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INERT ACTIONS ON PERIODIC POINTS
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(Communicated by Douglas Lind)

Abstract. The action of inert automorphisms on finite sets of periodic points
of mixing subshifts of finite type is characterized in terms of the sign-gyration-
compatibility condition. The main technique used is variable length coding
combined with a “nonnegative algebraic K-theory” formulation of state split-
ting and merging. One application gives a counterexample to the Finite Order
Generation Conjecture by producing examples of infinite order inert automor-
phisms of mixing subshifts of finite type which are not products of finite order
automorphisms.

Introduction, main results, and applications

Subshifts of finite type (XA, σA) constructed from a nonnegative integral ma-
trices A appear in a number of areas ranging from smooth dynamical systems to
coding and information theory. See [LM] for a comprehensive introduction to these
model dynamical systems and to the field of symbolic dynamics in general. The
automorphism group Aut(σA) of (XA, σA) consists of those homeomorphisms of XA

which commute with the basic shift homeomorphism σA : XA −→ XA. The first
systematic study of Aut(σA) appeared in [He], and it has subsequently been studied
in a number of papers. For example, see [BF], [BK1], [BLR], [KR1], [KRW1]. In
general, Aut(σA) is a huge countable group. It contains copies of the direct sum
of any countable collection of finite groups and is highly nonabelian. It contains
a copy of the free abelian group on countably many generators. It contains copies
of the fundamental groups of closed, 2-dimensional surfaces. It is residually finite,
and therefore does not contain a divisible group. See [BLR]. The group Aut(σA) is
interesting both in its own right and for its relation to other questions in symbolic
dynamics. For example, present understanding of the fundamental classification
problem for subshifts of finite type is closely related to Aut(σA). See [B], [KRW1],
[KR2], [W].

One way to study Aut(σA) is through representations of it to simpler groups,
and there are currently two such representations which play a key role; namely, the
periodic point and periodic orbit representations and the dimension group represen-
tation.
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Let P •k = P •k (A) denote the periodic points of period exactly k. Let Pk = Pk(A)
denote the disjoint union of P •l = P •l (A) for 1 ≤ l ≤ k. Let Aut(σA|P •k ) denote the
group of permutations of P •k which commute with σA. Similarly, let Aut(σA|Pk)
denote the group of permutations of Pk which commute with σA. Then as in [BLR,
Section 7] we have the periodic point representations

π•A,k : Aut(σA) −→ Aut(σA|P •k )

and

πA,k : Aut(σA) −→ Aut(σA|Pk).
Also discussed in [BLR, Section 7] are the closely related periodic orbit permutation
representations

ρA,k,l : Aut(σA) −→
l⊕

r=k

Perm(σA orbits of length r)

for k ≤ l. Computing the images of πA,k and ρA,k,l is a basic problem. If (XA, σA)
is a primitive subshift of finite type, it is known from [BLR, 7.6] that ρA,k,l is onto
for k sufficiently large. On the other hand, an example where (XA, σA) is primitive
and πA,1 = π•A,1 = ρA,1,1 is not onto is given in [KRW1, 4.3]. In Application 1 of
our results below, we will show that in a number of cases the image of πA,k can
be effectively determined for k sufficiently large. This is relevant to the problem
of classifying imbeddings of one shift into another of larger entropy as discussed in
[BK2].

The periodic point representations gave rise to the Boyle-Krieger sign and gyra-
tion number homomorphisms

OSA,k : Aut(σA) −→ Aut(σA|P •k ) −→ Z/2, k ≥ 1,

and

GYA,k : Aut(σA) −→ Aut(σA|P •k ) −→ Z/k, k ≥ 2,

which were used in [BK1] to study involutions in Aut(σA). The orbit sign number
homomorphism OSA,k is simply the sign of the permutation induced on the orbits
of length k by an automorphism. The gyration number homomorphism GYA,k is a
measure of how automorphisms move orbits of length k parallel to themselves.

The dimension group representation

δA : Aut(σA) −→ Aut(sA)

introduced by Krieger is essentially a matrix group representation which can be
defined dynamically as in [BLR] or more algebraically as in [W]. The groupAut(sA)
of order preserving automorphisms of the dimension group is generally much simpler
than Aut(σA). It is often a torsion free, finitely generated abelian group. So
typically, much of the complexity of Aut(σA) lies in the subgroup Inert(σA) of
inert automorphisms which is defined to be the kernel of δA. Application 2 below
gives counterexamples to the FOG Conjecture about Inert(σA).

It turns out that the sign and gyration number homomorphisms are related to
the dimension group representation through the so-called SGCC homomorphisms
named after the sign-gyration-compatibility-condition which arose in the fundamen-
tal paper [BK1]. For k ≥ 2, we have the SGCC homomorphisms

SGCCA,k : Aut(σA) −→ Aut(σA|Pk) −→ Z/k
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given in [KRW1], [W] by the formula

SGCCA,k = GYA,k +
∑
i>0

OSA,k/2i

where we take OSA,k/2i = 0 whenever k/2i is not an integer and where, for k even,
we consider Z/2 as the subgroup {0, k/2} of Z/k. In particular, SGCCA,k = GYA,k
whenever k is odd, and

SGCCA,2 = GYA,2 +OSA,1.

For simplicity of notation we shall usually just write GYk = GYA,k , OSk = OSA,k,
and SGCCk = SGCCA,k. The relationship between the sign and gyration ho-
momorphisms OSk and GYk and the dimension group homomorphism δA is that
SGCCk factors through δA. See [KRW1]. We therefore know that

SGCCk(α) = 0 whenever α lies in Inert(σA).

This paper announces the characterization of the action of inert automorphisms on
the periodic points Pk(A) for sufficiently large k, thereby computing the image of
πA,k restricted to the inert subgroup Inert(σA). Details are available in the paper
[KRW2]. The principal result is

Main Theorem. Assume that A is primitive and k ≥ 2 is a positive integer such
that for every n ≥ k there is at least one periodic point of period exactly n. Let
α be an element of Aut(σA|Pk). Then there is an automorphism β in Inert(σA)
satisfying α = β|Pk iff SGCCr(α) = 0 for every 2 ≤ r ≤ k.

This is a corollary of the following three theorems.

Theorem A. Assume that A is primitive and 2 ≤ n ≤ p. Let α be an element of
Aut(σA|P •n) such that GYn(α) = 0 and such that α induces the identity permutation
on orbits of length n. Then there is an automorphism β in Inert(σA) satisfying

β|P •n = α,
β|P •k = Identity, for 1 ≤ k ≤ p and k 6= n.

Theorem B. Assume that A is primitive and 1 ≤ n ≤ p are positive integers. Let
α be an even permutation of the orbits of length n. Then there is an automorphism
β in Inert(σA) satisfying

α = the permutation induced on orbits of length n by β,
GYn(β) = 0,
β|P •k = Identity, for 1 ≤ k ≤ p and k 6= n.

Theorem C. Assume that A is primitive and k ≥ 2 is a positive integer such that
for every n ≥ k there is at least one periodic point of period exactly n. Let α be in
Aut(σA|Pk). Let gyr = GYr(α) for 2 ≤ r ≤ k and let osr = OSr(α) for 1 ≤ r ≤ k.
Assume that the sign-gyration-compatibility condition

gyr +
∑
p>0

osr/2p = 0

holds for 2 ≤ r ≤ k. Then there is an element β in Inert(σA) such that

GYr(β) = gyr for 2 ≤ r ≤ k,

OSr(β) = osr for 1 ≤ r ≤ k.
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Application 1. Computing the image of πA,k for k large. Our three theorems
above show how to find generators {α1, . . . , αp} for the subgroup

πA,k(Inert(σA)) ⊂ Aut(σA|Pk)
for large enough k. If we can find a set of elements {β1, . . . , βq} in Aut(σA) so that
the set {δA(β1), . . . , δA(βq)} generates the image of Aut(σA) under the dimension
group representation δA, then {α1, . . . , αp, πA,k(β1), . . . , πA,k(βq)} is a set of gen-
erators for the subgroup

πA,k(Aut(σA)) ⊂ Aut(σA|Pk).
In other words, if we can find automorphisms which generate the image of the
dimension group representation, then we can find generators for the image of πA,k
for k large. For example, this applies to the full Bernoulli n-shift (Xn, σn). A set
of generators for the image of δn consists of the automorphisms

σr × Idn/r : Xr ×Xn/r −→ Xr ×Xn/r

where r is a prime divisor of n.

Application 2. FOG Counterexamples. Boyle and Fiebig in [BF] character-
ized the action of products of finite order inert automorphisms on periodic points
of mixing SFT’s. Together with the theorems above, this produces many subshifts
of finite type (XA, σA) having inert automorphisms which are not products of finite
order inert automorphisms. One of the simplest examples is where

A =


1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 0

 .

According to Theorem B, the cyclic permutation (123) of the three fixed points
is the restriction of an inert automorphism β to the set of fixed points. On the
other hand, since (XA, σA) has no points of period 2 or period 3, [BF] says that
any product of finite order inert automorphisms must be the identity on the fixed
points. Incidentally, for this example it can be verified as in [BLR, 6.4] that the
automorphism group Aut(sA) of the dimension group is a torsion free, finitely
generated abelian group. Hence, every finite order element of Aut(σA) is inert. So
β is not even a product of finite order automorphisms.

Heretofore, the big subgroups of infinite order elements in Inert(σA) were pro-
duced using very ingenious variations on the well-known “marker method” which
gives rise to products of finite order elements. An interesting problem is to find
natural representations of Inert(σA) into, say, a vector space or a torsion-free group
which would detect the new infinite order inert automorphisms.

Polynomial matrices

The key technique we use is to present SFT’s in terms graphs arising from
square matrices with nonnegative polynomial entries (variable length coding) and
to construct conjugacies between SFT’s from row and column operations on these
matrices (as in algebraic K-theory) but with certain natural positivity conditions
brought in. A nonnegative polynomial matrix is one with entries in the set tZ+[t]
of polynomials in the variable t having nonnegative integer coefficients and zero
constant term. If A = (A(i, j)) is a nonnegative polynomial matrix, construct the
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directed graph, or equivalently, the zero-one matrix A# as follows: The indices i
and j will be called the primary vertices of A#. Suppose

A(i, j) = a1t + a2t
2 + · · ·+ ant

n.

Corresponding to the term akt
k in A(i, j) draw ak simple paths of length k from i

to j, each having k edges and k − 1 secondary vertices. By definition, we will let

(XA, σA) = (XA# , σA#).

The usual SFT associated to a nonnegative integral matrix A is obtained by the
above construction from the nonnegative polynomial matrix tA.

Polynomial matrices turn out to be a very compact and efficacious way of rep-
resenting SFT’s and their automorphisms. For example, a special case of [BGMY,
Theorem 1.7] shows that

det(I −A) = det(I − tA#).

So the Bowen-Lanford formula [Sm] for the zeta function yields

ζA(t) = ζA#(t) =
1

det(I −A)
.

There is a corresponding formula for dimension groups. Namely, there is an iso-
morphism of Z[t, t−1]-modules

Z[t, t−1]n

Image(I −A)
∼= Z[t, t−1]n

#

Image(I − tA#)
.

This result has also been obtained by M. Boyle.
The polynomial matrix setting provides useful approximation lemmas. Suppose

we have a sequence of nonnegative polynomial matrices

Am = B + tmPm

where the entries p(t) = p1t + · · ·+ prt
r of Pm satisfy the conditions r ≤ Dm and

pi ≤ Cme for constants e, C,D which are independent of m.

Entropy Limit Lemma. limm→∞ h(Am) = h(B).

Periodic Point Lemma. Let A be a nonnegative polynomial matrix such that A#

is primitive. Assume
lim

m→∞h(Am) = L < h(A).

Then there is an integer K such that whenever m ≥ K we have

|P •q (Am)| ≤ |P •q (A)| for q ≥ m.

We now discuss how the polynomial matrix setting can be used to produce strong
shift equivalences and topological conjugacies between SFT’s. If a(t) =

∑
r art

r and
b(t) =

∑
r brt

r are polynomials, we define a ≤ b iff ar ≤ br for each r. Let A be an
n× n nonnegative polynomial matrix. Fix an entry A(k, l) of A where k 6= l, and
let b denote a polynomial in tZ[t]. Let Ekl(b) denote the elementary matrix which
is the identity on the diagonal and where the only nonzero entry off the diagonal
is b in the kth row and lth column. Ekl(b) will be called a positive shear if b ≥ 0.
Let the matrix B be defined by one of the following equations:

I −B = Ekl(b)(I −A),
I −B = (I −A)Ekl(b).
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Positive Shear Lemma. Assume that 0 ≤ b ≤ A(k, l). Then B is a nonnegative
polynomial matrix and there are topological conjugacies

Rkl(b) : (XA# , σA#) −→ (XB# , σB#),

Ckl(b) : (XA# , σA#) −→ (XB# , σB#)

corresponding respectively to the first and second equations above.

This lemma is proved using state splitting and merging [LM]. The relation to al-
gebraic K-theory is that, roughly speaking, state splitting and merging corresponds
to elementary row and column operations but with an extra positivity condition
imposed. Conjugacies between subshifts of finite type are generated by the positive
row and column type conjugacies Rkl(b) and Ckl(b) together with isomorphisms of
graphs. This gives an algebraic formulation to the well-known classification theo-
rem that conjugacies between SFT’s are generated by state splitting and merging
together with graph isomorphisms.

Idea of proof

The purpose of this section is to indicate the proof of a special case of Theorem B.
Namely, assume that (XA, σA) is primitive and P •1 (A) = {p1, . . . , pr} for r ≥ 3.
Then the cyclic permutation (123) on fixed points may be realized by the action of
an inert automorphism. The strategy is to construct certain inert automorphisms
of model subshifts of finite type (XC , σC) corresponding to polynomial matrices
C = Cm such that

• σC has exactly three fixed points and no other periodic points of period q for
2 ≤ q ≤ m.

• For m large, h(C) < h(A) and |P •s (C)| ≤ |P •s (A)| for s ≥ m.
• (XC , σC) has an inert automorphism β inducing (123) on fixed points.

Now let XB = XC ∪ {p4, . . . , pr} and extend β by letting it be the identity on
{p4, . . . , pr}. We then apply the Imbedding Theorem [K] and the Inert Extension
Theorem [KR1] to imbed (XB, σB) into (XA, σA) and to extend β to an inert
automorphism of (XA, σA) as required.

To construct the model (XC , σC), we find 6×6 nonnegative polynomial matrices
C = Cm and D = Dm such that

• σC has exactly three fixed points {µ1, µ2, µ3} and no other periodic points of
period q for 2 ≤ q ≤ m.

• Let θ = (12). Then Cθ = θC, θ(µ1) = µ2, and θ(µ2) = µ1.
• δC(θ) is in the center of Aut(sC).
• σD has exactly three fixed points {ν1, ν2, ν3} and no other periodic points of

period q for 2 ≤ q ≤ m.
• Let φ = (23). Then Dφ = φD, φ(ν2) = ν3, and φ(ν3) = ν2.
• There is a conjugacy γ between (XC , σC) and (XD, σD) satisfying γ(µi) = νi

for i = 1, 2, 3.

Let β = [θ, γφγ−1]. Then β is inert and is the cycle (123) on {µ1, µ2, µ3}.
Here is the algebraic formulation. We find 6×6 nonnegative polynomial matrices

C and D so that

D − I = S(C − I)T(1)

where S and T = St are certain products of positive shears which give rise to the
desired conjugacy γ. S is fixed in advance, and we show that C can be chosen so
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that Cθ = θC and so that the D defined by (1) is nonnegative and Dφ = φD. This
involves solving a set of homogeneous linear equations satisfied by the unknown
X = C − I with coefficients which are products of the entries of S. To control
the number of low order periodic points, there is a congruence condition which
must be satisfied by X modulo tm. We also require that X satisfies a certain
congruence condition modulo ∆2, where ∆ = t − 1 − tm, as well as an additional
nonhomogeneous linear equation

X11 −X12 = ∆.(2)

This will insure that there is a decomposition of the dimension group

Coker(I − C)⊗Q = K− ⊕K+(3)

as a Q[t, t−1]-module where K− and K+ are the −1 and +1 eigenspaces of θ and
where K− and K+ have relatively prime annihilators. So any Q[t, t−1]-module
isomorphism of Coker(I − C) ⊗Q must preserve (3), and consequently δC(θ) will
be in the center of Aut(sC).

The proof of Theorem A is very similar to that of Theorem B. In both cases,
the key step is to construct inert automorphisms of model SFT’s with low entropy
and good control over the growth of periodic points. This is done by fixing a priori
certain products of positive shears S and T = St, and then showing how to choose
C so that the matrix D defined by

D − I = S(C − I)T

satisfies a symmetry condition. The proof of Theorem C is somewhat different. We
first construct a priori nonnegative polynomial matrix models C1, D1 and products
of shears S1, T1 so that

D1 − I = S1(C1 − I)T1 + Y (tm∆2)r

for a certain polynomial ∆ which is relatively prime to tm. Then in several steps
we enlarge C1 to another matrix C satisfing an involution symmetry condition and
an appropriate eigenspace determinant condition, and we multiply S1 and T1 on
the left and right respectively by additional products of shears depending on the
error term Y (tm∆2)r to obtain new products of shears S and T so that the matrix
D defined by

D − I = S(C − I)T

satisfies another involution symmetry condition and the same eigenspace determi-
nant condition and so that S and T satisfy certain positive shear conditions.
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