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Abstract. We study the Cauchy problem for the semilinear parabolic equa-
tions ∆u−Ru+ up − ut = 0 on Mn × (0,∞) with initial value u0 ≥ 0, where
Mn is a Riemannian manifold including the ones with nonnegative Ricci cur-
vature. In the Euclidean case and when R = 0, it is well known that 1 + 2

n
is

the critical exponent, i.e., if p > 1+ 2
n

and u0 is smaller than a small Gaussian,

then the Cauchy problem has global positive solutions, and if p < 1 + 2
n

, then
all positive solutions blow up in finite time. In this paper, we show that on
certain Riemannian manifolds, the above equation with certain conditions on
R also has a critical exponent. More importantly, we reveal an explicit rela-
tion between the size of the critical exponent and geometric properties such as
the growth rate of geodesic balls. To achieve the results we introduce a new
estimate for related heat kernels.

As an application, we show that the well-known noncompact Yamabe prob-
lem (of prescribing constant positive scalar curvature) on a manifold with non-
negative Ricci curvature cannot be solved if the existing scalar curvature decays
“too fast” and the volume of geodesic balls does not increase “fast enough”.
We also find some complete manifolds with positive scalar curvature, which are
conformal to complete manifolds with positive constant and with zero scalar
curvatures. This is a new phenomenon which does not happen in the compact
case.

1. Introduction

We shall announce new results in the study of the global existence and blow up
of the following semilinear parabolic Cauchy problem:{

Hu ≡ H0u+ up = ∆u−Ru− ∂tu+ up = 0 in Mn × (0,∞),

u(x, 0) = u0(x) ≥ 0 in Mn,
(1.1)

where Mn with n ≥ 3 is a noncompact complete Riemannian manifold, ∆ is the
Laplace-Beltrami operator, and R = R(x) is a bounded function.

Throughout the paper we make the following assumptions.
(i) There are positive constants b, C, and K such that

|B(x, r)| ≤ Crn; |B(x, 2r)| ≤ C2n|B(x, r)|, r > 0; Ricci ≥ −K.(1.2)
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(ii) G, the fundamental solution of the linear operator H0 = ∆−R− ∂t in (1.1),
has global Gaussian upper bound, i.e.,

0 ≤ G(x, t; y, s) ≤ C

|B(x, (t− s)1/2)|e
−b d(x,y)2t−s ,(1.3)

for all x, y ∈ Mn and all t > s.
(iii) When d(x, y)2 ≤ t− s, G satisfies

G(x, t; y, s) ≥ min

{
1

C|B(x, (t − s)1/2)| ,
1

C|B(y, (t− s)1/2)|
}
.(1.3′)

If one assumes that the Ricci curvature of Mn is nonnegative and R = 0, it is
well known that that above properties hold (see [LY]). More general conditions
on Mn (without the nonnegativity of Ricci) that support (1.2), (1.3), and (1.3′)
can be found in [G]. When R is not identically zero, (1.3) and (1.3′) pose certain
restrictions on R as indicated in Corollary 2.3 below.

Equation (1.1) with R = 0 contains the following important special cases. When
the Riemannian metric is just the Euclidean metric, (1.1) becomes the semilinear
parabolic equation which has been studied by many authors. In the paper [Fu],
Fujita proved the following results:

(a) when 1 < p < 1 + 2
n and u0 > 0, problem (1.1) possesses no global positive

solutions;
(b) when p > 1 + 2

n and u0 is smaller than a small Gaussian, then (1.1) has

global positive solutions. So 1 + 2
n is the critical exponent.

For a rich literature on the subsequent development of the topic, we refer the
reader to the survey paper [Le].

In recent years many authors have undertaken the research on semilinear elliptic
operators on manifolds, including the well-known Yamabe problem (see [Sc] and
[Yau]). In contrast, not much has been done for their semilinear parabolic coun-
terpart. It looks more imperative to fill this gap when one takes into account the
tremendous literature about the heat kernel of a complete Riemannian manifold,
which is still a linear theory. The study of Ricci flows also leads to semilinear para-
bolic problems (see [H] and [Sh]). We shall need some new techniques to study when
blow up of solutions occur, and when global positive solutions exist for equation
(1.1). In fact the prevailing methods in treating semilinear problems are variational
and comparison method. The variational approach seems hard to apply when the
manifold is noncompact. The comparison method also faces some difficulties on
curved manifolds because the intrinsic operators are not of constant coefficients.

The method we are using is based on some new inequalities involving the heat
kernels. We are able to reveal an explicit relation between the size of the criti-
cal exponent and geometric properties of the manifold such as the growth rate of
geodesic balls (see Theorem B).

It is interesting to note that Theorem B immediately leads to a nonexistence
result for the well-known noncompact Yamabe problem of prescribing positive con-
stant scalar curvatures, i.e., whether the following elliptic problem has positive
solutions on Mn (see Theorem C):

∆u− n− 2

4(n− 1)
Ru+ u(n+2)/(n−2) = 0.(1.4)

This problem has been posed by J. Kazdan [K] and S. T. Yau [Yau]. The compact
version of the problem was proposed by Yamabe [Yam], proved by Trudinger [Tr]
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and Aubin [Au] in some cases, and eventually proved by R. Schoen [Sc] completely.
In the noncompact case, Aviles and McOwen [AM] obtained some existence result
for the problem of prescribing constant negative scalar curvature. However, as far
as we know, there has been no result on the problem of prescribing constant positive
scalar curvature, which was termed more difficult in [AM].

When Mn is Rn with the Euclidean metric, then problem (1.4) becomes ∆u +
u(n+2)/(n−2) = 0, which does have positive solutions (see [Ni])

uλ(x) =
[n(n− 2)λ2](n−2)/4

(λ2 + |x|2)(n−2)/2
, λ > 0.

So it is reasonable to expect that (1.4) has a solution. However, Theorem C below
asserts that unlike the compact Yamabe problem, problem (1.4) cannot be solved
in general. In fact, if the existing scalar curvature decays “too fast” and the volume
of geodesic balls does not increase “fast enough”, then (1.4) has no solution.

Before stating the main results explicitly we list some notation.

Definition 1.1. A function u = u(x, t) such that u ∈ L2
loc(M

n × (0,∞)) is called
a solution of (1.1) if

u(x, t) =

∫
Mn

G(x, t; y, 0)u0(y) dy +

∫ t

0

∫
Mn

G(x, t; y, s)up(y, s) dy ds

for all (x, t) ∈ Mn × (0,∞).

G = G(x, t; y, s) will denote the fundamental solution of the linear operator H0

in (1.1). For any c > 0, we write

Gc(x, t; y, s) =

{
1

|B(x,(t−s)1/2)| exp(−cd(x,y)2t−s ), t > s,

0, t < s.

Let u0 be a positive function in L∞(Mn) and a > 0; we write

ha(x, t) =

∫
Mn

Ga(x, t; y, 0)u0(y) dy;(1.5)

h(x, t) =

∫
Mn

G(x, t; y, 0)u0(y) dy.(1.6)

Given V = V (x, t) and c > 0, we introduce the notation

Nc,∞(V ) ≡ supx∈Mn,t>0

∫ ∞

−∞

∫
Mn

|V (y, s)|Gc(x, t; y, s) dy ds

+ supy∈Mn,s>0

∫ ∞

∞

∫
Mn

|V (x, t)|Gc(x, t; y, s) dx dt.

(1.7)

We note that Nc,∞(V ) may be infinite for some V . However, the fact that Nc,∞(V )
is finite for some specific functions will play a key role in the proof of the theorems.

2. Main results

The main results of the paper are the next three theorems.
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Theorem A. Suppose R = 0 and (1.2), (1.3), and (1.3′) hold; the critical exponent
of (1.1) is p∗ = 1 + 1

s∗ , where

s∗ = sup{s | lim
t→∞ sup ts‖W (·, t)‖L∞ <∞,

for a nonnegative and nontrivial W such that H0W = 0}.
Remark 2.1. Theorem A, which establishes the existence of the critical exponent,
can be proved by following the proof of Theorem 1 in [Me]. However, this theorem
does not provide any estimate of the size of the exponent. It does not even tell
whether p∗ is closer to 1 or ∞. Our main concern is therefore to find an explicit
relation between the critical exponent and geometrical properties of the manifold.
This is done in the next

Theorem B. Let Mn be any Riemannian manifold and R = R(x) any bounded
functions such that (1.2), (1.3), and (1.3′) hold; then the following conclusions are
true.

(a) Suppose, for t > s ≥ 0,

sup
x∈Mn,t

∫ ∞

r0

∫
Mn

Gc(x, t; y, s)

|B(y, s1/2)|p−1
dy ds + sup

y∈Mn,s

∫ ∞

r0

∫
Mn

Gc(x, t; y, s)

|B(x, t1/2)|p−1
dx dt <∞

for some r0 > 0 and a suitable c > 0; then (1.1) has global positive solutions for
some u0 ≥ 0.

(b) Suppose for some x0 ∈ Mn,

lim
r→∞ inf

|B(x0, r)|
rα

<∞;

then (1.1) has no global positive solutions for any p < 1 + 2
α and any u0 ≥ 0.

To exemplify the conditions in Theorem B, we provide two corollaries.

Corollary 2.1. Under the same assumptions as in Theorem B, suppose∫ ∞

r0

sup
x∈Mn

1

|B(x, r1/2)|p−1
dr <∞

for some r0 > 0; then (1.1) has global positive solutions for some u0 ≥ 0. In
particular, if, for an α > 0, infx∈Mn |B(x, r)| ≥ Crα when r is sufficiently large,
then for p > 1 + 2

α , (1.1) has global positive solutions for some u0.

In the next corollary, we show that if Mn has bounded geometry in the sense of
E. B. Davies (see p. 172 in [D]), which means the existence of a function b(r) and
c > 0 such that

c−1b(r) ≤ |B(x, r)| ≤ cb(r)(2.1)

for all x ∈ Mn and r > 0, then the critical exponent of (1.1) can be explicitly
determined.

Corollary 2.2. Suppose, in addition to the assumptions in Theorem B, (2.1) holds;
then p∗, the critical exponent of (1.1), is given by p∗ = 1 + 2

α∗ , where

α∗ = inf

{
α > 0

∣∣∣ lim
r→∞ inf

|B(x, r)|
rα

<∞, x ∈ Mn

}
.

Remark 2.2. By (2.1), the above number α∗ is independent of the choice of x ∈ Mn.
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Remark 2.3. Under the assumptions of part (a) of Theorem B, (1.1) has global
positive solutions if u0 ≥ 0 satisfies

u0 ∈ C2(Mn), lim
d(x,0)→∞

u0(x) = 0, and ‖u0‖L∞(Mn) + ‖u0‖L1(Mn) ≤ b0,

where b0 is a sufficiently small number and 0 is a point in Mn. This result is new
even in the Euclidean case.

Next we turn our attention to the noncompact Yamabe problem of prescribing
positive scalar curvatures.

Theorem C. Suppose (1.2), (1.3), and (1.3′) hold and

lim
r→∞ inf

|B(x0, r)|
rα

<∞(2.2)

for some x0 and α < (n− 2)/2; then the Yamabe problem (1.4) has no solutions.

It is important to know what conditions should be imposed on the Ricci curvature
and the scalar curvature R so that the conditions of Theorem C be met. To this
end we have

Corollary 2.3. (a) Suppose the Ricci curvature of Mn is nonnegative, and for a
suitable c > 0, Nc,∞(R) is sufficiently small; then (1.2), (1.3), and (1.3′) hold.
Hence the Yamabe problem has no solutions if (2.2) holds.

(b) In particular, suppose Mn is a manifold with nonnegative Ricci curvature
and |B(x, r)| ∼ rα for 2 < α < (n− 2)/2 and large r > 0. Then if

0 ≤ R(x) ≤ ε/(1 + d2+δ(x, 0))

for a sufficiently small ε and a δ > 0, then the Yamabe problem (1.4) has no
solution. Here 0 is a point in Mn. An example is M9 = R3 × S1 × · · · × S1 with
the metric tensor being the direct product of those usual ones on R3 and S1.

Remark 2.4. In the above example, we can just change the metric in R3 suitably so
that the scalar curvature of M9 be positive but (1.4) still have no solution. Indeed,
by part (b) of the corollary, any metric g′ on R3 satisfying the next three conditions
can be a choice: (i) |B(x′, r)| ∼ r3, x′ ∈ R3; (ii) Ricci is nonnegative; (iii) the scalar
curvature R′ ≤ ε/(1 + d2+δ(x′, 0)) for x′ ∈ R3, δ > 0, and a small ε > 0.

Remark 2.5. We would like to point out another fundamental difference between
the noncompact Yamabe problem and the compact one. In the compact case, no
manifold with positive scalar curvature is conformal to a manifold with zero scalar
curvature. This is reflected from the fact that the equation ∆u − Ru = 0 with
R > 0 has no positive solution on compact manifolds. However, this is not the
case for noncompact manifolds. The following is a complete noncompact manifold
which is conformal to a complete manifold of constant positive scalar curvature,
and to a complete manifold with zero scalar curvature. Let M = S3 × R1 with
the metric being the direct product of the usual ones on S3 and R1. Then R = 6,
n = 4 and hence equation (1.4) becomes

∆u − u+ u3 = 0,

which has a solution u = 1. At the same time the equation

∆u− u = 0
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has a positive solution

u(x1, x2) = ex2 + e−x2 ≥ 1,

where x1 ∈ S3 and x2 ∈ R1. Clearly the above solution generates a complete metric
of zero scalar curvature since it is bounded away from zero. Similar phenomenon
can be shown for M ×Rk where M is any compact manifold with positive scalar
curvature (see [Zhang5]).

Let us briefly discuss the method we are going to adopt. We will use the Schauder
fixed point theorem to achieve existence. This requires some new estimates involv-
ing the heat kernel on Mn, such as, for 0 < a < b and s < τ < t,

(i)

Ga(x, t; z, τ)Gb(z, τ ; y, s) ≤ C[Gc(x, t; z, τ) +Gc(z, τ ; y, s)]Ga(x, t; y, s),

(ii)

Gb(x, t; z, τ)Ga(z, τ ; y, s) ≤ C[Gc(x, t; z, τ) +Gc(z, τ ; y, s)]Ga(x, t; y, s).

(iii) Suppose 0 < a < b; there exist positive constants Ca,b and c depending only
on a and b such that, for all t > s ≥ 0,

∫ t

s

∫
Mn

Ga(x, t; z, τ) |V (z, τ)| Gb(z, τ ; y, s) dz dτ ≤ Ca,bNc,∞(V )Ga(x, t; y, s);

∫ t

s

∫
Mn

Gb(x, t; z, τ) |V (z, τ)| Ga(z, τ ; y, s) dz dτ ≤ Ca,bNc,∞(V )Ga(x, t; y, s).

To prove Theorem C, the key idea is to obtain global bounds (1.3) and (1.3′)
for the fundamental solution of H0, which involves certain conditions on the scalar
curvature. Then we show that the parabolic problem (1.1) with p = n+2

n−2 has no
global positive solutions under the assumptions of Theorem C. Since every positive
solution of the Yamabe equation (1.4) is a global positive solution of the parabolic
problem (1.1), the former cannot exist either.

Details of the proof can be found in the paper [Zhang5].
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