋃

α∈P1
r(A)

∂H ′
α.

Using the crucial argument that χ is SL2(O)-invariant, an elementary consequence
of Proposition 3.3, Proposition 3.4, Theorem 3.5 and Proposition 4.1 gives the
following properties, for all x ∈ H5

R, α = [a : b] ∈ P1
r(A), g ∈ SL2(O), and s > 0.

(i) We have

(23) d′α(x) =
χα Θ(x)(a, b)

n(Oa+ Ob)
.

(ii) We have d′g·α ◦ g = d′α, g(B′
α(s)) = B′

g·α(s), and g(H ′
α) = H ′

g·α.
(iii) The map ln d′α, which differs from ln dα only by an additive constant, is

also a Busemann function for the point at infinity α: there exists c′α ∈ R

such that ln d′α(y) = βα(y, (0, 1)) + c′α for every y ∈ H5
R.

(iv) If α ∈ A, then B′
α(s) is the Euclidean ball of center

(
α, s n(Iα)

2χα

)
and radius

s n(Iα)
2χα

. If α = ∞, then B′
α(s) is the Euclidean halfspace consisting of all

(z, r) with r ≥ χ∞
s .

(v) For all distinct α, β ∈ P1
r(A), the horoballs B′

α(minχ) and B′
β(minχ) have

disjoint interior.
(vi) We have

H5
R =

⋃
α∈P1

r(A)

B′
α

(
(maxχ)

√
DA

)
.

(vii) We have B′
α(minχ) ⊂ H ′

α ⊂ B′
α((maxχ)

√
DA).

(viii) The Ford-Voronoi cell H ′
α is a noncompact 5-dimensional convex hyperbolic

polytope, whose proper cells are compact. For every β ∈ P1
r(A)− {α}, the

Ford-Voronoi cells H ′
α and H ′

β have disjoint interior. The spine X ′
O is an

SL2(O)-invariant piecewise hyperbolic polyhedral complex of dimension 4,
which is an SL2(O)-equivariant retract of H5

R.

Now, the relation between our spine XO and the retracts W̃ of [Ash] is given by
the following result.

Proposition B.1. For every SL2(O)-invariant map ϕ : P1
r(A) → R∗

+, let χ :
P1
r(A) → R∗

+ be defined by, for every α ∈ P1
r(A),

χα = ϕ(α) min{n(Oa+ Ob) : a, b ∈ O and α = [a : b]}.

Then, with the above notation, we have

˜̃
W = Θ(X ′

O).

In particular, the virtual cohomological dimension of SL2(O) is equal to 4.

Proof. For every α ∈ P1
r(A), let

nα = min{n(Oa′ + Ob′) : a′, b′ ∈ O and α = [a′ : b′]},
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so that the map α �→ nα is invariant under the action of SL2(O) on P1
r(A) and

(24) ϕ(α) =
χα

nα
.

Let us denote by p : O × O − {(0, 0)} → P1
r(A) the surjective map (a, b) �→ [a : b].

Lemma B.2. For every f ∈ Q+, if (a, b) ∈ O×O−{(0, 0)} minimizes the product
map (ϕ ◦ p)f on O × O − {(0, 0)}, then n(Oa+ Ob) = n[a:b].

Proof. Let α = [a : b]. Assume for a contradiction that n(Oa + Ob) > nα. Then
there exist a′, b′ ∈ O such that α = [a′ : b′] and n(Oa+ Ob) > n(Oa′ + Ob′). Since
[a : b] = [a′ : b′], there exists λ ∈ A× such that a = a′λ and b = b′λ. Hence
n(Oa+ Ob) = n(Oa′ + Ob′) n(λ), so that n(λ) > 1 and

((ϕ◦p)f)(a, b)=ϕ◦p(a′λ, b′λ)f(a′λ, b′λ)=ϕ◦p(a′, b′)f(a′, b′) n(λ)>((ϕ◦p)f)(a′, b′),
a contradiction. �

Let x ∈ H5
R and f = Θ(x), which belongs to Q+

1 . If (a, b) ∈ O × O − {(0, 0)}
minimizes the map (ϕ ◦ p)f on O × O − {(0, 0)}, let us prove that x ∈ H ′

α, where
α = [a : b]. Otherwise, there exists β ∈ P1

r(A) such that d′β(x) < d′α(x). Let us

write β = [c : d] with (c, d) ∈ O ×O −{(0, 0)} such that n(Oc+Od) = nβ . Then by
Lemma B.2 for the penultimate equality, and using twice Equations (23) and (24),
we have

((ϕ ◦ p)f)(c, d) = ϕ(β) f(c, d) =
χβ

nβ
θ(x)(c, d) =

χβ θ(x)(c, d)

n(Oc+ Od)
= d′β(x)

< d′α(x) =
χα θ(x)(a, b)

n(Oa+ Ob)
=

χα

nα
θ(x)(a, b) = ((ϕ ◦ p)f)(a, b),

a contradiction to the minimizing property of (a, b).
Conversely, let x ∈ H ′

α and f = Θ(x), let (a, b) ∈ O × O − {(0, 0)} be such
that n(Oa+ Ob) = nα where α = [a : b], and let us prove that (a, b) minimizes the
map (ϕ ◦ p)f on O ×O − {(0, 0)}. Otherwise, let (c, d) ∈ O × O − {(0, 0)} be such
that ((ϕ ◦ p)f)(c, d) minimizes (ϕ ◦ p)f and ((ϕ ◦ p)f)(c, d) < ((ϕ ◦ p)f)(a, b). Let
β = [c : d]. Then using Lemma B.2 for the second equality, we have

d′β(x) =
χβ θ(x)(c, d)

n(Oc+ Od)
=

χβ

nβ
θ(x)(c, d) = ((ϕ ◦ p)f)(c, d)

< ((ϕ ◦ p)f)(a, b) = χα

nα
θ(x)(a, b) =

χα θ(x)(a, b)

n(Oa+ Ob)
= d′α(x),

a contradiction to the fact that x belongs to H ′
α.

Since two elements in O×O−{(0, 0)} generate A×A as a right A-vector space if
and only if their images in P1

r(A) are distinct, this implies that an element x ∈ H5
R

belongs to H ′
α and H ′

β with α 
= β if and only if the map ((ϕ ◦ p)θ(x) is minimized

by two elements in O ×O −{(0, 0)} that generate A×A as a right A-vector space.
This proves the first claim of Proposition B.1.

The second claim follows from [Ash, Theo. (ii), p. 462]. �
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loq. Théorie des Groupes Algébriques (Bruxelles, 1962), Librairie Universitaire, Louvain;
GauthierVillars, Paris, 1962, pp. 23–40. MR0148666

[Bor2] Armand Borel, Reduction theory for arithmetic groups, Algebraic Groups and Discontin-
uous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc.,
Providence, R.I., 1966, pp. 20–25. MR0204533

[Bow] B. H. Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993),
no. 2, 245–317, DOI 10.1006/jfan.1993.1052. MR1218098
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Mathématique de France, Paris, 1977. Avec un sommaire anglais; Rédigé avec la col-
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