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ON THE n-COHOMOLOGY OF LIMITS OF

DISCRETE SERIES REPRESENTATIONS

WOLFGANG SOERGEL

Abstract. Using localization we translate the problem of computing the n-
cohomology of limits of discrete series representations into a problem about
the combinatorics of Weyl groups.

1. Introduction

In this article I will show how to reduce the problem of computing the n-
cohomology of arbitrary limits of discrete series representations to some explicit
combinatorics of Weyl groups, for n the nilradical of a Borel containing a compact
Cartan.

More precisely, I will write down very explicit complexes of vector spaces over
C with bases consisting of certain subsets of the Weyl group and differentials given
in these bases by explicit matrices of zeroes, ones and minus ones. The main
result then says that the cohomology of these “combinatorial” complexes is the
n-cohomology we were looking for. This recovers old results of Schmid [Sch76]
and Williams [Wil88] concerning the discrete series and their nondegenerate limits
respectively. In these cases the differentials of our combinatorial complexes all
vanish. We also recover the vanishing result of Mirković [Mir90], Corollary 4.8, for
degenerate limits under the hypothesis that n is holomorphic.

Let me explain briefly how these results are obtained. The first step is to use
localization to translate our problem into geometry. Since we are interested in
singular central characters, this is not entirely straightforward. To describe the
outcome I need some notations. Let G ⊃ K ⊃ T be complexifications of our
group, of a maximal compact subgroup and of a compact maximal torus. Let X
be the flag variety, i.e. the variety of all Borel subgroups of G. Our discrete series
becomes under localization the standard module corresponding to some closed K-
orbit i : Y ↪→ X .

Now n is the nilradical of LieB for some Borel B ⊃ T . The singularity of the
central character of our limit M of discrete series determines a parabolic subgroup
P ⊃ B. Choosing also a possible eigenvalue λ for the action of LieT on the n-
cohomology determines a subvariety j : O ↪→ X of the form O = BgP/B ⊂ G/B =
X for suitable g ∈ G. Now consider the category PB(O) of perverse sheaves on
O which are smooth along B-orbits. Let A ∈ PB(O) be the projective cover in
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this category of the simple standard object corresponding to the unique closed B-
orbit in O. We will show that calculating H•(n,M)λ corresponds to the geometric
problem of calculating the hypercohomology groups H•(Y, i!j∗A).

NowA is not as untractable an object as the quick (but not very useful) definition
given above suggests. It is known that A is selfdual and admits a filtration with each
standard object of PB(O) occurring exactly once as a subquotient. This filtration
on A leads to some spectral sequence calculating the hypercohomology above. We
write down its first stage (with even the differentials given explicitly) and prove
that from the second stage on all differentials vanish. This then gives the main
result.

This article owes its existence to H. Carayol who explained the problem to me
and supplied illuminating examples as well as motivation [Car96].

2. Combinatorics

Let me describe in more detail the combinatorics of the result. I will give two
descriptions, one in terms of geometry and one in terms of Coxeter groups. I start
with the geometric one.

Given O = BgP/B and a closed K-orbit Y , the combinatorics computing
H•(Y, i!j∗A) goes as follows: CallD the set ofB-orbits inO and writeD =

⋃
ν D(ν),

where D(ν) ⊂ D denotes the subset of all orbits of dimension ν. Consider the free
C-vector space CD over D and give it the Z-grading (CD)ν = CD(ν).

We make CD into a complex and need a differential. Let us say a four-tuple of
orbits (x; y, z;w) from D forms a “small square” if and only if {y, z} = {v ∈ D | x ⊂
v̄, x 6= v, v ⊂ w̄, v 6= w}, our orbits are all different from one another and dimx =
dimw − 2. Now choose for every pair (x, y) of elements of D such that x ⊂ ȳ and
dimx = dim y−1 a sign s(x, y) such that for every small square (x; y, z;w) the four
signs multiply to −1 = s(x, y)s(x, z)s(y, w)s(z, w). It is always possible to make
such choices; see e.g. [BGG75]. We define the differential d : (CD)ν → (CD)ν−1 to
be given by the matrix s(x, y), where it is understood that s(x, y) = 0 unless x ⊂ y.

Now what we really need are the pieces of this complex “cut by Y in a fixed
codimension”. More precisely, for given c ∈ N put

Dc
Y = {x ∈ D | x meets Y , and c is the codimension of Y ∩ x in x}.

We make CDc
Y into a complex with Z-grading (CDc

Y )ν = C(Dc
Y ∩D(ν)) and dif-

ferential d given by the matrix s(x, y). It is not immediately clear but true that
d2 = 0. We will prove that

Hn(Y, i!j∗A) ∼=
⊕
c

H2c−n(CDc
Y , d).

Let us reformulate this in combinatorial terms. Suppose given a finite crystal-
lographic Coxeter group W with Bruhat order ≤ and length l : W → N. Suppose
V ⊂ W is a subset containing the whole interval {z ∈ W | x ≤ z ≤ y} with any two
elements x, y. We will associate to V a complex C•V . As a graded vector space, we
simply define CνV to be the free vector space with basis {x ∈ V | l(x) = ν}. To de-
fine the differential, let us call a 4-tuple (x; y, z;w) of elements ofW a “small square”
if and only if {y, z} = {v | x < v < w} where y 6= z and l(x) = l(w)−2. Choose for
every pair x < y inW with l(x) = l(y)−1 a sign s(x, y) in such a way that for every
small square (x; y, z;w) the four signs multiply to −1 = s(x, y)s(x, z)s(y, w)s(z, w).
It is always possible to make such choices; see e.g. [BGG75]. Now we define the
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differential d : CνV → Cν−1V to be given by the matrix s(x, y), where we put
s(x, y) = 0 if x and y are not comparable in the Bruhat order. As will be discussed
in Lemma 8.1, we have d2 = 0 and the complex C•V is independent of the choice
of signs s(x, y) up to isomorphism. We denote by H•V its homology.

Let W ⊃ WK be the Weyl group and the compact Weyl group respectively.
Let S ⊂ W be the system of simple reflections determined by our Borel B. The
singularity of the central character of our limit of discrete series determines in a
way to be made more precise later a subset SP ⊂ S. We let WP ⊂ W be the
subgroup generated by SP .

The length l(x) of x ∈ W can also be interpreted as the number of walls separat-
ing the antidominant Weyl chamber C from xC. We will also need the “K-length”
lK :W → Z, where lK(x) denotes the number of compact walls separating C from
xC.

To any triple (A,D, c) consisting of a left WK-orbit A ⊂ W , a right WP -orbit
D ⊂ W and an integer c we associate the set

V(A,D, c) = {x ∈ A ∩D | l(x) = lK(x) + c}.
We will express the n-cohomology of limits of discrete series as sums of suitable
H•V(A,D, c).

To write down precise formulas we need more precise notations. Let C be the
Weyl chamber on which all coroots α∨ with α a root of B take negative values.
Let g ⊃ b ⊃ h be the Lie algebras of G ⊃ B ⊃ T and let n ⊂ b be the nilradical.
Let U = U(g) ⊃ Z be the universal enveloping algebra and its center. For any
integral central character χ ∈ MaxZ let T χ denote the translation functor from
the trivial central character to χ. Define the g-module L(Y, χ) = T χΓ(G/B, i∗OY )
where i : Y ↪→ G/B is the inclusion of a closed K-orbit and i∗ denotes the direct
image of D-modules. Every limit of discrete series occurs among the L(Y, χ). We
want to compute Hn(n, L(Y, χ)).

Now this space admits a natural action by h. Let us normalize the Harish-
Chandra homomorphism ξ] : Z → S(h) by requiring ξ](z) − z ∈ Un. Let ξ :
h∗ → MaxZ be the corresponding map on points. Its fibres are the orbits for the
dot-action of W on h∗, given by x · λ = x(λ + ρ) − ρ with ρ the half-sum of the
roots of n. For any g-module L which is annihilated by χ we have the generalized
eigenspace decomposition Hn(n, L) =

⊕
λ∈ξ−1(χ)H

n(n, L)λ. We want to establish

for our problem the following solution.

Theorem 2.1. The λ-weight space in the n-cohomology of the limit of discrete
series L(Y, χ) is given by the formula

Hn(n, L(Y, χ))λ =
⊕
c

H2c+dimY−nV(A,D, c)

where A = A(Y ) = {x ∈ W | xB ∈ Y } and D = D(λ) = {x ∈ W | x−1(λ+ρ) ∈ C}.
Note that somewhat implicitly in this is hidden the statement that we have to

take WP as the isotropy group (for the linear W-action) of the unique weight in
C ∩ (ξ−1(χ) + ρ). The summands for different c correspond to parts of various
“weight” in the n-cohomology, as will be explained in the proof of the theorem at
the very end of this paper.

I don’t know how to further simplify the right hand side in general. However
I want to remark on a special case: If WK is generated by WK ∩ S, i.e. for “n
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holomorphic”, we see that c is constant on each A, and for this c the complex
C•V(A,D, c) will look like the analogous complex for the group generated by all
compact reflections with fixed point λ+ρ. It will thus have zero cohomology if there
are any such reflections, i.e. in the degenerate case. This recovers Corollary 4.8 of
[Mir90].

3. Preliminaries on n-cohomology

Let g = n⊕h⊕n be a complex reductive Lie algebra with a triangular decompo-
sition. Put b = h⊕ n. Let U(g) ⊃ Z be the enveloping algebra of g and its center.
For any ideal χ ⊂ Z put Uχ = U(g)/χU(g).

Lemma 3.1. For any Uχ-module M we have

H i(n,M) = ExtiUχ(Uχ ⊗U(n) C,M).

Proof. To compute the n-cohomology Hi(n,M) of an n-module M we have to take
a free resolution P• � C of the trivial representation C of n and compute the
cohomology of the complex Homn(P•,M). If M is a g-module, this coincides with
the complex Homg(U(g) ⊗U(n) P•,M). If χ ⊂ Z is an ideal with χM = 0, we can
identify our complex also with the complex HomUχ(Uχ ⊗U(n) P•,M).

Let W be the Weyl group of g. Then by Chevalley’s theorem we can find a
homogeneous subspaceH ⊂ U(h) such that the multiplication gives an isomorphism

U(h)W ⊗H ∼→ U(h), and by Kostant’s theorem for any such H the multiplication

gives an isomorphism U(n) ⊗ Z ⊗ H ⊗ U(n)
∼→ U(g). In particular Uχ is a free

right U(n)-module, thus the complex Uχ ⊗U(n) P• is a resolution of Uχ ⊗U(n) C by
free Uχ-modules. Hence the cohomology of the complex HomUχ(Uχ ⊗U(n) P•,M)
is Ext•Uχ(Uχ ⊗U(n) C,M).

Now we are interested in the n-cohomology of limits of discrete series. So consider
for any χ ∈MaxZ the category

Mχ = {M ∈ g-mod | ∀ m ∈M, ∃n� 0 such that χnm = 0}.
If ψ, χ ∈ MaxZ are integral, we define the translation functor T χψ :Mψ →Mχ as

usual. It comes with an adjointness (T χψ , T
ψ
χ ). Recall also the category

O =

M ∈ g-mod

∣∣∣∣∣∣
M is finitely generated,
locally finite over b and
semisimple over h.


We put Oψ = O ∩Mψ for ψ ∈ MaxZ. We will also need its Z-diagonal version

O′ψ =

M ∈ g-mod

∣∣∣∣∣∣
M is finitely generated,
locally finite over b and
ψM = 0.


Recall the Verma modulesM(λ) = U(g)⊗U(b)Cλ for λ ∈ h∗. We have AnnZM(λ) =
ξ(λ). Now by [Soe89], 2.1, there exists for ψ ∈ MaxZ regular an equivalence of
categories

S = Sψ : Oψ ∼→ O′ψ
such that SM(λ) ∼= M(λ) for every λ ∈ ξ−1(ψ). Let us fix such equivalences.
The following theorem will permit us to translate our problem of computing the
n-cohomology of limits of discrete series into geometry.
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Theorem 3.2. Suppose ψ, χ ∈ MaxZ are integral and ψ is regular. Then for any
N ∈ Uψ-mod and λ ∈ ξ−1(χ) we have

H i(n, T χψN)λ ∼= ExtiUψ (STψχM(λ), N).

Remark 3.3. For χ = ψ regular this boils down to the well-known formula

H i(n, N)λ ∼= ExtiUχ(M(λ), N).

Proof. We start with the equality

H i(n, T χψN) = ExtiUχ(Uχ ⊗U(n) C, T χψN)(1)

from Lemma 3.1. Now we want to use the adjointness (Tψχ , T
χ
ψ ). For this we need

Lemma 3.4. Let T be any translation functor. Then the inclusion AnnUM ⊂
AnnUN implies AnnUTM ⊂ AnnUTN .

Proof. Left to the reader.

Lemma 3.5. Let ψ, χ ∈ MaxZ be integral and suppose ψ is regular. Then

AnnUT
ψ
χM(λ) = UAnnZT

ψ
χM(λ) for all λ

with χM(λ) = 0.

Proof. The inclusion ⊃ is obvious. For the other inclusion note first that by the
previous lemma we can assume without restrictionM(λ) simple. Then TψχM(λ) has
some simple Verma module as its unique simple quotient, call it M(µ). Consider
now a Verma flag TψχM(λ) = Fr ⊃ . . . ⊃ F1 ⊃ F0 = 0. We prove by induction
from above on i that AnnU (Fr/Fi) = UAnnZ(Fr/Fi). For i = r − 1 we find
Fr/Fr−1

∼= M(µ) and our statement follows from a theorem of Duflo. Now we have
z ∈ AnnZ(Fr/Fi) if and only if zFr ⊂ Fi. But it is clear that Homg(Fr , Fi/Fi−1)
is one-dimensional for every i. Since AnnZ(Fr/Fi−1) is the kernel of the obvious
map AnnZ(Fr/Fi)→ Homg(Fr, Fi/Fi−1), there exists z0 ∈ Z such that

AnnZ(Fr/Fi) = AnnZ(Fr/Fi−1) + Cz0.
If z0(Fr) ⊂ Fi−1, we are done. Otherwise z0 has to induce an isomorphism of
Fr/Fr−1 onto the socle of Fi/Fi−1. Any u ∈ AnnU (Fr/Fi−1) annihilates Fr/Fi,
hence can be written by induction in the form u = u1 + u0z0 with

u1 ∈ UAnnZ(Fr/Fi−1), u0 ∈ U.
But we deduce that u0 annihilates the socle M(µ) of Fi/Fi−1, thus u0 = ũ0z̃0 with
z̃0 ∈ ψ and u = u1 + ũ0z̃0z0 ∈ UAnnZ(Fr/Fi−1).

Remarks 3.6. 1. This proof shows that the codimension in Z of the annihilator
AnnZ(TψχM(λ)) is at most r alias the cardinality of the isotropy group Wλ

of λ under the dot-action, Wλ = {w ∈W | w(λ+ ρ) = λ+ ρ}.
2. The lemma and its proof use in fact neither integrality nor regularity. We

just need that ψ lies on less walls than χ.

Let us put ψ̃ = AnnZT
ψ
χM(λ) for any λ ∈ ξ−1(χ). So ψ̃ ⊂ Z depends on χ, but

by Lemma 3.4 it does not depend on the choice of λ ∈ ξ−1(χ).

Lemma 3.7. The translations Tψχ , T
χ
ψ restrict to functors

Tψχ : Uχ-mod → Uψ̃-mod,

T χψ : Uψ̃-mod → Uχ-mod.
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Proof. We only prove the second statement, the proof of the first being analogous
and easier. Note that T χψT

ψ
χM(λ) is just a direct sum of some copies of M(λ), for

every λ ∈ ξ−1(χ). So

N ∈ Uψ̃-mod ⇒ AnnUN ⊃ AnnUT
ψ
χM(λ) = Uψ̃

⇒ AnnUT
χ
ψN ⊃ AnnUT

χ
ψT

ψ
χM(λ) = Uχ

⇒ T χψN ∈ Uχ-mod.

Now if P ∈ Uχ-mod is projective, so is Tψχ P ∈ Uψ̃-mod. Indeed, HomUψ̃
(Tψχ P,N)

= HomUχ(P, T χψN) is exact in N ∈ Uψ̃-mod. So we can continue our equality from
the beginning and get

H i(n, T χψN) = ExtiUχ(Uχ ⊗U(n) C, T χψN)(1)

= ExtiUψ̃ (Tψχ (Uχ ⊗U(n) C), N).(2)

To proceed further, we need

Lemma 3.8. Tψχ (Uχ ⊗U(n) C) is free over Z/ψ̃.

Proof. As explained in [MS95], 2.4, we have an isomorphism

Uχ ⊗U(n) C ∼= U ⊗U(b) (U(h)/U(h)ξ](χ))

since both objects share a universal property. In addition by invariant theory we
find that

U(h)/U(h)ξ](χ) =
⊕

ξ(λ)=χ

U(h)/λ̃

where λ̃ ⊂ U(h) are suitable ideals with radical
√
λ̃ = kerλ ⊂ U(h) and codi-

mension dimC(U(h)/λ̃) = |Wλ| the cardinality of the isotropy group of λ un-
der the dot-action. Let us define for any ideal I ⊂ U(h) the “thick Verma”
M(I) = U(g) ⊗U(b) U(h)/I. Clearly AnnZM(I) = (ξ])−1(I). For any g-module
E we have E ⊗M(I) = U(g) ⊗U(b) (E ⊗ U(h)/I). If E is finite dimensional, its
restriction to b admits a filtration with one-dimensional subquotients kν where ν
runs over the multiset P (E) ⊂ h∗ of weights of E. Thus E ⊗M(I) has a filtration
with subquotients M(I+ν) for ν running over P (E), in obvious notations. In these
terms we find

Uχ ⊗U(n) C =
⊕

ξ(λ)=χ

M(λ̃)

and we deduce
Tψχ (Uχ ⊗U(n) C) =

⊕
ξ(λ)=χ

TψχM(λ̃).

In addition each of the summands has a filtration with subquotients of the form
M(µ̃) for suitable ideals µ̃ ⊂ U(h) of codimension |Wλ| with radical

√
µ̃ ∈ ξ−1(ψ).

Now it is certainly sufficient to show that these “thick Vermas” M(µ̃) are free over

Z/ψ̃. For this, note first that we have ψ̃ ⊂ AnnZM(µ̃) = (ξ])−1(µ̃). Now ψ̃ ⊂ Z
has codimension at most |Wλ| by Remark 3.6 (1) following the proof of Lemma 3.5.
On the other hand (ξ])−1(µ̃) ⊂ Z has the same codimension as µ̃ ⊂ U(h), since ξ
is étale in

√
µ, and this codimension we know already to be |Wλ|. Comparing we

find ψ̃ = (ξ])−1(µ̃). Now it is clear from the isomorphism

M(µ̃) = U(n)⊗ U(h)/µ̃

that this module is free over Z/ψ̃.
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But this lemma means that a resolution of Tψχ (Uχ ⊗U(n) C) by free Uψ̃-modules

stays exact when we apply ⊗ZZ/ψ. So we can go on and write

Hi(n, T χψN) = ExtiUχ(Uχ ⊗U(n) C, T χψN)(1)

= ExtiUψ̃ (Tψχ (Uχ ⊗U(n) C), N)(2)

= ExtiUψ (Tψχ (Uχ ⊗U(n) C)⊗Z Z/ψ,N)(3)

if ψN = 0, as assumed in our theorem. So to finish the proof of the theorem, we
only have to show (in the notations from above):

Proposition 3.9. STψχM(λ) ∼= Tψχ (M(λ̃))⊗Z Z/ψ.

Proof. We first show that the dimensions of (generalized) h-weight spaces on both
sides coincide. Indeed, both sides have a Verma flag with subquotients M(µ) where
µ runs over the set

Λ = {µ ∈ ξ−1(ψ) | T χψM(µ) ∼= M(λ)}.
For the left hand side this is evident, for the right it follows from the existence of a
filtration of TψχM(λ̃) by certain M(µ̃) which appeared in the proof of Lemma 3.8.

So we just have to establish a surjection TψχM(λ̃) � STψχM(λ). Now STψχM(λ) has

a unique simple quotient L, and T χψL is the unique simple quotient L(λ) of M(λ).

But by definition of M(λ̃) we can identify for all M ∈ Uχ-mod our Homg(M(λ̃),M)
with the generalized h-weight space in Mn of weight λ. Since T χψST

ψ
χM(λ) is just

a successive extension of copies of M(λ), this means that the map

Homg(M(λ̃), T χψST
ψ
χM(λ))

↓
Homg(M(λ̃), T χψL)

has to be a surjection, and taking the adjoint we find the surjection TψχM(λ̃) �
STψχM(λ) as needed.

This finishes the proof of the proposition and the theorem.

4. Localization of our problem

Let Z+ ⊂ Z be the annihilator of the trivial representation C of g. By the
famous localization theorem of [BB81], the action of G on its flag variety X in-

duces an isomorphism U/Z+U
∼→ Γ(X,DX) from U/Z+U to the global (algebraic)

differential operators on X , and the functor of global sections

Γ : DX -mod→ U/Z+U -mod

is an equivalence of categories. The inverse functor is denoted ∆ and called “local-
ization”. To apply this theory to our problem we have to understand the localiza-
tion of the objects STψχM(λ) appearing in Theorem 3.2 for ψ = Z+. Recall that
here λ is an integral weight and χ = ξ(λ) its image in MaxZ. Let us abbreviate
Tψχ = Tχ, T χψ = T χ for ψ = Z+. Let us take D = D(λ) ⊂ W as in Theorem

2.1, O = BDB/B, A = A(D) ∈ PB(O) the projective cover of the unique simple
standard object of PB(O) and j : O ↪→ G/B the inclusion.

We will freely use the Riemann-Hilbert correspondence to pass between regular
holonomic D-modules and perverse sheaves. We want to prove
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Proposition 4.1. ∆STχM(λ) ∼= j!A.

Proof. This is a remodeling of the proof of Lemma 10 in [Soe89]. Note first that
j! : PB(O)→ PB(G/B) is a fully faithful exact functor by [BBD82], and it is even
fully faithful on higher Ext, since by e.g. [BGS96], 3.3, these coincide with the Ext
in the derived categories of all D-modules (or all sheaves, in the other picture). For
{Mi | i ∈ I} a collection of objects from some abelian category let 〈Mi | i ∈ I〉
denote the smallest full subcategory closed under kernels, cokernels and extensions
containing the Mi. For x ∈ W let Mx ∈ PB(G/B) denote the localization of the
Verma moduleMx = ∆Mx where we put Mx = M(−xρ− ρ). This is just the dual
standard object Mx = jx!OBxB/B corresponding to the cell jx : BxB/B ↪→ G/B.
It is then clear that we have j!PB(O) = 〈Mx | x ∈ D〉 as subcategories of PB(G/B).

Let y ∈ D be the shortest element. Clearly j!A is the projective cover of My

in 〈Mx | x ∈ D〉. We will be done if we show that TχM(λ) is the projective cover
of My in the subcategory 〈Mx | x ∈ D〉 of O, since under the functor ∆S this
corresponds to the category 〈Mx | x ∈ D〉 considered above.

Now TχM(λ) admits a filtration with its subquotients among the Mx, x ∈ D
(each appearing once), so it already lies in 〈Mx | x ∈ D〉. For any M ∈ 〈Mx | x ∈
D〉 we know that T χM is a direct sum of copies of M(λ), since T χMx

∼= M(λ)
for all x ∈ D, EndM(λ) = C and the M(λ) admit no selfextensions in O. For
M ∈ 〈Mx | x ∈ D〉 we have

[M : My] = dim Hom(M(λ), T χM)
= dim Hom(TχM(λ),M)

since this holds for M = Mx, x ∈ D, and since both sides are additive on short exact
sequences. Thus indeed TχM(λ) is the projective cover of My in 〈Mx | x ∈ D〉 and
the proposition is proved.

Corollary 4.2. A is selfdual.

Proof. This is in fact a corollary of the preceding proof. Let us denote by D the
Verdier duality functor on any variety. It is certainly sufficient to prove j!DA ∼= j!A.
Now clearly the left hand side is the injective hull of My in 〈Mx | x ∈ D〉. So
we should prove the same thing for the right hand side, or equivalently prove that
TχM(λ) is the injective hull of My in the subcategory 〈Mx | x ∈ D〉 of O. But as
before we find for any M ∈ 〈Mx | x ∈ D〉 the equality

[M : My] = dim Hom(T χM,M(λ))
= dim Hom(M,TχM(λ))

and the statement follows.

The proposition allows us to rewrite Theorem 3.2 in a more geometric form.

Corollary 4.3. Let χ ∈ MaxZ be integral, λ ∈ ξ−1(χ) and N a representation of
g such that Z+N = 0. Then

Hn(n, T χN)λ ∼= ExtnD(j!A,∆N).

Here ExtD stands for extensions in the category of all D-modules and A is the
D-module depending on λ considered above.

If N is a discrete series or more generally N = Γ(X, i∗OY ) for i : Y ↪→ G/B the
embedding of a smooth closed subvariety, we can rewrite this still further. First let
us pass to the language of perverse sheaves. Let Y denote the constant sheaf on
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Y . Then the D-module OY corresponds to the perverse sheaf Y [dimY ] and letting
now HomD denote homomorphisms in the derived category of sheaves we find

Hn(n, T χN)λ = HomD(j!A, i∗Y [n+ dimY ])
= HomD(i!Y , j∗A[n− dimY ])
= HomD(Y , i!j∗A[n− dimY ])
= Hn−dimY (Y, i!j∗A)

where we used the selfduality of A (Corollary 4.2) in the second step. For easy
reference, we reformulate our overall findings as

Theorem 4.4. For Y ⊂ G/B an irreducible smooth closed subvariety, χ an integral
central character, λ ∈ ξ−1(χ) and A as above we have

Hn(n, L(Y, χ))λ ∼= Hn−dimY (Y, i!j∗A).

Remark 4.5. In fact this holds more generally for arbitrary affine embeddings i :
Y ↪→ G/B of smooth varieties Y , when we interpret L(Y, χ) = T χΓ(X, i∗OY ).

5. Decomposition by codimension

To better understand the right hand side of Theorem 4.4, we break it into pieces.
Let Y ⊂ X be a closed K-orbit and i : Y ↪→ X the inclusion. By our assumptions
B ∩ K is a Borel in K, each closed K-orbit Y in X is isomorphic to the flag
manifold of K, and each B-orbit in X meets Y in a (B ∩ K)-orbit or not at all.
For x ∈ W let us define cY (x) = c(x) ∈ Z≥0 ∪ {∞} to be the codimension of

Y ∩ BxB/B in BxB/B, resp. ∞ if Y ∩ BxB/B = ∅. We obtain a filtration of Y

by the closed subsets Yc =
⋃
c(x)≤c Y ∩ BxB/B, and it is clear that we have Yc =⋃

c(x)≤c Y ∩BxB/B as well. Consider now the decomposition Yc = Yc−1∪(Yc−Yc−1)

into a closed subset and its open complement. Let ic, jc be the corresponding closed
and open immersions and let ac, resp. uc, denote the embedding of any Yc, resp.
Yc − Yc−1, into Y . For a variety Y let D(Y ) denote the bounded derived category
with algebraically constructible cohomology of sheaves of C-vector spaces on Y an.
Certainly for F ∈ D(Y ) we have distinguished triangles

(ic!i
!
ca

!
cF , a!

cF , jc∗j∗c a!
cF).

If we apply k∗ (where k : Y → pt is the constant map to a point) and rewrite
somewhat the result, we get distinguished triangles

(k∗a!
c−1F , k∗a!

cF , k∗u!
cF)

inD(pt). The point of this section is to prove that in case F = i!j∗A with A = A(D)
as above, all these triangles are in fact split short exact sequences, thus leading to
a direct sum decomposition.

Lemma 5.1. H•i!j∗A =
⊕

c H•u!
ci

!j∗A.

Proof. To see this, we need weights. As is proved in [BGS96], the antidominant
projective A(W) on the whole of G/B admits a mixed structure (in the sense of
mixed Hodge modules, say) such that it admits a filtration where the successive
subquotients are isomorphic to

jz∗BzB/B[l(z)]

with z running over the Weyl group. Here for Z a variety we let Z denote the
constant sheaf with trivial mixed structure. From the geometric constructions in
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[Soe89], Lemmas 8 and 9, we deduce that similarily j∗A admits a mixed structure
with filtrations by subquotients jz∗BzB/B[l(z)] where z runs over D. In general,

if a : Y → Z is a morphism of smooth varieties, then a!Z = Y [−2c](−c) with
c = dimZ − dimY the codimension.

Using base change, we see that for z ∈ D all

Hνu!
ci

!jz∗BzB/B[l(z)]

are pure of weight 2c (or zero). Whence all Hνu!
ci

!j∗A are pure of weight 2c, and
the Lemma follows.

6. Investigation of some spectral sequences

To investigate the pieces H•u!
ci

!j∗A we begin with some generalities. Let Z be
a variety, and Z = Z−∞ ⊃ . . . ⊃ Zp ⊃ Zp+1 ⊃ . . . ⊃ Zn = ∅ a (finite) filtration
by closed subvarieties. Let ip : Zp − Zp+1 ↪→ Z denote the inclusion. Let F be a
complex of sheaves on Z. As explained in [BGS96], 3.4, the hypercohomology HnF
is the limit of a spectral sequence with E1-term Ep,q1 = Hp+qi!pF . Its differential

Ep,q1 → Ep+1,q
1 can be described as follows: Consider the decomposition of Zp−Zp+2

into an open and a closed subset

Zp − Zp+1
u
↪→ Zp − Zp+2

a←↩ Zp+1 − Zp+2

and let j : Zp − Zp+2 ↪→ Z be the inclusion. Then we have a distinguished tri-
angle (a!a

!j!F , j!F , u∗u∗j!F) = (a∗i!p+1F , j!F , u∗i!pF) giving rise to boundaries

Hni!pF → Hn+1i!p+1F which are the boundaries of our spectral sequence.
Now we go to a much more special situation. Namely Z should admit a strat-

ification by affine spaces Zv ∼= Al(v), v ∈ I for I some index set such that Zp =⋃
l(v)≤−p Zv. We suppose furthermore that F is actually a perverse sheaf and ad-

mits a filtration with subquotients isomorphic to the standard objects jv∗Zv[l(v)]
where jv : Zv ↪→ Z is the inclusion. To simplify the exposition let us assume in
addition that each standard module occurs at most once as a subquotient of F ,
and let V ⊂ I be the parameters of those standard modules which actually occur.
By rearranging our filtration if necessary, we can find a filtration

F = F−∞ ⊃ . . . ⊃ F0 ⊃ F1 = 0

such that Fp/Fp+1 =
⊕

l(v)=−pNv where each Nv is isomorphic to jv∗Zv[l(v)].
Note that since between different standard objects with same l(v) there are no
nonzero homomorphisms, the Nv are well defined as subobjects of Fp/Fp+1. There
is however no canonical isomorphism between Nv and jv∗Zv[l(v)].

The object F determines for every v, w ∈ V with l(v) = l(w) + 1 an extension
of perverse sheaves ew,v(F) ∈ HomD(Nv,Nw[1]), namely the extension “realized”
in the short exact sequence Fp+1/Fp+2 ↪→ Fp/Fp+2 → Fp/Fp+1. Let us get back
to our spectral sequence. Note that

i!pF = i!p(Fp/Fp+1) =
⊕

l(v)=−p
i!pNv.

Now Hni!pNv = HnNv is one-dimensional if n = l(v), and zero else. Thus Hp+qi!pF
= 0 for q 6= 0, whereas Hpi!pF =

⊕
l(v)=−p HpNv. So our spectral sequence lives
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just on one line and therefore degenerates at the E2-stage. Furthermore we see that
its differential ⊕

l(v)=−p
HpNv →

⊕
l(w)=−p−1

Hp+1Nw

is just given by the matrix ew,v(F) defined above.

7. Restricting the spectral sequence

In addition to the assumptions of the previous section suppose now we are given
a locally closed subvariety u : U ↪→ Z (think of U = Yc − Yc−1) such that the
nonempty intersections Uv = Zv ∩ U form a stratification of U by affine spaces
Uv = Al(v)−c for some fixed c ≥ 0. We let J = {v ∈ I | Zv ∩ U 6= ∅} be the subset
of I parametrizing this stratification of U , and let ̂v : Uv ↪→ U be the inclusion of
the strata. Then by base change

u!jv∗Zv[l(v)] =

{
̂v∗Uv[l(v)− 2c](−c) if U ∩ Zv 6= ∅;
0 else.

In particular, if F is as before a perverse sheaf on Z which can be written as a
successive extension of standard objects Nv with v ∈ V , then u!F [c] is a perverse
sheaf on U and a successive extension of the standard objects u!Nv with v ∈ V ∩J .
Furthermore HpNv = Hp+cu!Nv[c](c) canonically for v ∈ V ∩J . Indeed any choice of
an isomorphism Nv ∼= jv∗Zv leads to an identification of both sides with C, and the
composition of these two identifications is independent of the chosen isomorphism.
The problem now is to determine for v, w ∈ V ∩ J with l(v) = −p, l(w) = −p− 1
the factor aw,v ∈ C such that the diagram

HpNv −→ Hp+1Nw
‖ ‖

Hp+cu!Nv[c](c) −→ Hp+1+cu!Nw[c](c)

commutes when we take as the upper horizontal ew,v(F) and as the lower one
aw,vew,v(u

!F [c]). I want to explain why aw,v is one, if U is in a suitable sense
transversal to the stratification on Z. More precisely we need

Proposition 7.1. Let v, w ∈ V ∩ J be given with l(v) = l(w) + 1. Suppose that
Zv,w := Zv ∪ Zw and Uv,w := Uv ∪ Uw are open smooth subvarieties of Zv and Uv
respectively. Suppose further that Zw and Uv,w meet transversally in some point
x ∈ Uw, i.e. TxUw = TxZw ∩ TxUv,w. Then aw,v = 1.

Remark 7.2. Since the codimension of TxUw in TxUv,w is one, the transversality
condition could as well be written TxUv,w 6⊂ TxZw.

Proof. Take E = {z ∈ C | |z| < 1}. It is possible to find a holomorphic embedding
d : E ↪→ Uv,w such that d(0) = x and that the image of T0E and TxUw together span
TxUv,w; in words, the image of E in Uv,w is transversal to Uw. By our assumptions
on the geometry the composition E ↪→ Uv,w ↪→ Zv,w has analogously an image in
Zv,w which is transversal to Zw. We will also denote by d the composition E ↪→
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Uv,w ↪→ U . Put p = −l(v) and q = −p− 1. Then I claim a commutative diagram

HpNv ew,v(F)−→ Hp+1Nw
‖ ‖

H−1d!u!Nv[q](q) ew,v(d
!u!F [q])−→ H0d!u!Nw[q](q)

‖ ‖
Hp+cu!Nv[c](c) ew,v(u

!F [c])−→ Hp+c+1u!Nw[c](c)

where all four vertical equalities are analogs of our previous canonical isomorphism
in an analytic situation, and the composition of two vertical equalities is just exactly
our previous canonical isomorphism. To check the commutativity of both little
squares, then, is work in local coordinates, and commutativity of the big square is
just our claim. I have good reasons to leave the details to the reader.

8. Proof of the main result

In the first sections we transformed the problem of computing the n-cohomology
of limits of discrete series representations into the geometric problem of computing
the hypercohomology groups H•(u!

ci
!j∗A) for A = A(D) as in Proposition 4.1. Now

we attack this problem with the methods developed in the two preceding sections.
Let us first have a look at the spectral sequence computing H•(j∗A). Note that

j∗A is an object as the F considered in Section 6, with corresponding Nx for x ∈ D.
I claim that for x, y ∈ D with x < y and l(y) = l(x) + 1, the induced map ex,y =

ex,y(j∗A) from H−l(y)Ny to H−l(x)Nx does not vanish. Indeed, consider the locally
closed subset V = ByB/B ∪BxB/B of the flag manifold and let a : V → G/B be
the inclusion. Since Schubert varieties are normal (see e.g. [Jan83] II, 14.15), our
V is smooth. Then a!V [l(y)] is just the cokernel of the inclusion of the !-standard
objects corresponding to the Bruhat cells of x and y, thus

0 = HomD(a!V [l(y)], j∗A)
= H−l(y)a!j∗A.

On the other hand, if we try to compute the hypercohomology of a!j∗A by restrict-
ing the spectral sequence as in Section 7, we find that it is the cohomology of the
complex

. . . 0 −→ H−l(y)Ny ex,y−→ H−l(x)Nx −→ 0 . . .

and hence ex,y 6= 0.
Furthermore it is clear that for every small square (x; y, w; z) from D we have

ex,y ◦ ey,z = −ex,w ◦ ew,z as maps from H−l(z)Nz to H−l(x)Nx, since the square
of the differential of our spectral sequence computing the hypercohomology of j∗A
has to vanish. These two properties already determine our spectral sequence up to
isomorphism. In fact, we have more generally

Lemma 8.1. Let (W ,S) be a finite crystallographic Coxeter group, l : W → N
its length function. Let W(i) = {x ∈ W | l(x) = i} and let CW(i) be the free
vector space with basis W(i) over C. Suppose we are given for any x < y with
l(y) = l(x) + 1 a constant ex,y ∈ C× such that ex,yey,w = −ex,zez,w for every small
square (x; y, z;w) from W.

Then the matrix of all ey,x determines a differential on the graded space
⊕

CW(i)
making it into a complex, and any other choice of constants e′y,x leads to an iso-
morphic complex.
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Proof. I am quite unhappy to know only a silly overkill proof of this purely combi-
natorial result. However, one can argue as follows:

Any choice of ey,x determines a differential for a BGG-resolution of the trivial
one-dimensional g-module

. . .→ C1 → C0 → C
with Ci =

⊕
x∈W(i)M(x · 0). But any two such resolutions are isomorphic to a

canonical one, where the Ci are rather given inductively as sums of Verma modules
with highest weight spaces certain one-dimensional weight spaces of ker(Ci−1 →
Ci−2).

Now an isomorphism between the complexes coming from the ey,x and certain
other e′y,x is necessarily given by scalars ax ∈ C× on M(x · 0). These scalars then
give the isomorphisms of complexes claimed by the Lemma.

Now we restrict the spectral sequence calculating H•(j∗A) via u!
ci

!. We want to
apply Proposition 7.1 and have to show some transversality ofK-orbits with respect
to the stratification by Bruhat cells. For v ∈ W let Xv = BvB/B denote the
corresponding Bruhat cell. If w ∈W is given such that v > w and l(v) = l(w) + 1,
then Xv,w := Xv ∪ Xw is open smooth in Xv, as follows from the normality of
Schubert varieties. If U = Yc − Yc−1 meets both Xv and Xw, the intersections
Uv = U ∩Xv and Uw = U ∩Xw are again neighbouring Bruhat cells in Y (which is
isomorphic to the flag variety of K), whence Uv,w = Uv ∪ Uw is also open smooth

in Uv. So to apply Proposition 7.1 to our situation we just need

Lemma 8.2. TxUv,w is not contained in TxXw, for some x ∈ Uw.

Proof. Certainly TxUv,w lies in TxY , so it will be sufficient to show TxXw ∩ TxY =
TxUw. Here Xw, Y and Uw are respectively the orbit of x under B,K and B ∩K.
We may choose x as the fixed point of our maximal torus T which lies in B and
K. Then the isotropy group Gx of x in G is also a Borel subgroup above T . We
can identify Tx(G/B) = LieG/LieGx and our tangent spaces above become just
the images of LieB, LieK and Lie(B ∩ K) = LieB ∩ LieK under the projection
LieG � LieG/LieGx. We can thus check the equality TxXw ∩ TxY = TxUw root
space by root space, and the Lemma is proven.

We now prove the main Theorem 2.1.

Proof. We have

Hn(n, L(Y, χ))λ = Hn−dimY (Y, i!j∗A) by Theorem 4.4,
=
⊕

c Hn−dimY−c(u!
ci

!j∗A[c]) by Lemma 5.1,

and the spectral sequence computing Hn(u!
ci

!j∗A[c]) is just the complex
Cc−nV(A,D, c) by the last three sections.
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