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ABSTRACT. We announce a deterministic analog of Bartlett’s displacement
theorem. The result is that a Poisson property is stable with respect to deter-
ministic Hamiltonian displacements. While the random point configurations
move according to an n-body evolution, the mean measure P satisfies a non-
linear Vlasov type equation P + y - V4P — V, - E(P) = 0. Combined with
Bartlett’s theorem, the result generalizes to interacting Brownian particles,
where the mean measure satisfies a McKean-Vlasov type diffusion equation
P+y-VeP -V, E(P)—cAP=0.

1. POISSON PROCESSES

Some families of distributions in probability theory are natural because they ap-
pear in central limit theorems, because they maximize entropy and because they
are invariant under convolutions. An example is the Gaussian distribution on R:
adding and then normalizing independent random variables of the same distribu-
tion give a new distribution with larger relative entropy except at the attractive
Gaussian fixed point of this renormalization map. A similar fixed point on discrete
distributions is the Poisson distribution on N. While the Gaussian distribution gives
rise to stochastic processes like Brownian motion, the Poisson distribution occurs
in random point processes like the Poisson process which is defined as follows: let
S be some Euclidean space and let P be a finite measure on S. A Poisson process
consists of a collection of random finite sets II(w) for which the random variables
Ng(w) = [II(w) N B| counting the relative number of points in a Borel set B C S are
Poisson distributed with mean P[B] and such that Np; are independent for disjoint
sets B; C S. The mean measure P determines the process because a typical point
set II(w) is obtained by picking randomly a natural number d = d(w) with proba-
bility e~FI8(d!)~1, choosing then independently d random points a1 (w),.. ., aq(w)
from S with law P and forming the set Il(w) = {a1(w),...,aq(w)}. We call P(w)
the counting measure on the finite set II(w). It satisfies P(w)[B] = Np(w).

Poisson processes occur frequently in applications, for example as models for
traffic on freeways, stars in galaxies or populations of plants. What happens if the
point sets are evolved in time possibly with interaction? To have the displaced
process also as a Poisson process is useful: the mean measure P! at a later time
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determines how a typical point configuration II*(w) looks like. With a law for the
evolution of P?, one can disregard the possibly complicated microscopic motion of
IT*(w) and still have the information which is needed at any time. For example, a
typical star distribution of a galaxy at a later time could be determined from P!
without integrating the Newton equations of the individual stars.

2. THE HAMILTONIAN DISPLACEMENT THEOREM

A known stability of the Poisson process is when each particle is dislocated
independently of the other particles. This is the displacement theorem of Bartlett,
formulated in more generality in [2]. An example is when the distribution of the
displaced position of a point is determined by a Markov transition probability
density function p'(x,y) = p'(x — y). The mean measure of the displaced Poisson
process satisfies then P! = P % p.

The independence of the dislocations cannot be weakened in all generality as is
indicated in [2]. The next theorem assures that the Poisson property is robust under
deterministic Hamiltonian evolutions with nice smooth potentials V' for which one
has global existence of the dynamics.

Theorem 2.1 (The Hamiltonian displacement theorem). Given a smooth finite
measure P of compact support in the phase space S = T*M of M = R?. It
defines a random Poisson process. Assume the random finite point sets ll(w) =
{(z1,y1)s -+, (xa,ya)} C S are evolved with a smooth deterministic Hamiltonian
d-body dynamics

i‘j = yj,yj = —d_l ZVV(CEJ - {Ek) .
ki

Then the displaced process does not produce correlation forces.

The probability space of the Poisson process is the big phase space Q = |-, S d
with Borel o-algebra and probability measure @ = "7 e~ FI81(d!)~1 Py, where
P; = P x --- x P is the product measure of the multi-particle space S¢. For
w € 5% C Q one gets Tl(w) = {w1,...,wq}

The Hamiltonian displacement theorem extends to more general cases. Particles
can have different masses, interact with different type of potentials, move on more
general manifolds with possible boundaries, have time-dependent potentials, evolve
with more general Hamiltonians, and move with a nearest neighbor interaction;
they can additionally be exposed to external fields or interact with suitable k-body
interactions. One can also add dissipation or evolve with a relativistic particle
interaction.

3. THE EVOLUTION OF THE MEAN MEASURE

The Vlasov equation or collisionless Boltzmann equation
P'+y-V,P'— E(z,P')-V,P' =0

with E(z, P*) = [(VV(x — ') dP*(2’,y’) is a fundamental evolution equation
in stellar dynamics or plasma physics (see [3], [1]). It has also applications in
nuclear physics or in models of supersonic flows. It is a nonlinear partial differential
equation. While it is usually used to evolve continuous measures, it can describe
the evolution P* of any measure on the phase space S. For example, if P*(w) is the
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counting measure on a finite point set I1*(w) which evolves with the Hamiltonian d-
body evolution with potential V', then Pt (w) solves weakly the Vlasov equation. We
use the tilde in order to distinguish the measure P*(w) coming from the Hamiltonian
evolution and the random measures P?(w) defined by the Poisson process.

Theorem 3.1. The mean measure Pt of the displaced process satisfies a nonlinear
Vlasov type equation

(3.1) P'4+y-V,P' -V, -E(P)=0
where E(P') = [ E(z, P'(w))P"(w) dQ(w) with

E(x, P'(w)) = P'(w)[S]! /S VV(zr —2')dP'(w)

and where P*(w) are the random measures defined by P*. The measure E(P?) has
a smooth density and is defined by P! alone.

The nonlinear evolution equation (3.1) encodes the statistics of the finite dimen-
sional particle evolutions IT*(w) similar as diffusion equations encode stochastic
particle motions. The mean Vlasov equation is an average of Vlasov equations for
the discrete measures Pt(w). It approaches the Vlasov equation for the smooth
measure in the limit when the particle density converges to infinity. The mean
measure P! would also satisfy the actual Vlasov equation if each particle configura-
tion II(¢) would move under the averaged field E(x, P) of the mean measure P. In
this case, the displacement result is an easy consequence of the mapping theorem
in the theory of Poisson processes [2]: if X is the symplectic transformations on S
satisfying the characteristic equations so that X?P% = P?* solves the Vlasov equa-
tion, then the process at time ¢ would be the image of the process at time ¢t = 0
under the map X°.

4. INTERACTING BROWNIAN PARTICLES

The Hamiltonian displacement theorem is related to the already mentioned dis-
placement theorem of Bartlett which is the same statement under the assumption
that each particle is displaced independently of the other particles without interac-
tion. For example, if each particle moves along an independent Brownian path then
the displaced process stays a Poisson process and the mean measure P? satisfies
the heat equation P = cAP.

The Hamiltonian displacement theorem can be combined with Bartlett’s theorem
and applied to Hamiltonian d-body dynamics driven by white noise. The Hamilton
equations are now replaced by the stochastic differential equations

1
dajj = yjdt7 dyj = _E E VV(:Z?j — J?k)dt + CdBj,
k#j

where {Bj}?zl is a collection of independent Brownian motions and ¢ is a real
parameter.

Theorem 4.1. Assume the point configurations Il(w) of a Poisson process evolve
as interacting Brownian particles; then the displaced process has a correlation mea-
sure which satisfies a McKean-Vlasov diffusion equation

. 2
P—i—y-VzP—Vy-E(P)—%AP:O
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which becomes the mean Vlasov equation in the limit ¢ = 0 when the particles evolve
as a Hamiltonian system.

Adding to the Hamiltonian evolution the dynamics of interacting Brownian par-
ticles provides according to Nelson’s stochastic mechanics a quantization of classical
mechanics. Mathematically, the limit ¢ — 0 could serve as a technical regulariza-
tion tool to investigate the mean Vlasov equation. As in the case ¢ = 0, one obtains
in the limit of an infinite particle density the McKean-Vlasov equation

. 2
P+y V,P—E(,P) V,P— %AP:O
which is for ¢ = 0 the Vlasov equation.

5. TO THE PROOF OF THE HAMILTONIAN DISPLACEMENT THEOREM

In this section we say something about the proof of the Hamiltonian displacement
theorem.

Rényi’s theorem in the theory of Poisson processes [2] states that if Q[N = 0]
= exp(—P][B]) for all finite unions of cubes B, then Np is defined by a Poisson
process. This result, obtained by Rényi in 1967, simplifies the task to verify the
conditions for the Poisson process. Especially, it frees us from the duty to check
the independence property.

Let X%(w) : S — S be the one-parameter family of symplectomorphisms on S
defined by Xt(w) = (ft(w), g*(w)) which satisfy the Hamilton equations

fllwzy) =g'w,zy),  §'wzy) = -BE(f' (W), P'W))(zy) .
These equations are the characteristic equations of the Vlasov dynamics and the
push-forwards P'(w) = X! (w)P°(w) solve weakly the Vlasov equation.
Consider a family of Poisson processes with mean measure P!, where P! satisfies
the mean Vlasov equation. To prove the theorem, we compare the random point
process

X (W) (w)

with the Poisson point process IT*(w). The main task is to show

d d
EQ[NX*‘(w)(B)(W) =0]= T exp(—P'[B])

for any finite union of cubes B C S. With this and with Rényi’s result the dis-
placement theorem follows.
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