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THE WILLIAMS CONJECTURE IS FALSE FOR IRREDUCIBLE

SUBSHIFTS

K. H. KIM AND F. W. ROUSH

(Communicated by Svetlana Katok)

Abstract. We prove that the Williams conjecture is false for irreducible sub-
shifts of finite type using relative sign-gyration numbers defined between dif-
ferent subshifts.

1. Introduction

Shifts of finite type (SFTs) are topological dynamical systems which are the fun-
damental building blocks of symbolic dynamics, with diverse applications [4]. The
classification problem for these systems has been dominated for over two decades by
the Williams Conjecture that shift equivalence classifies shifts of finite type. In [1],
we gave a counterexample in the reducible case, but the conjecture remained open
in the most important case, the irreducible case. We announce here a counterex-
ample in the irreducible case. The obstruction makes essential use of results on
the theory of sign-gyration numbers and the dimension group representation built
up by Boyle, U. Fiebig, Krieger, Lind, Nasu, Rudolph, Wagoner and ourselves to
study the automorphism group Aut(σA) of a shift of finite type σA. A key part
of that development is the Factorization Theorem [3] which states that the SGCC
representation of Aut(σA) factors through its dimension representation, and by
certain explicit formulas. We exploit this structure in the more general setting of
topological conjugacies between (possibly different) SFTs to find an obstruction to
conjugacy permitting the counterexample. Full proofs will appear in [2].

2. Definitions

A square nonnegative integral matrix A presents an edge shift of finite type σA as
follows. Let A be the adjacency matrix of a directed graph G: if A is n×n, then G
has vertices 1, 2, . . . , n and the number of edges from vertex i to vertex j is A(i, j).
Let XA be the set of doubly infinite sequences x = . . . x−1x0x1 . . . such that for all
i, xi is in the edge set E of G, and the terminal vertex of xi equals the initial vertex
of xi+1. Let XA have the compact, metrizable, zero-dimensional topology which is
its relative topology as a subset of EZ. Then σA is the shift homeomorphism from
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XA to XA, defined by (σAx)i = xi+1. A topological conjugacy, or isomorphism,
from σA to σB is a homeomorphism h : XA → XB such that σAh = hσB.

Let Λ be a subset of a ring such that Λ contains 0 and 1. Let A and B be square
matrices over Λ. An elementary strong shift equivalence over Λ from A to B is a
pair (R,S) of rectangular matrices over Λ such that A = RS and B = SR. When
such a pair exists, the matrices A and B are lag-1 strong shift equivalent over Λ.
Strong shift equivalence is the equivalence relation on matrices over Λ which is the
transitive closure of lag-1 strong shift equivalence. Matrices A and B with entries
from Λ are shift equivalent over Λ if there exist matrices R and S over Λ and a
positive integer n such that the following equations hold:

RA = BR, AS = SB, RS = Bn, SR = An.

Shift equivalence is a much more tractable equivalence relation than strong shift
equivalence. Williams [5] proved that matrices A and B are strong shift equivalent
over Z+ if and only if the SFTs σA and σB are isomorphic, and he conjectured
that shift equivalence over Z+ implies strong shift equivalence over Z+. This is of
primary interest in the case that the matricesA andB are irreducible, and especially
in the case that they are primitive, that is, some power has all entries strictly
positive. For primitive A and B, the Williams Conjecture can be reformulated as
the statement: if two primitive matrices are strong shift equivalent over Z, then
they are strong shift equivalent over Z+. We produce a counterexample to this
formulation.

3. The obstruction

As in [3], we work in the setting of Wagoner’s space of strong shift equivalences
over Λ. (In this announcement, Λ is Z or Z+.) Wagoner’s space is a certain naturally
oriented CW-complex which is the geometric realization of a simplicial set in which
a vertex is a square matrix A over Λ, an edge from A to B is an elementary strong
shift equivalence (R,S) over Λ (A = RS,B = SR) and a triangle can be presented as
a triple [(R1, S1), (R2, S2), (R3, S3)] satisfying the all-important Triangle Identities

R1R2 = R3 , R2S3 = S1 , S3R1 = S2 .

A path from A to B in RS(Λ) is homotopic to a path of edges

P = (R1, S1)
ε(1)(R2, S2)

ε(2) . . . (Rk, Sk)
ε(k)

where ε(i) is 1 or −1 depending on whether the edge (Ri, Si) is traversed with
positive or negative orientation. Associated to a vertex A is the direct limit group
GA derived from the action of A on integral row vectors. (For Λ = Z+, GA

is a presentation of Krieger’s dimension group for σA; the dimension group has
an order structure, which we ignore here.) We let Aut(sA) denote the group of
isomorphisms of GA which commute with the automorphism induced by A. An

edge (R,S) induces an isomorphism R̂ of direct limit groups and the path P induces

the isomorphism P̂ : GA → GB given by (R̂1)
ε(1) . . . (R̂k)

ε(k). Two such paths from
A to B are homotopic in RS(Z) if and only if they induce the same isomorphism
GA → GB [3].

Suppose φ is a conjugacy from σA to σB. For a given positive integer m, let
P o
m(σA) denote the points in σA-orbits of cardinality m. Let (x1, . . . , xk) be a

basis for P o
m(σA): that is, a tuple of distinct points xi such that each σA-orbit of

cardinality m contains exactly one of the points xi. Similarly let (y1, . . . , yk) be
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a basis for P o
m(σB). Then there is a permutation π of {1, . . . , k} and a k-tuple of

integers (n(1), . . . , n(k)) such that φ(xi) = (σB)n(i)yπ(i). We define the orbit sign
number OSn(φ) in Z/2 to be 0 if the permutation π has even sign and 1 otherwise.
We define the gyration number in Z/m to be GYm(φ) =

∑
i n(i). Finally we define

in Z/m the sign-gyration number

SGCCm(φ) = GYm(φ) + (m/2)
∑
i

OSi(φ)

where the last sum is over the positive integers i < m such that m/i is a power
of 2 (and an empty sum is 0). “SGCC” refers to “sign-gyration-compatibility-
condition” but for euphony we condense to “sign-gyration”.

To apply these ideas in RS(Z+), at each vertex A we fix a definite choice of basis
for each P o

n(σA), and at each edge (R,S) we fix a definite choice of elementary
conjugacy c(R,S). This is done by certain natural lexicographic rules, chosen
in [3]. For each edge (R,S), these choices determine SGCCm(c(R,S)), which we
abbreviate as SGCCm(R,S). To a path P = (R1, S1)

ε(1)(R2, S2)
ε(2) . . . (Rk, Sk)

ε(k)

from A to B in RS(Z) we associate the relative sign-gyration number

SGCCm(P) =
∑
i

ε(i)SGCCm(Ri, Si) .

The central result of [3] is that SGCCm extends (by certain explicit formulas) to
a map sgccm on paths in RS(Z) which depends only on the homotopy class of P
as a path from A to B in RS(Z). For example, when A has nonnegative integral
entries and tr(A2) = 0, it follows from (3.3) of [3] that sgcc2(R,S) is given by the
polynomial formula

sgcc2(R,S) =
∑
i<j
k>l

RikSkiRjlSlj +
∑
i<j
k≥l

RikSkjRjlSli +
∑
i,k

Rik(Rik − 1)

2
S2
ki .

Now, sgccm(P) depends only on the isomorphism P̂ : GA → GB, and the map

P 7→ P̂ induces an isomorphism π1(RS(Z, A)) → Aut(sA). It follows that with this
identification, modulo the set sgccm(Aut(sA)), the relative sign-gyration number
sgccm(P) is uniquely determined by the pair (A,B) and can be computed from any
path P from A to B in RS(Z).

4. The counterexample

We will produce primitive matrices A and B satisfying the following conditions:
(1) tr(A2) = 0,
(2) sgcc2 vanishes on Aut(sA), and
(3) there is a path in RS(Z) from A to B with nonzero sgcc2.
If P were a strong shift equivalence over Z+ from A to B, then sgcc2(P) would

vanish, since SGCC2 = sgcc2 over Z+ and the subshift σA has no points of period
1 or 2. Therefore A and B are not strong shift equivalent over Z+.
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It remains to produce the matrices and check the conditions. Define

S =



2 2 2 1 3 0 0
1 2 2 1 3 0 0
1 1 2 1 3 0 0
1 1 1 1 3 0 0
0 0 0 0 0 0 1
4 5 6 3 10 0 0
4 5 6 3 0 1 0


,

R =



−1 0 1 1 0 0 0
1 −1 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 1 −1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

A =



0 0 1 1 3 0 0
1 0 0 0 3 0 0
0 1 0 0 3 0 0
0 0 1 0 3 0 0
0 0 0 0 0 0 1
1 1 1 1 10 0 0
1 1 1 1 0 1 0


,

B =



0 0 1 1 3 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
4 5 6 3 10 0 0
4 5 6 3 0 1 0


.

Then the matrices A and B are primitive; A = SR,B = RS; and tr(A2) = 0.
The condition sgcc2(R,S) 6= 0 can be checked with a simple program (for example,
the Maple program mentioned in §5). It remains to check that sgcc2 vanishes
on Aut(sA). Here |det(A)| = 1, so Aut(sA) may be identified with C(A), the
centralizer of A in GL(7,Z). The characteristic polynomial p of A is irreducible, so
C(A) ⊂ Q[A] and Q[A] is isomorphic to the algebraic number field Q[t]/p(t) under
the isomorphism [t] 7→ A. This identifies C(A) with a subgroup of the units group
U of the algebraic integers of this field. The only torsion elements of U are 1 and
−1. Our program checks sgcc2(−I) = 0. A PARI computer calculation gives the
following system of fundamental units for U :

f1 = t,

f2 =
1

3
(38t6 + 2t5 − t4 − 872t3 − 1108t2 − 1309t− 713),

f3 =
1

3
(842t6 + 5072t5 − 6847t4 − 46061t3 − 34930t2 − 52216t+ 2878),
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f4 =
1

3
(4260971t6 − 3124108t5 + 2290532t4 − 99681839t3 − 46221667t2

−106722952t+ 5811547).

Define Fi = fi(A). Because C(A) corresponds to a proper subgroup of U , the ma-
trices Fi are not all integral. However, the five matrices −I, A, F2F3, F3F4, (F2)

3

do have integral entries and generate a group of index 3 in U . Therefore these
matrices generate all of C(A). For each of these matrices M , we check that sgcc2
vanishes on the edge (R,S) = (M,M−1A). This finishes the proof.

5. Remarks

1. The extension sgccm of [3] can be simplified, the worry about integral matrices
can be avoided by working over more general rings, and in checking, the dependence
on PARI can be avoided. These things are explained in the full paper.

2. We have tried for a number of years to find both a suitable obstruction to
the irreducible Williams Conjecture and a realizing example. The obstruction we
could finally realize should have been obvious from our automorphisms paper [3]
with Jack Wagoner, but actually we only noticed it when we tried to simplify more
complicated invariants. Our development of forms and heuristics to search for an
actual example is too complicated to recapitulate; in the end, the example derived
from perturbing block forms involving the example (4.1) of [3].

3. Our example could be checked without a computer by a human being who is
unusually accurate and takes delight in arithmetic. We don’t know, though, that
it is feasible by hand to actually find the units in the first place in a given degree
7 number field.

4. For a short Maple program to compute the required sgcc2, go to MAPPRO
at http://www.ams.org/era/1997-03-16/S1079-6762-97-00032-2/html/MAPPRO.
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