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Abstract. In this note we give a classification of compact complex homoge-
neous spaces with invariant volume.

1. Introduction

We call a 2n-dimensional manifold M a complex homogeneous space with invari-
ant volume if there is a complex structure and a nonzero 2n-form on M such that
a transitive Lie transformation group keeps both the complex structure and the
2n-form invariant. There are many papers published in the direction of classifica-
tion of such manifolds, e.g., [Bo], [DG1], [DG2], [DG3], [DN], [Gu1], [Gu2], [Ha1],
[Hk], [HK], [Kz], [Mt1], [Mt2], [Wa2] and the references there (see also [BR], [Gu1],
[Gu2], [Gu4], [Ti], [Wa1] for related topics involving compact complex homogeneous
spaces). In this paper we will finish the classification in the compact case.

A major break-through in this direction became possible after the following
two results were established. Firstly, the Hano-Kobayashi fibration of a compact
complex homogeneous space with invariant volume (we might also call it the Ricci
form reduction) is holomorphic and coincides with the anticanonical fibration (see
[DG1]). Secondly, one can classify compact complex homogeneous spaces with
invariant pseudo-Kähler structure (see [DG1], [Hk] and [Gu1], [Gu2], also [Gu4]).

The proof is much harder than the corresponding proof in the Kähler case in
[Mt1]. Namely, in the Kähler case one can choose the transitive group to be com-
pact. Then the isotropy group is a subgroup of an orthogonal group. In particular,
both groups are reductive.

In [Hk] Huckleberry observed that one can handle the pseudo-Kähler case using
methods from symplectic geometry. In particular, he applied here the construction
of the moment map. In [Gu1], [Gu2] we observed that his method actually works
for a compact complex homogeneous space with an invariant symplectic structure.

Huckleberry’s method was used in [Gu1], [Gu2] to get a structure theorem for
compact homogeneous complex manifolds with 2-cohomology classes ω such that
ωn 6= 0 in the top cohomology. This generalized the result of [BR] for the Kähler
case (one does not assume that the Kähler form is invariant).
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For a general compact complex homogeneous space with invariant volume, the
symplectic method does not apply. However, our original method (see [HK], [Mt2]
and [DG1]) gives a classification.

Main Theorem 1. Every compact complex homogeneous space with an invariant
volume form is a homogeneous complex torus bundle over the product of a projective
rational homogeneous space and a parallelizable manifold. Conversely, every com-
plex homogeneous manifold M of this kind admits a transitive real transformation
Lie group G, acting on M by holomorphic transforms and preserving a volume form
on M .

For more details concerning the structure theorem, one might look at Sections 3,
4 and 5 of [Gu3]. We also note that every compact complex homogeneous space M
with a 2-cohomology class such that its top power is nonzero in the top cohomology
group, admits a transitive real Lie transformation group G, which acts on M by
holomorphic transforms and preserves a volume form.

Our proof is better than the proof of both results in [DG1] and [Gu1].
In [Mt2] Matsushima considered the special case of a semisimple group action.

He proved that if G/H is a compact complex homogeneous space with a G-invariant
volume and if G is semisimple, then G/H is a holomorphic fiber bundle over a pro-
jective rational homogeneous space, the typical fiber being a complex parallelizable
homogeneous space of a reductive complex Lie group.

Applying our Main Theorem 1 to this situation, we immediately see that the
result of Matsushima can be generalized to the case when G is reductive. Moreover,
we have the following stronger result.

Main Theorem 2. Assume that G/H is a compact complex homogeneous space
with a G-invariant volume and G is reductive. Then G/H is a holomorphic torus
bundle over the product of a projective rational homogeneous space and a complex
parallelizable homogeneous space of a semisimple complex Lie group.

Even if we drop here the assumption that G/H has a G-invariant volume form,
we still have a holomorphic fibration of G/H over a projective rational base with
parallelizable fiber (see [BR], [Ti]). J. Hano [Ha2] proved that the fiber is of the
form L/Γ, where Γ is a discrete cocompact subgroup of a reductive complex Lie
group L. Our methods show that the converse is also true. Namely, we have the
following theorem.

Main Theorem 3. Suppose that a compact complex homogeneous space M admits
a holomorphic fibration π : M → D, where D is a projective rational homogeneous
space. Assume that the typical fiber of π is of the form F = L/Γ, where L is a
connected reductive complex Lie group, and Γ a discrete cocompact subgroup of L.
Then any transitive effective complex Lie transformation group G, acting on M by
holomorphic transforms, is reductive.

Corollary. Every compact complex homogeneous space is a holomorphic fiber bun-
dle whose base is a compact complex homogeneous space of a reductive Lie group
and whose typical fiber is a complex parallelizable homogeneous space of a nilpotent
complex Lie group.

Having in mind a classification of all compact complex homogeneous spaces as a
goal, we hope to use the Corollary in our future research.
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1–12. MR 25:2147
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