
ELECTRONIC RESEARCH ANNOUNCEMENTS
OF THE AMERICAN MATHEMATICAL SOCIETY
Volume 3, Pages 28–37 (April 9, 1997)
S 1079-6762(97)00020-6

LEFT-DISTRIBUTIVE EMBEDDING ALGEBRAS

RANDALL DOUGHERTY AND THOMAS JECH

(Communicated by Alexander Kechris)

Abstract. We consider algebras with one binary operation · and one genera-
tor, satisfying the left distributive law a·(b·c) = (a·b)·(a·c); such algebras have
been shown to have surprising connections with set-theoretic large cardinals
and with braid groups. One can construct a sequence of finite left-distributive
algebras An, and then take a limit to get an infinite left-distributive alge-
bra A∞ on one generator. Results of Laver and Steel assuming a strong large
cardinal axiom imply that A∞ is free; it is open whether the freeness of A∞
can be proved without the large cardinal assumption, or even in Peano arith-
metic. The main result of this paper is the equivalence of this problem with
the existence of a certain left-distributive algebra of increasing functions on
natural numbers, called an embedding algebra, which emulates some properties
of functions on the large cardinal. Using this and results of the first author,
we conclude that the freeness of A∞ is unprovable in primitive recursive arith-

metic.

1. Introduction

We consider algebras with one binary operation · and one generator satisfying
the left distributive law a · (b · c) = (a · b) · (a · c).

Such algebras became an object of study when they appeared in a set-theoretic
context: Laver [10] studied the properties of an algebra of elementary embeddings
arising from an extremely large cardinal. He used these properties to prove purely
algebraic results about the free left-distributive algebra on one generator; for in-
stance, he showed that the word problem for this algebra is decidable. However,
this was under the assumption that a large cardinal exists.

Later Dehornoy [3] proved these algebraic results using a completely different
construction based on braid groups and generalizations of them, thus eliminating
the large cardinal hypothesis. (Perhaps even more surprising, results about left-
distributive algebras have recently been used to prove theorems about braid groups;
see Dehornoy [4].)

But further algebraic results were obtainable from the large cardinal. Laver [11]
used restrictions of the original elementary embeddings to produce a sequence of
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finite left-distributive algebras An; these algebras can also be constructed directly,
without large cardinals. One can then take a limit of these algebras to get an
infinite left-distributive algebra A∞ on one generator.

In the large cardinal context, it turns out that such a limit yields the original
algebra of elementary embeddings, so it is free on one generator. So “A∞ is free”
is another statement about small (finite or countable) algebras proved from a large
cardinal hypothesis. This statement can be rephrased in purely algebraic form, as
an assertion that certain equations do not imply certain other equations under the
left distributive law.

It is now natural to ask whether the freeness of A∞ can be proved without
the large cardinal assumption, or even at the level of basic arithmetic (Dehornoy’s
proofs can be formalized at that level). The results we present here provide, to
some extent, a negative answer to this question; we show that the freeness of A∞
cannot be proved at a low level (Primitive Recursive Arithmetic, or PRA, which is
often referred to as the formal version of Hilbert’s ‘finitistic reasoning’).

The main result of this paper is the equivalence of “A∞ is free” with the exis-
tence of a certain algebra of increasing functions on the set N of natural numbers.
We introduce embedding algebras, which are algebras (A, ·) of increasing functions
a : N → N endowed with a binary operation ·. The axioms for embedding algebras
state that the operation · is left-distributive and that, if cr(a) is the least number
moved by a (assuming a is not the identity), then cr(a · b) = a(cr(b)). If a nontrivial
embedding algebra (one which contains a function other than the identity) exists,
then A∞ is free; conversely, we construct a nontrivial embedding algebra under the
assumption that A∞ is free.

The first author proved [5] that the elementary embeddings from the large cardi-
nal above yield numerical functions which grow faster than any primitive recursive
function, and hence cannot be proved to exist in PRA. The properties of embedding
algebras allow us to emulate this construction and produce the same fast-growing
functions. Therefore, the existence of nontrivial embedding algebras, and hence the
freeness of A∞, cannot be proved in PRA.

In Sections 2 to 5 we outline the main results. Full proofs will appear else-
where [7].

2. Free left-distributive algebras and elementary embeddings

We consider algebras with one binary operation · generated by a single element
that we denote by the symbol 1. We shall often write ab instead of a · b, and use
the convention that abc = (ab)c.

The left distributive law is the identity

a(bc) = ab(ac).(LD)

Let W = WA be the set of all words built up from 1 using the operation ·. Denote
by ≡ (or by ≡A) the equivalence relation on W given by: a ≡ b iff the equation
a = b is a consequence of (LD). Then A = W/≡ is the free left-distributive algebra
on one generator.

For the rest of this section, let (A, ·) be a left-distributive algebra generated by 1.
We will summarize the relevant known results on such algebras.

Definition 2.1. For a, b ∈ A, say that a is a left subterm of b, or a <L b, if, for
some c1, . . . , ck (k > 0), b = ac1 · · · ck.
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Clearly the relation <L is transitive.

Theorem 2.2 (Dehornoy [1]). On the free algebra A, the relation <L is connected:
for all a, b ∈ A, either a = b or a <L b or b <L a.

It follows that <L is connected in any monogenic (i.e., generated by one element)
left-distributive algebra (A, ·). Therefore, <L is a strict linear ordering of A if and
only if it is irreflexive, i.e., a 6<L a for all a.

Lemma 2.3 (Dehornoy [1]). If the relation <L on A is irreflexive, then (A, ·) is
free and satisfies left cancellation.

Theorem 2.4 (Dehornoy [3]). There is an algebra (A, ·) on which <L is irreflex-
ive. Consequently, the free algebra is linearly ordered by <L and satisfies left can-
cellation.

These results were also proved by Laver [10] under a large cardinal assumption
(see below).

All of the steps in Dehornoy’s proofs are accomplished by explicit recursions
and inductions, and the recursions are in fact primitive recursions. Therefore,
these results can be proved in a very basic theory of arithmetic, such as Primitive
Recursive Arithmetic (PRA). PRA is formalized in a language containing function
symbols for all possible function definitions using the constant 0, the successor
function ′, composition, and primitive recursion; it has axioms stating that the
function symbols satisfy their definitions, and that 0′ 6= 0, and a rule of inference
allowing induction on quantifier-free formulas. (See Sieg [12] for more details.) This
theory is among the weakest of the commonly studied fragments of arithmetic. It is
not hard to show that the methods used to prove the above results can be formalized
in this theory.

Now consider algebras with two binary operations · and ◦. We use the conven-
tions ab ◦ c = (ab) ◦ c and a ◦ bc = a ◦ (bc). Let WP be the set of all words built up
from 1 using both operations, and let P be the free algebra on one generator under
the identities:

a ◦ (b ◦ c) = (a ◦ b) ◦ c,
(a ◦ b)c = a(bc),

a(b ◦ c) = ab ◦ ac,
a ◦ b = ab ◦ a.

(LL)

Then P = WP/ ≡P, where a ≡P b iff the equation a = b is a consequence of (LL).
Note that (LD) is provable from (LL):

a(bc) = (a ◦ b)c = (ab ◦ a)c = ab(ac).

The motivation for axioms (LL) comes from large cardinal theory. Let Vλ be the
collection of all sets of rank less than λ, where λ is a limit ordinal. If E is the set
of all elementary embeddings from Vλ to Vλ, then one can ‘almost’ define a binary
operation · on E by: j · k is the result of applying j to k. This does not quite work,
because k is too large to be in the domain of j. Instead, one can break k into pieces
which are small enough for j to digest, and recombine the results:

j · k =
⋃
α<λ

j(k ∩ Vα).
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Then j · k will also be in E , and it is easy to show that the operation · is left-
distributive and, together with the operation ◦ of composition, satisfies (LL).

If j is a nontrivial elementary embedding from Vλ to Vλ, let (Aj , ·) and (Pj , ·, ◦) be
the subalgebras of (E , ·) and (E , ·, ◦) generated by j. Laver [10] shows, among other
things, that (Aj , ·) and (Pj , ·, ◦) are respectively the free monogenic left-distributive
algebra and the free monogenic algebra satisfying axioms (LL).

Again, we summarize some known facts about algebras (P, ·, ◦).
Clearly an algebra satisfying (LL) yields an algebra satisfying (LD), simply by

dropping the second operation (and taking a subalgebra, if we want the result to
be monogenic). But one can move in the other direction as well:

Proposition 2.5 (Laver [10], Dehornoy [2, Prop. 2]). Any algebra (A, ·) satisfying
(LD) can be extended and expanded to an algebra (P, ·, ◦) satisfying (LL).

Proposition 2.6. Let (P, ·, ◦) be an algebra satisfying (LL) and generated by 1,
and let (A, ·) be the subalgebra of (P, ·) generated by 1. Then (P, ·, ◦) is a free
(LL)-algebra if and only if (A, ·) is a free left-distributive algebra.

The proof of Propostion 2.6 can be carried out in PRA.
Now consider the algebras Aj and Pj of elementary embeddings. For each non-

trivial elementary embedding a from Vλ to itself, let cr(a) be the critical point of a,
i.e., the least ordinal moved by a. Let Γ be the set of all ordinals which are critical
points of elements of Aj . We note that

cr(ab) = a(cr(b)), cr(a ◦ b) = min(cr(a), cr(b)).

Consequently, the critical point of every a ∈ Pj is in Γ, and every a ∈ Pj maps Γ
into Γ.

Theorem 2.7 (Laver and Steel [11]). The set Γ has order type ω.

Theorem 2.8 (Laver [11]). For every a, b ∈ Aj, if a 6= b, then a(γ) 6= b(γ) for
some γ ∈ Γ.

One can adjoin to Pj the identity embedding id. The extended algebra still
satisfies axioms (LL), as well as these rules:

id · a = a, a · id = id, a ◦ id = id ◦ a = a.

3. A limit of finite left-distributive algebras

In this section, we describe, for each natural number n, an algebra An on
{0, 1, . . . , 2n−1} with a binary operation ∗n satisfying the left distributive law. We
also describe a second operation ◦n on this set so that the resulting two-operation
algebra Pn satisfies (LL). We then construct limit algebras (A∞, ·) and (P∞, ·, ◦).

The construction of these finite algebras is due to Laver; Wehrung proved some
additional properties of them. The proof of the following theorem has been recon-
structed independently by several people, including the authors.

Theorem 3.1 (mostly Laver). There are unique operations ∗n and ◦n on the set
An = Pn = {0, 1, . . . , 2n − 1} such that the axioms (LL) hold and, for all a ∈ Pn,

a ∗n 1 = a+ 1 mod 2n.
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The operation ∗n can be defined by an explicit double recursion (which is more
naturally performed over {1, 2, . . . , 2n} rather than {0, 1, . . . , 2n − 1}); then ◦n can
be defined by the formula a ◦n b = (a ∗n (b + 1)) − 1, where the addition and
subtraction are performed modulo 2n. The theorem is then proved by multiple
inductions. Along the way, one obtains additional results: reduction modulo 2n is
a homomorphism from Pm onto Pn for m ≥ n; and, for each a ∈ An, the sequence
a ∗n 0, a ∗n 1, . . . is periodic with period 2k for some k ≤ n depending on a.

The element 0 of Pn plays the role that the identity embedding played at the
end of Section 2:

0 ∗ a = a, a ∗ 0 = 0, a ◦ 0 = 0 ◦ a = a.

The element 1 is the generator of An and Pn (for n > 0).
Recall that WA and WP are the sets of words built up from 1 using · and

using ·, ◦, respectively. For m > 0, let wm ∈ WA be the product 1 · 1 · . . . · 1 with
m 1’s, associated to the left as usual. (In fact, it is often convenient to just write m
for wm when the context makes this clear. Note that wm evaluates to m in An

whenever m < 2n.) Also, let uk ∈ WA be the product 1 · (1 · . . . (1 · 1) . . . ) of
(k + 1) 1’s associated to the right.

The algebras An have a natural purely algebraic definition: Wehrung [13] (see
also Drápal [8]) showed that An is the free algebra on one generator 1 subject to
the left distributive law and the equation w2n · 1 = 1 (i.e., w2n+1 = 1). If m is not
a power of 2, then the free algebra subject to (LD) and the equation wm · 1 = 1
works out to be An, where 2n is the largest power of 2 which divides m.

For every word a ∈ WP and every n ≥ 0, let [a]n be the value of a in Pn.
Consider the equivalence relation ≡∞ defined by:

a ≡∞ b iff [a]n = [b]n for all n ≥ 0.

Let A∞ and P∞ be, respectively, the quotients by ≡∞ of WA and WP. Then ·
and ◦ are well defined on the quotients, and (A∞, ·) and (P∞, ·, ◦) are generated
by 1; also, they satisfy (LD) and (LL), respectively, because An and Pn do. (In fact,
an equivalent definition for A∞ and P∞ is that they are the subalgebras generated
by 1 of the inverse limits of the algebras An and Pn, respectively.) Moreover,
A∞ ⊆ P∞.

Theorem 3.2. The following are equivalent:

(i) (A∞, ·) is a free left-distributive algebra.
(ii) (P∞, ·, ◦) is a free (LL)-algebra.
(iii) <L on A∞ is irreflexive.
(iv) For every a ∈WA, there is an n such that [a]n 6= 0.
(v) For every k ≥ 1, there is an n such that [1 · wk]n 6= 0.
(vi) For every k ≥ 0, there is an n such that [uk]n 6= 0.
(vii) For every k ≥ 0, there is an m > 0 such that (LD) together with the equation

wm · 1 = 1 does not imply the equation uk · 1 = 1.

All steps of the proof can be formalized in Primitive Recursive Arithmetic, so
Theorem 3.2 is a theorem of PRA.

4. Embedding algebras

In this section, we consider algebras of increasing functions from N to N which
imitate the behavior of the algebra of elementary embeddings from Laver [10] on
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ordinals. The existence of such algebras turns out to be equivalent to the properties
in Theorem 3.2. Moreover, this equivalence can be proved (and formulated) in
Primitive Recursive Arithmetic.

The algebras have the form (A, ·), where A is a collection of strictly increasing
functions from N to N and · is a binary operation on A (which we often denote by
juxtaposition). The axioms for the algebra will include the axiom (LD).

Let id be the identity function on N. If f : N → N is strictly increasing and
different from id, let cr(f) be the least n such that f(n) > n (the critical point of f).
This is analogous to the standard definition for nontrivial elementary embeddings
j : Vλ → Vλ: the critical point of j is the least ordinal moved by j.

Definition 4.1. An embedding algebra is a structure (A, ·), where A is a collection
of strictly increasing functions from N to N, · is a left-distributive binary operation
on A, and for every a, b ∈ A with b 6= id, cr(a · b) = a(cr(b)).

The set A need not contain the identity function, but one can extend the oper-
ation · to A ∪ {id} in a natural way: a · id = id, id · a = a. An embedding algebra
is called nontrivial if it has an element other than id.

We will also need to work with a more abstract and elaborate form of embed-
ding algebra, including much of the machinery Laver constructs for algebras of
elementary embeddings.

Definition 4.2. A two-sorted embedding algebra consists of a nonempty set E (the
‘embeddings,’ for which we will use variables a, b, . . . ) and a nonempty set O (the
‘ordinals,’ for which we will use variables α, β, . . . ), together with binary operations
· and ◦ on E , a binary relation ≤ on O, a constant id ∈ E , an application operation
a, β 7→ a(β) (which will often be written without parentheses) from E × O to O,
a function cr: E−{id} → O, and a ternary relation ≡ ⊆ E × O × E , satisfying the
following axioms:

• The relation ≤ is a linear ordering of O.
• Embeddings are strictly increasing monotone functions:

β < γ implies aβ < aγ, and aβ ≥ β.

• For all a 6= id, a(cr(a)) > cr(a).
• The operation ◦ represents composition: (a ◦ b)γ = a(bγ).
• The constant id represents the identity:

id(γ) = γ, a · id = id, and id · a = a ◦ id = id ◦ a = a.

• The axioms (LL) hold.
• For each γ, ≡γ is an equivalence relation on E which respects · and ◦; also, if
γ ≤ δ and a ≡δ b, then a ≡γ b.

• If a ≡γ b and aδ < γ, then aδ = bδ.
• For any a 6= id, a ≡cr(a) id.
• Coherence: a ≡γ b implies ca ≡cγ cb.

Again, such an algebra is called nontrivial if there is an embedding other than id.
Note that the important ordinals are the critical points, those ordinals of the
form cr(a) for some embedding a; if we simply deleted all the other ordinals from O,
we would still have a two-sorted embedding algebra.

The results of Laver [10] show that one can make the set of all elementary
embeddings from Vλ to itself into a two-sorted embedding algebra by letting O be
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the set of limit ordinals less than λ and defining ≡γ to be Laver’s
γ
=. Conversely,

many of Laver’s arguments about elementary embeddings and their critical points
use only the properties of a two-sorted embedding algebra.

If desired, one can restrict E to the embeddings obtained from a single embed-
ding j 6= id using · and ◦ (along with id), to get a two-sorted embedding algebra
generated by a single embedding. From now on, we will call a two-sorted embed-
ding algebra monogenic if its embeddings are generated from a single non-identity
embedding via · and ◦.

The main result of this paper is the following theorem.

Theorem 4.3. The following are equivalent:

(i) (A∞, ·) is a free left-distributive algebra.
(ii) There exists a nontrivial embedding algebra.
(iii) There exists a nontrivial two-sorted embedding algebra in which the ordinals

have order type ω.

In order to prove Theorem 4.3, we need to perform a number of the arguments of
Laver [11] in the context of two-sorted embedding algebras. This is straightforward
for arguments involving only the operations which are built into these algebras, but
some arguments use additional features of elementary embeddings. In particular,
a few arguments use ordinals of the form a(<γ), defined to be the least ordinal
greater than a(β) for all β < γ. For this purpose, we will define an even more
elaborate algebra which includes this operation, and show that such algebras can
be constructed from ordinary two-sorted embedding algebras; this will allow us to
use this new operation to prove facts about the original algebra.

Definition 4.4. An extended two-sorted embedding algebra is a two-sorted embed-
ding algebra (with embedding set E and ordinal set O), together with two new
operations, a cofinality function cf : O → O and a mapping from E × O to O for
which we use the notation a, γ 7→ a(<γ), satisfying the following additional axioms:

a(b(<γ)) = ab(<aγ);

a(<b(<γ)) = (a ◦ b)(<γ);

a(<γ) ≤ aγ;

if γ < δ, then aγ < a(<δ);

if a ≡γ b and a(<δ) ≤ γ, then a(<δ) = b(<δ);

cf(cr(a)) = cr(a);

cf(a(<γ)) = cf γ;

cf(aγ) = a(cf γ);

cf γ ≤ γ;

if a(cf γ) = cf γ, then a(<γ) = aγ.

Again it is not hard to verify that the axioms for an extended two-sorted embed-
ding algebra hold in the case where E is the set of elementary embeddings on Vλ
and O is the collection of limit ordinals less than λ [11].

The following is a crucial technical result:
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Theorem 4.5. Suppose that we are given a two-sorted embedding algebra, in which
every ordinal is a critical point. Then the algebra can be extended to a new two-
sorted embedding algebra with the same embedding set, on which the required ad-
ditional operations can be defined so as to give an extended two-sorted embedding
algebra.

Theorem 4.5 can be used to transfer various arguments from the context of
elementary embeddings to that of two-sorted embedding algebras. One example is
the following result, which is proved by following Laver’s proof of Theorem 2.8.

In a two-sorted embedding algebra, let j 6= id be some embedding, and let Aj be
the set of embeddings generated from j by the operation · (so each a ∈ Aj is given
by a word in WA evaluated at j).

Theorem 4.6. Assume that the set of all critical points of elements of Aj has
order type ω. If a and b are distinct elements of Aj, then there is a critical point γ
such that a(γ) 6= b(γ).

We now outline the proof of Theorem 4.3. First, suppose that A∞ is free, and
hence all of the statements in Theorem 3.2 hold. We build a two-sorted embedding
algebra with embedding set P∪{id} and ordinal set N, as follows. For a ∈ P, define
cr(a) to be the least n such that [a]n+1 6= 0, or, equivalently, the largest n such that
[a]n = 0. Let a(n) = cr(a · w2n), and define a ≡n b to mean that [a]n = [b]n (where
we put [id]n = 0). Then one can prove from the properties of the finite algebras An

that these definitions meet the requirements of a two-sorted embedding algebra.
Next, suppose we have a nontrivial two-sorted embedding algebra in which the or-

dinals have order type ω. We may take the subalgebra Aj generated by some j 6= id,
and then throw away all ordinals that are not critical points of members of Aj . The
remaining ordinals still have order type ω, so we can relabel them as the natural
numbers. By Theorem 4.6, distinct embeddings yield distinct functions from N
to N; the resulting set of functions, with the binary operation · transferred from
the set of embeddings, forms an embedding algebra.

On the other hand, if we have a nontrivial embedding algebra, then we can turn it
into a two-sorted embedding algebra. The set of ordinals will be the set of critical
points of the embeddings (which has order type ω, since it is an infinite subset
of N). Proposition 2.5 lets us extend the set of embeddings to admit a composition
operation; the result of applying composite embeddings a◦b to ordinals is defined by
the obvious formula (a ◦ b)(n) = a(b(n)). With more work, one can define suitable
equivalence relations ≡n and show that all the axioms of a two-sorted embedding
algebra hold.

Finally, again assuming we have a nontrivial two-sorted embedding algebra in
which the ordinals have order type ω, we can imitate the arguments of Laver [11]
for constructing the finite algebras in the first place, to show that statement (iv)
of Theorem 3.2 is true, and hence A∞ is free. The only part of this argument
that cannot be carried out in two-sorted embedding algebras is the proof of the
Laver-Steel result (Theorem 2.7 here), so we have made this a hypothesis instead.
This completes the proof outline.

In the process of proving Theorem 4.3, we also obtain the following uniqueness
result for monogenic embedding algebras.
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Theorem 4.7. If (A, ·) is a monogenic embedding algebra for which every natural
number is a critical point, then (A, ·) is the embedding algebra constructed from the
algebras An as above.

Similarly, any monogenic two-sorted embedding algebra in which the ordinals
have order type ω and are all critical points must be isomorphic to the one con-
structed from the algebras An.

5. The strength of “A∞ is free”

Laver’s proof of the irreflexivity of the free left distributive algebra on one gener-
ator assumed the existence of a nontrivial elementary embedding from Vλ to itself;
this is an extremely strong large cardinal hypothesis. (Actually, Laver had noted
that the assumption can be reduced to the existence of an n-huge cardinal for each
natural number n.) The possibility that the irreflexivity property was strong enough
to require large cardinal assumptions for its proof remained until Dehornoy proved
the property without such assumptions (in fact, using only Primitive Recursive
Arithmetic).

We now consider the statement “A∞ is free” (and its equivalent versions).
Laver [11] showed that this statement also follows from the existence of a non-
trivial elementary embedding j : Vλ → Vλ. (In fact, one might consider “A∞ is
free” to be the algebraic content of the set-theoretic Theorem 2.7.) Laver (personal
communication) has noted, and the authors have confirmed, that one can use the
method of proof of Theorem 2.7 while working with only an n-huge embedding,
to get a correspondingly weaker result; hence, the freeness of A∞ follows from the
existence of an n-huge cardinal for each natural number n.

However, unlike the irreflexivity of the free algebra, the freeness of A∞ cannot
be proved without some ‘strong’ hypothesis:

Theorem 5.1. The statement “A∞ is free” is not provable in Primitive Recursive
Arithmetic.

Of course, we assume throughout that PRA is itself consistent.
It is a well-known result from proof theory (see Sieg [12]) that the only recursive

functions that can be proved to be total using only PRA are the primitive recursive
functions. Therefore, to prove Theorem 5.1, it will suffice to show that PRA+3.2(vi)
proves the totality of a recursive function F which is not primitive recursive.

For each natural number n, let F (n) be the largest m such that [un]m = 0, where
un is the word 1 · (1 · (. . . (1 · 1) . . . )) with n+1 1’s. It follows from 3.2(vi) that F is
a total recursive function.

This function can be characterized in another way in terms of the monogenic
embedding algebra or two-sorted embedding algebra constructed from the finite
algebras. Let j be the generating embedding, and let Γ be the set of all critical
points of embeddings in the algebra. Among these critical points are a special
sequence κ0 < κ1 < κ2 < · · · called the critical sequence of j: κ0 = cr(j) and
κn+1 = j(κn). Then F (n) is the number of members of Γ lying below κn.

The main result of Dougherty [5] shows that, in the context of elementary em-
beddings from Vλ to Vλ, the function F defined as in the preceding paragraph grows
faster than the Ackermann function, and hence cannot be primitive recursive. How-
ever, the methods used in that proof use only the properties of embeddings that
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follow immediately from the axioms of an embedding algebra or two-sorted em-
bedding algebra. (In fact, all of the proofs in Dougherty [5] can be carried out
in any extended two-sorted embedding algebra.) Therefore, the same growth es-
timates apply to the embedding algebra constructed from the finite algebras, and
this requires only the assumption that A∞ is free. Therefore, this assumption is
too strong to be proved in PRA.

In a sense, the function F gives a measure of the proof-theoretic strength of the
statement “A∞ is free.” This can be stated precisely as follows.

Proposition 5.2. Any recursive function which is provably total in PRA+“A∞ is
free” must grow more slowly than Fm for some m, where F0 = F and Fm+1 is the
iteration of Fm (starting at 1, say; that is, Fm+1(n) = Fn

m(1)).

There remain a number of open problems related to these algebras. The main
one, of course, is the exact strength of the statement “A∞ is free”; the gap between
“more than PRA” and “there is an n-huge cardinal for each n” is rather large.
More recent results about the finite algebras An [6], [8], [9] may be steps toward
a proof without large cardinals that A∞ is free, but the full situation is not at all
clear.
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