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NONLOCAL FINITENESS OF A W -GRAPH

GEORGE LUSZTIG

Abstract. It is shown that the W -graph of an affine Weyl group of type B2

(as defined by Kazhdan and Lusztig in Representations of Coxeter groups and
Hecke algebras, Invent. Math. 53 (1979), 165–184) is not locally finite.

1. The purpose of this paper is to present an example of computation of the leading
coefficients µ(y, w) of the polynomials Py,w of [KL], or equivalently, of the “ inverse
polynomials” Qy,w for an affine Weyl group.

We use the following method. We want to make use of the explicit formula [L]
for the Py,w in the case where y, w have maximal length in their double coset with
respect to the finite Weyl group. For such y, w we have µ(y, w) = 0 except in trivial
cases, so this by itself does not give interesting examples of µ(y, w). It would be
much more useful to be able to compute, instead, the polynomials Qy,w where y, w
have minimal length in their double coset with respect to the finite Weyl group.
We show that these last polynomials can be directly related through a system of
semilinear equations to the special polynomials Py,w above. These equations can
sometimes be solved explicitly and we may hope to find in this way interesting
examples of µ(y, w).

Consider the affine Weyl group of type B̃2 with standard Coxeter generators
a, b, c where a, c commute; set p = aba, q = cba. Using the method above, we shall
obtain the following result:

µ(pqn, pqm) = 1 if m > n > 0, m even, n odd.(a)

(Note that {pqn|n = 1, 2, . . . } are distinct involutions and the length of pqn is
3n+ 3.) We see that the W -graph (see [KL, §1]) of our Coxeter group is not locally
finite. This example suggests that the W -graphs of most affine Weyl groups are
not locally finite. (They are locally finite for type Ã1, Ã2.)

2. Let (W,S) be a Coxeter group (S is the set of simple reflections) and let l :
W → N be the corresponding length function. Let A = Z[v, v−1] where v is an
indeterminate. For f ∈ A, let Resv=0(f) ∈ Z denote the coefficient of v−1 in
f . Let ¯ : A → A be the ring involution such that v̄ = v−1. For x, y ∈ W , let
Rx,y ∈ A be defined as in [KL, (2.0.a)] (where q

1
2 in loc. cit. is our v). We set

rx,y = vl(x)−l(y)Rx,y. We have

rx,x = 1, r̄x,y = (−1)l(y)−l(x)rx,y for any x, y ∈W,(a)
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(see [KL, 2.1(i)]),

rx,1 = δx,1,(b)

v−l(x)−l(y)rx,y + v−l(sx)−l(y)rsx,y = v−l(x)−l(sy)rx,sy + v−l(sx)−l(sy)rsx,sy ,(c)

vl(x)+l(y)rx,y + vl(x)+l(sy)rx,sy = vl(sx)+l(y)rsx,y + vl(sx)+l(sy)rsx,sy ,(d)

(for any x, y ∈W and any s ∈ S). Note that (c) follows from [KL, (2.0.c)] and (d)
follows by applying ¯ to (c) and using (a). Moreover,

ry,z 6= 0 =⇒ y ≤ z in the Bruhat order of W.(e)

For any x, z ∈W we have (by [KL, 2.1(ii)])∑
y

rx,y r̄y,z = δx,z.(f)

3. For x ≤ y in W , let Px,y ∈ A be defined as in [KL, 1.1] (where q
1
2 in loc. cit. is

our v). We set px,y = vl(x)−l(y)Px,y ∈ Z[v−1] for x ≤ y and px,y = 0 for all other
x, y. We have

px,x = 1, px,y ∈ v−1Z[v−1] for x < y,(a)

∑
y

rx,ypy,z = p̄x,z for any x, z in W,(b)

(see [KL, (2.2.a)]).
We define elements qx,y ∈ Z[v−1] (for any x, y in W ) by the system of equations∑

z

(−1)l(x)+l(y)px,yqy,z = δx,z(c)

(for any x, z in W ). We have

qx,x = 1, qx,y ∈ v−1Z[v−1] for x < y and qx,y = 0 for all other x, y.(d)

For any x, z ∈W we have∑
y

(−1)l(x)−l(y)qx,ypy,z = δx,z,(e)

∑
y

qx,yry,z = q̄x,z.(f)

As in [KL, 1.2], for x, y ∈W , we set

µ(x, y) = Resv=0(px,y) = Resv=0(qx,y) ∈ Z.
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4. If I is a subset of S we denote by WI the subgroup of W generated by I. If WI

is finite, we set

ξI =
∑
w∈WI

v2l(w) ∈ Z[v2].

We now fix two subsets I, I ′ of S such that WI and WI′ are finite. Let ν (resp.
ν′) be the maximum length of an element of WI (resp. WI′). Let X+ be the set
of WI −WI′ double cosets in W . Each λ ∈ X+ contains a unique element mλ of
minimal length and a unique element Mλ of maximal length; we define

ξλ =
∑
w∈λ

v2l(w) ∈ Z[v2],(a)

πλ =
ξI
vν

ξI′

vν′
vl(Mλ)+l(mλ)

ξλ
∈ A;(b)

then π̄λ = πλ.
From 2(c) we see that the function y →

∑
x∈λ v

−l(x)−l(y)rx,y is constant on left
WI -cosets; similarly, it is constant on right WI′ -cosets, hence it is constant on the
double cosets in W . In particular, for λ, λ′ ∈ X+, we have∑

x∈λ;y∈λ′
v−l(x)+l(y)rx,y =

∑
y∈λ′

v2l(y)
∑
x∈λ

v−l(x)−l(mλ′)rx,mλ′ .(c)

From 2(d) we see that the function x →
∑
y∈λ′ v

l(x)+l(y)rx,y is constant on left
WI -cosets; similarly, it is constant on right WI′ -cosets, hence it is constant on the
double cosets in W . In particular, for λ, λ′ ∈ X+, we have∑

x∈λ;y∈λ′
v−l(x)+l(y)rx,y =

∑
x∈λ

v−2l(x)
∑
y∈λ′

vl(Mλ)+l(y)rMλ,y.(d)

Comparing (c),(d) we see that

ξλ′
∑
x∈λ

v−l(x)−l(mλ′ )rx,mλ′ = ξλ
∑
y∈λ′

vl(Mλ)+l(y)rMλ,y.(e)

5. Let≤ be the partial order onX+ defined by λ ≤ λ′ ifMλ ≤Mλ′ . For λ, λ′ ∈ X+,
we set

pλ,λ′ = pMλ,Mλ′ , qλ,λ′ = qmλ,mλ′ .

By [KL, 2.3.g], we have

vl(Mλ)−l(x)px,Mλ′ = pλ,λ′

for all x ∈ λ and similarly

vl(x
′)−l(mλ′)qmλ,x′ = qλ,λ′

for all x′ ∈ λ′. We set

aλ,λ′ =
∑
y∈λ′

(−v)−l(Mλ′ )+l(y)qMλ,y,(a)

bλ,λ′ =
∑
z∈λ

(−v)l(mλ)−l(z)pz,mλ′ .(b)
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Clearly, pλ,λ′ , qλ,λ′ , aλ,λ′ , bλ,λ′ are zero unless λ ≤ λ′ and are equal to 1 when λ = λ′;
when λ < λ′ they belong to v−1Z[v−1] and

Resv=0(qλ,λ′) = µ(mλ,mλ′) = Resv=0(bλ,λ′).(c)

6. Using 3(c) and the definitions, we see that∑
λ′

(−1)l(Mλ)−l(Mλ′ )aλ,λ′pλ′,λ′′ = δλ,λ′′ ,(a)

∑
λ′

(−1)l(mλ)−l(mλ′ )qλ,λ′bλ′,λ′′ = δλ,λ′′ ,(b)

for any λ, λ′′ ∈ X+.

Proposition 7. For any λ, λ′′ ∈ X+, we have
(a)

∑
λ′ qλ,λ′

1
πλ′

p̄λ′,λ′′ =
∑
λ′ q̄λ,λ′

1
πλ′

pλ′,λ′′ ,

(b)
∑
λ′ aλ,λ′(−1)l(mλ′)−l(Mλ′ )πλ′ b̄λ′,λ′′ =

∑
λ′ āλ,λ′(−1)l(mλ′ )−l(Mλ′ )πλ′bλ′,λ′′ .

For any λ, λ′ in X+ we set

rλ,λ′ =
∑
z∈λ′

vl(z)−l(Mλ′ )rMλ,z,

r̃λ,λ′ =
∑
z∈λ

v−l(z)+l(mλ)rz,mλ′ .

Using these definitions and 3(b), 3(f), we deduce, for any λ, λ′′:∑
λ′

rλ,λ′pλ′,λ′′ = p̄λ,λ′′ ,(c)

∑
λ′

qλ,λ′ r̃λ′,λ′′ = q̄λ,λ′′ .(d)

We can rewrite 4(e) in the form

ξ(λ′)v−l(mλ′ )−l(mλ)r̃λ,λ′ = ξ(λ)vl(Mλ)+l(Mλ′ )rλ,λ′

or in the form

1

πλ′
r̃λ,λ′ =

1

πλ
rλ,λ′ .(e)

Using (c), we see that the left hand side of (a) is equal to∑
λ′

qλ,λ′
1

πλ′

∑
λ̃

rλ′,λ̃pλ̃,λ′′

and, using (e), to ∑
λ′,λ̃

qλ,λ′
1

πλ̃
r̃λ′,λ̃pλ̃,λ′′ .

Using (d), we see that this equals
∑
λ̃ q̄λ,λ̃

1
πλ̃
pλ̃,λ′′ which is the same as the right

hand side of (a). Thus (a) is proved.
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We prove (b). We can write (a) as an identity of matrices indexed by X+×X+:

QD−1P̄ = Q̄D−1P(f)

where Q = (qλ,λ′), P = (pλ,λ′), D is the diagonal matrix with entries πλ; we agree
that − applied to a matrix is obtained by applying − to each entry. Taking the
inverse of both sides of (f), we obtain P−1DQ̄−1 = P̄−1DQ−1. This is, up to signs,
the same as (b) (we use 6(a),6(b)). The proposition is proved.

8. In the remainder of this paper we assume that (W,S) is an irreducible affine
Weyl group regarded as a Coxeter group. The set X of elements of W which have
only finitely many conjugates, is a normal subgroup of W , which is free abelian,
finitely generated, of finite index. We shall take I = I ′ = S − {s0} where s0 ∈ S
is such W is generated by X and by WI . There is a unique Z-basis {αs|s ∈ I} of
X and unique homomorphisms α̌s : X → Z for s ∈ I such that s(x) = x− α̌s(x)αs
for all s ∈ I, x ∈ X . (We write the group operation in X as addition and we write
w(x) instead of wxw−1 for w ∈ W,x ∈ X .) Let R be the finite set consisting of
all elements of X of the form w(αs) for various s ∈ I and w ∈ WI . Let R+ =
R ∩

∑
s∈I Nαs. Let X+ = {x ∈ X |α̌s(x) ≥ 0 ∀s ∈ I}. For any λ ∈ X+, we set

Wλ
I = {w ∈WI |w(λ) = λ}.

In our case, πλ of 4(b) can be rewritten as follows:

πλ = v−νλ
∑
w∈Wλ

I

v2l(w)

where νλ is the number of reflections of Wλ
I .

There is a 1-1 correspondence between X+ and the set of WI−WI double cosets
in W (to an element of X+ corresponds the unique double coset containing it).
We identify in this way X+ with the set of WI −WI double cosets in W , thus
reconciling the present notation with the notation X+ in §4.

9. Let X ′ be the subgroup of Q⊗X consisting of all x such that α̌s(x) ∈ Z for all
s ∈ I. We have X ⊂ X ′ and the action of WI on X extends uniquely to a linear
action of WI on X ′. For any subset i ⊂ R+, we set αi =

∑
α∈i α ∈ X . It is known

that αR+ = 2ρ where ρ ∈ X ′ and that w(ρ)− ρ ∈ X for any w ∈WI . Let Γ be the
free A-module with basis Zλ, (λ ∈ X+). We define elements Zλ ∈ Γ for all λ ∈ X
(not just for λ ∈ X+) by setting

Zλ = (−1)l(w)Zw(λ+ρ)−ρ,

if w(λ + ρ)− ρ ∈ X+, for some w ∈WI (necessarily unique),

Zλ = 0,

otherwise.

Theorem 10.

v−νλ′πλ′
∑
λ∈X+

aλ,λ′Zλ =
∑

i;i⊂R+

(−v2)−|i|Zλ′−αi
;

(equality in Γ) holds for any λ′ ∈ X+; here, aλ,λ′ are as in §5.
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This is obtained by assembling several identities in [L] in the affine Hecke algebra
(notation of [L]):

Jρ(v
−l(pλ′ )Kλ′) =

1

P̄λ′
∑

i

(−v2)−|i|Jλ′+ρ−αi

([L, 6.7]);

JρC
′
λ = Jλ+ρ

([L, 6.9]);

C′λ =
∑

λ′∈X+

pλ′,λv
−l(pλ′ )Kλ′

([L, 6.10, 6.13]) and using 6(a). (We take Γ to be the A-submodule of the affine
Hecke algebra spanned by Zλ = Jλ+ρ with λ ∈ X+.) In our case, we have

(−1)l(Mλ)−l(Mλ′ ) = 1 for λ, λ′ in X+.

Corollary 11. For any x ∈ X we set

Φ(x) =
∑

i;i⊂R+;αi=x

(−v2)−|i|.

For any λ, λ′ in X+, we have

aλ,λ′ =
vνλ′

πλ′

∑
w∈WI

(−1)l(w)Φ(λ′ + ρ− w(λ + ρ)).

12. It is likely that, in the case where α̌s(λ
′) ≥ 1 for all s ∈ I and λ ∈ X+, we

have

bλ,λ′ = (−1)l(mλ−l(mλ′ )
1

πλ

∑
w∈WI

(−1)l(w)Φ(w(λ′ − ρ)− (λ− ρ)).

13. Now let (W,S) be an affine Weyl group of type B̃2. Write I = {1, 2} so that
α̌2(α1) = −1, α̌1(α2) = −2. We solve the system of semilinear equations 7(b) with
unknowns bλ′,λ′′ for fixed λ′′ = tα1 + tα2, where t ≥ 3 and the quantities aλ,λ′ are
given by §11. (That system has a unique solution subject to the requirement that
bλ′,λ′′ is zero unless λ′ ≤ λ′′, is equal to 1 when λ′ = λ′′ and belongs to v−1Z[v−1]
when λ′ < λ′′.) We find

btα1+(t−1)α2,tα1+tα2
= v−3 + v−1,

bsα1+(s−1)α2,tα1+tα2
= −v−5 + v−1,

for s = t − 1, t − 2, . . . , 3. It follows that Resv=0(bsα1+(s−1)α2,tα1+tα2
) = 1, for

s = t, t− 1, . . . , 3. Using 5(c), this yields formula 1(a).
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