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EXCEPTIONAL UNITARY REPRESENTATIONS

OF SEMISIMPLE LIE GROUPS

A. W. KNAPP

Abstract. Let G be a noncompact simple Lie group with finite center, let
K be a maximal compact subgroup, and suppose that rank G = rank K. If
G/K is not Hermitian symmetric, then a theorem of Borel and de Siebenthal
gives the existence of a system of positive roots relative to a compact Cartan
subalgebra so that there is just one noncompact simple root and it occurs ex-
actly twice in the largest root. Let q = l⊕u be the θ stable parabolic obtained
by building l from the roots generated by the compact simple roots and by
building u from the other positive roots, and let L ⊆ K be the normalizer of q

in G. Cohomological induction of an irreducible representation of L produces
a discrete series representation of G under a dominance condition. This pa-
per studies the results of this cohomological induction when the dominance
condition fails. When the inducing representation is one-dimensional, a great
deal is known about when the cohomologically induced representation is in-
finitesimally unitary. This paper addresses the question of finding Langlands
parameters for the natural irreducible constituent of these representations, and
also it finds some cases when the inducing representation is higher-dimensional
and the cohomologically induced representation is infinitesimally unitary.

Let G be a simple Lie group with finite center, let K be a maximal compact sub-
group, and suppose that rank G = rank K. Let g0 = k0 ⊕ p0 be the corresponding
Cartan decomposition of the Lie algebra, and let g = k⊕ p be the complexification.
In this paper we investigate some representations of G first studied in [EPWW]
that are closely related to a fundamental kind of discrete series representations of
G. We are especially interested in the Langlands parameters associated to these
representations. We begin with some background.

In an effort to find unusual irreducible unitary representations of G in the case
that G/K is Hermitian symmetric, Wallach [W1] studied “analytic continuations
of holomorphic discrete series.” When G/K is Hermitian symmetric, p splits as the
direct sum of two abelian subspaces p+ and p−, and k⊕p+ is a parabolic subalgebra
of g. An irreducible representation τΛ of K leads via this parabolic subalgebra to
a generalized Verma module that is a (g,K) module. If the highest weight Λ of τΛ
satisfies suitable inequalities, this (g,K) module arises from a holomorphic discrete
series representation [HC1]. Wallach [W1] studied the “scalar case,” in which τΛ
is one-dimensional. By adjusting Λ on the center of k, he was able to move Λ in
a one-parameter family. For values of Λ outside the range that yields holomorphic
discrete series, he determined necessary and sufficient conditions for the unique
irreducible quotient of the generalized Verma module to be infinitesimally unitary.
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Later Enright-Howe-Wallach [EHW] and Jakobsen [Ja] independently generalized
this study to the “vector case,” in which τΛ is allowed to be higher-dimensional,
and they obtained a similar classification.

With hindsight one could adjust this construction a little, relating it to cohomo-
logical induction, and then related constructions become apparent. In the adjusted
construction, one forms a generalized Verma module from k ⊕ p− and a translate
of the parameter Λ. The result is the 0th cohomological induction functor

L0(F ) = indg,K
k⊕p−,K(F ⊗

∧top
p

+),

where F is an irreducible representation of K whose highest weight is a translate
of Λ. (See [Kn-Vo, p. 328].) A special feature of this situation is that, relative to a
compact Cartan subalgebra of g0, there is just one noncompact simple root, and it
occurs just once in the largest root.

Enright-Parthasarathy-Wallach-Wolf [EPWW] undertook a parallel study of the
situation in which there is just one noncompact simple root β0 and it occurs exactly
twice in the largest root. This situation is rich with examples: According to a
theorem of Borel and de Siebenthal [Bo-deS], any G with rank G = rank K and
G/K not Hermitian has a positive system of roots with this property. Following
the line of [EPWW] but not the notation, we define L to be the subgroup of K built
from the simple roots that are compact, and we let u be the sum of the root spaces
in g for the positive roots requiring β0 in their expansions. Then q = l ⊕ u is a θ
stable parabolic subalgebra in the sense of [Kn-Vo, §IV.6], and the representations
to study are

LS(F ) = (Πg,K
g,L )S(indg,L

q,L(F ⊗
∧top

u)),

where F is an irreducible representation of L with highest weight λ, q is the opposite
parabolic of q, the l module F ⊗

∧top
u is extended to a q module by having the

nilpotent radical act by 0, S is dim(u ∩ k), and (Πg,K
g,L )S is the Sth derived functor

of the Bernstein functor [Kn-Vo, p. 106].
The work of [EPWW] was a forerunner of the Unitarizability Theorem, which

was proved by Vogan [Vo2] and reproved in the spirit of [EPWW] by Wallach [W2].

[EPWW] proved that LS(F ) is infinitesimally unitary if indg

q
(F ⊗ (

∧top
u)t+1) is

irreducible for all t ≥ 0. In particular, [EPWW] found that this condition is satisfied
in the “scalar case” (i.e., F one-dimensional) if the infinitesimal character λ+ δ of
LS(F ) is dominant, where δ is half the sum of the positive roots. (The range where
the infinitesimal character of LS(F ) is dominant is called the “weakly good” range
in [Kn-Vo].) The general Unitarizability Theorem of [Vo2] and [W2], which came
later despite the dates on the papers, proved that unitarity is always preserved by
cohomological induction in the weakly good range.

For the scalar case, [EPWW] determined exactly when indg

q
(F ⊗ (

∧top
u)t+1) is

irreducible for all t ≥ 0. They stated no result for F higher-dimensional (the “vector
case”), but they had the tools to observe that weakly good implies infinitesimally
unitary for this situation.

A part of LS(F ) can be infinitesimally unitary even outside the range when

indg

q
(F ⊗ (

∧top
u)t+1) is irreducible for all t ≥ 0. In their study, [EPWW] assumed

that Λ = λ+2δn is dominant for K, where 2δn is the sum of the positive noncompact
roots. Then the K type Λ occurs with multiplicity 1 in LS(F ), and it makes sense
to consider the unique irreducible subquotient of LS(F ) containing the K type Λ.
Various authors (see [Ba], [Bi-Z], [Br-Ko], [G-W], [Ka-S], [McG1], [McG2]) have
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found additional scalar cases beyond the range treated by [EPWW] where this
irreducible subquotient is infinitesimally unitary.

In this paper we undertake a further investigation of the representations studied
by [EPWW], maintaining the assumption that Λ = λ + 2δn is K dominant. Our
main interest is in the Langlands parameters of the irreducible subquotient of LS(F )
containing the K type Λ, so that this representation is located in the classification
of all irreducible admissible representations of G. After preliminaries in §§1–2, we
prove in §3 a strong vanishing theorem for Lj(F ) when j 6= S. One consequence is a
formula for the multiplicities of the K types in LS(F ) that involves no cancellation.
Another consequence is that Λ is the unique minimal K type of LS(F ) in the scalar
case; in the vector case it need not be. In §4 we establish some unitarity of the
vector case of LS(F ) outside the weakly good range.

Finally in §5 we use combinatorial methods to address Langlands parameters. We
show by example that these methods lead to ambiguous results in the vector case.
Thus we concentrate on the scalar case, where we conjecture a natural algorithm
for computing these parameters. The algorithm has the property that one can see
through to the answer without computation when G is classical; this algorithm is
different from the one given by Vogan in [Vo1, Proposition 4.1]. We show that the
algorithm gives the correct Langlands parameters when G is classical. The line of
proof works at least sometimes when G is exceptional, but we have not carried it
through in general.

1. Preliminary Identities with u and u Cohomology

Let G be a connected semisimple Lie group with finite center, and let K be
a maximal compact subgroup. We denote corresponding Lie algebras by the cor-
responding Gothic letters with subscripts 0, and we denote complexifications by
dropping the subscripts. Let θ be the Cartan involution of g0 corresponding to
K, and let g0 = k0 ⊕ p0 be the associated Cartan decomposition. Let (g,K) be
a reductive pair built from G and K as in [Kn-Vo, §IV.3], and let C(g,K) be the
category of all (g,K) modules.

Let q = l ⊕ u be a θ stable parabolic subalgebra of g in the sense of [Kn-Vo,
§IV.6]; here l is the theta stable Levi factor, and u is the nilpotent radical. The
normalizer L of q in G is connected and has Lie algebra l0 = l ∩ g0.

We let bar denote the conjugation of g with respect to g0. Then q = θq, u = θu,
and q and q are opposite parabolic subalgebras. We use bar also to stand for the
passage of a module to its conjugate. If V is a (q∩ k, L∩K) module, then §VI.2 of
[Kn-Vo] shows that the conjugate module V is naturally a (q ∩ k, L ∩K) module.

We shall make use of the invariants functor from C(q∩ k, L∩K) to C(l∩ k, L∩K)
that is usually written as V 7→ V u∩k. Proposition 3.12 of [Kn-Vo] shows that the
derived functors are the functors from C(q ∩ k, L ∩ K) to C(l ∩ k, L ∩K) that are
usually written V 7→ Hj(u ∩ k, V ).

Lemma 1. The two functors F1 and F2 from C(q ∩ k, L ∩ K) to C(l ∩ k, L ∩ K)
given by

F1(V ) = V u∩k and F2(V ) = (V )u∩k

are naturally isomorphic. Consequently

Hj(u ∩ k, V ) ∼= Hj(u ∩ k, V )
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as (l ∩ k, L ∩K) modules whenever V is a (q ∩ k, L ∩K) module.

Proof. The first statement is immediate from the definition of the action on V given
in [Kn-Vo]. We have noted that the functor from C(q ∩ k, L ∩K) to C(l ∩ k, L ∩K)
given by Hj(u ∩ k, · ) is the jth derived functor of ( · )u∩k, and similar remarks
apply to u ∩ k. Let us compute the derived functors of F1 and F2, which are each
compositions. Since bar is exact, (C.27a) of [Kn-Vo] shows that the derived functors
of F1 are bar ◦ Hj(u ∩ k, · ). Since bar is exact and sends injectives to injectives,
(C.28a2) of [Kn-Vo] shows that the derived functors of F2 are Hj(u∩k, · )◦bar. The
natural isomorphism of F1 with F2 yields natural isomorphisms of the respective
derived functors, and the lemma follows.

Proposition 2. If V is a finite-dimensional (k,K) module, then

Hj(u ∩ k, V ) ∼= Hj(u ∩ k, V )

as (l ∩ k, L ∩K) modules for every j ≥ 0.

Remark. This result is given in [Kn-Vo, Lemma 4.82] for the case j = 0, but the
general case does not appear in [Kn-Vo].

Proof. Let ( · )c denote contragredient, and let ( · )h denote Hermitian dual, which
is defined as the composition of bar and contragredient. Every finite-dimensional
(k,K) module is infinitesimally unitary and hence is isomorphic with its Hermit-
ian dual, and a similar remark applies to (l ∩ k, L ∩ K) modules. Then we have
isomorphisms on the level of (l ∩ k, L ∩K) modules, given by

Hj(u ∩ k, V ) ∼= Hj(u ∩ k, V )h

∼= Hj(u ∩ k, V )c by definition of ( · )h

∼= Hj(u ∩ k, V c) by [Kn-Vo, Theorem 3.1]

∼= Hj(u ∩ k, V c) by Lemma 1

∼= Hj(u ∩ k, V ) since V ∼= V h.

Corollary 3. Let S = dim(u ∩ k). If V is a (k,K) module, then

HS−j(u ∩ k, V ) ∼= Hj(u ∩ k, V )⊗
∧S

(u ∩ k)

as (l ∩ k, L ∩K) modules for every j ≥ 0.

Proof. This follows by combining Proposition 2 and Hard Duality [Kn-Vo, Corollary
3.13].

2. Setting

We shall now specialize from the generality of §1 to the setting of this paper.
We assume throughout that G is simple and that rankG = rankK. Let T ⊆ K
be a Cartan subgroup, and let ∆ = ∆(g, t) be the set of roots. We introduce in
the usual way an inner product 〈 · , · 〉 and a norm squared | · |2 on the real linear
span of the roots. Each root vector lies in k or in p, and roots are called compact
or noncompact accordingly. Let ∆K = ∆(k, t) be the set of compact roots.

Fix a positive system ∆+ = ∆+(g, t). The key assumption is that there is
exactly one noncompact simple root β0 and that β0 has multiplicity 2 in the largest
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root. The largest root and the simple roots that are compact then span the dual
t∗. (In particular, K is semisimple and G/K is not Hermitian.)

Let ∆L be the subset of roots not requiring β0 for their expansions in terms of
simple roots, and let ∆+

L = ∆L ∩ ∆+. Then we can define a θ stable parabolic
subalgebra q = l⊕u by requiring that l is spanned by t and the root vectors for the
members of ∆L while u is spanned by the root vectors for the positive roots not in
∆+
L . As in §2 we let L be the normalizer of q in G. We have l ⊆ k and L ⊆ K.
Define ∆(u) to be the roots contributing to u, and let ∆(u ∩ k) and ∆(u ∩ p) be

the subsets of compact and noncompact roots in ∆(u). Let δ, δK , δL, δ(u), δ(u∩ k),
and δ(u∩ p) be the half sums of the members of ∆+, ∆+

K , ∆+
L , ∆(u), ∆(u∩ k), and

∆(u ∩ p), respectively.
When a positive root γ is expanded in terms of simple roots, the coefficient of

β0 is 0, 1, or 2 because of the key assumption above. The coefficient is therefore 1
if and only if γ is noncompact. The key assumption will play a role in the results
of the next section through the following lemma.

Lemma 4. If ε is in ∆(u ∩ p) and α is in ∆(u ∩ k), then 〈ε, α〉 ≥ 0.

Remark. [EPWW] calls a general θ stable parabolic subalgebra q “quasi abelian”
when the property in this lemma holds. The setting of this section is the subject
of [EPWW, §13].

Proof. If not, then 〈ε, α〉 < 0, and it follows that ε + α is a root. When ε + α
is expanded in terms of simple roots, the coefficient of β0 has to be 3, since ε
yields coefficient 1 and α yields coefficient 2. Coefficient 3 is not allowed by our
assumptions on ∆+ and β0, and we have a contradiction.

Let F be an (l, L) module. We shall be interested in the cohomological induction
functors Lj : C(l, L)→ C(g,K) defined by

Lj(F ) = Πj(indg,L
q,L(F ⊗

∧top
u)),

where Πj is the jth derived functor of the Bernstein functor Π = Πg,K
g,L defined

in [Kn-Vo, p. 106]. The interesting degree for cohomology is j = S, where S =
dim(u ∩ k) as in Corollary 3. The number S is the complex dimension of the
complex manifold K/L.

Suppose that the (l, L) module F is irreducible with highest weight λ, hence
with infinitesimal character λ+δL. Corollary 5.25 of [Kn-Vo] shows that the (g,K)
module Lj(F ) has infinitesimal character (λ+ δL) + δ(u) = λ+ δ. If 〈λ+ δ, γ〉 > 0
for every γ ∈ ∆(u), then the parameter λ is said to be in the good range. In
this case it is well known (and it is proved in [Kn-Vo]) that Lj(F ) = 0 for j 6= S
and that LS(F ) is a discrete series (g,K) module with Harish-Chandra parameter
λ+ δ. The unique minimal K type parameter of LS(F ) (called “lowest” in [Vo1])
is

Λ = λ+ 2δ(u ∩ p) = (λ + δ) + δ − 2δK .

In the special case that F is one-dimensional with unique weight λ, we write
F = Cλ. The module LS(Cλ) is commonly denoted Aq(λ) in the literature and is
known as a Zuckerman module.

When λ is in the weakly good range (i.e., 〈λ+ δ, γ〉 ≥ 0 for every γ ∈ ∆(u)),
Lj(F ) = 0 for j 6= S and LS(F ) is a discrete series or limit of discrete series. Our
interest in this paper is in the modules Lj(F ) when the parameter λ goes outside
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the weakly good range. We shall always assume that the parameter Λ = λ+2δ(u∩p)
is ∆+

K dominant. Under this assumption, Theorem 5.80a of [Kn-Vo] shows that the
K type Λ occurs in LS(F ) with multiplicity 1.

The modules Aq(λ) with λ outside the weakly good range have been studied by
Enright-Parthasarathy-Wallach-Wolf [EPWW]. Using continuity arguments with
generalized Verma modules, they established that a number of these modules are
infinitesimally unitary.

A later theorem of Vogan (given in [Vo2] originally and appearing in [Kn-Vo] as
Corollary 9.70) implies that Aq(λ) is infinitesimally unitary if λ is in the weakly
fair range, i.e., λ is orthogonal to ∆L and has 〈λ+ δ(u), γ〉 ≥ 0 for all γ ∈ ∆(u).

In this paper we shall study the vanishing of Lj(F ) for j 6= S, the K spectrum of
LS(F ), some unitarity of LS(F ) that can be obtained from continuity arguments,
and the Langlands parameters of the irreducible subquotient of LS(F ) containing
the K type Λ.

3. K Spectrum

We work in the setting of §2. Let S(u ∩ p) be the symmetric algebra of u ∩ p,
and let Sn(u ∩ p) be the subspace of elements homogeneous of degree n.

Lemma 5. If γ is any L highest weight in Sn(u ∩ p), then γ is ∆+
K dominant.

Proof. Let α be a ∆+
K simple root. If α is in ∆L, then 〈γ, α〉 ≥ 0 by the ∆+

L

dominance of γ. If α is not in ∆L, then α is in ∆(u ∩ k). Suppose that 〈γ, α〉 < 0.
Since γ is a weight of Sn(u ∩ p), γ is the sum of members of ∆(u ∩ p), and there
must exist ε ∈ ∆(u ∩ p) with 〈ε, α〉 < 0. We obtain a contradiction to Lemma 4,
and we conclude that γ is ∆+

K dominant.

Theorem 6. Let V be an irreducible representation of K, and let F be an irre-
ducible representation of L whose highest weight is ∆+

K dominant. Then

HomL(Hj(u ∩ k, V ), Sn(u ∩ p)⊗ F ) = 0

for all j > 0 and all n ≥ 0.

Proof. Let Λ′ be the highest weight of V , and let W 1
K be the set of all w in the

Weyl group of ∆K such that the conditions α ∈ ∆+
K and w−1α < 0 can happen

only if α is in ∆(u ∩ k). Arguing by contradiction, suppose that the Hom in the
statement of the theorem is nonzero. Then Kostant’s Theorem [Kn-Vo, Theorem
4.139] implies that there is some w ∈W 1

K of length j such that w(Λ′ + δK)− δK is
a ∆+

L highest weight of Sn(u ∩ p)⊗ F . Any highest weight of Sn(u ∩ p)⊗ F is, by
[Kn2, Problem 16 on p. 285 and p. 554] the sum of a weight γ of Sn(u∩ p) and the
highest weight Λ of F . Thus we must have

w(Λ′ + δK)− δK = γ + Λ.

Since j > 0 and w has length j, w is not 1. Then there exists a root α ∈ ∆+
K such

that w−1α < 0. Since w is in W 1
K , α is in ∆(u ∩ k). Taking the inner product of α

with the equation

w(Λ′ + δK) = γ + (Λ + δK),

we obtain

〈Λ′ + δK , w
−1α〉 = 〈γ, α〉+ 〈Λ + δK , α〉.
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The left side is < 0 since Λ′ + δK is ∆+
K dominant nonsingular and since w−1α is

< 0. The first term on the right is ≥ 0 by Lemma 4 since γ is a sum of members
of ∆(u ∩ p), and the second term on the right is > 0 since Λ + δK is ∆+

K dominant
nonsingular. Thus we have a contradiction, and the proof is complete.

Corollary 7. Let F be an irreducible representation of L whose highest weight λ
has the property that Λ = λ+ 2δ(u ∩ p) is ∆+

K dominant.

(a) If j 6= S, then Lj(F ) = 0.
(b) If Λ′ is any ∆+

K dominant integral form, then the multiplicity of the K type
Λ′ in LS(F ) equals the multiplicity of the L type Λ′ in the (l, L) module

S(u ∩ p)⊗ F ⊗
∧top

(u ∩ p).

Proof. Let F ′ = F ⊗
∧top(u ∩ p) as an (l, L) module. By Theorem 6,

HomL(Sn(u ∩ p)⊗ F ′, HS−j(u ∩ k, V )) = 0

for 0 ≤ j < S and for n ≥ 0. Substituting from Corollary 3, we have

HomL(Sn(u ∩ p)⊗ F ′, Hj(u ∩ k, V )⊗
∧top

(u ∩ k)) = 0.

Therefore

HomL(Sn(u ∩ p)⊗ F ⊗
∧top

u, Hj(u ∩ k, V )) = 0.

By Theorem 5.35a of [Kn-Vo], Lj(F ) = 0 for j 6= S. This proves (a).
Since Lj(F ) = 0 for j 6= S, Theorem 5.64 of [Kn-Vo] gives

(−1)S dim HomK(LS(F ), V )

=
S∑
j=0

(−1)j
∞∑
n=0

dim HomL(Sn(u ∩ p)⊗ F ⊗
∧top

u, Hj(u ∩ k, V )).

We have just seen that the terms on the right side are 0 for j < S, and therefore

dim HomK(LS(F ), V ) =
∞∑
n=0

dim HomL(Sn(u ∩ p)⊗ F ⊗
∧top

u, HS(u ∩ k, V )).

Corollary 3 shows that the right side is

= dim HomL(S(u ∩ p)⊗ F ⊗
∧top

u, H0(u ∩ k, V )⊗
∧top(u ∩ k))

= dim HomL(S(u ∩ p)⊗ F ⊗
∧top

(u ∩ p), V u∩k).

Since V u∩k is an irreducible (l, L) module of type Λ′, conclusion (b) follows.

Corollary 8. Let Cλ be a one-dimensional representation of L whose unique weight
λ has the property that Λ = λ+ 2δ(u ∩ p) is ∆+

K dominant.

(a) The K type Λ is the unique minimal K type of Aq(λ) = LS(Cλ).
(b) If Λ′ is any ∆+

K dominant integral form, then the multiplicity of the K type
Λ′ in Aq(λ) equals the multiplicity of the L type Λ′ − Λ in S(u ∩ p).

Proof. Let V be an irreducible (k,K) module of type Λ′. By Corollary 7b the
multiplicity of the K type Λ′ in Aq(λ) is

= dim HomL(S(u ∩ p)⊗ Cλ+2δ(u∩p), V
u∩k)

= dim HomL(S(u ∩ p), V u∩k ⊗ C−λ−2δ(u∩p)).
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This proves (b). If this multiplicity is positive, then Λ′ − Λ is an L highest weight
γ in S(u ∩ p). Hence

Λ′ + 2δK = (Λ + 2δK) + γ

and

|Λ′ + 2δK |2 = |Λ + 2δK |2 + 2〈Λ + 2δK , γ〉+ |γ|2.

Since γ is an L highest weight in some Sn(u ∩ p), Lemma 5 shows that γ is ∆+
K

dominant. Thus Λ + 2δK and γ are both ∆+
K dominant. Remembering that K is

semisimple, we see from [Kn1, Lemma 8.57] that 〈Λ + 2δK , γ〉 ≥ 0. Therefore

|Λ′ + 2δK |2 ≥ |Λ + 2δK |2 + |γ|2 ≥ |Λ + 2δK |2

with equality at the right only if γ = 0.

The conclusion of minimality of the K type Λ in Corollary 8a is special to the
case that the representation of L is one-dimensional. Here is an example of what
can go wrong in a higher-dimensional case.

Example. Let g0 = so(4, 5) with the usual k0, p0, t0, and positive system. The
simple roots are e1−e2, e2−e3, e3−e4, and e4, and e2−e3 is the unique noncompact
simple root. Let

λ = (a, a, 1, 0) = ae1 + ae2 + e3,

so that

λ+ δ = (a+ 7
2 , a+ 5

2 ,
5
2 ,

1
2 ).

The parameter λ is outside the weakly good range when a < 0. We readily calculate
that δ(u ∩ p) = (5

2 ,
5
2 , 0, 0). Therefore

Λ = λ+ 2δ(u ∩ p) = (a+ 5, a+ 5, 1, 0)

is ∆+
K dominant for a ≥ −5.

First take a = −5, so that F has highest weight (−5,−5, 1, 0) and Λ equals
(0, 0, 1, 0). Since 2δK = (2, 0, 3, 1), we find that |Λ + 2δK |2 = |(2, 0, 4, 1)|2 = 21.
Put Λ′ = (1, 0, 0, 0). Then |Λ′ + 2δK |2 = |(3, 0, 3, 1)|2 = 19. To show that the K
type Λ′ occurs in LS(F ), it is enough by Corollary 7b to show that the L type

Λ′ = (1, 0, 0, 0) occurs in S1(u ∩ p) ⊗ F ⊗
∧top(u ∩ p), i.e., the tensor product of

the L types (1, 0, 1, 0) and (0, 0, 1, 0). Now l is a direct sum l1⊕ l2 corresponding to
the first two coordinates plus the last two coordinates. In the first two coordinates
the l1 type (1, 0) actually equals (1, 0)⊗ (0, 0). In the last two coordinates, the l2

type (0, 0) occurs in (1, 0)⊗ (1, 0) since (1, 0) is its own contragredient. Hence the
K type Λ′ occurs in LS(F ), and it has |Λ′ + 2δK |2 < |Λ + 2δK |2.

Next take a = −4, so that F has highest weight (−4,−4, 1, 0) and Λ equals
(1, 1, 1, 0). Then |Λ + 2δK |2 = |(3, 1, 4, 1)|2 = 27. Put Λ′ = (2, 1, 0, 0). Then
|Λ′ + 2δK |2 = |(4, 1, 3, 1)|2 = 27. To show that the K type Λ′ occurs in LS(F ),
it is enough by Corollary 7b to show that the L type Λ′ = (2, 1, 0, 0) occurs in

S1(u∩p)⊗F ⊗
∧top

(u∩p), i.e., in (1, 0, 1, 0)⊗ (1, 1, 1, 0). Arguing as when a = −5,
we find that this is the case. Hence the K type Λ′ occurs in LS(F ), and it has
|Λ′ + 2δK |2 = |Λ + 2δK |2.
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4. Unitarity

We continue with the setting of §2. When λ is orthogonal to ∆L and λ is in the
weakly fair range, LS(Cλ) = Aq(λ) is infinitesimally unitary as a consequence of a
theorem of Vogan mentioned near the end of §2.

When the irreducible (l, L) module F has highest weight λ and λ is not orthogo-
nal to ∆L, the theorem of Vogan does not apply directly, and we get no information
outside the weakly good range. But Vogan’s theorem can be combined with double
cohomological induction to get a positive result.

Let λ be dominant integral for ∆+
L . Define a parabolic subalgebra q′ = l′ ⊕ u′ of

g by

∆L′ = {α ∈ ∆L | 〈λ, α〉 = 0}
∆(u′) = ∆(u) ∪ {α ∈ ∆+

L | α /∈ ∆L′}.

Then l′ ⊆ l and q′ ⊆ q. The group L′ is compact. We say that λ is in the weakly
fair range if 〈λ+ δ(u′), γ〉 ≥ 0 for all γ ∈ ∆(u′).

Theorem 9. Let λ be dominant integral for ∆+
L , and let F be an irreducible (l, L)

module with highest weight λ. If λ is in the weakly fair range, then LS(F ) is
infinitesimally unitary.

Proof. Let us write (Lg,K
q,L )j to refer to the usual cohomological induction functor Lj .

We introduce also the cohomological induction functors (Ll,L

q′∩l,L′
)i and (Lg,K

q′,L′
)k.

Let S′ = dim(u′ ∩ l). By [Kn-Vo, Proposition 4.173], we have

(Ll,L

q′∩l,L′
)i(Cλ) =

{
F if i = S′

0 if i 6= S′.

Since (Ll,L

q′∩l,L′
)i(Cλ) is nonvanishing in only one degree, the double induction result

in [Kn-Vo, Corollary 11.86a] is applicable. When combined with a supplementary

argument to take
∧top

u into account (cf. [Kn-Vo, §XI.7]), it gives

(Lg,K

q′,L′
)S+S′(Cλ) ∼= (Lg,K

q,L )S(Ll,L

q′∩l,L′
)S′(Cλ) ∼= (Lg,K

q,L )S(F ).

Since λ is weakly fair in the sense of the definition preceding the theorem, Vogan’s
theorem implies that the left side is infinitesimally unitary. Hence the right side is
infinitesimally unitary.

Example. As in the example in §3, let g0 = so(4, 5) with the usual k0, p0, t0, and
positive system. Let the irreducible (l, L) module F have highest weight

λ = (a+ b, a, 0, 0) = (a+ b)e1 + ae2.

For G simply connected with Lie algebra g0, the conditions for λ to be dominant
integral for ∆+

L are that a ∈ 1
2Z, b ∈ Z, and b ≥ 0. Here

λ+ δ = (a+ b+ 7
2 , a+ 5

2 ,
3
2 ,

1
2 ),

and λ is outside the weakly good range if a < −1. The parameter Λ is

Λ = λ+ 2δ(u ∩ p) = (a+ b+ 5, a+ 5, 0, 0),

and it is ∆+
K dominant for a ≥ −5.
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First suppose b = 0. Then F is one-dimensional, and Vogan’s theorem is directly
applicable. Since δ(u) = (3, 3, 0, 0), we have

λ+ δ(u) = (a+ 3, a+ 3, 0, 0).

Thus the weakly fair range is a ≥ −3. Vogan’s theorem says that LS(F ) is in-
finitesimally unitary for a ≥ −3.

Next suppose b > 0. Then F is no longer one-dimensional. The simple roots
defining the parabolic subalgebra q′ are e3 − e4 and e4. Since δ(u′) = (7

2 ,
5
2 , 0, 0),

we have

λ+ δ(u′) = (a+ b+ 7
2 , a+ 5

2 , 0, 0).

Thus the weakly fair range is a ≥ − 5
2 . Theorem 9 says that LS(F ) is infinitesimally

unitary for a ≥ − 5
2 .

5. Langlands Parameters

By Langlands parameters for an irreducible (g,K) module V , we mean a
triple (MAN,σ, ν) with the following properties:

(i) MAN is a cuspidal parabolic subgroup of G
(ii) σ is a discrete series or limit of discrete series on M
(iii) ν is a complex-valued linear functional on the Lie algebra a0 of A with Re ν

in the closed positive Weyl chamber
(iv) the induced representation indGMAN (σ ⊗ eν ⊗ 1), given by normalized induc-

tion, has a unique irreducible quotient, called the Langlands quotient and
denoted J(MAN,σ, ν)

(v) V is equivalent with the underlying Harish-Chandra module of the Langlands
quotient J(MAN,σ, ν).

Property (iv) is automatic if Re ν is in the open positive Weyl chamber (cf. [Kn1,
Theorem 7.24]). Since every irreducible (g,K) module globalizes to an irreducible
admissible representation ofG, the Langlands classification of irreducible admissible
representations of G (cf. [Kn1, Theorem 14.91]) implies that every irreducible (g,K)
module has Langlands parameters. Such parameters are not necessarily unique, but
for given MAN the value of Re ν is uniquely determined (by the asymptotics of
the K finite matrix coefficients of the representation).

We continue with the setting of §2. In this section we are interested in Langlands
parameters for the irreducible subquotient V of Aq(λ) containing the K type Λ.

For Aq(λ), Corollary 8a tells us that this V has minimal K type Λ, and we
know that V has infinitesimal character λ + δ. Minimal K type and infinitesimal
character together almost completely determine an irreducible (g,K) module up to
equivalence. In fact, the work of Vogan [Vo1] shows how to determine a pair (M,σ)
from the minimal K type. (There is a question about whether (iv) above will be
satisfied when the full triple (MAN,σ, ν) is in place, but this issue is not important
for our current purposes, and we set it aside in this introductory discussion.) If
λσ is the infinitesimal character of σ, then the sum of λσ and ν has to match the
infinitesimal character of V . The infinitesimal character is determined only up to
a member of the complex Weyl group. Thus the question is whether the ambiguity
from the Weyl group allows for more than one ν in the positive Weyl chamber.
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If we drop the assumption that we are working with Aq(λ), the answer is that
more than one ν can sometimes yield the correct infinitesimal character. Here is
an example.

Example. As in the example in §3, let g0 = so(4, 5) with the usual k0, p0, t0, and
positive system. Starting from the Cartan subalgebra t0, we form a new Cartan
subalgebra by Cayley transform from the roots α1 = e2−e3 and α2 = e1−e4. Then
we take a0 to be the p0 part of this Cartan subalgebra, and we put A = exp a0.
Once A has been fixed, MAN is determined completely by the choice of a positive
Weyl chamber in the dual of a0. The Weyl group relative to A is transitive on
the Weyl chambers in this example, and the choice of positive Weyl chamber will
therefore not be important. To establish the notation, let us use the names α1 and
α2 also for the Cayley transforms of e2 − e3 and e1 − e4, and let us fix the positive
Weyl chamber of the dual of a0 as all ν = c1α1 + c2α2 with c1 ≥ c2 ≥ 0.

The roots defining M are ±(e2 + e3) and ±(e1 + e4). Define λσ = (4, 1, 1, 4).
There exist discrete series representations σ of M with λσ as infinitesimal character,
and [Kn-Vo, §XI.11] shows how to obtain a minimal K type that leads to this σ.
Put ν1 = 9α1 + 2α2 and ν2 = 7α1 + 6α2. These are both in the open positive Weyl
chamber, and hence (iv) above is satisfied. The parameters λσ + ν1 = (6, 10,−8, 2)
and λσ + ν2 = (10, 8,−6,−2) are conjugate by the complex Weyl group (per-
mutations and sign changes) and thus represent the same infinitesimal character.
Since the ν parameters are distinct, we have two inequivalent Langlands quotients
J(MAN,σ, ν1) and J(MAN,σ, ν2) with the same minimal K type and the same
infinitesimal character.

This kind of ambiguity does not appear to occur for Aq(λ) as in §2. When λ is in
the weakly good range, the Langlands parameters are simply (G,Aq(λ), 0). When
λ is outside the weakly good range, we propose the Conjectural Method below for
determining Langlands parameters almost completely.

The Conjectural Method is intended to produce candidates for MAN , ν, and
the infinitesimal character of σ. When M is disconnected, these data need not
determine the full Langlands parameters since the Harish-Chandra parameter of σ
does not necessarily determine σ.

Before stating the Conjectural Method, we carry it out in an example. The
example will also suggest a line of proof that the method is successful in a particular
case:

(1) show that there is no obstruction to carrying the method through to comple-
tion,

(2) use the minimal K type formula of [Kn1, (15.9)] and [Kn-Vo, §XI.11] to show
that the candidate for the infinitesimal character of σ leads back to Λ as
minimal K type,

(3) show that ν is the unique member of the dual of a0 whose sum with the
infinitesimal character of σ is Weyl-group equivalent with the infinitesimal
character λ+ δ of Aq(λ).

We should emphasize that the Conjectural Method is different from the well known
algorithm of Vogan [Vo1, Proposition 4.1]. That algorithm starts from an ordering
in which Λ + 2δK is dominant for ∆+ and shows how to obtain the infinitesimal
character of σ. For the example below, there is a unique positive system ∆+ in
which Λ+2δK is dominant, and ∆+ does not arise in the discussion of the example.
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Example. As in the example in §3, let g0 = so(4, 5) with the usual k0, p0, t0,
and positive system. Again e2 − e3 is the unique noncompact simple root. Let
λ = (− 7

2 ,−
7
2 , 0, 0), so that

λ+ δ = (0,−1, 3
2 ,

1
2 ),

and

Λ = (3
2 ,

3
2 , 0, 0).

The parameter λ+ δ has inner product > 0 with all simple roots that are compact,
and it fails to have inner product ≥ 0 with one noncompact simple root, namely
α1 = e2 − e3. We decompose λ+ δ into its components perpendicular and parallel
to α1 as

λ+ δ = (0, 1
4 ,

1
4 ,

1
2 )− 5

4α1.

Put λ1 + δ1 = (0, 1
4 ,

1
4 ,

1
2 ). A one-dimensional group A1 is obtained by Cayley

transform with e2−e3 (cf. [Kn2, §VI.7]), and the corresponding M1 is a group with
simple roots e2 + e3, e1 − e4, and e4. Of these simple roots, e2 + e3 and e1 − e4

are noncompact for M1. The parameter λ1 + δ1 has inner product > 0 with all M1

simple roots that are compact, and it fails to have inner product ≥ 0 with one M1

noncompact simple root for M1, namely α2 = e1 − e4. Then we write

λ1 + δ1 = (1
4 ,

1
4 ,

1
4 ,

1
4 )− 1

4α2,

so that

λ+ δ = (1
4 ,

1
4 ,

1
4 ,

1
4 )− 5

4α1 − 1
4α2.

Put λ2 + δ2 = (1
4 ,

1
4 ,

1
4 ,

1
4 ). A two-dimensional group A2 is obtained by Cayley

transform with e1 − e4, and the corresponding M2 is a group with simple roots
e2 + e3 and e1 + e4. Both these roots are noncompact for M2. The parameter
λ2 + δ2 is dominant for M2. At this stage, because of the M2 dominance of λ2 + δ2,
the Conjectural Method announces that the Langlands parameters of Aq(λ) should
be (MAN,σ, ν), where M = M2, A = A2, N is determined by the Weyl chamber
{c1α1 + c2α2 | c1 ≥ c2 ≥ 0} in the dual of a0, σ has Harish-Chandra parameter
λ2 + δ2, and ν = 5

4α1 + 1
4α2.

This completes step (1) for the example. Step (2) is to apply the minimal K
type formula. Put λσ = λ2 + δ2 = (1

4 ,
1
4 ,

1
4 ,

1
4 ), and form the induced series for a

corresponding σ. To use the formula, we introduce a new ordering in which λσ
is still dominant and α1 and α2 are simple. Write δ and δK for the half sums of
positive roots and positive compact roots in this ordering. Also write δr and δKr
for the corresponding sums in the split group built from α1 and α2. The formula
says that all minimal K types of such series are given by all dominant integral
expressions

Λnew = λσ + (δ − δr)− 2δK + (µ+ 2δKr),

where µ is a fine Kr type in the sense of Vogan [Vo1] and where µ is related to σ in a
particular way. Each fine Kr type is related to some σ. The validity of this formula
has a proviso, namely that some such expression is ∆+

K dominant. But since we
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are trying to achieve Λnew = Λ, the proviso will not be an issue. We choose the
ordering in which e2 ≥ e3 ≥ e1 ≥ e4 ≥ 0, so that

δ = (3
2 ,

7
2 ,

5
2 ,

1
2 )

−2δK = (0,−2,−3,−1)

δr = (1
2 ,

1
2 ,−

1
2 ,−

1
2 )

2δKr = 0.

Then we find that

Λnew = (5
4 ,

5
4 ,

1
4 ,

1
4 ) + µ.

If µ = (1
4 ,

1
4 ,−

1
4 ,−

1
4 ), then the Kr type µ is fine and we obtain

Λnew = (3
2 ,

3
2 , 0, 0) = Λ,

as required.
This completes step (2) for the example. Step (3) is to show that ν = 5

4α1 + 1
4α2

is the only possibility for obtaining the correct infinitesimal character. The target
infinitesimal character is λ + δ = (0,−1, 3

2 ,
1
2 ), while the infinitesimal character of

an induced representation with the linear functional c1α1 + c2α2 on a0 is

λσ + c1α1 + c2α2 = (1
4 ,

1
4 ,

1
4 ,

1
4 ) + (c2, c1,−c1,−c2)

= (1
4 + c2,

1
4 + c1,

1
4 − c1,

1
4 − c2).

Since c1 ≥ c2 ≥ 0, the largest entry in absolute value is 1
4 + c1, and this must

match the largest entry in absolute value for (0,−1, 3
2 ,

1
2 ), namely 3

2 . Therefore

c1 = 5
4 . Then 1

4 − c1 = −1. We have used the two entries 3
2 and −1 of (0,−1, 3

2 ,
1
2 ).

The larger of the absolute values of the remaining two entries 0 and 1
2 must match

1
4 + c2, and thus c2 = 1

4 . Thus ν = 5
4α1 + 1

4α2, as required.

Conjectural Method for Obtaining Langlands Parameters. Let Aq(λ) be
given in the setting of §2. The Langlands parameters are to be obtained recur-
sively. For the initial stage, let M0 = G, A0 = {1}, λ0 = λ, δ0 = δ, ν0 = ν.
Here dimA0 = 0 and λ0 + δ0 is dominant nonsingular relative to all simple roots
of M0 that are M0 compact. Suppose that Mj , Aj , λj , δj , and νj are given with
dimAj = j and with λj + δj dominant nonsingular relative to all simple roots of
Mj that are Mj compact. There are now two cases:

(a) If 〈λj + δj , α〉 ≥ 0 for all simple roots of Mj that are Mj noncompact, the
recursive construction ends. Define M = Mj, A = Aj , λσ = λj + δj , and ν = νj .
Define N so that ν is dominant relative to N . Then MAN , λσ, and ν are the cuspi-
dal parabolic subgroup, the infinitesimal character of the M representation, and the
parameter on a0 of a set of Langlands parameters for the irreducible subquotient
of Aq(λ) containing the K type λ+ 2δ(u ∩ p).

(b) Otherwise let αj+1 be a simple root of Mj that is noncompact and has
〈λj + δj , α〉 < 0. Build Aj+1 with dimAj+1 = j + 1 from Aj by Cayley transform
relative to αj+1 (cf. [Kn2, §VI.7]). Let Mj+1 = 0ZG(Aj+1) in the notation of [HC2]
and [Kn2, p. 391]. The roots of Mj+1 may be identified with the roots of Mj

orthogonal to αj+1, and we let δj+1 be half the sum of the positive roots. Define
λj+1 + δj+1 to be the projection of λj + δj orthogonal to αj+1, so that

λj + δj = (λj+1 + δj+1) +
〈λj + δj , αj+1〉
|αj+1|2

αj+1.
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Identifying αj+1 with its Cayley transform, put

νj+1 = νj −
〈λj + δj , αj+1〉
|αj+1|2

αj+1,

so that

λ+ δ = (λj+1 + δj+1)− νj+1.

Then λj+1 + δj+1 is dominant nonsingular relative to all simple roots of Mj+1 that
are Mj+1 compact, and the recursive construction continues.

We cannot prove the Conjectural Method completely. In the results that follow,
we shall carry out step (1) above in general (showing that there is no obstruction
to carrying out the method), and we shall carry out steps (2) and (3) in two cases:
when the induction terminates with j = 1 and with λ1 + δ1 dominant for ∆+ and
also when g0 = so(2m, 2n). From the proof of steps (2) and (3) for g0 = so(2m, 2n),
it will be apparent that the argument works for all classical g0.

Proposition 10. Let Cλ be a one-dimensional representation of L whose unique
weight λ has the property that Λ = λ + 2δ(u ∩ p) is ∆+

K dominant. Then the
Conjectural Method runs into no obstruction in finding parameters MAN , λσ, and
ν.

Remark. The proof will give more information than is in the statement. This
information is of some use in handling steps (2) and (3) for Aq(λ) in the setting
of §2, and it may be of some use in finding Langlands parameters for more general
LS(F )’s.

Proof. In essence the argument will proceed by induction on j in the statement of
the Conjectural Method. However, in order to induct successfully, we shall enlarge
the set of situations under consideration. For the inductive step, suppose that G
is a reductive Lie group in the Harish-Chandra class with trivial split component,
and let k0, p0, and K be as usual. We assume rank G = rank K, and we let t0 ⊆ k0

be a compact Cartan subalgebra of g0. Fix a positive system ∆+ for ∆(g, t), and
define ∆+

K , δ, and δK as usual. Let q = l ⊕ u be a parabolic subalgebra with ∆L

built from the simple roots that are compact and with ∆(u) ⊆ ∆+, let λ be an
analytically integral form on t that is dominant for ∆+

L = ∆+ ∩∆L, and suppose
that Λ = λ+2δ(u∩p) is dominant for ∆+

K . We make no assumption on the number
of noncompact simple roots.

If there is a noncompact simple root α with 〈λ+ δ, α〉 < 0, fix such a root. Use α
to form a Cayley transform, writing t− ⊕ a− for the transformed version of t. Here
dim a− = 1. Form m from a− as usual. We may identify ∆(m, t−) with the subset
of ∆(g, t− ⊕ a−) orthogonal to α. In turn we may identify ∆(g, t− ⊕ a−) with
∆(g, t) via the Cayley transform. With these identifications in place, we define
∆+
M = ∆+ ∩ ∆(m, t−). Define ∆+

M,K , δM , and δM,K correspondingly. Form a
parabolic subalgebra qM = lM ⊕ uM of m in the same way that q is formed in g.
Thus lM is formed from the subset ∆M,L of ∆(m, t−) generated by the simple roots
of ∆+

M whose root vectors are in k, and uM is formed from the subset ∆(uM ) of all
the remaining members of ∆+

M . Define a form λM on t− by requiring that λM +δM
is the orthogonal projection of λ+ δ on the dual of t−. We shall prove that

(i) λM is analytically integral,
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(ii) ΛM = λM + 2δM(uM ∩ p) is dominant for ∆+
M,K , where 2δM(uM ∩ p) is the

sum of the members of ∆+
M (u) with root vectors in p,

(iii) λM is dominant for ∆+
M,L = ∆+

M ∩∆M,L.

This will prove the proposition.
Throughout the proofs of (i) through (iii), it is important to keep in mind what

happens to compactness and noncompactness of roots in passing from G to M .
The property of being compact or noncompact is retained by a root β in ∆(g, t)
that is strongly orthogonal to α when β is viewed in ∆(m, t−). But if β is orthog-
onal to α but not strongly orthogonal, then compactness and noncompactness are
interchanged in passing from ∆(g, t) to ∆(m, t−). See [Kn2, Proposition 6.72].

Let us prove (i). By definition λM + δM is the restriction to t− of λ+ δ. Now 2δ
is the sum of 2δM , α, and the members of the two-element sets {β, sαβ} of positive
roots other than α whose inner product with α is not 0. The sum for a pair {β, sαβ}
has the same restriction to t− as 2β. Thus δ − δM has the same restriction to t−

as the sum of a certain collection of roots and is therefore integral on t−. Since λ
is integral on t, it follows that λM is integral on t−. This proves (i).

Next let us prove (ii). Since ∆L contains only compact roots, δ(u∩ p) equals δn,
the half sum of the positive noncompact roots. Similarly δM(uM ∩ p) equals δM,n,
the half sum of the positive noncompact roots in ∆+

M . Then we have

ΛM = λM + 2δM(uM ∩ p)

= (λM + δM ) + (2δM,n − δM)

= (λM + δM ) + (δM − 2δM,K)

and similarly

Λ = (λ + δ) + (δ − 2δK).

Taking the inner product of both equations with β ∈ ∆+
M and subtracting, we

obtain

〈ΛM , β〉 = 〈Λ, β〉+ 〈2(δK − δM,K)− (δ − δM ), β〉.

The right side, by [Kn-Vo, Lemma 11.231], is

= 〈Λ, β〉+ 〈E(2δK)− 1
2α, β〉,

where E is the orthogonal projection on Rα. The second inner product on the right
side is 0, and hence

〈ΛM , β〉 = 〈Λ, β〉.

When we specialize to β ∈ ∆+
M,K , there are two cases. If β is strongly orthogonal

to α, then β is in ∆+
K and 〈Λ, β〉 ≥ 0. Hence 〈ΛM , β〉 ≥ 0. If β is orthogonal to α

but not strongly orthogonal, then β ± α are in ∆+
K and 〈Λ, β ± α〉 ≥ 0. Thus

〈ΛM , β〉 = 〈Λ, β〉 = 1
2 (〈Λ, β + α〉 + 〈Λ, β − α〉) ≥ 0.

This proves (ii).
Finally let us prove (iii). If γ is in ∆+

M,L, then

〈λM , γ〉 = 〈ΛM − 2δM(uM ∩ p), γ〉 = 〈ΛM , γ〉,

and this is ≥ 0 by (ii) since ∆+
M,L ⊆ ∆+

M,K . This completes the proof.
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Lemma 11. Let Cλ be a one-dimensional representation of L whose unique weight
λ has the property that Λ = λ + 2δ(u ∩ p) is ∆+

K dominant. Then the Conjectural
Method stops with j = 1 and with λ1 +δ1 dominant for ∆+ if and only if the unique
noncompact simple root β0 has the property that

− 2

n
≤ 2〈λ+ δ, β0〉

|β0|2
< 0,

where n is the maximum value of 2|〈β0, γ〉|/|γ|2 over all simple roots γ 6= β0.

Proof. The condition that λ1 + δ1 is dominant for ∆+ is a condition on the simple
roots adjacent to β0 in the Dynkin diagram since 〈λ1 + δ1, β0〉 = 0 and since
〈λ1 + δ1, γ〉 > 0 for γ orthogonal to β0. Thus let γ be a simple root adjacent to β0.
Since 〈λ, γ〉 = 0, we have

2|γ|−2〈λ1 + δ1, γ〉 = 2|γ|−2〈λ1 + δ1, γ − 〈γ,β0〉
|β0|2 β0〉

= 2|γ|−2〈λ + δ, γ − 〈γ,β0〉
|β0|2 β0〉

=
2〈δ, γ〉
|γ|2 −

(
〈γ, β0〉
|γ|2

)(
2〈λ+ δ, β0〉
|β0|2

)
= 1− 1

2

(
2〈γ, β0〉
|γ|2

)(
2〈λ+ δ, β0〉
|β0|2

)
.

The right side is

≥ 1− n

2

∣∣∣∣2〈λ+ δ, β0〉
|β0|2

∣∣∣∣
for all γ, and equality holds for some γ. This proves the lemma.

Proposition 12. Let Cλ be a one-dimensional representation of L whose unique
weight λ has the property that Λ = λ+2δ(u∩p) is ∆+

K dominant. If the Conjectural
Method stops with j = 1 and with λ1 + δ1 dominant for ∆+, then the Conjectural
Method produces a triple (MAN,λσ, ν) with the property that (MAN,σ, ν) is a set
of Langlands parameters for Aq(λ) for some σ with infinitesimal character λσ.

Remarks.
1) The proof will effectively show what σ is, as well.
2) In most situations as in §2, the unique noncompact simple root β0 has exactly

two neighbors γ1 and γ2 in the Dynkin diagram, both connected to β0 by single
lines. In this case, γ1 + β0 + γ2 is a noncompact simple root of M1 with

2〈λ1 + δ1, γ1 + β0 + γ2〉
|γ1 + β0 + γ2|2

=
2〈λ+ δ, γ1 + β0 + γ2〉

|β0|2
= 2 +

2〈λ+ δ, β0〉
|β0|2

.

If the Conjectural Method stops with j = 1, then this quantity is ≥ 0, and hence

−2 ≤ 2〈λ+δ,β0〉
|β0|2 . By Lemma 11, λ1 + δ1 is dominant for ∆+. In other words, the

hypothesis “and with λ1 + δ1 dominant for ∆+” may be dropped in most situations
of the kind in §2.

Proof. Since the Conjectural Method stops when j = 1, we have dimA = 1, λσ =

λ1 + δ1, and ν = − 〈λ+δ,β0〉
|β0|2 β0, where β0 is the unique noncompact simple root. Let

σ be a discrete series or limit of discrete series representation ofM with infinitesimal
character λσ. The assumed dominance of λσ means that we can use the minimal K
type formula (see [Kn1, (15.9)] and [Kn-Vo, §XI.11]) with the given ∆+ to compute
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the minimal K types of the series of representations induced from σ. Such a minimal
K type Λnew has to be of the form

Λnew = λσ + (δ − 1
2β0)− 2δK + µ,

where µ is a fine Kr type for the group Gr corresponding to the sl(2,R) built from
β0. If δn denotes half the sum of the positive noncompact roots, then the above
expression is

= λ+ δ − 〈λ+δ,β0〉
|β0|2 β0 + δ − 1

2β0 − 2δK + µ

= λ+ 2δn − 〈λ+δ,β0〉
|β0|2 β0 − 1

2β0 + µ

= Λ− 〈λ+δ,β0〉
|β0|2 β0 − 1

2β0 + µ.

According to Lemma 11, 〈λ+δ,β0〉
|β0|2 β0 is equal to −cβ0 with 0 < c ≤ 1. Therefore

µ = 1
2β0 + 〈λ+δ,β0〉

|β0|2 β0

is a fine Kr type, and the corresponding Λnew equals Λ. Since the result is integral,
there exists a σ leading to this µ. Then it follows from [Kn1, Proposition 15.5] that
any irreducible admissible representation with minimal K type Λ is an irreducible
quotient of some indGMAN (σ⊗eν′⊗1) with Re ν′ in the closed positive Weyl chamber.
Since λ+ δ is real, ν′ must be real. The equality

|λσ|2 + |ν′|2 = |λ+ δ|2 = |λ1 + δ1|2 +
∣∣ 〈λ+δ,β0〉
|β0|2 β0

∣∣2
and the one-dimensionality of A imply that ν′ = ν, as required. Since ν 6= 0,
condition (iv) is satisfied in the definition of Langlands parameters. The other
conditions have already been verified, and thus (MAN,σ, ν) is a set of Langlands
parameters for the irreducible subquotient of Aq(λ) containing the K type Λ.

Proposition 13. Let Cλ be a one-dimensional representation of L whose unique
weight λ has the property that Λ = λ+2δ(u∩p) is ∆+

K dominant. If g0 = so(2m, 2n)
with m > 1 and n > 1, then the Conjectural Method produces a triple (MAN,λσ, ν)
with the property that (MAN,σ, ν) is a set of Langlands parameters for Aq(λ) for
some σ with infinitesimal character λσ.

Remark. The proof will effectively show what σ is, as well.

Proof. For g0 = so(2m, 2n) within the setting of §2, the root system has to be of
type Dm+n, and the unique noncompact simple root has to be β0 = em − em+1 or
β0 = en − en+1. There is no loss of generality in assuming that β0 = em − em+1.
The compact roots are the ones involving only indices 1, . . . ,m or only indices
m+ 1, . . . ,m+ n. If we take

λ = (a, . . . , a, 0, . . . , 0) with a ∈ 1
2Z,

then we have

δ = (m+ n− 1, . . . , n, n− 1, . . . , 0)

λ+ δ = (a+m+ n− 1, . . . , a+ n, n− 1, . . . , 0)

−2δK = (−2(m− 1), . . . ,−2, 0,−2(n− 1), . . . ,−2, 0)

2δ(u ∩ p) = (2n, . . . , 2n, 0, . . . , 0)

Λ = λ+ 2δ(u ∩ p) = (a+ 2n, . . . , a+ 2n, 0, . . . , 0).
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The condition that λ be outside the weakly good range is that a < −1. The
condition that Λ be ∆+

K dominant is that a ≥ −2n.
In the Conjectural Method, the first roots whose inner products are tested with

λ+ δ can be em − em+1, em−1− em+2, and so on. Afterward the roots em + em+1,
em−1 + em+2, and so on can have their inner products tested. For the latter kind,
the inner products are all the same, namely a+ 2n− 1, and the proof divides into
cases according to the sign of this quantity.

Case I. a+ 2n− 1 ≥ 0. For j ≥ 0, we have

〈λ+ δ, em−j − em+1+j〉 = (a+ n+ j)− (n− 1− j) = a+ 2j + 1.

Let p be the largest integer with a + 2p + 1 < 0. By the assumption of Case I,
p ≤ n−1. Put p′ = min{m−1, p}. The successive roots that arise in the Conjectural
Method are

em−j − em+j+1 for 0 ≤ j ≤ p′.

We are going to apply the minimal K type formula (see [Kn1, (15.9)] and [Kn-Vo,
§XI.11]) for the induced series from σ, where σ has infinitesimal character λσ.
To do so, we need a new positive system in which λσ is dominant and the roots
em−j − em+j+1 with 0 ≤ j ≤ p′ are simple. We shall produce σ and show that the
minimal K type Λnew of the induced series from σ coincides with Λ, and then we
shall be able to complete Case I. The verification of the equality Λnew = Λ breaks
into two subcases, p′ = p and p′ = m− 1.

Subcase Ia. p ≤ m − 1, so that p′ = p. Since p is as large as possible, we
have a + 2p + 3 ≥ 0. The indices {1, . . . ,m + n} break into three sets, namely
{1, . . . ,m − p − 1}, {m − p, . . . ,m + p + 1}, and {m + p + 2, . . . ,m + n}. The
first or the third set or both may be empty. For these three sets of indices, the
corresponding entries of λσ are

a+m+ n− 1 · · · a+ n+ p+ 1
1
2 (a+ 2n− 1) · · · 1

2 (a+ 2n− 1)
n− p− 2 · · · 0.

The desired ordering is the one that takes the first set of indices in its given ordering,
followed by the second set in the ordering

m,m+ 1,m− 1,m+ 2,m− 2,m+ 3, . . . ,m− j,m+ j + 1, . . . ,m− p,m+ p+ 1,

followed by the third set in its given ordering. Let us write δ and δK for the
usual quantities in this ordering, and let us write δr and δKr for the corresponding
quantities for the roots spanned by all em−j−em+j+1 with 0 ≤ j ≤ p. The minimal
K type formula says that the induced series from σ (with σ having infinitesimal
character λσ) has minimal K type

Λnew = λσ + (δ − δr)− 2δK + (µ+ 2δKr)
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for a fine Kr type µ. For the first and third sets of indices, we have

λσ =

{
a+m+ n− 1 · · · a+ n+ p+ 1
n− p− 2 · · · 0

δ − δr =

{
m+ n− 1 · · · n+ p+ 1
n− p− 2 · · · 0

−2δK =

{
−2(m− 1) · · · −2(p+ 1)
−2(n− p− 2) · · · 0

µ+ 2δKr =

{
0 · · · 0
0 · · · 0.

Addition gives

Λnew =

{
a+ 2n · · · a+ 2n

0 · · · 0,

and therefore Λnew matches Λ in the first and third sets of indices.
In the second set of indices, we define

µ =

{
1
2a+ p+ 1 in position m− j
− 1

2a− p− 1 in position m+ j + 1.

Since

a+ 2p+ 1 < 0 and a+ 2p+ 3 ≥ 0,

the contribution to µ from positions m− j and m+ j+ 1 is c(em−j − em+j+1) with
− 1

2 ≤ c <
1
2 . Therefore µ is a fine Kr type. Then we have

λσ =

{
1
2 (a+ 2n− 1) in position m− j
1
2 (a+ 2n− 1) in position m+ j + 1

δ − δr =

{
n+ p− 2j − 1

2 in position m− j
n+ p− 1− 2j + 1

2 in position m+ j + 1

−2δK =

{
−2(p− j) in position m− j
−2(n− j − 1) in position m+ j + 1

µ+ 2δKr =

{
1
2a+ p+ 1 in position m− j
− 1

2a− p− 1 in position m+ j + 1.

Addition gives

Λnew =

{
a+ 2n in position m− j
0 in position m+ j + 1,

and therefore Λnew matches Λ in the second set of indices. Since Λnew is integral, µ
gives rise to a well defined σ with infinitesimal character λσ and the induced series
from σ has Λ as minimal K type.

Subcase Ib. p > m−1, so that p′ = m−1. Since p ≤ n−1, we must have m < n.
The indices break into two nonempty sets {1, . . . , 2m} and {2m + 1, · · · ,m + n}.
For these two sets of indices, the corresponding entries of λσ are

1
2 (a+ 2n− 1) · · · 1

2 (a+ 2n− 1)
n−m− 1 · · · 0.
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Here

n− p− 2 ≤ 1
2 (a+ 2n− 1) < n− p− 1.

Since p ≥ m, λσ is not dominant. The desired ordering is the one that takes the
first p − m + 1 indices from the block {2m + 1, . . . ,m + n}, followed by the set
{1, . . . , 2m} in the ordering

m,m+ 1,m− 1,m+ 2,m− 2,m+ 3, . . . ,m− j,m+ j + 1, . . . , 1, 2m,

followed by the remaining indices from the block {2m+ 1, . . . ,m+n}. Let us write
δ and δK for the usual quantities in this ordering, and let us write δr and δKr
for the corresponding quantities for the roots spanned by all em−j − em+j+1 with
0 ≤ j ≤ m − 1. We define µ in the same way as for Subcase Ia, and µ is again a
fine Kr type. For the new first and third sets of indices, we have

λσ =

{
n−m− 1 · · · n− p− 1
n− p− 2 · · · 0

δ − δr =

{
n+m− 1 · · · n+ 2m− p− 1
n− p− 2 · · · 0

−2δK =

{
−2(n− 1) · · · −2(n+m− p− 1)
−2(n− p− 2) · · · 0

µ+ 2δKr =

{
0 · · · 0
0 · · · 0.

Addition gives

Λnew =

{
0 · · · 0
0 · · · 0,

and therefore Λnew matches Λ in the new first and third sets of indices.
Now we check the contribution from the indices {1, . . . , 2m}. We have

λσ =

{
1
2 (a+ 2n− 1) in position m− j
1
2 (a+ 2n− 1) in position m+ j + 1

δ − δr =

{
n+ 2m− p− 2− 2j − 1

2 in position m− j
n+ 2m− p− 3− 2j + 1

2 in position m+ j + 1

−2δK =

{
−2(m− 1− j) in position m− j
−2(n+m− p− 2− j) in position m+ j + 1

µ+ 2δKr =

{
1
2a+ p+ 1 in position m− j
− 1

2a− p− 1 in position m+ j + 1.

Addition gives

Λnew =

{
a+ 2n in position m− j
0 in position m+ j + 1,

and therefore Λnew matches Λ in the set of indices {1, . . . , 2m}. Once again, since
Λnew is integral, µ gives rise to a well defined σ with infinitesimal character λσ and
the induced series from σ has Λ as minimal K type.

This completes the construction of σ in the two subcases of Case I, as well as
the proof that the induced series from σ has Λ as minimal K type. To complete
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Case I, we need to verify that ν is the Langlands A parameter. Let ν′ be the actual
Langlands parameter, so that

ν′ =


cj in position m− j for 0 ≤ j ≤ p′
−cj in position m+ j + 1 for 0 ≤ j ≤ p′

0 in all other positions.

The Weyl group of A is transitive on the Weyl chambers for this situation, and
we may thus assume that c0 ≥ c1 ≥ · · · ≥ cp′ . Then λ + δ and λσ + ν′ must
agree, up to a member of the complex Weyl group. For indices outside the range
m− p′ ≤ j ≤ m+ 1 + p′, the entries of λ+ δ and λσ + ν′ match exactly. Thus we
have only to consider indices in the range m− p′ ≤ j ≤ m+ 1 + p′. For this range
of indices, the entries of λσ are constant and positive. Thus we can determine c0
from the largest entry of λ + δ in absolute value, c1 from the next largest, and so
on. This argument shows that there is only one candidate for ν′. Since ν has the
property that λ+ δ = λσ + ν, we must have ν′ = ν. Since ν is in the open positive
Weyl chamber, condition (iv) in the definition of Langlands parameters is satisfied.

Case II. a + 2n − 1 < 0, so that a = −2n + 1
2 or a = −2n. Define p′ =

min{m− 1, n− 1}. The successive roots that arise in the Conjectural Method are

em−j ± em+j+1 for 0 ≤ j ≤ p′,
and λσ is 0 in entries m− p′, . . . ,m+ p′+ 1. To apply the minimal K type formula
for the induced series from σ, we need a positive system in which λσ is dominant
and the Lie algebra generated by all simple roots (and their negatives) contributing
to all em−j ± em+j+1 is split. We shall produce σ and show that the minimal K
type Λnew of the induced series from σ coincides with Λ, and then the argument is
completed as in Case I. The verification of the equality Λnew = Λ breaks into two
subcases, n ≤ m and n > m.

Subcase IIa. n ≤ m, so that the successive roots are

em−n+1 ± em−n+2, em−n+3 ± em−n+4, . . . , em+n−1 ± em+n.

The indices {1, . . . ,m + n} break into two sets, namely {1, . . . ,m − n} and
{m− n+ 1, . . . ,m+ n}. The first set is empty if and only if n = m. For these two
sets of indices, the corresponding entries of λσ are

a+m+ n− 1 · · · a+ 2m
0 · · · 0.

Here a+2m ≥ a+2n ≥ 0, and the desired ordering for the minimal K type formula
is the standard ordering. For the first set of indices, we have

λσ = a+m+ n− 1 · · · a+m

δ − δr = m+ n− 1 · · · m

−2δK = −2(m− 1) · · · −2(m− n)

µ+ 2δKr = 0 · · · 0.

Addition gives

Λnew = a+ 2n · · · a+ 2n,

and therefore Λnew matches Λ in the first set of indices.
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In the second set of indices, we define

µ =

{
a+ 2n in position m− j
0 in position m+ j + 1

for 0 ≤ j ≤ n− 1. This Kr type is trivial or is a spin representation on one factor
of Kr. In either case it is fine for so(n, n). For 0 ≤ j ≤ n− 1, we then have

λσ =

{
0 in position m− j
0 in position m+ j + 1

δ − δr =

{
0 in position m− j
0 in position m+ j + 1

−2δK =

{
−2j in position m− j
−2(n− j − 1) in position m+ j + 1

µ =

{
a+ 2n in position m− j
0 in position m+ j + 1.

2δKr =

{
2j in position m− j
2(n− j − 1) in position m+ j + 1.

Addition shows for 0 ≤ j ≤ n− 1 that

Λnew =

{
a+ 2n in position m− j
0 in position m+ j + 1.

Thus Λnew = Λ. Since Λnew is integral, µ gives rise to a well defined σ with
infinitesimal character λσ and the induced series from σ has Λ as minimal K type.

Subcase IIb. n > m, so that the successive roots are

e1 ± e2, e3 ± e4, . . . , e2m−1 ± e2m.

The indices {1, . . . ,m+ n} break into two nonempty sets, namely {1, . . . , 2m} and
{2m+ 1, . . . ,m+ n}. For these two sets of indices, the corresponding entries of λσ
are

0 · · · 0
n−m− 1 · · · 0.

The desired ordering for the minimal K type formula takes the second set of indices
followed by the first. For the second set of indices, we have

λσ = n−m− 1 · · · 0

δ − δr = m+ n− 1 · · · 2m

−2δK = −2(n− 1) · · · −2m

µ+ 2δKr = 0 · · · 0.

Addition gives

Λnew = 0 · · · 0,

and therefore Λnew matches Λ in this set of indices.
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In the other set of indices, we define

µ =

{
a+ 2n in position m− j
0 in position m+ j + 1

for 0 ≤ j ≤ m − 1. Here µ is a fine Kr type for so(m,m). For 0 ≤ j ≤ m− 1, we
then have

λσ =

{
0 in position m− j
0 in position m+ j + 1

δ − δr =

{
0 in position m− j
0 in position m+ j + 1

−2δK =

{
−2j in position m− j
−2(m− j − 1) in position m+ j + 1

µ =

{
a+ 2n in position m− j
0 in position m+ j + 1.

2δKr =

{
2j in position m− j
2(m− j − 1) in position m+ j + 1.

Addition gives

Λnew =

{
a+ 2n in position m− j
0 in position m+ j + 1

for 0 ≤ j ≤ m− 1. Thus Λnew = Λ, and the proof is complete.
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