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Abstract. We give sharp regularity results for the invariant subbundles of
hyperbolic dynamical systems and give open dense sets of codimension one
systems where this regularity is not exceeded as well as open dense sets of
symplectic, geodesic, and codimension one systems where the analogous regu-
larity results of Pugh, Shub, and Wilkinson are optimal. We produce open sets
of symplectic Anosov diffeomorphisms and flows with low transverse Hölder
regularity of the invariant foliations almost everywhere. Prevalence of low reg-
ularity of conjugacies on large sets is a corollary. We also establish a new
connection between the transverse regularity of foliations and their tangent
subbundles.

1. Introduction

A diffeomorphism f of a compact Riemannian manifold M is called Anosov if the
tangent bundle splits (necessarily uniquely and continuously) into two Df -invariant
subbundles TM = Eu ⊕ Es, and there exist constants C and a < 1 such that

‖Dfn(v)‖ ≤ Can‖v‖ and ‖Df−n(u)‖ ≤ Can‖u‖ for v ∈ Es, u ∈ Eu, n ∈ N.
Thus, for two nearby points positive or negative iterates move apart exponentially
fast. Any hyperbolic matrix A ∈ SL(m,Z) induces an Anosov diffeomorphism of
the m-torus Tm; Eu and Es are the expanding and contracting root spaces of A.
The main subject of this paper is the regularity of the unstable and stable bundles
Eu and Es, which bears in particular on the regularity of conjugacies.

Anosov systems are structurally stable, meaning that if f : M → M is Anosov
and g is C1-close to f then there is a unique homeomorphism h : M →M close to
the identity such that h◦f = g◦h (see, e.g., [KH, Corollary 18.2.4]). The conjugacy
h is rarely differentiable, for if fn(p) = p and h is differentiable at p then by the
Chain Rule, Dh(p)Dfn(p) = Dgn(h(p))Dh(p). Thus Dfn(p), Dgn(h(p)) have the
same eigenvalues, which is not a C1-open condition.

In fact these eigenvalues also give an obstruction to h being Lipschitz or having
high Hölder exponent [ϕ : X → Y is Cα at x ∈ X or α-Hölder (if α = 1 we say ϕ
is Lipschitz) if there exist C, d > 0 such that

dY (ϕ(x), ϕ(x′)) ≤ CdX(x, x′)α whenever dX(x, x′) ≤ d;(1)
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ϕ is Cα on a set S if it is Cα at every x ∈ S]: While conjugacies are uniformly
bi-Cβ for some β > 0 (see, e.g., [KH, Theorem 19.1.2]), i.e., for some C, d > 0

(1/C)dM (x, x′)1/β ≤ dM (h(x), h(x′)) ≤ CdM (x, x′)β for dM (x, x′) ≤ d,

differing eigenvalue data will affect the Hölder exponent. As an illustration of
this relationship, consider the related (non-Anosov) example of the expanding map
f(x) = λx on R. Suppose that g : (−ε, ε) → R, g(0) = 0, 0 < λ < µ := g′(0) and
h ◦ f = g ◦ h, where h is bi-Cα. Then

h(fn(x0)) = gn(h(x0)) ≈ µnh(x0) = (λnx0)
α(h(x0)/x

α
0 ) = C(fn(x0))

α

for α := logµ/ logλ < 1, i.e., h is not Lipschitz.
A similar argument gives an obstruction to Lipschitz conjugacy between Anosov

diffeomorphisms, but it is not a very sensitive one; if g is C1-close to f then the
periodic data are not very different and thus do not preclude a relatively high
Hölder exponent. Furthermore these data are no obstruction to higher regularity
off the countable set of periodic points (in fact, in dimension two they are the only
obstructions to smooth conjugacy [LM]). It was brought to our attention by John
Franks that low regularity of the Anosov splitting (Theorem 3) provides a different
and effective mechanism for showing that the Hölder exponent of many conjugacies
arbitrarily close to the identity may be very low on a very large set:

Theorem 1. For α ∈ (0, 1) there is a linear symplectic Anosov diffeomorphism
A and a C1-neighborhood U of A of symplectic diffeomorphisms such that for a
C1-open C∞-dense set of f ∈ U the conjugacy to A is almost nowhere bi-Cα.

In his proof of ergodicity for volume-preserving Anosov diffeomorphisms, Anosov
showed that there is always an α > 0 such that Eu, Es are uniformly Cα; i.e., if

Hα
C,d := {p ∈M | dB(Eu(p), Eu(q)) ≤ CdM (p, q)α if dM (p, q) ≤ d},(2)

for a smooth metric dB on subbundles, then M = Hα
C,d for some C, d. He did

not estimate α [A2]. Hirsch-Pugh-Shub [HPS] estimated α via global contraction
and expansion rates of Df , and Hasselblatt [H1] obtained better estimates from
local data and showed that they are not exceeded for a generic symplectic Anosov
system, or the geodesic flow of a generic negatively curved metric. We give optimal
regularity results for subbundles and foliations and show that they are quite sharp
and extreme nonsmoothness is quite common in the manifold and the space of
Anosov systems. We

• sharpen the regularity results in [H1], [H3], [H4] and extend the sharpness
statement to a wider class of Anosov systems (Theorem 4),

• show generic sharpness of the holonomy estimates in [PSW] (Theorems 5, 4),
• find large sets of Anosov systems on which the regularity of Eu, Es, Wu and
W s is low on a large set of points (Theorems 3 and 2, Proposition 7).

Our construction is elementary; it relies on a simple locally defined obstruction.
Say that S ⊂ M is negligible if M r S is residual and µ(S) = 0 for any ergodic
invariant probability measure µ that is fully supported, i.e., positive on open sets.

Theorem 2. For α ∈ (0, 1) there is a C1-open set of symplectic Anosov flows and
diffeomorphisms for which Eu and Es are Cα only on a negligible set.

Many homotopy classes of Anosov systems contain such open sets. Note that if
ϕ is continuous and S is dense, then ϕ is Cα on S if (1) holds for all x, x′ ∈ S, so
these results show that no restrictions to large sets are very regular.
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An Anosov flow ϕt : M →M is a fixed point free flow with Dϕt-invariant split-
ting TM = Esu ⊕ Ess ⊕ 〈ϕ̇〉, where Dϕt expands and contracts Esu and Ess, re-
spectively. Examples are suspensions (mapping torus) of Anosov diffeomorphisms
(cf. [KH, Section 0.3]) and geodesic flows (on the unit tangent bundle) of compact
Riemannian manifolds with negative sectional curvature [A1, §22] or [KH, Theo-
rem 17.6.2], where the foliations are called horospheric foliations. The weak stable
and unstable bundles E` := Es` ⊕ 〈ϕ̇〉 are tangent to weak foliations W `, ` = s, u.

The regularity of Es and Eu is closely related to that of the foliations Wu,
W s tangent to Eu, Es [A1, Theorem 8], [F], which have smooth leaves but low
transverse regularity. Regularity is measured by examining the natural locally
defined homeomorphism between two sufficiently close smooth disks transverse to
the foliation (determined by following the leaves and called the holonomy map). If,
for any two transversals from a compact family, the holonomy map is Hölder with
exponent α and a uniformly bounded constant, then the foliation is said to be Cα.
Pugh-Shub-Wilkinson [PSW] showed that Wu and W s are Cα, with the same α as
found for the subbundles in [H1]. There the exponent was not shown to be optimal.

Theorem 3. For α ∈ (0, 1) there is a C1-open set of symplectic Anosov flows and
diffeomorphisms whose unstable and stable holonomies are almost nowhere Cα.

By [H1] there generically is a periodic point in M where α cannot exceed the
predicted value. This left open the possibility that a larger α might work on the rest
of the manifold. Anosov [A1, p. 201] has an example of an Anosov diffeomorphism
where Eu is almost nowhere C2/3+ε, for any ε > 0. (Eu is almost nowhere Cα with
respect to µ if µ(

⋃
C,dH

α
C,d) = 0; see (2).) In our examples regularity is also low

on a large set, but stably so.
An optimal regularity estimate is interesting for several reasons. The regularity of

the foliations is related to that of the conjugacy to a linear system, hence Theorem 1.
Also, Eu and Es are invariants of a smooth system that show a marked lack of
smoothness measured by the largest possible exponent α—if they are C1 one can
take α = 1 (conversely, when α = 1 the subbundles are often C1). It can be related
to dimension characteristics (see, e.g., [SS]). Work on stable ergodicity in partially
hyperbolic systems [GPS], [W], [PS] used invariant subbundles with α close to
1. The regularity of horospheric foliations bears directly on that of Busemann
functions [G]; smoothness characterizes locally symmetric metrics [BCG].

If fn(p) = p let µf (p) < µs(p) < 1 < νs(p) < νf (p) be the minimal and maximal
absolute values of the eigenvalues of Dpf

n in and outside the unit circle and

Bu
per(f) := inf

{ logµs(p)− log νs(p)

logµf (p)
| fn(p) = p for some n ∈ N

}
.

E.g., if f is symplectic then νsµs = 1, so Bu
per(f) = 2 infp logµs(p)/logµf (p) is

close to 2 if and only if the contraction rates µs and µf are close together. f is said
to be transitive if it has a dense orbit; this holds for Anosov systems preserving
volume (by ergodicity) and for systems with codim(Es) = 1 [N]. Denote by Cr the
space of Cbrc maps whose brcth derivatives have modulus of continuity O(xr−brc).

Theorem 4. 1. If f is transitive Anosov and Bu
per(f) /∈ N then Eu ∈ CBu

per(f).

2. If f is transitive Anosov and Bu
per(f) ∈ N then Eu ∈ CBu

per(f)−1,O(x| log x|).
3. 1 and 2 hold for flows.
4. For an open dense set of symplectic diffeomorphisms and flows the regularity

of Eu and Wu is at most that asserted in 1 and 2.
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5. For an open dense set of diffeomorphisms and flows with codim(Es) = 1 the
regularity of Eu and Wu is at most that asserted in 1 and 2.

6. 1–3 hold for hyperbolic sets.
7. Of the metrics on a compact manifold with sectional curvature ≤ −k2 and

injectivity radius ≥ log 2/k an open dense set has horospheric foliations (hence
structure at infinity) of at most the regularity claimed in 1 and 2.

The results about the subbundles are due to the first author; the others then
follow from Theorem 5. Theorem 4 encompasses some known results. For example,
an area-preserving diffeomorphism or geodesic flow in dimension 2 has C1,O(x| log x|)

foliations [HK]. Transitivity can be replaced by bunching along all orbits [H4].
A foliation tangent to a Hölder subbundle may not have Hölder holonomy maps,

even when the leaves are uniformly smooth [W]. This is related to the fact that
a Hölder vector field need not be uniquely integrable; trajectories near nonunique
ones can move apart rapidly. Surprisingly, the converse holds; Hölder regularity of
holonomy maps implies (essentially) the same regularity for the tangent subbundles:

Theorem 5. If the holonomies of a foliation F of a Riemannian manifold M with
uniformly Cn+1 (C∞) leaves are Cα− :=

⋂
β<αC

β then TF is Cαn/(n+1)− (Cα−).
Suppose λ is a Borel probability measure on M whose F-conditionals are abso-

lutely continuous and such that for some family {Dx}x∈M of smooth transversals
and for λ-almost every x, y with y ∈ F(x), the F-holonomy map h : Dx → Dy,
h(p) = F(p)∩Dy is absolutely continuous and Cα− a.e. (with respect to Riemann-

ian volume on Dx). Then TF is Cαn/(n+1)− (Cα−) λ-a.e.

This is proved by induction on derivatives along leaves. There might be a true
difference in regularity between holonomy and tangent distribution when the leaves
are not C∞ but this question remains open. Note that Theorem 3 now follows
from Theorem 2 because the foliations are absolutely continuous: If the unstable
subbundle is almost nowhere Cα−ε the invariant set where the holonomies are Cα

cannot have full measure by Theorem 5, hence is a null set by ergodicity.
Our techniques need failure of bunching everywhere, not just at a periodic point:

Definition 6. f is called α-u-spread if there are Efs ⊆ Ems ( Es and constants
µf , µs, ν, with νµαf < µs, such that ‖Dfn�

Efs
‖ < cst.µnf , ‖Df−n(v)‖ < cst.µ−ns ‖v‖

for v ∈ Es r Ems, and ‖Df−n�Eu(x)
‖ > cst.ν−n for all x.

This means the Mather spectrum has annuli in {|z| < µf} and {µs < |z| < 1}
and an annulus overlapping {1 < |z| < ν}, and is an open condition [P]. For

example, A :=

(
B 0

0 Bb2/αc+1

)
, where B =

(
2 1
1 1

)
, induces a symplectic Anosov

automorphism of T4. Both A and A−1 are α-u-spread. We obtain Theorem 2 from

Proposition 7. In a small neighborhood of an α-u-spread symplectic or codimen-
sion one Anosov diffeomorphism or flow the systems whose unstable subbundle is
Cα only on a negligible set are C1-open C∞-dense.

If a metric of negative curvature on a compact manifold has α-u-spread geodesic
flow, then in a small neighborhood of this metric there is a C3-open C∞-dense set
of metrics whose horospheric subbundles are Cα on a negligible set only.

This gives Theorem 2 for Eu or Es and the intersection of open sets is open.
Suspending these examples proves the result for flows. No α-u-spread geodesic flow
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is known to us. Perturbations of volume-preserving (e.g., linear) codimension one
flows and diffeomorphisms have C1 subbundles [A1, p. 11], hence are not examples.

To define the obstruction assume codim(Es) = 1 for simplicity and at x ∈ M
choose coordinates which split as R × Rs, with R × {0} corresponding to Wu(x)
and {0} × Rs to W s(x). Accordingly, the differential of f at y ∈W s(x) is

Dyf =

(
a 0
B C

)
because W s(x) is preserved by f . Represent Eu(y) as the graph of a linear map

D : R → Rs or the image of

(
1
D

)
: R → R× Rs. Then Dyf(Eu) is the image of

Dyf

(
1
D

)
=

(
a 0
B C

)(
1
D

)
=

(
a

B + CD

)
=

(
1

(B + CD)/a

)
a,

which is unchanged when we reparametrize the preimage by a−1, so by invariance
Eu(f(y)) is the graph of f∗D := (B+CD)/a. If zi := f i(y) then D(z1) = (B(z0)+
C(z0)D(z0))/a(z0) or D(zi+1) = (B(zi)+C(zi)D(zi))/a(zi). If f is α-u-spread then

for y ∈ W fs
loc(x) (the local fast stable leaf of x defined by the adapted coordinate

neighborhood) C is lower block triangular. Denote the upper left k × k block
corresponding to the complement of Ems by c. B and D are column vectors whose
top k entries define column vectors b and d, and d(zi+1) =

(
b(zi)+c(zi)d(zi)

)
/a(zi).

If ξnz0 :=
n−1∏
i=0

c(zn−i−1), η
n
z0 :=

n−1∏
i=0

a(zi)
−1, and ∆n

z0 := −
n−1∑
i=0

(ξi+1
z0 )−1b(zi)(η

i
z0)

−1

then |(ηiz0)−1| ≤ cst.νi, ‖(ξiz0)−1‖ ≤ cst.µ−is , ‖b(zi)‖ ≤ cst.‖zi‖ ≤ cst.µif , and
µfν ≤ νµαf < µs, so the ∆n

z0 converge uniformly, and the obstruction

O(x) := sup{‖d(z)−∆f
z‖ | z ∈W fs

loc(x)}
is continuous in x and f .

For an α-u-spread periodic point x take y ∈ W fs
loc(x) with a neighborhood U

such that U ∩ {f i(y) | i ∈ Z} = {y} and x /∈ U [H1, Proposition 4.1]. Let J be a
perturbation of the identity on M supported in U r {y} such that DyJ = I + εe
in adapted coordinates at x, where the only nonzero entry of e is e21 = 1. Then

J ◦ f has x periodic and y ∈ W fs
loc(x) not returning to U with unstable subspace

J

(
1
D

)
=

(
1
D

)
+ (0, ε, 0, . . . , 0)t, so d(y) 6= ∆f

y = ∆J◦f
y and O 6= 0 (stably).
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