
ELECTRONIC RESEARCH ANNOUNCEMENTS
OF THE AMERICAN MATHEMATICAL SOCIETY
Volume 3, Pages 78–82 (August 21, 1997)
S 1079-6762(97)00026-7

PROOF OF CONWAY’S LOST COSMOLOGICAL THEOREM

SHALOSH B. EKHAD AND DORON ZEILBERGER

(Communicated by Ronald Graham)

Abstract. John Horton Conway’s Cosmological Theorem about sequences
like 1, 11, 21, 1211, 111221, 312211, . . . , for which no extant proof
existed, is given a new proof, this time hopefully for good.

One of the most intriguing sequences [CG], [F], [SP], [V] is Conway’s [C] 1, 11,
21, 1211, 111221, 312211, 13112221, 1113213211, . . . . It is defined by the
rule C0 := 1, and Ci := JHC(Ci−1), for i > 0, where JHC is Conway’s audioactive
operator:

JHC(am1
1 am2

2 . . . amr
r ) := m1a1m2a2 . . .mrar.

Here am is shorthand for “a repeated m times” (and we agree that the description
is optimal, i.e. ai 6= ai+1). We assume familiarity with Conway’s charming article
[C].

Conway proved that his sequence has the property length(Ci+1)/length(Ci) →
λ, where λ = 1.303577269 . . . is Conway’s constant. He also stated that, more
generally, if one starts with an arbitrary nonempty finite string of integers, B0

(except ‘boring old 22’), and defines Bi := JHC(Bi−1), i > 0, then still

length(Bi+1)/length(Bi) → λ.

This is an immediate consequence of

The Cosmological Theorem. There exists an integer N such that every string
decays in at most N days to a compound of common and transuranic elements.

Conway stated that two independent proofs used to exist, one by himself and
Richard Parker (that only proved that N existed), and another one by Mike Guy
(that actually proved that one may take N = 24, and that it was best possible).
Unfortunately both proofs were lost. Here we announce a new proof (which estab-
lishes that one may take N = 29; with more computations one should be able to
rederive (or else refute) Guy’s sharp N = 24).

The Cosmological Theorem is an immediate consequence of the following lemma.

Lemma. The length of any atom in the splitting of a 9-day-old string is ≤ 80.
Every such atom decays, in at most 20 days, into stable or transuranic elements.
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The lemma is proved by typing Cosmo(8); in the Maple package HORTON, retriev-
able from
http://www.ams.org/era/1997-03-11/S1079-6762-97-00026-7/html/HORTON.

The procedure Cosmo computes iteratively all non-splittable strings of length i
(i = 1, 2, . . . ) that might conceivably be substrings (‘chunks’) of an atom in the
splitting of a 9-day-old-string (by backtracking, examining its possible ancestors up
to (at most) 8 days back and rejecting those that lead to grammatically incorrect
ancestors; see examples below). Every time a string of length i is accepted, its
longevity (number of days it takes to decay to stable or transuranic elements) is
computed, and checked whether it is finite. The maximal longevity turned out to
be 20. The program halts if and when an i is reached for which the set of such
conceivable strings of length i is empty.

If the program halts (it did for us), then the Lemma, and hence the Cosmological
Theorem, are proved. In fact it halted after i = 80, implying that there do not
exist atoms of length > 80 that occur in the splitting of mature (i.e. 9-day-old)
strings, and that all the atoms have bounded (≤ 20, as it turned out) longevity.
We also get that the longevity of an arbitrary string is ≤ 9 + 20 = 29. The input
and output files may be obtained from
http://www.ams.org/era/1997-03-11/S1079-6762-97-00026-7/html/incosmo

and
http://www.ams.org/era/1997-03-11/S1079-6762-97-00026-7/html/ocosmo

respectively.
The Maple package HORTON, also available from the authors’ websites

(http://www.math.temple.edu/~zeilberg
and
http://www.math.temple.edu/~ekhad)
rederives many other results in Conway’s paper, in particular it finds all the stable
elements ab initio, finds the minimal polynomial for λ, finds the abundance of all
the stable elements, and computes the longevity of any string. We refer the reader
to the on-line documentation and to the source code.

Details

Recall that Conway proved that it suffices to consider strings on {1, 2, 3}. Let’s
call a chunk that starts with a comma female, and a chunk that does not, male.
Any chunk could have come either from a father or a mother (but of course not
from both). Define

ParentOfGirl(a1a2a3a4a5a6 . . . ) := aa1
2 aa3

4 aa5
6 . . . ,

and

ParentOfBoy(a1a2a3a4a5a6 . . . ) := a1a
a2
3 aa4

5 . . . .

Since a parent of a chunk may be either female or male (but we have no way
of knowing), any chunk has two potential parents (but of course only one actual
one), (up to) four (potential) grandparents (some of them may disqualify on the
grounds of being grammatically incorrect), and so on. Now there are lots of chunks
that cannot possibly be factors of a mature string. Take for example the female
chunk “, 12, 32,”. It cannot be a chunk of a 1-day-old string (as observed in [C]),
since starting at day 1, all strings are descriptive, and “, 12, 32,” would have been
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abbreviated “, 42,”. So we can eliminate from the outset any female string of the
form “, ac, bc,”, in strings that are older than 0 days.

Now consider the female string “, 32, 33,”. It is grammatically correct, and so
can be a chunk of a 1-day-old string. Her parent is: “222333”. If the parent is a
father, then it is punctuated “2, 22, 33, 3”, which is grammatically incorrect, and if
the parent is a mother, then it would be “, 22, 23, 33,”, that is equally grammatically
incorrect. Hence we can conclude that “, 32, 33,”, while it may be a chunk of an
atom in the splitting of a 1-day-old string, cannot possibly be such a chunk of a
2-day-old string.

Consider on the other hand the female string “, 12, 21,”. Her father is “2, 11”,
and her mother is “, 21,”. Her paternal grandparent is 21 who is OK, being two-
lettered. Hence we cannot rule out “, 12, 21,” as a possible chunk in an L-day-old
string (for any L > 0).

Let us define UL(i) as the set of female strings on the alphabet {1, 2, 3} of
length 2i that do not split, and that have at least one (great)L−2 grandparent
who is grammatically correct, or some (great)j−2 grandparent (j < L) that is two-
lettered. In order to find UL(i), we take all the survivors that made it to UL(i− 1),
append all the nine possible endings 11, 12, 13, 21, 22, 23, 31, 32, 33, and see which
of the resulting female strings do not split and in addition survive up-to-depth-
L genealogical screening. Whenever we induct a new member to UL(i), we also
compute her longevity, and the longevity of her male extensions of length 2i + 1:
“1, w”,“2, w”,“3, w”, her female extensions of length 2i + 1: “w, 1”,“w, 2”,“w, 3”,
and her nine male extensions of length 2i+2: “1, w, 1”, “1, w, 2”, “1, w, 3”, “2, w, 1”,
“2, w, 2”, “2, w, 3”, “3, w, 1”, “3, w, 2”, “3, w, 3”. We always keep track of the max-
imum longevity to-date.

If for some L (L = 8 worked), and some i (we got i = 40), UL(i) = ∅, and the
longevity record, M , is finite (we got M = 20), then it follows that any string w
decays into stable or transuranic elements in at most M + L + 1 days. Indeed,
w′ := JHC9(w) is a 9-day-old string. Split w′ into atoms. We know that each of
these atoms has length ≤ 80. Indeed, if such an atom were a female of even length
≥ 82, then her head, consisting of the first 80 letters, would have been a member
of U8(40), contradicting the fact that this set is empty. Similarly if such an atom
were a female of odd length, or a male, then an appropriate factor would be a
member of the empty U8(40). So every atom in the splitting of w′ has length ≤ 80.
Furthermore, all these atoms either belong to UL(i) for some i < 40, or have one of
the forms 1v, 2v, 3v, v1, v2, v3, 1v1, 1v2, 1v3, 2v1, 2v2, 2v3, 3v1, 3v2, 3v3, where
v ∈ UL(i), for some i ≤ 39. But all these strings were tested for finite longevity
by Cosmo, and turned out to have longevity ≤ 20. Since each of the atoms in the
splitting of w′ decays in at most 20 days, so does w′, and hence w decays in at most
20 + 8 + 1 = 29 days.

On a posteriori trivial theorems: The ultimate proof of the

Four-Color Theorem should emulate our proof

Some statements are a priori trivial (regardless of whether they are true or false),
for example that there do not exist projective planes of order 10 (proved by Clement
Lam), or the (still open) conjecture that White can always win at Chess. Of course
by trivial we mean modulo a finite amount of calculations.
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Other statements are only a posteriori trivial. Many conjectures seem only to be
a posteriori trivial if they turn out to be false, and are rendered trivial by exhibiting
a counterexample; for instance, Euler’s conjecture that A4 + B4 + C4 = D4 is
unsolvable, disproved by Elkies. Of course, in the Gödelian sense, every decidable
statement is a posteriori trivial. Both proof and disproof, being finite, could be
eventually found by exhaustive search.

However, the Cosmological Theorem turned out to be a posteriori trivial in a
more genuine ‘object-oriented’ sense. We wrote a program that iteratively computes
UL(i), and a proof would be obtained if UL(i) is empty for some L and i. A priori,
we have no way of knowing whether we would be successful. If our civilization
would die, or more realistically, the program would run out of memory, we would
never know whether it was ‘never’ or ‘not yet’. All we can do is hope. Also, suppose
that the program does not halt. In that case it does not mean that the statement of
the conjecture is false. All it means is that our particular approach failed. So you
only win if and when the proof-program halts. But, once that happens, in order
to check the validity of our proof, it is a waste of time to examine the members of
U8(i) for i = 1, 2, 3, . . . , and to examine the decay process for each accepted chunk.
All we need is to check the computer program. Once the logic of the program has
been checked, all we have to do is, bet on an L, say L = 8, and type Cosmo(8);,
and hope that it would halt in our lifetime. If it does, that is all there is to it, and
we have a one-line proof.

A celebrated example of an a posteriori trivial theorem is Appel and Haken’s
Four-Color-Theorem. Their approach was to find a finite unavoidable set of re-
ducible configurations. The original proof [AHK] used an excessive amount of
human effort. This was considerably improved in the new proof by Robertson,
Sanders, Seymour, and Thomas [RSST], but this is not the ultimate proof. Eventu-
ally one should be able to type Prove4CT();, and the truth of the theorem should
be implied by the halting of the program. In order to check the validity, the checker
would not need to see any specific configuration. Everything should be done inter-
nally and silently by the computer. All that the checker would have to do is check
the program.

And who knows? Perhaps the nonexistence of odd perfect numbers, the 3n+ 1
problem, the Riemann Hypothesis, etc. etc. are all a posteriori trivial? Let us
hope that their proof-programs will halt in our lifetime.
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