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COHOMOLOGY OF CLASSIFYING SPACES

AND HERMITIAN REPRESENTATIONS

GEORGE LUSZTIG

Abstract. It is shown that a large part of the cohomology of the classifying
space of a Lie group satisfying certain hypotheses can be obtained by a dif-
ference construction from hermitian representations of that Lie group. This
result is relevant to the study of Novikov’s higher signatures.

1. Statement of the Theorem

1.1. Let G be a connected Lie group. We set Hk
G = Hk(BG,C) (cohomology with

complex coefficients) where BG is a classifying space of G. We set H∗G = H0
G×H1

G×
H2
G × . . . ; we regard this as a topological C-algebra in which a fundamental system

of neighbourhoods of 0 is provided by the subspaces 0×0× . . .×0×H l
G×H l+1

G × . . .
for various integers l ≥ 0.

For any continuous finite dimensional complex representation V ′ of G, we can
form the associated complex vector bundle on BG and consider its Chern character
chV ′ ∈ H∗G. It is well known that, in the case where G is compact, the elements
chV ′ (for various V ′ as above) span over C a dense subspace of H∗G.

1.2. How to extend this result to not necessarily compact groups?
Let V be a finite dimensional C-vector space with a given non-degenerate her-

mitian form on which G acts linearly and continuously, preserving the hermitian
form. We associate to V an element c̃hV ∈ H∗G as follows.

We choose a maximal compact subgroup K of G. We can find a direct sum
decomposition V = V + ⊕ V − with V +, V − orthogonal to each other for the her-
mitian form such that V +, V − are K-invariant subspaces and the hermitian form
is positive definite on V + and negative definite on V −. The Chern characters
chV + ∈ H∗K, chV − ∈ H∗K are then well defined since V +, V − are representations
of K. We may identify H∗K = H∗G since the inclusion K → G induces a homotopy

equivalence BK
∼−→ BG ; we define

c̃hV = chV + − chV − ∈ H∗G.

Note that the element c̃hV is independent of the choices of K and of the decompo-
sition V = V + ⊕ V −, since the set of these choices is a contractible space.

Our main result is the following:
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Theorem 1.3. Assume that G is the group of R-rational points of a connected,
simply connected semisimple algebraic group G over C with a given R-structure.
Assume also that G possesses some compact Cartan subgroup. Then the elements
c̃hV for various V as above span over C a dense subspace of H∗G.

In the case where G is a real symplectic group, this was proved in [L] where
an application to the study of Novikov’s higher signatures (for discrete cocompact
subgroups of G) was given. Gromov [G, p.139-140] realized that the result of [L]
has also interesting differential-geometric applications, and asked the author (in
January 1995) whether the more general statement of the Theorem above might be
true. This provided the impetus for the present work.

2. Proof of the Theorem

2.1. Let G be as in 1.3 and let g be the Lie algebra of G (over C). Let ZG be
the centre of G. Let T be a maximal torus of G. We choose standard Chevalley
generators ei, fi, hi(i ∈ I) for g such that {hi|i ∈ I} is a C-basis of the Lie algebra
of T .

Let π : G→ G be the involutive automorphism of G such that the tangent map
dπ : g→ g is given by

dπ(ei) = −fi, dπ(fi) = −ei, dπ(hi) = −hi
for all i ∈ I. Let − : G→ G be the antiholomorphic involution of G whose tangent
map is the conjugate-linear map − : g → g given by ēi = ei, f̄i = fi, h̄i = hi for all
i ∈ I. Clearly, π : G→ G commutes with − : G→ G. It is well known that

K = {g ∈ G|π(ḡ) = g}

is a maximal compact subgroup of G.

2.2. For any λ = (λi)i∈I ∈ NI , let Vλ be a finite dimensional C-vector space with a
non-zero vector η on which G acts linearly as an algebraic group such that the cor-
responding representation of g on Vλ is irreducible and satisfies eiη = 0, hiη = λiη
for all i. Note that (Vλ, η) is uniquely determined by λ up to unique isomorphism.
It follows easily that there is a unique conjugate-linear involution x 7→ x̄ of Vλ such
that ax = āx̄ for all a ∈ g, x ∈ Vλ and η̄ = η. It is well known and easy to prove
that there is a unique hermitian form 〈, 〉 : V × V → C (linear in the first variable,
conjugate-linear in the second variable) such that
〈η, η〉 = 1 and 〈ax, y〉 = 〈x,−dπ(ā)y〉 for all x, y ∈ Vλ and all a ∈ g.

It is well known that this hermitian form is positive definite.
From the definition we deduce the identity:

〈gx, y〉 = 〈x, π(ḡ−1)y〉

for all x, y ∈ Vλ and all g ∈ G.

2.3. Let σ ∈ T be such that σ2 ∈ ZG. We have
(a) σ̄ = σ−1,
(b) π(σ) = σ−1.

Indeed, it is easy to check that, if t ∈ T is of finite order, then t̄ = t−1. Since ZG is
a finite group, σ is of finite order. Hence (a) holds. Clearly, for any t ∈ T , we have
π(t) = t−1. Hence (b) holds.
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2.4. We define an antiholomorphic map τ : G→ G by

g 7→ τ(g) = σπ(ḡ)σ−1.

It is easy to see that τ is an involution. Let

G = {g ∈ G|τ(g) = g}.(a)

Then G is the group of real points for an R-rational structure on G. Note that

G ∩ T = {t ∈ T |τ(t) = t} = {t ∈ T |tt̄ = 1}
is a compact Cartan subgroup of G. Thus, G satisfies the assumptions of Theorem
1.3. Conversely, it is known that any G as in the assumptions of Theorem 1.3 can be
obtained by the previous construction. (For example, σ = 1 gives rise to a compact
G.) Hence it suffices to prove Theorem 1.3 for G given by (a).

2.5. Let Gσ be the centralizer of σ in G. Let

K = Gσ ∩ G = Gσ ∩K = G ∩K.
We have

σ ∈ K.

Indeed, from 2.3(a),(b) we see that σ ∈ K. Clearly, σ ∈ Gσ; our assertion follows.
The following result is well known.

Lemma 2.6. (a) K is a maximal compact subgroup of Gσ.
(b) K is a maximal compact subgroup of G.

2.7. Since η is an eigenvector for the T -action on Vλ, we have

ση = δη

for some δ ∈ C∗. Applying − to the last equality we obtain

δ̄η = σ̄η = σ−1η = δ−1η;

hence

δ̄ = δ−1.

By Schur’s lemma, σ2 acts as a scalar on Vλ and this scalar is necessarily δ2. Thus,

σ2 = δ2

on Vλ.
For x, y ∈ Vλ we set

〈〈x, y〉〉 = δ−1〈σx, y〉.

Lemma 2.8. (a) 〈〈, 〉〉 is a non-degenerate hermitian form on Vλ.
(b) For any x, y ∈ Vλ and any g ∈ G, we have 〈〈gx, gy〉〉 = 〈〈x, y〉〉.

Let x, y ∈ Vλ. We must show that

〈〈x, y〉〉 = 〈〈y, x〉〉.(c)

The right hand side is

δ−1〈σy, x〉 = δ̄−1〈x, σy〉 = δ〈x, σy〉
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while the left hand side is

δ−1〈σx, y〉 = δ−1〈x, π(σ̄−1)y〉 = δ−1〈x, π(σ̄−1)y〉
= δ−1〈x, σ−1y〉 = 〈x, δσ−1y〉 = 〈x, δ−1σy〉 = δ〈x, σy〉.

Thus (c) is proved. The fact that 〈〈, 〉〉 is non-degenerate follows from the analogous
property of 〈, 〉. Next we show that, for g in G, we have

〈〈gx, y〉〉 = 〈〈x, τ(g−1)y〉〉.(d)

The right hand side is

〈〈gx, y〉〉 = δ−1〈σgx, y〉 = δ−1〈x, π(ḡ−1)π(σ̄−1)y〉 = δ−1〈x, π(ḡ−1)σ−1y〉
= δ−1〈x, σ−1τ(g−1)y〉,

while the left hand side is

〈〈x, τ(g−1)y〉〉 = δ−1〈σx, τ(g−1)y〉 = δ−1〈x, π(σ̄−1)τ(g−1)y〉 = δ−1〈x, σ−1τ(g−1)y〉.
Thus (d) is proved. In the case where g ∈ G, identity (d) becomes 〈〈gx, y〉〉 =
〈〈x, g−1y〉〉. Replacing here y by gy we obtain (b). The lemma is proved.

Lemma 2.9. Let V +
λ = {x ∈ Vλ|σx = δx}, V −λ = {x ∈ Vλ|σx = −δx}. Then

(a) Vλ = V +
λ ⊕ V

−
λ and 〈〈V +

λ , V
−
λ 〉〉 = 0;

(b) 〈〈, 〉〉|V +
λ

is positive definite and 〈〈, 〉〉|V −λ is negative definite.

The first statement of (a) follows from the fact that σ2 = δ2 on Vλ. We have
σ ∈ G (see 2.5) hence, by 2.8(b), σ acts as an isometry of 〈〈, 〉〉. Hence the ζ-
eigenspace of σ is orthogonal under 〈〈, 〉〉 to the ζ′-eigenspace of σ provided that
ζ′ζ̄ 6= 1. The last condition is satisfied by ζ = δ, ζ′ = −δ since −δδ̄ = −1. This
proves (a).

We prove (b). If x ∈ V +
λ and x 6= 0, we have 〈〈x, x〉〉 = δ−1〈σx, x〉 = 〈x, x〉 > 0;

if x ∈ V −λ and x 6= 0, we have 〈〈x, x〉〉 = δ−1〈σx, x〉 = −〈x, x〉 < 0. The lemma is
proved.

2.10. Let W be the Weyl group of G with respect to T and let W ′ be the Weyl
group of Gσ with respect to T . We regard W ′ naturally as a subgroup of W . Now
W hence, by restriction, W ′ acts on T by conjugation. This induces an action
of W , hence of W ′, through algebra automorphisms on O, the algebra of regular
functions T → C. We will denote the action of w ∈W on O by f 7→ w∗f . Let OW
be the algebra of W -invariant elements of O; let OW ′ be the algebra of W ′-invariant
elements of O. We have OW ⊂ OW ′ ⊂ O.

For any t ∈ T , the set of elements of O that vanish at t is a maximal ideal It
of O; we denote the completion of O with respect to the maximal ideal It by Ôt.
If Wt is the stabilizer of t in W , then the Wt-action on O preserves It; hence it
induces a Wt-action on Ôt. Let (Ôt)Wt be the space of invariants of this Wt-action.

In particular, for t = σ we have Wσ = W ′; hence (Ôσ)W
′

is well defined. For t = 1,

we have W1 = W ; the W -action on Ô1 may be restricted to W ′ and we denote by
(Ô1)W

′
the space of W ′-invariants for this action.

For any continuous finite dimensional complex representation V ′ of K, the func-
tion t→ tr(t, V ) on T ∩K = T ∩K = {t ∈ T |tt̄ = 1} extends uniquely to a regular

function χV ′ : T → C which belongs to OW ′ .
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By classical results on cohomology of classifying spaces [B], we may identify

H∗K = (Ô1)W
′

as topological algebras so that the following holds: For any continuous finite di-
mensional complex representation V ′ of K, the element chV ′ ∈ H∗K corresponds to

the image of χV ′ under the obvious imbedding j : OW ′ → (Ô1)W
′
.

If Vλ is as in 2.2, we have for any t ∈ T ∩K

tr(t, V +
λ )− tr(t, V −λ ) = δ−1tr(tσ, Vλ).

Let χ̃Vλ ∈ OW
′

be the function on T given by t 7→ δ−1tr(tσ, Vλ). (This function
is W ′-invariant since σ is W ′-invariant; note also that δ depends on λ.) We see

that the element c̃hVλ ∈ H∗G = H∗K = (Ô1)W
′

associated in 1.2 to the G-module Vλ
(restriction from G to G) with its G-invariant hermitian form 〈〈, 〉〉 is precisely the

image of χ̃Vλ under the obvious imbedding j : OW ′ → (Ô1)W
′
. Now OW is spanned

as a vector space by the functions t 7→ tr(t, Vλ) for various λ as in 2.2. It follows

that the subspace of H∗G = H∗K = (Ô1)W
′

spanned by the elements c̃hVλ for various
λ as in 2.2 is precisely the image of the composition

OW pσ−→ OW
′ j−→ (Ô1)W

′
(a)

where pσ attaches to f ∈ OW the function t 7→ f(tσ) in OW ′ .
Hence Theorem 1.3 is a consequence of the following result, in which σ may be

taken to be an arbitrary element of T .

Proposition 2.11. The image of the composition 2.10(a) is dense in (Ô1)W
′
.

Consider the diagram

OW α−→ (Ôσ)W
′ β−→ (Ô1)W

′

where α is induced by the obvious imbedding O → Ôσ and β is the isomorphism
induced by the isomorphism Ôσ → Ô1 which comes from the translation by σ on
T (an isomorphism of varieties which takes 1 to σ). It is clear that β ◦ α is equal
to the composition 2.10(a). Since β is an isomorphism of topological algebras, it is

therefore enough to show that the image of α is dense in (Ôσ)W
′
. Let f ∈ (Ôσ)W

′
.

Let X be the W -orbit of σ in T . For each t ∈ X , we define an element ft ∈ Ôt
as follows. We choose w ∈ W such that w(t) = σ. Now w∗ : O → O induces an

isomorphism w∗ : Ôσ ∼−→ Ôt and we set ft = w∗(f). This element is independent
of the choice of w since f is W ′-invariant. Note that fσ = f .

Let Ît be the maximal ideal of Ôt. Let n ≥ 1 be an integer. By the Chinese
remainder theorem, we can find φ ∈ O such that φ = ft mod Înt for all t ∈ X . For

any w ∈ W , the function w∗φ ∈ O satisfies again w∗φ = ft mod Înt for all t ∈ X
since, by definition, the family (ft)t∈X is W -invariant in an obvious sense. Setting

φ′ = ](W )−1
∑
w∈W w∗φ ∈ O, we deduce that φ′ = ft mod Înt for all t ∈ X . In

particular, taking t = σ, we see that φ′ = f mod Înσ . Since φ′ ∈ OW , we see that

OW is dense in (Ôσ)W
′
.

This completes the proof of the Proposition hence, that of Theorem 1.3.
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