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POLYNOMIALS WITH INTEGRAL COEFFICIENTS,

EQUIVALENT TO A GIVEN POLYNOMIAL
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(Communicated by Robert Lazarsfeld)

Abstract. Let f(x0, . . . , xn) be a homogeneous polynomial with rational co-
efficients. The aim of this paper is to find a polynomial with integral coeffi-
cients F (x0, . . . , xn) which is “equivalent” to f and as “simple” as possible.
The principal ingredient of the proof is to connect this question with the geo-
metric invariant theory of polynomials. Applications to binary forms, class
numbers, quadratic forms and to families of cubic surfaces are given at the
end.

1. Introduction

Let f(x0, . . . , xn) be a homogeneous polynomial with rational coefficients. The
aim of this paper is to find a polynomial with integral coefficients F (x0, . . . , xn)
which is “equivalent” to f and as “simple” as possible.

There are two frequently considered notions of equivalence for polynomials. We
say that two polynomials f, g are affine equivalent if there is an invertible matrix
M ∈ GL(n + 1,Q) such that f(x) = g(Mx). f and g are called projectively
equivalent if there is an invertible matrix M ∈ GL(n+1,Q) and a nonzero constant
c ∈ Q∗ such that f(x) = c ·g(Mx). Both of these concepts are equivalence relations
which preserve the degree.

It is much less clear how to define which polynomials are “simple”. In fact, the
main aim of the present paper is to develop such a definition.

Many special cases of this question have been considered in the past.

1.1. The study of quadratic number fields K = Q(
√
D) is intimately connected

with the study of binary quadratic forms Q = ax2 + bxy + cy2. Let dK denote the
discriminant of K. A quadratic form Q is called fundamental for K if b2−4ac = dK .
The study of equivalence classes of fundamental quadratic forms is equivalent to
the study of the ideal class group of K; see, for instance, [3, VII.2].

1.2. In the theory of elliptic curves it is frequently useful to look at a Weierstrass
equation

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3, where ai ∈ Z.
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Such an equation is called minimal if its discriminant is the smallest possible; see
[10, VIII.8] for details. (If a1 = a2 = a3 = 0, then the discriminant is the usual
expression 4a3

4 + 27a2
6, up to a normalizing factor. The general form is quite com-

plicated but it can be reduced to this one by suitable substitutions.)

1.3. In the fifties Demyanov, Lewis, and Springer studied the solvability of equa-
tions f = 0 in the p-adic field Qp (Artin’s conjecture). Their method was to find
an equivalent equation F = 0 with coefficients in the p-adic integers Zp such that
the reduction of F modulo p is relatively simple. Their main concern was to ensure
that F modulo p is irreducible, even over the algebraic closure of the finite field Fp.
See [7] for an overview and references.

1.4. Recently, Corti [1] studied families of Del Pezzo surfaces over smooth curves.
His aim was to use birational transformations to obtain a family whose total space
has very mild singularities. For cubic surfaces over Dedekind domains he proposed
a program to obtain such a model. He proved that the program works over curves
in characteristic zero, but the positive characteristic and the arithmetic cases were
left open.

The intention of this paper is to propose a unified generalization of the above
special cases.

1.5. Definition. Let f(x) ∈ Q[x0, . . . , xn] be a homogeneous polynomial. For
any M ∈ GL(n + 1,Q) and c ∈ Q∗ consider the new polynomial obtained by
the coordinate change F (x) := c · f(Mx). It may happen that F (x) has integer
coefficients, in which case I call F an integral model of f . If F (x) is an integral
model of f and A ∈ GL(n + 1,Z), then ±F (Ax) is also an integral model. Such
integral models will be considered integrally equivalent.

The “simplest” integral models will be called semi-stable over Z. (The choice
of terminology should become clear later.) Before giving the precise definition (see
(3.3)), I list the main properties that such a concept should possess.

1.6. The requirements for the theory. Semi-stable models over Z should sat-
isfy the following properties:

(1.6.1) Being semi-stable over Z should be a local property. That is, F (x) is
semi-stable over Z iff it is semi-stable over Zp (the ring of p-adic integers) for every
p.

(1.6.2) f should have only finitely many integral models (up to integral equiva-
lence) which are semi-stable over Z.

(1.6.3) Let Φ : (polynomials) → R+ be any function which is invariant under
coordinate changes by SL and satisfies Φ(cf) = crΦ(f) for some r = r(Φ) > 0.
Then an integral model F of f is semi-stable over Z iff Φ(F ) is minimal among all
integral models of f .

A procedure to construct semi-stable models for a polynomial over Z is described
in (4.3). In some cases this procedure does not produce integral models satisfying
all of the above properties (4.4). On the other hand, such polynomials turn out to
be rare, as shown by the following special case of the main theorem (4.1):

1.7. Theorem. Let f(x) ∈ Q[x0, . . . , xn] be a homogeneous polynomial and as-
sume that (f = 0) ⊂ CPn is a smooth hypersurface. Then f has semi-stable models
over Z which satisfy the properties (1.6.1–3).
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A key point of the proof is to connect our problem with the Hilbert–Mumford
geometric invariant theory of hypersurfaces, revealing the correct class of polyno-
mials for which semi-stable models over Z can be defined.

1.8. Generalizations. Instead of Z, one can work over other rings. There are no
major changes for principal ideal domains. It seems to me that the natural setting
of the construction is over arbitrary Dedekind domains, or over one-dimensional
regular schemes. In these cases we obtain polynomials defined on vector bundles.

One can try to work over an arbitrary normal scheme, but, as far as I can tell,
the theory is restricted to codimension one primes.

The most general setting is probably the following. Let C be a one-dimensional
regular scheme and G/C a group scheme over C which acts on a scheme X/C.
Given a closed point P of the generic fiber of X/C, we want to find a “simple”
section s : C → X which passes through the G-orbit of P . (If G = GL and X is a
symmetric power of its standard representation, we obtain the case of homogeneous
polynomials considered above.)

1.9. What is missing? In this paper we consider integral models which are
“simple” at every prime p. It is very natural to ask for a theory which also takes
into account the infinite prime. For definite quadratic forms such an approach is
provided by the reduction theory of Minkowski–Siegel. Unfortunately, I do not
know how to generalize it to higher degree polynomials.

It is also not clear that the simplest integral model of a polynomial should be a
polynomial. This is more apparent if we look at the corresponding hypersurface XQ
over Q instead. This can be extended to a scheme XZ in many different ways. In
many cases it is advantageous to consider a model XZ which is not a hypersurface.
One such example is in [5, V.5].

One can also ask the more general question: given a scheme over Q, how can
we extend it to a scheme over Z in the simplest way? This is closely related to the
general geometric invariant theory problem considered in (1.8).

Finally, it would be desirable to have an algorithm which constructs semi-stable
models. The proof of the existence of semi-stable models (4.1) is very close to being
algorithmic, but so far I could not prove a bound on the weights occurring in (4.3),
except in some special cases.

Acknowledgements

I would like to thank A. Bertram, H. Clemens, J.-L. Colliot-Thélène, S. Gersten,
J. Harris, and R. Lazarsfeld for useful conversations and e-mails. Partial financial
support was provided by the NSF under grant number DMS-9622394. These notes
were typeset by AMS-TEX, the TEX macro system of the American Mathematical
Society.

2. A short review of geometric invariant theory

2.1. Definition. Let S be a ring. A weight system (x,w) on S[y0, . . . , yn] is a
choice of coordinates

(x0, . . . , xn)t = M(y0, . . . , yn)t, where M ∈ SL(n+ 1, S),

and weights xi 7→ wi := w(xi) ∈ R. (I frequently write this in vector notation as
x = My.)
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It may be more appropriate to allow M ∈ GL(n+1, S). At the end this leads to
an equivalent theory, but intermediate steps become more complicated since strong
approximation (cf. [4, Ch.V]) does not hold for GL.

A weight system is called trivial if all the wi are the same.
Let t be a new variable. For f ∈ S[y0, . . . , yn] set

f(twx) := f(tw0x0, . . . , t
wnxn).

The multiplicity of f at (x,w) is defined as the exponent of the lowest t-power
occurring in f(twx). It is denoted by multt f(twx).

2.2. Definition. Let K be a field and f ∈ K[y0, . . . , yn] a homogeneous polyno-
mial. Let X := (f = 0) ⊂ PnK be the corresponding hypersurface. A weight system
(x,w) over K is called

properly stable

semi-stable

unstable

on f if multt f(twx)


<

≤
>

deg f

n+ 1

∑
i

w(xi).

(The value on the right-hand side is the average multiplicity of a monomial in f .
So unstable means roughly that more than half of the monomials are missing from
f .)

These notions are invariant under affine linear changes of the weights wi 7→
awi + b.

2.3. Definition. Let K be a field with algebraic closure K̄ and f ∈ K[y0, . . . , yn]
a homogeneous polynomial. Let X := (f = 0) ⊂ PnK be the corresponding hyper-
surface.

(2.3.1) f or X is called properly stable (resp. semi-stable) iff every nontrivial
weight system over K̄ is properly stable (resp. semi-stable) on f .

(2.3.2) f or X is called unstable iff there is an unstable weight system over K̄ on
f .

For both of these cases it is sufficient to consider weight systems with integral
weights.

2.4. Definition. Fix an infinite field K and let Vd denote the vector space of
all degree d homogeneous polynomials f ∈ K[x0, . . . , xn]. SL(n + 1, K) acts by
coordinate changes on Vd, thus it also acts on K[Vd], the ring of all polynomials on
Vd.

Any invarant I ∈ K[Vd] of this action is called a polynomial SL-invariant of
degree d polynomials.

In general such invariants are hard to write down since they have very high
degree. The best known invariant is the discriminant D(f). By definition this
is the unique (up to a multiplicative constant) lowest degree invariant such that
D(f) = 0 iff the corresponding hypersurface (f = 0) is singular (cf. [8]).

We need the following basic result (cf. [9, pp. 49 and 79]):

2.5. Theorem (Hilbert–Mumford criterion). Let K be an infinite field and f ∈
K[x0, . . . , xn] a degree d homogeneous polynomial.

(2.5.1) There is a polynomial SL-invariant I such that I(f) 6= 0 iff f is semi-
stable.

(2.5.2) If (f = 0) is a smooth hypersurface and deg f ≥ 3, then f is properly
stable.
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3. The main definitions

The theories using affine and projective equivalences are very similar, but I did
not find any convenient way to treat them together. The following definitions all
use projective equivalence, which is more natural from the point of view of algebraic
geometry.

3.1. Notation. In this section R denotes a principal ideal domain with quotient
field K. Let p ∈ R be a prime element and k = R/(p) the residue field. For a
polynomial fR ∈ R[y0, . . . , yn], fk denotes its reduction modulo (p).

3.2. Definition. Notation as in (3.1). A weight system (x,w) is called integral if
wi ∈ Z for every i.

Let f ∈ K[y0, . . . , yn] be a polynomial. One can always find s ∈ Z and p′ ∈ R
prime to p such that p−s · p′ · f ∈ R[y0, . . . , yn]. The largest such s is called the
multiplicty of f at p; it is denoted by multp f .

3.3. Definition. Notation as in (3.1). Let fR ∈ R[y0, . . . , yn] be a homogeneous
polynomial and XR ⊂ PnR the hypersurface defined by the equation (fR = 0).

(3.3.1) An integral weight system (x,w) over R is called (projectively)
properly stable

semi-stable

unstable

on fR at p if multp fR(pwx)


<

≤
>

deg fR
n+ 1

∑
i

wi.

(3.3.2) fR (or XR) is called properly stable (resp. semi-stable) at p over R if
every weight system is properly stable (resp. semi-stable) on fR at p.

(3.3.3) fR (or XR) is called unstable at p over R if there is an unstable weight
system on fR at p.

(3.3.4) fR (or XR) is called properly stable (resp. semi-stable) over R if it is
properly stable (resp. semi-stable) at p over R for every prime p ∈ R.

(3.3.5) fR (or XR) is called unstable over R if it is unstable at p over R for some
p.

It is important to note that, unlike in (2.2–2.3), here all coordinate changes must
take place in R.

3.4. Comments. This is clearly a formal generalization of (2.3). In order to
understand the precise relationship, let us consider the special case when R = k[t],
p = t and fR =

∑
J aJ(t)xJ .

Since the value of the weight of t is fixed to be 1, the other weights wi cannot
be changed to λwi without changing the concept.

It is nonetheless very useful to see what happens in the limits λ→ 0,∞.
(3.4.1) If λ → 0, then any monomial aJ(t)xJ such that t|aJ (t) becomes very

large. Thus in the limit only the monomials with t 6 |aJ (t) matter, that is, we are
looking at the stability properties of fk.

(3.4.2) If λ → ∞, then multt aJ(t) becomes very small compared with the t
powers coming from xJ . Thus in the limit only the vanishing or nonvanishing of
the monomials matters, that is, we are looking at the stability properties of fR over
K.

Thus (3.3) gives a notion that interpolates between the stability properties of
the central and general fibers.
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3.5. Proposition. Notation as in (3.1).
(3.5.1) Assume that fk ∈ k[y0, . . . , yn] is semi-stable (resp. properly stable) over

k̄. Then fR is semi-stable (resp. properly stable) at p.

(3.5.2) Let R̂ denote the completion of R at (p). Then fR ∈ R[y] is properly

stable (semi-stable, unstable) at p ∈ R iff fR ∈ R̂[y] is properly stable (semi-stable,

unstable) at p ∈ R̂.

Proof. The first part is easy. The second part is also clear once we note the fol-
lowing. By strong approximation (cf. [4, Ch.V]), the natural map SL(n,R) →
SL(n, R̂) has dense image, thus every weight system over R̂ can be approximated
by weight systems over R.

4. The main theorem over Z

The results of this section hold for affine and for projective equivalence as well.
The first result settles the question of existence of semi-stable models.

4.1. Theorem. Let f ∈ Q[x0, . . . , xn] be a homogeneous polynomial.
(4.1.1) f has a semi-stable model over Z iff f is semi-stable over C.
(4.1.2) If f is properly stable over C, then f has only finitely many semi-stable

models over Z (up to the action of SL(n+ 1,Z)).

4.2. Remarks. If the stabilizer of f in GL(n + 1,Q) is finite, then the converse of
(4.1.2) also holds.

The implication ⇐ of (4.1.1) holds if Z is replaced by any principal ideal domain
R; the converse implication holds if charR = 0.

(4.1.2) holds if all the residue fields of R are finite.

The main part of the proof is the existence of semi-stable models over Z.

4.3. A procedure to find semi-stable models. We start with a homogeneous
polynomial fQ ∈ Q[y0, . . . , yn].

Step 1: Find any Z-model F 1 of fQ. For instance, F 1 := N · fQ will do for N
sufficiently divisible.

Step 2: Assume that we already have F j . If F j is semi-stable at every prime
p, then we are done.

Step 3: Otherwise there is a prime p and an integral weight system (x,w) which
is unstable on F j . Set

F j+1 := p−sF j(pw0x0, . . . , p
wnxn), where s := multp F

j(pwx),

and go back to Step 2.

If the procedure ever stops, we obtain a semi-stable model of fQ. Unfortunately,
in some cases the procedure never halts:

4.4. Example. For any prime p consider the family of polynomials

Fi := pix4
0 + x2(x

3
0 + x3

1) for i ≥ 0.

Over C this gives an irreducible plane quartic curve with a triple point at (0 : 0 : 1).
Essentially the only unstable weight system at p is given by the weights w0 = w1 =
1, w2 = 0.

Applying Step 3 of (4.3) to Fi yields Fi+1, thus we never reach a semi-stable
model over Z. In fact, one is tempted to say that among the above equations F0 is
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the simplest, and our unsuccessful attempt to reach semi-stability results in more
and more complicated equations.

A closer inspection of this example reveals that the problem stems from the fact
that the Fi are unstable over C.

The proof that (4.3) halts in most cases, relies on the following lemma which
was first used in this context by Laxton and Lewis [6]:

4.5. Lemma. Let I(f) be a polynomial SL-invariant of degree d polynomials in
n+ 1 variables which has degree r in the coefficients of f . If M ∈ GL(n+ 1,Q) is
a matrix and c ∈ Q, then

I(c · f(Mx)) = cr · (detM)rd/(n+1)I(f(x)).

In particular,

I(p−sf(pw0x0, . . . , p
wnxn)) = pr(−s+

d
n+1

∑
wi)I(f).

Proof. It is sufficient to check this over C. There M = c′M ′, where M ′ ∈ SL(n+
1,C). I is invariant under SL(n + 1,C) and for scalar matrices the formula is
clear.

4.6. Termination of the procedure. Assume now that f is semi-stable. By
(2.5) there is a polynomial SL-invariant I such that I(f) 6= 0. We may assume
that I has integral coefficients, thus I(F ) ∈ Z if F ∈ Z[x0, . . . , xn].

By (4.5) we see that I(F j+1) is a proper divisor of I(F j); hence the procedure
(4.3) will stop after finitely many steps.

The concept of proper stability over Z is connected with the uniqueness of semi-
stable models. The following special case is the easiest to formulate:

4.7. Theorem. Let F (y) ∈ Z[y0, . . . , yn] be a homogeneous polynomial which is
semi-stable over Z. Assume that degF and n+1 are relatively prime. The following
are equivalent:

(4.7.1) F (y) is properly stable over Z.
(4.7.2) If A ∈ GL(n+ 1,Q) is a matrix such that F (Ay) is semi-stable over Z,

then A ∈ GL(n+ 1,Z).

Proof. Assume first that F is not properly stable. Then there is a prime p and a
weight system (x = My,w) such that

multp F (pwx) =
degF

n+ 1

∑
i

wi.

(Equality holds since F is semi-stable over Z.) degF divides multp F (pwx) since
degF and n+ 1 are relatively prime, thus we can introduce new weights

w′
i := wi − multp F (pwx)

degF
, so that

∑
w′
i = 0.

Set A = diag(pw
′
0 , . . . , pw

′
n) ·M . Then F (Ax) is also semi-stable. A ∈ GL(n+1,Z)

iff w′
i ≥ 0 for every i. Since

∑
w′
i = 0, this holds iff w′

i = 0 for every i, hence the
weight system is trivial.

Conversely, assume that F (y) is properly stable over Z and F (Ay) is semi-
stable over Z. By the theorem on elementary divisors (cf. [12, 12.2]) we can write
A = M1DM2, where Mi ∈ SL(n+1,Z) and D = diag(r0, . . . , rn) for some ri ∈ Q∗.
If A 6∈ GL(n + 1,Z), then ri 6∈ Z for some i, and we can construct a nontrivial
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weight system with weights wi := multp ri for some p which shows that F is not
properly stable. This contradiction shows (4.7).

Some standard results of geometric invariant theory and (3.5) imply the following
result, which is an essential step in proving (4.1.2).

4.8. Theorem. Let f(y) ∈ Q[y0, . . . , yn] be a homogeneous polynomial which is
properly stable over C. Then f is properly stable at p for all but finitely many
primes p.

5. Integral models of hypersurfaces

In this section I formulate the general versions of the theorems of the previous
section.

Let C be an integral, regular scheme of dimension 1. Let K denote the field of
rational functions on C. If p ∈ C is a closed point, then Op,C denotes its local ring
and Cp := SpecOp,C the corresponding local scheme.

5.1. Theorem. Notation as above. Let XK ⊂ PnK be a hypersurface and assume
that XK is semi-stable (over K̄).

Then there is a vector bundle E of rank n+ 1 over C and a hypersurface XC ⊂
PC(E) such that

(5.1.1) The generic fiber of XC is isomorphic to XK .
(5.1.2) For every closed point p ∈ C the induced hypersurface XCp is semi-stable

over Op,C .

Any such XC is called a semi-stable model of XK over C.
Finiteness and uniqueness results hold in the properly stable case:

5.2. Theorem. Retain the above notation and assume that XK is properly stable
(over K̄). Let XC be a semi-stable model of XK over C. Then:

(5.2.1) There is a unique largest Zariski open set C0, depending only on XK ,
such that XC is properly stable at p for every p ∈ C0.

(5.2.2) If X ′
C is another semi-stable model of XK over C, then X ′

C0
∼= XC0 .

(5.2.3) If all residue fields of C are finite, then XK has only finitely many semi-
stable models over C (up to isomorphism over C).

6. Examples

In this section we consider semi-stable models in various special cases.

6.1. Binary forms. The condition of semi-stability for binary forms over Z is
especially simple. Over a field, an odd degree semi-stable form is properly stable,
and the same unusual situation holds for binary forms over Z (or over any principal
ideal domain):

6.1.1. Proposition. Let F (x, y) ∈ Z[x, y] be a homogeneous polynomial of degree
d. F is semi-stable (resp. properly stable) over Z iff F is not divisible by any prime
p and the following holds:

p
d+1
2

p
d
2

}
6 |F (pax+ pby, cx+ dy) ∀ prime p, ∀

(
a b
c d

)
∈ SL(2,Z).
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6.1.2. Theorem. Let f(x, y) ∈ Q[x, y] be a homogeneous polynomial of degree d.
Assume that d is odd and that f is not divisible by the d+1

2 th power of a linear
form. Then f has a properly stable model F ∈ Z[x, y] over Z. F is unique up to
projective equivalence over Z.

Proof. Let F be a semi-stable model over Z. Since d/2 is not an integer, F is
actually properly stable over Z. Thus it is unique by (4.7).

6.2. Norm forms. There is a close connection between semi-stable models of norm
forms and ideal class groups. For quadratic extensions such a relationship is clas-
sical, see for instance [3, VII.2].

6.2.1. Definition. Let L ⊃ Q be a field extension of degree n and S ⊂ L the ring
of algebraic integers. Let u1, . . . , un be a Z-basis of S and

NL/Q(x) := NL/Q(
∑

xiui)

the corresponding norm form (cf. [3, V.1]), viewed as a degree n homogeneous
polynomial in the variables x1, . . . , xn. NL/Q(x) is unique up to affine equivalence
over Z.

If u1, . . . , un is any Q-basis of L and c ∈ Q∗, then we obtain a generalized norm
form

c ·NL/Q(
∑

xiui).

A generalized norm form is projectively equivalent over Q to the norm form of L/Q.

6.2.2. Lemma. A generalized norm form c · NL/K(
∑

xiui) is semi-stable over Z
iff u1, . . . , un is a Z-basis of a fractional S-ideal I ⊂ L and c = ±NL/Q(I)−1, where
NL/Q(I) is the ideal norm (cf. [3, II.4]).

From this one obtains the following:

6.2.3. Theorem. Let L ⊃ Q be a Galois extension with norm form NL/Q(x).
There is a one-to-one correspondence{

semi-stable models of NL/Q(x)
modulo projective equivalence over Z

}
⇔

{
ideal class group of L

modulo Gal(L/Q)

}
.

Similar results hold for non-Galois extensions as well.

6.3. Quadratic forms. Let q(x) be a quadratic form over the p-adic field Qp,
and assume that p 6= 2. The concept of “maximale Gitter” of [2, p. 50] and the
notion of “f -norm” as defined in [11, II] provide a quadratic form Q(x) over Zp

which is equivalent to q(x) over Qp. The theory of semi-stable models provides a
generalization of these, which works in full generality. In this case the results are
nicer if we work with affine equivalence.

6.3.1. Notation. Let R be a local Dedekind domain with quotient field K, maximal
ideal (p) and residue field k. Let q(x) ∈ K[x0, . . . , xn] be a quadratic form such
that (q = 0) ⊂ PnK is a smooth quadric and let Q(x) ∈ R[x0, . . . , xn] be affine
equivalent to q.

It should be emphasized that I even allow the case charK = 2.
For quadratic forms affine semi-stability turns out to be equivalent to the fol-

lowing very simple notion, which we adopt as our definition:
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6.3.2. Definition. Q is affine semi-stable iff there is no change of coordinates
y = Mx (where M ∈ SL(n+1, R)) such that Q(p−1y0, y1, . . . , yn) ∈ R[x0, . . . , xn].

6.3.3. Theorem. Notation as in (6.3.1). Let q(x) ∈ K[x0, . . . , xn] be a quadratic
form such that (q = 0) ⊂ PnK is a smooth quadric. Then q has a unique affine
semi-stable model Q ∈ R[x0, . . . , xn] (up to affine equivalence over R).

Moreover, if Q′ ∈ R[x0, . . . , xn] is equivalent to q(x) over K, then there is a
matrix T ∈M(n+ 1, R) such that Q′(x) = Q(Tx).

6.4. Cubic forms. Corti [1] proposed a program of constructing what he calls
“standard models” of cubic surfaces over local Dedekind domains [1, Conjectures
2.11 and 2.14]. He established several steps of the program, and his proofs are
complete for families of cubic surfaces over a smooth curve in characteristic zero.
Although he does not explicitly state it, his conjectures can be easily reformulated
for cubic hypersurfaces. Our results imply that his conjectures are true, even for
cubic hypersurfaces:

6.4.1. Proposition. Conjectures 2.11 and 2.14 of [1] are true.

The main point of our discussion is, however, the observation, that the models
proposed by Corti are not always the optimal ones. In our terminology, he uses
only weight systems where all the weights are 0 or 1. As [1, 5.8] shows, this does
not give as much uniqueness as (5.2).

At least for cubic surfaces, one needs to use two more weight systems:

6.4.2. Proposition. In order to check semi-stability of a family of cubic surfaces
over a one-dimensional regular scheme, it is sufficient to use weight systems with
the following five weight sequences:

(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1), (0, 1, 2, 2), (0, 2, 2, 3).

This implies that for cubic forms in four variables over Z, (4.3) becomes an
effective algorithm.

6.4.3. Example. Let R = C[[t]] and consider the cubic form F1 = x3
0+x3

1+x2
2x3+

t6x3
3. It is easy to see that it is semi-stable with respect to every weight system

where all the weights are 0 or 1. F1 is unstable with weights (2, 2, 3, 0), and we
obtain the properly stable cubic form F2 = x3

0 +x3
1 +x2

2x3 +x3
3, which is the unique

semi-stable model by (5.2). In this example F1 is not representable by F2, that
is, there is no matrix T ∈ M(4,C[[t]]) such that F1(x) = F2(Tx). Thus F1 is not
representable by any semi-stable model.
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