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C∗-ACTIONS ON C3 ARE LINEARIZABLE

S. KALIMAN, M. KORAS, L. MAKAR-LIMANOV, AND P. RUSSELL

(Communicated by Hyman Bass)

Abstract. We give the outline of the proof of the linearization conjecture:
every algebraic C∗-action on C3 is linear in a suitable coordinate system.

1. Introduction

The purpose of this note is to outline the main ingredients in a proof of the
following

Linearization Theorem. Every algebraic action of the torus T = C∗ on affine
space X = C3 is linearizable, that is linear in suitably chosen coordinates for X.

It is known that the action has a fixpoint 0 ∈ X ([B-B]). The weights of the
action are the weights

a1, a2, a3

of the (diagonalized) action on the tangent space T0X . (They are independent of
the choice of fixpoint [KbR].) We will assume tacitly that the action is effective,
or, equivalently, that GCD(a1, a2, a3) = 1. Put

δ = dimX//T, τ = dimXT .

Then 2 ≥ δ ≥ τ ≥ 0.
It is known that fixpointed actions, that is those for which all weights have the

same sign, are linearizable [KbR]. This settles the following cases:
δ = 0 = τ , or three nonzero weights of the same sign;
δ = 1 = τ , or one zero weight, two nonzero weights of the same sign;
δ = 2 = τ , or two zero weights, one nonzero weight.

The case
δ = 2, τ = 1, or one zero weight, two nonzero weights of opposite sign,

was settled in [KR1].
It remains to consider the

Hyperbolic Case. δ = 2, τ = 0, or three nonzero weights, not all of the same
sign.

A program to settle this case was proposed in [KR2]. It has two quite distinct
components.
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Step I, the quotient. Show that X//T is as expected for a linear action, i.e.

X//T ' T0X//T.

Let ωα ⊂ C∗ be the group of α-roots of 1. Linearizability follows from Step I
(see 1.4 below) in the case dimXwα ≤ 1 for all α > 1, or equivalently, if the weights
are pairwise relatively prime. This leads to

Step II, reduction of weights. Reduction of the proof to the case of pairwise rela-
tively prime weights.

If α > 1 and α divides two weights, then X ′ = X/ωα is a smooth, affine threefold,
but only after linearizability has been established is it at all clear that X ′ ' C3.
We are therefore led to study more general C∗-threefolds.

1.1. Standard conditions. Let X be a C∗-threefold. We consider the following
conditions.

(i) X is smooth and the action of T = C∗ is hyperbolic,

i.e. there is a unique fixpoint 0 and dimX//T = 2.

(ii) X is contractible.
(iii) κ(X) = −∞ (κ = logarithmic Kodaira dimension).
If we have 1.1 (i), the weights of the action are defined as above for X = C3,

and we assume

a1 < 0, a2 > 0, a3 > 0, GCD(a1, a2, a3) = 1.

We put

αi = GCD({a1, a2, a3} − {ai}).
Then

−a1 = aα2α3, a2 = bα1α3, a3 = cα1α2

with a, b, c > 0 and reduced (pairwise relatively prime).

1.2. Proposition ([KR3], 2.5). Let X satisfy 1.1 (i).
(i) Suppose αi > 1. Then dimXωαi = 2 and

X ′ = X/ωαi

satisfies 1.1 (i) for T ′ = T/ωαi ' C∗ with weights ai and aj/αi for j 6= i.
(ii) X# = X/ωα1α2α3 satisfies 1.1 (i) for T# = T/ωα1α2α3 ' C∗ and reduced

weights −a, b, c.
(iii) X//T = X ′//T ′ = X#//T#.
(iv) If X satisfies 1.1 (ii) or (iii), then so do X ′ and X#.

Let X satisfy 1.1 (i) and (ii). We put ([KR3], 1.4)

X+ = {x ∈ X | lim
t→0

t · x = 0}.

Then X+ ' C2 and X+ = F−1(0), where F is semiinvariant of weight a1. ωa1

acts on

X1 = F−1(1)

and we have ([KR1], Lemma 2)



C∗-ACTIONS ON C3 ARE LINEARIZABLE 65

1.3. X//T ' X1/wa1 .
The reduction of the proof to Steps I and II is now contained in

1.4. Proposition ([KR3], 2.3, 2.8, and 1.10). Let X satisfy 1.1 (i) and (ii) and
suppose the weights are reduced. If

X//T ' T0X//T,

or equivalently

X1/ωa ' C2/ωa,

where ωa acts diagonally on C2 with weights ≡ b, c mod a, then

X1 ' C2,

and

X 'e C3

(X is equivariantly isomorphic to C3 = T0X).

2. The quotient

2.1. Theorem ([KR4], 1.2). Suppose X satisfies all conditions of 1.1. Then

S′ = X//C∗ ' T0X//C∗.

By 1.2, we may assume the weights are reduced when studying the quotient.
Also, 2.1 is known ([KR2]) when S′ is smooth, or equivalently a = 1. So we assume
a > 1. Then by [KR4], 2.4

2.2. S′ is contractible, κ(S′) = −∞, S′ has a unique singular point q, q is ana-
lytically of the type of the origin in C2/ωa, and Pic(S′ − q) ' Z/aZ.

2.3. Theorem ([K]). If S′ is as in 2.2, then
(i) if κ(S′ − q) = −∞, then S′ ' C2/ωa,
(ii) κ(S′ − q) 6= 0, 1.

It remains to rule out κ(S′ − q) = 2 to complete Step I.

2.4. Theorem ([KR4], 1.1). Let

S′ = X//T

with X satisfying all conditions of 1.1. Then

κ(S′ − q) < 2.

The proof is rather involved. It relies in a crucial way on the theory of open
algebraic surfaces, in particular the inequalities of Miyaoka [M] and Kobayashi
[Ko] and the results on the existence of affine rulings of Miyanishi and Tsunoda
[MT].

2.5. Proposition ([KR4], 2.8). Let S′ be as in 2.4. There exists a desingulariza-
tion S of S′ admitting an A1-ruling with all but one component E of the exceptional
locus Ê in fibres. Moreover, S −∆ is simply connected, where ∆ = Ê − E.

The proof of 2.4 proceeds by a detailed analysis of such “good” rulings under
the conditions of 2.2.
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3. Reduction of weights and “exotic affine spaces”

Step II, the reduction of weights, is achieved in a roundabout way. In [KR3], an
explicit construction is given of a class of smooth, contractible C∗-threefolds that
encompasses, in the equivariant sense, all possible counterexamples to linearization.
It is then shown in [KM-L] that only the “obviously” equivariantly trivial threefolds
in the class are isomorphic to C3 (without reference to the C∗-action). The others
are in themselves interesting examples of “exotic affine spaces” (algebraic varieties
homeomorphic to C3). They include the threefolds described in [D], 4.36.

3.1. Theorem ([KR3], 4.1). The threefolds

X = SpecA

satisfying 1.1 (i) and (ii) and

X//C∗ ' T0X//C∗

are precisely the ones obtained as follows.
(1) Let

−a = a′1, b = a′2, c = a′3
be a triple of reduced weights with a, b, c > 0. (These define a hyperbolic C∗-action
on

W = SpecB ' C3

with B = C[η, ξ, ζ] and η, ξ, ζ homogeneous of weight −a, b, c).
(2) Let

α1, α2, α3

be a reduced triple of positive integers with GCD(αi, a
′
i) = 1, i = 1, 2, 3.

(3) Let C2 and C3 be ωa-homogeneous “lines” (curves isomorphic to C) in W1 =
Spec k[ξ, ζ] ' C2, identified with η−1(1) ⊂W , such that

(i) C2 and C3 meet normally in r ≥ 1 points, including the origin,
(ii) Ui = C∗ · Ci ⊂W is smooth, i = 2, 3.
(4) Let U1 = W+ = η−1(0).
Then X is the “tri-cyclic” cover of W ramified to order αi over Ui, i = 1, 2, 3,

that is,

A = B[z1, z2, z3],

where zαii = ui with u1 = η and for i = 2, 3, ui is an equation for Ui and uniquely
determined by

s−a
′
ifi(ξs

a′2 , ζsa
′
3) = ui(s

−a′1 , ξ, ζ),

where fi is an equation for Ci ⊂W1.
Moreover,

B = C[u1, u2, u
∗
3] = C[u1, u

∗
2, u3],

with ui and u∗i homogeneous of weight a′i and if

u2 = G2(u1, u
∗
2, u3) and u3 = G3(u1, u2, u

∗
3),

then the equations

zα2
2 = G2(z

α1
1 , z∗2 , z

α3
2 ) and zα3

3 = G3(z
α1
1 , zα2

2 , z∗3)

describe X (in two ways) as a hypersurface in C4.
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3.1.1. Remark. 1) (3)(ii) imposes a rather mild restriction that can be made quite
explicit ([KR3], 1.11.1).

2) Possibilities for f2, f3, and hence for G2, G3, can be worked out explicitly with
the help of the epimorphism theorem of Abhyankar, Moh and Suzuki [AM], [S].

The key to 3.1 is the following observation.

3.2. Proposition ([KR3], 2.6, 2.7). Suppose X is as in 3.1 and α2 = 1, α3 > 1.
Then

X/ωα3 'e C3 implies X 'e C3.

A similar result holds if α2 > 1, α3 = 1. Also,

X/ωα1 'e C3 implies X 'e C3.

In view of 1.4 we obtain a commutative diagram

X

↙ ↘

C3 'e X/ωα2 X/ωα3 'e C3

↘ ↙

X/ωα2α3 'e C3

↓
X/ωα1α2α3 'e C3

3.1 is an elaboration of the possibilities for such a diagram. It is not difficult to
decide when X is equivariantly isomorphic to C3 (see 3.4). The question of just
isomorphism with C3, on the other hand, proved to be much more elusive.

3.3. Let us for instance choose a = b = c = 1, α2 = 2 and α3 = 3 and a parabola
and straight line for C2 and C3. Then in suitable coordinates X is defined in C4 by

x+ x2y + z2 + t3 = 0.

X is dominated birationally by C3 and there exists a surjective quasi-finite map
C3 → X ([KR3], 7.7 and 7.8). It is shown in [M-L1] that, nevertheless, X is not
isomorphic to C3. The proof is based implicitly on the computation of the following
invariant:

AK(X) =
⋂

∂∈LND(X)

Ker ∂

where LND(X) is the set of locally nilpotent derivations on the ring C[X ] of reg-
ular functions on X . For this hypersurface AK(X) 6= C, but clearly AK(C3) = C.

Let X be as in 3.1. We define

ε = (r − 1)(α2 − 1)(α3 − 1)

(ε = rank π2(X − X+) is an invariant of the higher-dimensional knot (X,X+)
([KR3], 4.8)).

3.4. Theorem ([KR3], remark following 5.1). Let X be as in 3.1. Then X 'e C3

if and only if ε = 0.
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3.5. Theorem ([KM-L]). Let X be as in 3.1. If ε > 0, then X 6' C3.

If now X is C3 with a hyperbolic C∗-action, then by 2.1 it is one of the X in 3.1
and hence X 'e C3 by 3.4 and 3.5.

4. The computation of AK(X)

4.1. Theorem 3.5 is again the consequence of the fact that AK(X) 6= C [KM-L].
More precisely, AK(X) = C[X ] unless X is isomorphic to a hypersurface in C4

given by one of the following equations:

(i) x+ xky + zα2 + tα3 = 0 or

(ii) x+ y(xk + zα2)l + tα3 = 0

where k ≥ 2, l ≥ 1, and in the second equation (kl, α3) = 1. In case (i) AK(X) is
the restriction of C[x] to X and in case (ii) AK(X) is the restriction of C[x, z] to
X .

4.2. The scheme of the computation of AK(X) is discussed below. Every X from
3.1 is the hypersurface P (x, y, z, t) = 0 where

(x, y, z, t) = (z∗3 , z1, z2, z3) and P (x, y, z, t) = tα3 −G3(y
α1 , zα2 , x).

The polynomials from 4.1 (i) and (ii) are examples of such P . A derivation ∂
on C[X ] is said to be of Jacobian type if ∂(f) coincides with the restriction of
Jx,y,z,t(P, ϕ1, ϕ2, ϕ) to X where ϕ1, ϕ2 ∈ C[x, y, z, t] are fixed and the restriction of
ϕ ∈ C[x, y, z, t] to X coincides with f ∈ C[X ].

4.3. Proposition ([KM-L]). Let δ ∈ LND(X) be nontrivial and let ϕ1, ϕ2 be such
that ϕ1|X , ϕ2|X ∈ Ker δ and P, ϕ1, ϕ2 are algebraically independent. Then ∂ has
the same kernel as δ.

Furthermore, since the transcendence degree of the field of fractions of Ker δ is
2 [M-L1], one can always find ϕ1, ϕ2, and therefore ∂ as above.

4.4. We consider degree functions L on C[x, y, z, t] obtained by assigning real
weights to the variables. The L-quasi-leading part ϕL of a nonzero polynomial ϕ is
the sum of the terms from ϕ whose L-degree coincides with L(ϕ). Suppose, given
ϕ1, there exists a degree function L1 with positive values such that for any other
degree function L2 with positive values each nonzero monomial from ϕL2 is also
present in ϕL1 . We then call

ϕ̂ := ϕL1

the quasi-leading part of ϕ. In cases 4.1 (i) and (ii) P̂ coincides with xky+zα2 + tα3

and y(xk + zα2)l + tα3 respectively. In all other cases P̂ also exists and can be
computed explicitly by virtue of the Abhyankar-Moh-Suzuki theorem (see 3.1.1
(ii)). Consider further only those degree functions (may be with negative values)
which satisfy the condition

PL = P̂ .

4.5. Proposition ([KM-L]). Let ∂ be a nontrivial locally nilpotent derivation of
Jacobian type on C[X ]. Then polynomials ϕ1, ϕ2 can be chosen so that ϕ1|X , ϕ2|X ∈
Ker∂ and P̂ , ϕL1 , ϕ

L
2 are algebraically independent.
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4.6. With ∂ as in 4.5, suppose that X̂ is the hypersurface P̂ (x, y, z, t) = 0 in C4

and that ∂L is the derivation on C[X̂] such that ∂L(f) coincides with restriction of

Jx,y,z,t(P̂ , ϕ
L
1 , ϕ

L
2 , ϕ) to X̂ , where the restriction of ϕ ∈ C[x, y, z, t] to X̂ coincides

with f ∈ C[X̂]. Then ∂L is nontrivial and also locally nilpotent [M-L1].

4.7. Since P̂ is known explicitly, we can find all nontrivial locally nilpotent deriva-
tions of Jacobian type on C[X̂]. If P is not as in 4.1 (i) or (ii) there are no such
derivations. By 4.3 and 4.6 there is no nontrivial locally nilpotent derivation on
C[X ], that is, AK(X) = C[X ].

4.8. In case 4.1 (ii) the kernel of any nontrivial locally nilpotent derivation ∂L on

C[X̂] is contained in C[x, z]|X̂ . Since this is true for every L satisfying condition 4.4,
it follows ([KM-L], Theorem 8.4) that the kernel of the corresponding nontrivial
locally nilpotent derivation ∂ on C[X ] is contained in C[x, z]|X . The transcendence
degree of the field of fractions of Ker∂ is 2 and Ker∂ is algebraically closed in
C[X ] [M-L1]. Hence Ker ∂ = C[x, z]. In case 4.1 (ii) nontrivial locally nilpotent
derivations on C[X ] exist, for instance Jx,y,z,t(P, x, z, ϕ)|X . This yields AK(X) =
C[x, z]|X .

4.9. In case 4.1 (i) nontrivial locally nilpotent derivations on C[X ] exist as well.
Examples are Jx,y,z,t(P, x, z, ϕ)|X and Jx,y,z,t(P, x, t, ϕ)|X . The intersection of the
kernels of these locally nilpotent derivations is C[x]|X , whence it suffices to show
that x ∈ Ker ∂ for every nontrivial ∂ ∈ LND(X). It can be shown that Ker∂L ⊂
C[x, z, t]|X̂ [KM-L]. Varying L under the condition 4.4 we prove that Ker ∂ ⊂
C[x, z, t]|X . From this we deduce that ∂(C[x, z, t]|X) ⊂ xkC[x, z, t]|X with k as in
4.1. Since C[x, z, t]|X 6⊂ Ker∂, there exists f ∈ Ker ∂ \ 0 which is divisible by x,
and then x ∈ Ker ∂ by [FLN], that is, AK(X) = C[x].

5. Further results

Once 2.5 and 2.2 are established, the fact that S′ = X//T can be forgotten in
the proof of 2.4. In special cases, a geometric characterization of C2/ωa is obtained.

5.1. Theorem ([KR4], 10.1). Suppose S′ is as in 2.2. If either q is an ordinary
a-fold point, that is b ≡ c mod a, or the minimal resolution of q is a single (−a)-
curve, or q is a rational double point, that is, b ≡ −c mod a, or the minimal
resolution of q is a chain of a− 1 (−2)-curves, then

S′ ' C2/ωa.

We do not know whether the restriction on the analytic type of q is needed in
5.1.

Extending the arguments of [KP], Popov [P] recently proved that any effective
action of a noncommutative, connected reductive group on C3 is linearizable. Since
effective actions of (C∗)r, r > 1, are linearizable by [B-B], we obtain

5.2. Theorem. Any action of a connected, reductive group G on C3 is linearizable.

It is an open question whether the connectedness assumption in 5.2 can be
removed, and in particular, whether finite group actions on C3 are linearizable.

It is reasonable to expect that our methods and results will shed some light in
general on codimension 2 torus actions on Cn. As an illustration, consider the
possibility that X × C ' C4, where X is a C∗-threefold. For linearizability of the
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obvious (C∗)2-action the following weak cancellation conjecture is required: Let X
be an affine threefold such that X × C ' C4. Then X ' C3 or X does not admit
an effective C∗-action.

This is known for nonhyperbolic actions. For hyperbolic actions, one would have
to show that X×C 6' C4 for the threefolds in 3.1. This is true in the case when X is
not isomorphic to a hypersurface of the form 4.1 (i) or (ii) since AK(Y ×C) = C[Y ]
for every algebraic manifold Y with AK(Y ) = C[Y ] [M-L2].

We remark that linearizability of Gm-actions on A3 in positive characteristic is
an open question, even in certain nonhyperbolic cases.
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