
ELECTRONIC RESEARCH ANNOUNCEMENTS
OF THE AMERICAN MATHEMATICAL SOCIETY
Volume 3, Pages 126–130 (December 17, 1997)
S 1079-6762(97)00037-1

INVARIANTS OF TWIST-WISE FLOW EQUIVALENCE

MICHAEL C. SULLIVAN

(Communicated by Jeff Xia)

Abstract. Twist-wise flow equivalence is a natural generalization of flow
equivalence that takes account of twisting in the local stable manifold of the
orbits of a flow. Here we announce the discovery of two new invariants in this
category.

1. Flow equivalence

Square nonnegative integer matrices are used to describe maps on Cantor sets
known as subshifts of finite type. Two such matrices are flow equivalent if their in-
duced subshifts of finite type give rise to topologically equivalent suspension flows.
Here topologically equivalent just means there is a homeomorphism, taking orbits
to orbits, while preserving the flow direction. A matrix A is irreducible if for each
(i, j) there is a power n such that the (i, j) entry of An is nonzero. In terms of
the corresponding subshift and suspension, irreducibility is equivalent to the exis-
tence of a dense orbit. Irreducible permutation matrices give rise to flows with a
single closed orbit and are thus said to form the trivial flow equivalence class. For
nontrivial irreducible incidence matrices John Franks has shown that flow equiva-
lence is completely determined by two invariants, the Parry-Sullivan number and
Bowen-Franks group. Let A be an n× n incidence matrix. Then

PS(A) = det(I −A) and BF (A) =
Zn

(I −A)Zn

are the Parry-Sullivan number and the Bowen-Franks group respectively. See [8],
[1], and [2] or the recent text [6]. Huang has settled the difficult classification
problem arising when the assumption of irreducibility is dropped, [3], [4], [5].

2. Twist-wise flow equivalence

Represent Z2 by {1, t}, under multiplication with t2 = 1. Let A(t) be an n × n
matrix with entries of the form a+ bt, with a and b nonnegative integers. That is A
is a matrix over the semigroup ring Z+Z2. Call such a matrix a twist matrix. One
interpretation of twist matrices is as follows. Suppose the suspension flow for A(1)
is realized as a 1-dimensional basic set, B, of saddle type, of a flow on a 3-manifold.
For each orbit in B there is a 2-dimensional local stable manifold, a ribbon, if you
like. Call the union of such ribbons the ribbon set, and denote it by R. Each ribbon
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is either an annulus, a Möbius band, or an infinity long strip. Now, A(1) is the
incidence matrix for the first return map ρ on the rectangles of a Markov partition,
{R1, . . . , Rn}, of a cross section of a neighborhood of B. Thus, Aij(1) is the number
of times Ri passes through Rj . If we orient the rectangles, then we can let aij be
the number of components of ρ(Ri)∩Rj where orientation is preserved, and bij be
the number of components where orientation is reversed by the action of ρ. Then
Aij(t) = aij + bijt.

It is not necessary that the manifold be 3-dimensional or that there be only one
stable eigenvalue. We only need a means of assigning orientations to rectangles of
a Markov partition. We note that A(−1) is related to the structure matrix of [1].
Two ribbon sets are topologically equivalent if there is a homeomorphism between
them that preserves the flow direction. This leads us to define two twist matrices
to be twist-wise flow equivalent if they induce topologically equivalent ribbon sets.

Theorem 2.1. The numbers PS(A(±1))and the groups BF (A(±1)) are invariants
of twist-wise flow equivalence.

It is clear that PS(A(1)) and BF (A(1)) are invariants in this category. In [9]
it is shown that PS(A(−1)) is also invariant and it can now be reported that
BF (A(−1)) is too [10]. We define an additional invariant in §4. However, we still
do not possess a complete set of invariants. See §6.

3. Matrix moves

Twist-wise flow equivalence (or twist equivalence for short) is generated by three
matrix moves [9]. These are called, the shift move, the expansion move, and the

twist move, and are denoted by
s∼,

e∼ and
t∼, respectively. The first two generate

flow equivalence [8]. We define them below. Shift: A
s∼ B if there exist rectangular

matrices R and S, over Z+Z2, such that A = RS and B = SR. Expansion: A
e∼ B

if A = [Aij ] and

B =


0 A11 · · · A1n

1 0 · · · 0
0 A21 · · · A2n

...
...

...
0 An1 · · · Ann

 ,

or vice versa. Twist: A
t∼ B if A = [Aij ] and

B(t) =


A11 tA12 · · · tA1n

tA21 A22 · · · A2n

...
...

...
tAn1 A2n · · · Ann

 .
The shift move includes relabeling, so the expansion and twist moves can be done
on other “locations” in the matrix. See [9] for geometric motivations.

4. The double cover flow

We now consider another means of encoding the twisting of a ribbon set. For a
2-dimensional ribbon set R place a flow on the boundary with direction parallel to
the flow on its core B. Call this the double cover flow of B. An incidence matrix
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DA can be constructed from a twist matrix A(t) by replacing each entry a+bt with[
a b
b a

]
. This amounts to using the matrix representation

Z2
∼=
{[

1 0
0 1

]
,

[
0 1
1 0

]}
.

As this process is completely formal we need not be restricted to 2-dimensional
ribbon sets. It is easy to show that PS(DA) and BF (DA) are invariants of twist
equivalence. However, PS(DA) = PS(A(+1)) × PS(A(−1)), and thus contains
no new information. But BF (DA) does distinguish twist matrices that the other
invariants do not. Yet PS(A(±1)), BF (A(±1)), and BF (DA) are not complete.
See §6.

5. Other Abelian groups

If we replace Z2 with an arbitrary Abelian group G, the only major change is
that the twist move must be replaced by a series of g-moves for each g ∈ G defined
by multiplying the first row by g and the first column by g−1. The Parry-Sullivan
invariant becomes an element of the group ring ZG. In [1] the Bowen-Franks group
was defined for arbitrary Abelian groups, so there should be no trouble there. If one
has a matrix representation of G, then even an analog of the double cover operation
should go through. Suppose one has a finite directed graph and an associated
subshift of finite type. Let the edges be labeled with elements of G and suppose
we seek conjugacies that preserve this additional information. Each closed orbit is
paired with the product of its edge labels and this pairing is to be preserved under
conjugacies. Then the analogs of the Parry-Sullivan and Bowen-Franks invariants
should be useful. We are hopeful that researchers in other areas of dynamics or
coding theory will find that they can exploit these ideas.

6. Examples

Consider 2 × 2 matrices with entries 0, 1, or t, but which are irreducible and

nontrivial. For brevity we shall denote

[
a b
c d

]
by abcd. We will divide these

matrices into 6 classes:

• A = {1111, 1110, 1101, 1011, 1tt1, 1tt0, 0tt1},
• B = {t111, 111t, ttt1, 1ttt},
• C1 = {1t11, 11t1},
• C2 = {tt11, t1t1, 1t1t, 11tt, 1t10, 11t0, 0t11, 01t1, t110, ttt0, 011t, 0ttt},
• D = {t11t, tttt, tt10, t1t0, 01tt, 0t1t},
• E = {t1tt, tt1t}.

Within each of these classes we have shown that the matrices are twist equivalent
by constructing the necessary matrix moves. In Table 1 we list the invariants for
each class. Classes A and B cannot be distinguished, yet their ribbon sets cannot be
homeomorphic since the ribbon set for B contains Möbius bands whereas the closed
ribbons for A are all annuli. Hence our invariants are not complete. Of course, one
can simply take orientability as an additional invariant. The frustrating point is that
the motivation behind all the new invariants was precisely to capture orientation
data. The classes C1 and C2 also have the same set of invariants. However, we
have not been able to tell if they form a single twist class or not.
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Table 1

Class PS+ BF+ PS− BF− BFD

A −1 0 −1 0 0
B −1 0 −1 0 0
C1 −1 0 1 0 0
C2 −1 0 1 0 0
D −1 0 3 Z3 Z3

E −1 0 5 Z5 Z5

In Table 2 we have listed the invariants for a sampling of 3 × 3 matrices. Sev-
eral features stand out. Any finitely generated Abelian group can be realized as a
BF (A(1)) group [2], and we think this is likely true for BF (A(−1)) as well. How-
ever, certain groups do not seem to show up as Bowen-Franks groups of double
cover flows. For example, we have not found Z2 ⊕Z4 or Z12, though our work here
is still very preliminary. In some cases we have BFD = BF+ ⊕ BF− (we use a
more condensed notation here and in the tables). This never seems to happen if
BFD has infinite order. Does this say anything interesting about the flows?

Table 2

Matrix PS+ BF+ PS− BF− BFD

t11111111 −2 Z2 −4 Z4 Z8

1t1111111 −2 Z2 0 Z Z
tt1111111 −2 Z2 −2 Z2 Z2

2

t111t111t −2 Z2 0 Z⊕ Z3 Z⊕ Z3

tt11t1111 −2 Z2 −4 Z4 Z8

1t1t11111 −2 Z2 2 Z2 Z2
2

ttt111111 −2 Z2 0 Z Z
t11t11111 −2 Z2 −2 Z2 Z2

2

tt1tt1111 −2 Z2 −2 Z2 Z2
2

t111t1111 −2 Z2 −6 Z6 Z2 ⊕ Z6

ttttttttt −2 Z2 4 Z4 Z8

tttttt1tt −2 Z2 6 Z6 Z2 ⊕ Z6

tt1ttt1tt −2 Z2 0 Z⊕ Z3 Z⊕ Z3

0t1111111 −3 Z3 −1 0 Z3

0111t1111 −3 Z3 −5 Z5 Z15

0t11t1111 −3 Z3 −3 Z3 Z2
3

01t1011t1 −4 Z4 0 Z Z⊕ Z2

01t10111t −4 Z4 0 Z Z⊕ Z2

011t011t1 −4 Z4 −2 Z2 Z8

011t0111t −4 Z4 2 Z2 Z8

01tttt110 −4 Z4 6 Z6 Z24

011t01110 −4 Z2
2 0 Z⊕ Z2 Z⊕ Z2

2
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The BF groups are presented in Smith Normal Form [7] and many of the calcu-
lations were done with the ismith command in Maple’s linalg package. Finally,
we present two twist matrices where the Bowen-Franks groups of the double covers
is the only distinguishing invariant. Let

A(t) =

 3 1 + t 2
1 + t 7 1 + t
1 + t 1 + t 31

 and B(t) =

 3 1 + t 1 + t
1 + t 7 1 + t
1 + t 1 + t 31

 .
Then we get

PS+ = −224, BF+ = Z2 ⊕ Z4 ⊕ Z28,

PS− = −360, BF− = Z2 ⊕ Z6 ⊕ Z30,

for both A(t) and B(t), but

BF (DA) = Z4 ⊕ Z24 ⊕ Z840,

while

BF (DB) = Z2
2 ⊕ Z24 ⊕ Z840.

The author would like to thank John Franks for several helpful conversations.
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