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PERTURBATION EXPANSIONS FOR EIGENVALUES AND

EIGENVECTORS FOR A RECTANGULAR MEMBRANE

SUBJECT TO A RESTORATIVE FORCE
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(Communicated by Michael Taylor)

Abstract. Series expansions are obtained for a rich subset of eigenvalues and
eigenfunctions of an operator that arises in the study of rectangular mem-
branes: the operator is the 2-D Laplacian with restorative force term and
Dirichlet boundary conditions. Expansions are extracted by considering the
restorative force term as a linear perturbation of the Laplacian; errors of trun-
cation for these expansions are estimated. The criteria defining the subset of
eigenvalues and eigenfunctions that can be studied depend only on the size and
linearity of the perturbation. The results are valid for almost all rectangular
domains.

Introduction

In this summary we consider a rectangular, homogeneous membrane and a force
acting on it that depends linearly on the displacement from equilibrium. The eigen-
values and eigenfunctions are well known when the restorative force term is zero,
prompting us to treat the case of nontrivial restorative force as a linear perturbation
of the homogeneous case.

The distance between unperturbed eigenvalues is very important in studying
how perturbed eigenvalues and eigenfunctions behave. It turns out that even in the
cases where all unperturbed eigenvalues are distinct, sufficiently large eigenvalues
can get arbitrarily close together. These arbitrarily small differences appear as
divisors in the expansions, making it difficult to prove the expansions worthy.

This paper is inspired by the work of McLaughlin and Hald, [MH] and [HM].
They derive asymptotic expansions for almost all eigenvalue, eigenfunction pairs in
order to solve the inverse nodal problem, with corresponding error estimates given
in several norms. They estimate very sharp error bounds for specific truncations
of the perturbation expansion and show that their expansions hold for almost all
eigenvalues and eigenfunctions. The criteria defining this set of “good” eigenvalue,
eigenfunction pairs are not completely known a priori. They present three a pri-
ori conditions and a fourth condition that depends on the values of the perturbed
eigenvalues. We present the form and error bounds of arbitrary truncations, and
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we do that for a well-defined (defined a priori) subset consisting of almost all eigen-
values. Also, our restrictions on the parameters, including the smoothness of q,
are less stringent. We estimate cruder bounds on the error of truncation. We do
not give details here, but in [MP] we show that if the additional restrictions on
smoothness and other parameters that are imposed in [HM] are made, then their
sharper estimates are valid for our collection of “good” eigenvalue, eigenfunction
pairs. Here we provide a rich subset of eigenvalue, eigenfunction pairs, determined
exclusively with a priori lattice point requirements, that can be used to obtain our
error bounds, to obtain the error bounds in [HM] and to solve the inverse nodal
problem defined in [HM].

The strategy used to find these expansions follows:

• We build on three key results from [HM]: The first tells us that for almost
all rectangular membranes, almost all eigenvalues are well separated; the sec-
ond tells us that eigenvalues with close neighbors rarely have corresponding
eigenfunctions with similar oscillation properties; finally, the third condition
eliminates points in the lattice that are too close to either axis. All three
results define “thin” subsets of “bad” lattice points with a priori criteria.
Disregarding these subsets is important but insufficient to justify the expan-
sions we give here.

• We add an additional a priori condition which strips another thin subset of
“bad” eigenvalues, allowing us to prove the expansions convergent for the re-
maining large set of eigenvalues and eigenfunctions. Geometric considerations
are used to prove that this new set is “thin”. This condition is the main effort
of this work. It replaces the fourth criterion imposed in [HM], p. 68.

• Explicit L∞ bounds are given for the errors of truncation of the eigenfunction
and eigenvalue expansions.

Four other papers are listed in the Bibliography that deal with the solution of
problems similar to ours: [FKT], [F], [KP] and [KP2]. We point out differences,
similarities, advantages and disadvantages between our approach and theirs in what
follows.

First, we should define the problem these three papers examine: the differential
operator is the same, but the boundary conditions are different. All three consider
an unbounded domain, but assume q to be periodic in each variable. This turns
out to be equivalent to solving a set of problems restricted to a finite domain with
periodic and quasi-periodic boundary conditions.

In [FKT], Feldman, Knörrer and Trubowitz show that a rich set of eigenvalue,
eigenfunction pairs of Schrödinger’s equation with periodic potential are perturba-
tively stable, which means that the difference between perturbed and unperturbed
eigenvalues and eigenfunctions is asymptotically small, measured in inverse frac-
tional powers of the eigenvalue; the error bound is given only for the first truncation
of the expansions. They accomplish their result by disregarding small subsets of
bad lattice points and their corresponding eigenvalue-eigenfunction pairs. In fact,
this discarded set is defined by three conditions that involve geometric properties of
the lattice. We will also discard a thin subset of bad lattice points. Our discarded
set is defined by four conditions, two equivalent to theirs and two that are of a
different nature but also depend only on geometric properties of the lattice points.
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In [F], Friedlander gives another proof for results similar to those in [FKT].
To do this, conditions equivalent to our first two are also imposed, plus an addi-
tional condition which uses information not known a priori, namely, the perturbed
eigenvalues.

Both these papers are concerned only with the first truncation of the perturba-
tion expansions, and both exhibit good estimates on the difference between per-
turbed and unperturbed eigenvalues. It should be noted that in both these papers,
the bound for the difference between perturbed and unperturbed eigenfunctions is
not an L∞ bound. Having an L∞ bound is necessary to use these estimates to
solve the inverse nodal problem.

In [KP], Karpeshina exhibits the complete perturbation expansions for a rich
set of eigenvalues and eigenprojectors for Schrödinger’s equation with periodic po-
tential with the additional assumption that the potential is a finite trigonometric
polynomial in the spatial variables; she outlines how the procedure could be gener-
alized for a smooth potential. Error estimates for truncations of these expansions
are presented, and conditions defining subsets of bad eigenvalues are defined as well.
The same pair of conditions common to all papers are represented here as well. The
third condition in [KP] is similar in nature, but different, to ours.

In [KP2], Karpeshina presents the complete perturbation expansions for a rich
set of eigenvalues and eigenprojectors for Schrödinger’s equation with periodic po-
tential. In this paper, assumptions on the smoothness of the potential are relaxed
considerably. Estimates for errors of truncation are presented for a trace class
norm, which, in fact, makes these estimates valid in L∞. The only drawback of the
technique is that although the results are proved for a measure one subset of quasi-
momenta, a particular instance of quasimomenta for which the results are valid is
not produced.

In what follows we present the statement of the key result in a setting that is
not as general as possible, but makes ideas more accessible to the reader.

Main result

We want to study the behavior of the eigenvalues and eigenfunctions satisfying

−∆u+ qu = λu(1)

on the rectangular domain R = [0, π/a] × [0, π] (a > 1), with Dirichlet boundary
conditions. Note that q is in general not constant.

In order to better understand the effect of the qu, or restorative force term,
we have to refer to the original equation from which this eigenvalue problem was
derived, that is, the wave equation

vtt + gv = ρ2∆v

with Dirichlet boundary conditions and two prescribed initial conditions, where ρ2

is the quotient of the constant tension over the constant density of the membrane.
The term gv is called restorative when g ≥ 0 because it has the effect of wanting to
return the system to a state of equilibrium or zero displacement. A way of thinking
about the gv term is to set ρ2∆v = 0 and study vtt + gv = 0. This is the equation
governing the motion of a linear spring, where g is a measure of the stiffness of
springs attached to the membrane at each point in our domain.
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To obtain the eigenvalue problem we must consider solutions of the form v =
eiσtu, where u is time independent. Plugging in and simplifying:

−σ2u+ gu = ρ2∆u.

Slightly rearranging the terms we can see that q = g/ρ2 ≥ 0 and λ = σ2/ρ2.
The eigenvalues and normalized eigenfunctions of (1) when q ≡ 0 are well known

for rectangular domains:

λα = (an)2 +m2 = |α|2,
uα =

2
√
a

π
sin(anx) sin(my),

where α ∈ L and our index set L = {(an,m)|n,m = 1, 2, 3, . . .} is an integer lattice.
We will treat the case of q 6= 0 as a perturbation of the simpler, well-understood
case (q ≡ 0). So our new formulation for the problem will be

−∆u(ε) + εqu(ε) = λ(ε)u(ε).(2)

We use ε as a book-keeping parameter in the end set ε = 1, thus solving the original
problem.

Theorem 1. Let J = (1, a0) be given. Define

V =
{
a ∈ J

∣∣∣ there exist 0 < δ < ε0/6 and K > 0 such that for all

p, q > 0 :
∣∣a2 − p

q

∣∣ > K/q2+δ
}
.

Let q be such that ∫
R

q dx = 0,

and

|q|l =

{∑
α∈L

|(q, vα)|2|α|2l
}1/2

<∞,

with l ≥ 2. Then there exists a finite, positive number D1 and an exceptional set of
lattice points M̆(a) ⊂ L(a) depending on a such that

a) meas(J\V ) = 0 and M̆(a) has density 0 in L(a) for all a ∈ V in the sense
that

lim
r→∞

#M̆(a) ∩B(0, r)

#L(a) ∩B(0, r)
= 0.

b) For every α ∈ L(a)\(M̆(a)∪B(0, D1)), there exists a circular contour Γα in the
complex plane, centered at λα, containing one and only one eigenvalue throughout
the perturbation. Moreover, there is a unique eigenvalue of the variable coefficient
problem (1), which we denote by λαq, satisfying

|λαq − λα| ≤ (
2 + 30

√
a|q|) |q|2l |α|−1/2+2δ.

This is the bound for the error made by the 1st truncation of the perturbation ex-
pansion for the eigenvalue. In general, the perturbation expansion for the eigenvalue
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is given by

λαq = λα +

∞∑
n=0

(−1)n
∑
β0∈L

· · ·
∑
βn∈L

{
1

2πi

∫
Γα

(λβ0 − λα) (uβ0 , quβ1)

(λβ0 − ξ)2

× (uβ1 , quβ2)

λβ1 − ξ

(uβn , quβ0)

λβn − ξ
dξ

− 1

2πi

∫
Γα

(uβn , quβ0)

λβ0 − ξ

(uβ0 , quβ1)

λβ1 − ξ
· · · (uβn−1, quβn)

λβn − ξ
dξ

}
,

and a bound for the error made by the mth truncation is
√
a|q|12(m+ 1)|q|m−1

l |α|(−1/4+δ)(m−1).

A suitable multiple of the corresponding eigenfunction satisfies

‖uαq − uα‖L∞ ≤ 3
√
a|q|2l |α|−1/2+2δ.

This is a bound for the error made by the 1st truncation of the perturbation ex-
pansion for the eigenfunction. In general, the perturbation expansion of the eigen-
function is given by

uαq = uα +

∞∑
n=1

(−1)n+1
∑
β0∈L

· · ·
∑

βn−1∈L

1

2πi

∫
Γα

(uβ0 , quβ1)

λβ0 − ξ
× · · ·

× (uβn−2, quβn−1)

λβn−2 − ξ

(uβn−1 , quα)

λβn−1 − ξ

1

λα − ξ
uβ0 dξ

and a bound for the L∞ error made by the mth truncation is

2
√
a|q|ml |α|(−1/4+δ)m,

where 0 < δ < 1/10 can be made arbitrarily small.

Remark. The reader will observe that the bound given for the error made by the 1st
truncation for both the eigenvalue and eigenfunction is stronger than that implied
by the error for the 1st truncation of the series expansion. To obtain the better
bound we more carefully bound the n = 1 and n = 2 terms of the corresponding
series expansion.

Because our main contribution involves the definition of the exceptional subset
M̆(a) ⊂ L(a), we present its defining elements in what follows:

M10(a) =
{
α ∈ L

∣∣∣ there exists β ∈ L, β 6= α, and
∣∣∣|α|2 − |β|2

∣∣∣ < C0|α|−ε0
}
,

M11(a) =
{
α ∈ L

∣∣∣ there exists β ∈ L, β 6= α, and |α− β| < C1|α|ε1 ,
|λα0 − λβ0| < C2|α|1−ε2

}
,

M12(a) =
{
α = (an,m) ∈ L

∣∣∣ we have that m < (δC1)
1/(1−p)(an)p or

an < (δC1)
1/(1−p)mp

}
,

M13(a) =
{
α ∈ L\M10

∣∣∣ ∃ β, γ ∈ L, β, γ 6= α,

0 < |β − γ| < C1|α|ε1 ,
|λβ0 − λα0||λγ0 − λα0| < C3|α|ε3

}
,
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with the following restrictions on the parameters:

0 < ε0 < 1/2, 0 < ε1 < ε2 < 1/2,

0 < p < 1, l ≥ 2,

l > max {(1− ε2)/p, 1 + (3ε0)/(2ε1), 1 + (ε3 + ε0)/ε1} ,
0 < ε0 < (ε2 − ε1)/2, 0 < ε3 < ε2 − ε1 − 2ε0,

C0 > C3,

2(C3/C0)
(
1/
√

1− C3/C0

)ε3+ε0
< C2.

Remark. M̆(a) = M10(a)∪M11(a)∪M12(a)∪M13(a). The subsets M10(a), M11(a)
and M12(a) have been previously defined and used in the literature; the set M13(a)
is our contribution and is essential for our analysis.
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