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(Communicated by Jeff Xia)

Abstract. Quasiperiodic perturbations with two frequencies (1/ε, γ/ε) of a
pendulum are considered, where γ is the golden mean number. We study
the splitting of the three-dimensional invariant manifolds associated to a two-
dimensional invariant torus in a neighbourhood of the saddle point of the
pendulum. Provided that some of the Fourier coefficients of the perturba-
tion (the ones associated to Fibonacci numbers) are separated from zero, it is
proved that the invariant manifolds split for ε small enough. The value of the
splitting, that turns out to be O

(
exp

(− const /
√
ε
))

, is correctly predicted by
the Melnikov function.

1. Introduction

The rapidly (and periodically) forced pendulum has been widely used as a model
for the motion near a resonance of Hamiltonian systems with two degrees of free-
dom. As is well known in several situations [DS92], [Gel93], the separatrices of the
perturbed system do not coincide, giving rise to the so-called splitting of separa-
trices, which seems to be the main cause of stochastic behaviour in Hamiltonian
systems.

In this announcement we consider a quasiperiodic high-frequency perturbation
of the pendulum (it can be regarded as a model near a resonance of a Hamiltonian
system with three degrees of freedom), described by the Hamiltonian function

ω · I
ε

+ h(x, y, θ, ε),(1)

where

ω · I = ω1I1 + ω2I2, h(x, y, θ, ε) =
y2

2
+ cosx+ εpm(θ1, θ2) cosx,

with symplectic form dx ∧ dy + dθ1 ∧ dI1 + dθ2 ∧ dI2. We assume that ε is a small
positive parameter and that p is a positive parameter. Mainly due to a technical
limitation imposed by the Extension Theorem (Theorem 2), we will restrict our-
selves to the case p > 3. We also assume that the frequency is of the form ω/ε for
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ω = (1, γ), where γ = (1 +
√

5)/2 is the golden mean. The equations of motion
related to Hamiltonian (1) are:

ẋ = y, ẏ = (1 + εpm(θ1, θ2)) sinx,

θ̇1 =
1

ε
, İ1 = −εp cosx

∂m

∂θ1
(θ1, θ2),(2)

θ̇2 =
γ

ε
, İ2 = −εp cosx

∂m

∂θ2
(θ1, θ2).

The function m is assumed to be a 2π-periodic function of two variables θ1 and
θ2. Thus it can be represented as a Fourier series:

m(θ1, θ2) =
∑
k1,k2

mk1k2 ei(k1θ1+k2θ2).

We assume that, for some positive numbers r1 and r2,

sup
k1,k2

∣∣∣mk1k2 er1|k1|+r2|k2|
∣∣∣ <∞,(3)

and that there are positive numbers a and k0 such that

|mk1k2 | ≥ a e−r1|k1|−r2|k2|(4)

for all k1, k2 such that |k1| = Fn+1 and |k2| = Fn, where Fn and Fn+1 are Fibonacci
numbers, which are defined by the following recurrent formula:

F0 = 1, F1 = 1, Fn+1 = Fn + Fn−1, n ≥ 1.(5)

We call the corresponding terms in the perturbation resonant or Fibonacci terms .
For example, the function

m(θ1, θ2) =
cos θ1 cos θ2

(cosh r1 − cos θ1)(cosh r2 − cos θ2)

satisfies these conditions.
The upper bound (3) implies that the function m is analytic on the strip {|=θ1| <

r1} × {|=θ2| < r2}. Equation (4) implies that this function cannot be continued
analytically onto a larger strip. Let us select α ∈ (0, 1]. Estimate (3) implies that

|m(θ1, θ2)| ≤ Kε−2α(6)

on the strip

|=θ1| ≤ r1 − εα, |=θ2| ≤ r2 − εα.

Formula (4) implies that the upper bound (6) cannot be improved. It will be seen
that the value of the splitting depends essentially on the width of these strips.
Moreover, formula (4) will allow us to estimate in the next section the size of the
Melnikov function in terms of the separatrix of the unperturbed pendulum. (See
Remark 4.) The function m under consideration has a singularity “of the second
order”, in the sense that the upper bound (6) for the maximum of the modulus is
quadratic with respect to the inverse of the distance to the boundary of the strip.
In a similar way the case of a singularity of any “order” q can be considered. In

this case mk1k2 should be replaced by mk1k2/ |k|
q−2

in (3) and (4).
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The Hamiltonian (1) can be regarded as a singular perturbation of the pendulum

h0 =
y2

2
+ cosx.(7)

The unperturbed system has a saddle point (0, 0) and a homoclinic trajectory given
by

x0(t) = 4 arctan( et), y0(t) = ẋ0(t).

The complete system (2) has a whiskered torus T : (0, 0, θ1, θ2). The whiskers are
3D-hypersurfaces in the 4D-dimensional extended phase space (x, y, θ1, θ2). These
invariant manifolds are close to the unperturbed pendulum separatrix.

Our main result (Theorem 3) is that, if condition (4) is verified, then for p > 3
and small ε > 0 the invariant manifolds split, and the value of the splitting (i.e.,
the distance function between these invariant manifolds) is correctly predicted by

the Melnikov function, which is O( e− const /
√
ε).

Remark 1. Our model (1) is based on a previous work by C. Simó [Sim94], where
Neishtadt’s Averaging Theorem [Nei84] was generalized to quasiperiodic systems,
giving rise to upper estimates of the splitting which are exponentially small with
respect to the parameter of perturbation ε. Related upper estimates can be found
in [CG94], [Gal94], [BCG95], [Ben96]. In contrast to these results, Theorem 3
provides both lower and upper bounds for our model.

Remark 2. As an example in [DGJS96b] shows, the splitting can be of the order
of some power of ε if the function m is not analytic. This makes a first qualitative
difference between periodic and quasiperiodic perturbations. Indeed, in the peri-
odic case, only the C1 dependence with respect to θ of the perturbed Hamiltonian
is needed to prove that the splitting is O( e−c/ε), where c is the width of the ana-
lyticity strip of the unperturbed separatrix. (In both cases, the analyticity of the
unperturbed system is essential.)

Remark 3. In the case of an entire function m, we think that the method used in
the present paper can be modified in order to improve the estimate of the error and
to prove that the Melnikov function gives the actual asymptotics at least when the
resonant terms decrease not much faster than 1/k!.

2. The Melnikov function

As is well known, the Melnikov function

M(θ1, θ2; ε) =

∫ ∞

−∞
{h0, h}(x0(t), y0(t), θ1 + t/ε, θ2 + γt/ε) dt(8)

gives a first order approximation of the difference between the values of the un-
perturbed pendulum energy h0 on the stable and unstable manifolds. Using the
Fourier series of m(θ1, θ2), one can compute the Fourier coefficients of M(θ1, θ2) as

Mk1k2(ε) = − 2πiεp(k1 + γk2)
2

ε2 sinh (π(k1 + γk2)/(2ε))
·mk1k2 .

In order to bound the Melnikov function, it is important to know for each fixed
ε which are the indices (k1, k2) corresponding to the biggest Fourier coefficient
Mk1k2(ε). From the expression above, Mk1k2(ε) is a product of two factors. For ε
fixed and small enough, the first factor of Mk1k2(ε) behaves as εp−2(k1 + γk2)

2×
e−π(k1+γk2)/(2ε), and it turns out that it becomes bigger for small k1 + γk2, i.e.,
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just for the resonant terms where the second factor mk1k2 decreases with respect to
(k1, k2) according to the behaviour (3) and (4). Here we have the main difference
between the quasiperiodic case and the periodic one: for a periodic perturbation, the
first Fourier coefficients M±1(ε) of the Melnikov function M(θ; ε) give generically
the main contribution to the Melnikov function M(θ; ε), since Mk(ε) = O( e−|k|/ε).
However, in the quasiperiodic case the biggest Fourier coefficient depends strongly
on the exponent k · (1, γ) = k1 + γk2 of the Fourier coefficient, i.e., on the rational
approximations of γ.

For γ = (1+
√

5)/2, it is very well known that its best approximation by rational
numbers is given by the quotient of successive Fibonacci numbers (5). Indeed, it
is easy to check that for large values of n one has the following approximation of γ
by Fibonacci numbers:

Fn − γFn−1 = (−1)n
CF

Fn−1
+ O

(
1

F 3
n−1

)
, CF =

1

γ + γ−1
,

whereas for the other integers one has the following result.

Lemma 1. If N ∈ N is not a Fibonacci number, then for all integers k

|k − γN | > γCF

N
.

Using this lemma one can see that the indices (k1, k2) corresponding to the lead-
ing Fourier coefficients Mk1k2(ε) depend on ε. In fact, the largest terms correspond
to (k1, k2) = ±

(
Fn(ε)+1,−Fn(ε)

)
, where Fn(ε) is the Fibonacci number closest to

F ∗(ε) =
√
φ0/ε, where φ0 = π/(2(γ + γ−1)(r1γ + r2)). Except for a small neigh-

bourhood of ε = ε∗γ−n, with ε∗ given in (10), there is a unique Fibonacci number
closest to F ∗(ε), and then only the two corresponding terms dominate in the Fourier
series. Studying the size of this term (which also depends on r1 and r2), one can

observe that it is O( e−c/
√
ε). With a more detailed analysis, one can see that a

better estimate is provided by taking c to be not a constant function but a bounded
oscillating one:

c(δ) = C0 cosh

(
δ − δ0

2

)
for δ ∈ [δ0 − log γ, δ0 + log γ],(9)

where

C0 =

√
2π(γr1 + r2)

γ + γ−1
, δ0 = log ε∗, ε∗ =

π(γ + γ−1)

2γ2(r1γ + r2)
,(10)

continued periodically onto the whole real axis. In this way, the function c is
piecewise-analytic, continuous, and 2 logγ-periodic. This is summarized in the
following lemma.

Lemma 2 (Properties of the Melnikov function). The Melnikov function defined
by (8) is a 2π-periodic function of θ1 and θ2, such that

1) M (θ1 − T/ε, θ2 − γT/ε; ε) is analytic in the product of strips

{|=θ1| < r1} × {|=θ2| < r2} × {|=T | < π/2};

2) the maximum of the modulus of the Melnikov function taken on real argu-
ments, max(θ1,θ2)∈T2 |M(θ1, θ2)|, can be bounded from above and from below
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by terms of the form

const εp−1 exp

(
−c(log ε)√

ε

)
(11)

with different ε-independent constants, where the function c in the exponent
is defined by (9);

3) for a fixed small ε only four terms (at most) dominate in the Fourier se-
ries for the Melnikov function and the rest can be estimated from above by
O( e−C1/

√
ε), where the constant C1 > max c(δ) = C0 cosh(log

√
γ).

Since we have established that for most small values of ε only the terms with
(k1, k2) = ±(Fn(ε)+1,−Fn(ε)) are important, the Melnikov function is essentially

M(θ1, θ2; ε) ≈ 2
∣∣MFn(ε)+1,−Fn(ε)

∣∣ sin (Fn(ε)+1θ1 − Fn(ε)θ2 + ϕ(ε)
)
.

The zeros of the Melnikov function correspond to homoclinic trajectories. The
above formula implies that the zeros of the Melnikov function form two lines on the
torus. As already noticed by C. Simó [Sim94], the averaged slopes of those lines
approach γ when ε→ 0.

Remark 4. We note that the Melnikov function is not invariant with respect to
canonical changes of variables. After a change, e.g., after a step of the classical
averaging procedure, a lot of nonzero harmonics, which were not present in the
original system, can appear. If in the original system the Fibonacci terms were
not big enough, these new harmonics may give larger contribution to the splitting.
This idea was used in [Sim94] to detect the splitting for a system with only four
perturbing terms.

Remark 5. The hypothesis that ω in the frequency vector is just (1, γ) can be
relaxed. The generalization of the present result to the case when γ is a quadratic
number is straightforward, with a similar expression (11) for the size of the Melnikov
function. The case in which ω = (ω1, ω2), with the ratio ω1/ω2 being of constant
type (the continued fraction expansion has bounded coefficients), but not quadratic,
can be similarly analyzed, but in this case c(δ) is no longer a periodic function. In
some sense one can say, properly speaking, that there are no asymptotics. But
it seems that there still exist upper and lower bounds, with the factor

√
ε in the

denominator of the exponential term. The case of two frequencies whose ratio
ω1/ω2 is not of constant type, as well as the case of more than two perturbing
frequencies, is more complicated.

In the following sections we sketch the method used to justify that the prediction
given by the Melnikov function is correct. The method used here is a generalization
to the quasiperiodic case of the method used in [Laz84], [DS92], [Gel93].

3. Normal form and local manifolds

The first step is to give a description of the dynamics near the 2D-dimensional
invariant torus T . So, we will show the existence of a convergent normal form in a
neighbourhood of T .

As we have seen during the analysis of the Melnikov function, the size of the
splitting depends essentially on the widths of the analyticity strip (r1, r2) of the
angular variables θ1, θ2, as well as on the width of the analyticity strip of the
separatrix (x0(t), y0(t)). Therefore, to detect the splitting in the quasiperiodic case
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the loss of domain in the angular variables must be very small (i.e., O(εα), where
α depends on the Diophantine properties of the frequencies). This makes another
difference with the periodic case, where the size of the splitting does not depend
on the width of the analyticity strip of the angular variable θ, but only on the
width of the analyticity strip of the separatrix (x0(t), y0(t)). When dealing with
the frequencies (1, γ) one needs a reduction of O(

√
ε) at most. Hence, during the

proof of the convergence of the normal form one has to bound carefully the loss
of domain (with respect to the angular variables) in order to achieve such a small
reduction.

Finally, we want to stress that if the amount of reduction is something bigger,
one can only produce upper bounds for the splitting of separatrices.

Theorem 1 (Normal Form Theorem). Let ε ∈ (0, ε0). In a neighbourhood of the
hyperbolic torus T there is a canonical change of variables (x, y) → (X,Y ), which
depends 2π-periodically on θ1 and θ2, such that the Hamiltonian (1) takes the form

H(XY, ε) = H0(XY ) + εp−1H1(XY, ε),

where H0 is the normal form Hamiltonian for the unperturbed pendulum. Moreover,
the change of variables has the form

x = x(0)(X,Y ) + εp−1x(1)(X,Y, θ1, θ2; ε),
y = y(0)(X,Y ) + εp−1y(1)(X,Y, θ1, θ2; ε),

(12)

where (x(0), y(0)) are normal form coordinates for the unperturbed pendulum.
The functions H0, H1, x(0), y(0), x(1), and y(1) are analytic and uniformly

bounded in the complex domain defined by

|X |2 + |Y |2 < r20 , |=θ1| < r1 −
√
ε, |=θ2| < r2 −

√
ε,

for r1 and r2 in (3) and some positive constant r0 > 0.

The proof of this theorem can be found in [DGJS96a].
The Normal Form Theorem provides a convenient parametrization for the local

invariant manifolds. Let λ be H ′(0, ε). Then,

x = xs(T, θ1, θ2) ≡ x(0, e−λT , θ1, θ2),
y = ys(T, θ1, θ2) ≡ y(0, e−λT , θ1, θ2),

for T ≥ T0,(13)

and

x = xu(T, θ1, θ2) ≡ x( eλT , 0, θ1, θ2),
y = yu(T, θ1, θ2) ≡ y( eλT , 0, θ1, θ2),

for T ≤ −T0,(14)

where we have used the change (12). Theorem 1 also implies that, in the domains
above, ∣∣xβ(T, θ1, θ2)− x0(T )

∣∣ ≤ Cεp−1,∣∣yβ(T, θ1, θ2)− y0(T )
∣∣ ≤ Cεp−1,

for β = s, u.

4. Extension Theorem

The Normal Form Theorem provides a local approximation for the unstable
manifold in terms of the unperturbed separatrix, which is O

(
εp−1

)
. The following

theorem extends this local approximation for solutions of system (2) to a global
one. Since the unperturbed separatrix (x0(T ), y0(T )) has a singularity on T =
±π/2, we will restrict ourselves to |=T | ≤ π/2 −

√
ε, i.e., up to a distance to

the singularity T = ±π/2 of the same order as the loss of domain in the angular
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variables. Besides, the extension time t + T will be chosen big enough in order
that the unperturbed separatrix reaches again the domain of convergence of the
normal form. This procedure follows the same ideas as in the Extension Theorem
of [DS92], and its complete proof can be also found in [DGJS96a].

Theorem 2 (Extension Theorem). Assume p > 2. Then, there exists ε0 > 0 such
that the following extension property holds:

For any positive constants C and T0 there exists a constant C1, such that for
any ε ∈ (0, ε0), every solution of system (2) that satisfies the initial conditions

|x(t0)− x0(t0 + T )| ≤ Cεp−1, |y(t0)− y0(t0 + T )| ≤ Cεp−1,

|=θ1(t0)| ≤ r1 −
√
ε, |=θ2(t0)| ≤ r2 −

√
ε,

for some T ∈ C, t0 ∈ R with

|=T | ≤ π/2−
√
ε, −T0 ≤ t0 + <T < 0,

can be extended for −T0 ≤ t+ <T ≤ T0 satisfying

|x(t) − x0(t+ T )| ≤ C1ε
p−2, |y(t)− y0(t+ T )| ≤ C1ε

p−2.

In particular, Theorem 2 can be applied to the local invariant unstable manifold
given in (14). As we will see in Lemmas 3 and 4, the above approximation of these
invariant manifolds in such a complex domain will allow us to derive suitable bounds
of the error on the real axis to detect the splitting. Before closing this section let
us note that, as a direct consequence of the Extension Theorem, the difference of
unperturbed energies along the invariant manifolds can also be estimated.

Corollary 1. The following estimate holds:

h0(x
u, yu)− h0(x

s, ys) = M(θ1 − T/ε, θ2 − γT/ε) + O
(
ε2(p−2)

)
,

where h0 is evaluated on the invariant manifolds corresponding to T, θ1, θ2,

<T ∈ (T0 −R, T0), |=T | ≤ π/2−
√
ε, |=θk| ≤ rk −

√
ε, k = 1, 2,(15)

for any positive constants T0 and R, R < T0.

5. First return

By Theorem 1, the local unstable invariant manifold is εp−1-close to the unper-
turbed separatrix. By Theorem 2, it can be continued for −T0 ≤ t + <T ≤ T0,
provided that the parameters (θ1, θ2, T ) belong to the complex domain (15), and
it remains εp−2-close to the unperturbed separatrix. Since this unperturbed homo-
clinic orbit comes back to the domain of the normal form, the same happens to the
unstable manifold, which can be compared with the local stable manifold.

In order to describe the difference between the global unstable manifold and the
local stable one, it is convenient to take H and T = − logY/H ′(XY ) as canonical
coordinates near the stable separatrix. The equation of the local stable manifold
is then H = 0. In this coordinate system the unstable manifold is the graph of a
function Hu: H = Hu(T, θ1, θ2), which depends 2π-periodically on θ1 and θ2, and
has zero mean, due to the Hamiltonian character of the perturbation. Using the
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parametrization provided by the normal form, it turns out that Hu is quasiperiodic
in T :

Hu(T, θ1, θ2) = Hu(0, θ1 − T/ε, θ2 − γT/ε).

Moreover, by the Extension Theorem and its Corollary 1, Hu is given in first
order by the Melnikov function for (T, θ1, θ2) in the complex domain (15):

Hu(T, θ1, θ2) = M(θ1 − T/ε, θ2 − γT/ε) + O
(
ε2p−4

)
.(16)

It is important to notice that the term F = O
(
ε2p−4

)
in equation (16) is an

analytic function in the complex domain (15) which depends 2π-periodically on θ1
and θ2, has zero mean, and is quasiperiodic in T . The following general lemma
allows us to bound its Fourier coefficients.

Lemma 3. Let F (θ1 + s/ε, θ2 + γs/ε) be a 2π-periodic function of the variables
θ1, θ2, analytic in the product of strips |=θ1| ≤ r1, |=θ2| ≤ r2, and |=s| ≤ ρ, and
|F | ≤ A for these values of the variables. Then for all k1, k2 ∈ Z

|Fk1k2 | ≤ A e−|k1|r1−|k2|r2 e−ρ|k1+γk2|/ε.

Finally, the next lemma gives the exponentially small upper bound for the func-
tion F for real values of the variables.

Lemma 4. Consider the (2 log γ)-periodic function cρ,r1,r2(δ) defined on the inter-
val [log ε∗ − log γ, log ε∗ + log γ] by

cρ,r1,r2(δ) = C0 cosh

(
δ − log ε∗

2

)
,

ε∗ =
ρ(γ + γ−1)

(γr1 + r2)γ2
, C0 = 2

√
(γr1 + r2)ρ

γ + γ−1
,

and continued by 2 log γ-periodicity. Let F satisfy the conditions of Lemma 3. If
γ = (1 +

√
5)/2 is the golden mean number and the mean value of the function F

is zero, then

|F (θ1, θ2)| ≤ constA exp

(
−cρ,r1,r2(log ε)√

ε

)
(17)

on the real values of its arguments. The constant depends continuously on r1 > 0
and r2 > 0.

Applying these two lemmas to the error function F = O
(
ε2p−4

)
in equation (16),

we obtain the desired exponentially small estimates. Now we can summarize the
above results on the splitting function Hu(T, θ1, θ2) in the following theorem, which
is the main result of this paper.

Theorem 3 (Main Theorem). There exist positive constants T0 and R, R < T0,
such that in the coordinate system (H,T, θ1, θ2) the unstable manifold can be rep-
resented as the graph of the function H = Hu(T, θ1, θ2; ε), where the function Hu

depends 2π-periodically on θ1 and θ2. In the domain

<T ∈ (T0 −R, T0), |=T | ≤ π

2
−
√
ε,

|=θ1| < r1 −
√
ε, |=θ2| < r2 −

√
ε,
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this function is analytic and close to the Melnikov function:

Hu(T, θ1, θ2) = M(θ1 − T/ε, θ2 − γT/ε) + O
(
ε2p−4

)
.

Moreover,

Hu(T, θ1, θ2) = Hu(0, θ1 − T/ε, θ2 − γT/ε),

and its mean value is zero: ∫
T2

Hu(0, θ1, θ2) dθ1dθ2 = 0.(18)

Furthermore, for p > 3 and real T , θ1 and θ2,

|Hu(T, θ1, θ2)−M (θ1 − T/ε, θ2 − γT/ε)| ≤ const ε2p−4 exp

(
−c(log ε)√

ε

)
,

where c(δ) is defined in (9). If condition (4) is fulfilled, then there exists ε0 > 0
such that, for 0 < ε < ε0, the maximum of the modulus of the Melnikov function is
larger than the right-hand side of the last upper bound.
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[Sim94] C. Simó, Averaging under fast quasiperiodic forcing, Hamiltonian Mechanics: Inte-
grability and Chaotic Behaviour (New York) (J. Seimenis, ed.), NATO Adv. Sci. Inst.
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[Sim97] C. Simó (ed.), Hamiltonian systems with three or more degrees of freedom, NATO
Adv. Sci. Inst. Ser. C Math. Phys. Sci., held in S’Agaró, Spain, 19–30 June 1995,
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