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MINIMAL REPRESENTATIONS OF EXCEPTIONAL p-ADIC

GROUPS

KARL E. RUMELHART

Let F be a p-adic field. By assumption, F has characteristic zero. Let G be the
F -rational points of a connected reductive F -group, and π an irreducible complex
representation of G. In a sufficiently small neighborhood of the identity, the char-
acter of π may be viewed as a distribution on g, the Lie algebra of G. A result of
Harish-Chandra states that this distribution has the form

f 7→
∑
O
cO
∫
f̂µO,

where O runs over the nilpotent coadjoint orbits in g∗, µO is a suitably normalized

G-invariant measure on O, and f̂ is the Fourier transform of f . Let Omin be a
minimal non-trivial coadjoint orbit. Then π is said to be a minimal representation
if cO = 0 whenever O 6⊂ Omin.

Through the work of Kazhdan and Savin, minimal representations are known
to exist when G is a split exceptional group of type E6, E7, E8, or G2; in the
case of G2, the representation actually lives on the three-fold cover of G. In this
paper, I construct minimal representations for all other exceptional groups (not
assumed split) over a p-adic field; in the case of F4, the representation lives on
the two-fold cover. Our approach, which is similar to that of Kazhdan and Savin,
may be summarized as follows. The group G has a maximal parabolic subgroup,
P , whose unipotent radical, U , is a Heisenberg group. Using Weil’s well-known
theory, a Heisenberg representation, π̂Ψ, of U can be extended to P ◦ = [P, P ], or

sometimes to a double cover. Let π = IndPP◦ π̂Ψ. The main task is to extend this
representation to all of G. This can be done without great difficulty, except that
we need to check a braid relation between a certain unitary geometric operator and
the Fourier transform. This relation is especially non-trivial for groups of rank two.

Although we confine ourselves to the p-adic case, it would be easy to adapt the
arguments to the real case. In particular, this could be done for the rank four form
of E8. On the other hand, minimal representations have been studied substantially
in the real case by other methods. See especially the recent work of Gross-Wallach
and Brylinski-Kostant ([G-W] and [B-K] among others).

Let me describe the contents of this paper in somewhat greater detail. In the first
section, which is of independent interest, we present a construction of Lie algebras
in terms of rank three, central, simple Jordan algebras. In fact, we construct
all Lie algebras in Freudenthal’s “magic square”. The method, which follows a
suggestion of G. Savin, is different from the standard construction (“Tits second
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construction”), and is particularly well suited to studying exceptional p-adic groups
because it gives all forms of the exceptional Lie algebras over a p-adic field. We
have also included results on some dual pairs in these algebras. Further results on
Jordan algebras, Lie algebras and dual pairs are contained in the appendix.

In section 2, we turn to the structure of exceptional p-adic groups. In particular,
we give a lot of detail about the structure of the Heisenberg parabolic. We can
say more when the Jordan algebra is reduced and hence G has rank greater than
two. In section 3 we actually construct the minimal representation π. As indicated
above, the crucial point is to check a certain braid relation. When G has rank
larger than two this may be done directly. However, if G is the rank two form of
E6, we must appeal to global techniques following an idea of Kazhdan. Also, we
treat separately the case G of type F4 since we are working on the double cover.

Finally, in section 4 we prove that the representations π are minimal. The
method is similar to the one used by Savin in the split case, which itself is based
on a remark of Kazhdan. The first step is to study the character of π restricted
to a Borel subgroup. For this we can appeal to Howe’s Kirillov theory for solvable
p-adic groups. Since we do not assume that G is quasi-split, this does not make
sense for us. Instead, we study the character of π restricted to P and directly prove
the results that we need.

Concurrent with this work, and with a somewhat different approach, Torasso
[To] has proved that minimal representations exist for groups of rank larger than
two.
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1. Exceptional Lie algebras

In this section we construct all forms of the exceptional Lie algebras over a p-adic
field F . The starting point is a degree three Jordan algebra over F . The construc-
tion also works for other fields of characteristic not two or three (in particular, for
Archimedean and global fields), but in general we do not get all forms.

1.1. Facts about Jordan algebras. Let J be a degree three central simple Jor-
dan algebra over F . If A,B ∈ J , we will denote the Jordan multiplication by
A.B ∈ J . Recall that the Jordan product is commutative but not associative. It
does satisfy

(A.A).(B.A) = ((A.A).B).A,(1)

and is power associative. For any power-associative algebra, Jacobson has shown
that there exists a “generic minimal polynomial”. In our case, given A ∈ J , we get
the polynomial

PA(x) = x3 − t(A)x2 +R(A)x− n(A)I.

Here t(A) and n(A) are called the (generic) trace and norm, respectively,

R(A) =
1

2
[t(A)2 − t(A.A)],

and I is the identity element in J . It is a fact that n(I) = 1 and t(I) = 3.
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The form t(A2) is homogeneous of degree 2. We denote the corresponding sym-
metric bilinear form with 〈A,B〉. That is,

〈A,B〉 = t(A.B).

The form n(A) is homogeneous of degree 3, and we denote the corresponding sym-
metric trilinear form with 〈A,B,C〉. We have 〈A,A,A〉 = n(A). Finally, R(A)
is a homogeneous form of degree 2. Polarizing gives a symmetric bilinear form,
R(A,B). Written out,

R(A,B) =
1

2
[t(A)t(B) − t(A.B)].

One of the main properties of the generic minimal polynomial is that PA(A) = 0.
We will rewrite this in another form. First, let

A×A = A.A− t(A)A +R(A)I.

Then, PA(A) = 0 is the same as

(A×A).A = n(A)I.

(The element A × A is the analog of the transpose of the matrix of cofactors in
matrix algebra.) Polarizing A × A gives a symmetric bilinear map J × J → J ,
denoted A×B. Written out,

A×B = A.B − S(A,B) +R(A,B)I(2)

where

S(A,B) = 1/2[t(B)A+ t(A)B].

Note that t(A×B) = R(A,B).
It is also useful to polarize the expression (A×A).A = n(A)I. We get

(A×B).C + (B × C).A + (C ×A).B = 3〈A,B,C〉I.(3)

For a proof of the following lemma see [J].

Lemma 1. Let [A,B,C] = (A.B).C −A.(B.C). Then t([A,B,C]) = 0.

Lemma 2. 〈A × B,C〉 = 3〈A,B,C〉. In particular, 〈A × B,C〉 = 〈B × C,A〉 =
〈C ×A,B〉.
Proof. Using the expression for A×B and Lemma 1, it follows that that 〈A×B,C〉
is symmetric. Now apply formula (3).

The main task of this section is to compute (A×B)× C.

Proposition 3.

2(A×B)× C = (A.B).C − (B.C).A − (C.A).B + 1/2[〈B,C〉A+ 〈A,C〉B].

(4)

Proof. Applying formula (2) twice gives

2(A×B)× C

= 2(A.B).C − 2S(A,B).C + 2R(A,B)C − 2S(A×B,C) + 2R(A×B,C)I.
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Using Lemma 2, 2R(A×B,C) = R(A,B)t(C)I−3〈A,B,C〉. Also, 2S(A×B,C) =
(A.B)t(C) − S(A,B)t(C) +R(A,B)t(C) +R(A,B)C. Thus,

2(A×B)× C = 2(A.B).C − 2S(A,B).C +R(A,B)C − (A.B)t(C)

+ S(A,B)t(C) − 3〈A,B,C〉.
On the other hand, let us polarize the expression PA(A) = 0. We get

(A.B).C + (B.C).A + (C.A).B = t(A)B.C + t(B)A.C + t(C)A.B

−R(A,B)C −R(B,C)A−R(C,A)B + 3〈A,B,C〉.
Adding these expressions, we get

2(A×B)× C

=(A.B).C − (B.C).A − (C.A).B + S(A,B)t(C) −R(B,C)A−R(C,A)B

=(A.B).C − (B.C).A − (C.A).B + 1/2〈A,C〉B + 1/2〈B,C〉A.

1.2. Norm-preserving automorphisms. Let J be as in section 1.1, and let M
be the Lie algebra of linear maps J → J which preserve the norm up to a constant.
That is, let M be the set of all linear maps m : J → J for which there exists a
constant γm so that

〈mA,B,C〉+ 〈A,mB,C〉 + 〈A,B,mC〉 = γm〈A,B,C〉
for all A,B,C ∈ J . Let M0 = {m ∈ M|γm = 0}. Then M0 is itself a Lie algebra
and, in fact, M0 is an ideal in M. Furthermore, M0 is simple. For example, if J is
an exceptional Jordan algebra, then M0 is of type E6.

Since the trace form is non-degenerate, given m ∈ M, there is another element
m′ ∈ M, which is characterized by

〈mA,B〉+ 〈A,m′B〉 = 0.

Clearly, (m′)′ = m. The map m 7→ m′ is analogous to the negative conjugate
transpose (Cartan involution) in matrix algebra. Clearly, we can write M = M(S)⊕
M(A) where M(S) are the symmetric elements, characterized by m + m′ = 0, and
M(A) are the anti-symmetric elements characterized by m − m′ = 0. In the same
way, we can split M0 into symmetric and anti-symmetric pieces. It is easy to check

that M
(A)
0 = M(A) but M

(S)
0 ( M(S). Furthermore, M(A) is a sub-Lie algebra. In

case J is exceptional, it is of type F4.

Proposition 4. Let m ∈ M0, A,B ∈ J . Then

m(A×B) = m′A×B +A×m′B.(5)

Proof. Pick C ∈ J . Then 〈m(A × B), C〉 = −〈A,B,m′C〉. Since m′ ∈ M0, we get
that

〈m(A×B), C〉 =〈m′A,B,C〉+ 〈A,m′B,C〉
=〈(m′A×B), C〉+ 〈(A×m′B), C〉.

Since C was arbitrary, the proposition follows.



MINIMAL REPRESENTATIONS OF EXCEPTIONAL p-ADIC GROUPS 137

In addition to considering norm-preserving automorphisms, there are two other
standard ways of associating Lie algebras to Jordan algebras. First, there is the
space of derivations of the Jordan algebra, and second, there is the Lie algebra
generated by the transformations LA : J → J for all A ∈ J , where LA is given
by LA(B) = A.B. For the particular Jordan algebras that we are considering, all
three essentially coincide. Nevertheless, it is sometimes useful to work in various
realizations so we briefly sketch the situation.

Let L be the Lie algebra generated by the LA. Let L(A,B) = [LA, LB]. Then it
turns out that

[L(A,B), LC ] = L[B,C,A](6)

(see [J] and Lemma 1). In particular, L = ΣLA ⊕ ΣL(B,C), and D = ΣL(B,C)
forms a sub-Lie algebra. Furthermore, it can be checked that elements of D are
derivations of J , the so-called inner derivations. For our Jordan algebras, all deriva-
tions are inner. Finally, Lemma 1 says that t([A,B,C]) = 0 for all A,B,C ∈ J .
Thus, we can form a sub-Lie algebra of L by taking L0 = ΣLA⊕D where t(A) = 0.

We have the following identifications: M = L, M0 = L0, M(A) = D, M(S) =

ΣLA, and M
(S)
0 = ΣLA with t(A) = 0.

Remark. These identifications imply that L(A,B)′ = L(A,B) and L′A = −LA.

We conclude this section with two formulas that we will need. The first can be
proved directly from the defining relation for Jordan algebras (equation (1)).

L(A.B,C) + L(B.C,A) + L(C.A,B) = 0.(7)

The next formula follows easily from (2) and (7):

L(A×B,C) + L(B × C,A) + L(C ×A,B) = 0.(8)

1.3. Lie algebras containing Jordan algebras. We begin with a standard con-
struction (see [Ko]). Let J ,M be as before. By definition, M acts on J . Let J ′

be the dual representation. We have a Jordan algebra isomorphism i : J ′ → J ,
which satisfies m(i(Γ)) = i(m′Γ). Set h = M⊕J ⊕J ′. We will define a Lie algebra
structure on h. The structure on M is given and the action of M on J ⊕ J ′ is as
above. We declare that the bracket of any two elements of J (or of J ′) is zero.
Finally, if A ∈ J and Γ ∈ J ′, then [A,Γ] = −A2i(Γ), where

A2B = LA.B + L(A,B) ∈ M(9)

for any A,B ∈ J . To check that h is a Lie algebra, we need only check the Jacobi
identity:

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

By linearity, we only have to check the cases when x, y, z are elements of M, J or
J ′. If x, y, z ∈ M, it is already known. If two of them are in M then it is just an
expression of the fact that J ⊕ J ′ is a Lie algebra representation of M. It is now
easy to reduce to the cases x, z ∈ J , y ∈ J ′ and x ∈ M, y ∈ J ′ and z ∈ J . These
amount to the two formulas:

(A2B)(C) − (C2B)(A) = 0

and

[A2B,m] + (A2m′(B)) + (m(A)2B) = 0.(10)
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The first is easy. For the second formula, consider separately the cases m a deriva-
tion and m = LC for C ∈ J . For derivations we can use the fact that m′ = m and
the definition of derivation. For m = LC it is a consequence of (7) and (6).

Remark. It is a well-known fact that h is actually a simple Lie algebra; see [J] or
[Ko].

Next, we give a similar but slightly more complicated construction of a Lie
algebra (cf. [F]). Let J and M0 be as before, and let V be the standard three
dimensional representation of sl(3). We will use the notation g0 = sl(3)⊕M0 and
write (l; m) for a typical element. Then V ⊗J is in a natural way a representation
of g0. Let (V ⊗ J )′ be the dual representation. Set

g = g0 ⊕ (V ⊗ J )⊕ (V ⊗ J )′.(11)

We will define a Lie algebra structure on g. The structure on g0 and the action of
g0 on (V ⊗ J ) ⊕ (V ⊗ J )′ is the given one. We will freely identify

∧2
V with V ′

and
∧2 V ′ with V . Note that if v, w ∈ V and φ ∈ V ′, then

(v ∧ w) ∧ φ = φ(v)w − φ(w)v ∈ V.
Also, define v4φ ∈ sl(3) by

(v4φ)(w) = 3φ(w)v − φ(v)w(12)

for all w ∈ V .
Now we define the remaining brackets. In what follows, we will use lower case

Roman letters for elements of V , lower case Greek letters for elements of V ′, upper
case Roman letters for elements of J and upper case Greek letters for elements
of J ′. We will also abuse notation by identifying elements of J and J ′ where
convenient. Thus we write A2Γ instead of A2i(Γ) etc. The meaning will be clear
from the context. The brackets are:

[v ⊗A,w ⊗B] = −2(v ∧ w)⊗ (A×B) ∈ (V ⊗ J )′(13)

[φ⊗ Γ, ψ ⊗ Λ] = 2(φ ∧ ψ)⊗ (Γ× Λ) ∈ V ⊗ J(14)

[v ⊗A, φ⊗ Γ] =

( 〈A,Γ〉
3

v4φ; 2φ(v)(A2Γ − 〈A,Γ〉/3LI)
)
∈ g0.(15)

Remark. In general, A2Γ 6∈ M0; the correction −〈A,Γ〉/3LI is precisely what is
needed.

It remains to verify the Jacobi identity for triples of elements of g. If at least
two of them are in g0, this is clear. Next, suppose that one element is in g0, one is
in V ⊗ J and one is in (V ⊗ J )′. We must show that

[[v ⊗A, φ ⊗ Γ], (l,m)] + [[φ⊗ Γ, (l,m)], v ⊗A] + [[(l,m), v ⊗A], φ⊗ Γ] = 0.

The first term is:

(
〈A,Γ〉

3
[v4φ, l]; 2φ(v)[A2Γ − 〈A,Γ〉/3LI ,m]).

The second term is

[v ⊗A, l′(φ) ⊗ Γ + φ⊗m′(Γ)] = (
〈A,Γ〉

3
v4l′(φ); 2l′(φ)(v)(A2Γ − 〈A,Γ〉/3LI))

+ (
〈A,m′(Γ)〉

3
v4φ; 2φ(v)(A2m′(Γ)− 〈A,m′(Γ)〉/3LI)).
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The third term is

[l(v)⊗A+ v ⊗m(A), φ⊗ Γ] = (
〈A,Γ〉

3
l(v)4φ; 2φ(l(v))(A2Γ − 〈A,Γ〉/3LI))

+ (
〈m(A),Γ〉

3
v4φ; 2φ(v)(m(A)2Γ − 〈m(A),Γ〉/3LI)).

Thus the sum of the second and third terms is

(
〈A,Γ〉

3
(v4l′(φ) + l(v)4φ); 2φ(v)(A2m′(Γ) + m(A)2Γ)).

We see that the Jacobi identity in this case follows from equation (10) and

[v4φ, l] + (v4l′(φ)) + (l(v)4φ) = 0

which is easy.
Now let us take one element of g0 and two of V ⊗J (two of (V ⊗J )′ is similar).

This case is fairly simple and quickly reduces to the formulas

m′(A×B) = m(A)×B +A×m(B)

and

l′(v ∧ w) = v ∧ l(w) + l(v) ∧ w.
The first is just a restatement of equation (5), and the second is just the fact that
elements of sl(3) have trace zero.

The next case is two elements from V ⊗ J and one from (V ⊗ J )′ (one from
V ⊗ J and two from (V ⊗ J )′ is similar). We must show

[[v ⊗A,w ⊗B], φ⊗ Γ] + [[w ⊗B, φ⊗ Γ], v ⊗A] + [[φ⊗ Γ, v ⊗A], w ⊗B] = 0.

The first term is −4(φ(v)w − φ(w)v) ⊗ ((A×B)× Γ). Using equation (4), this is

−(φ(v)w − φ(w)v) ⊗ (〈B,Γ〉A + 〈A,Γ〉B + 2((A.B).Γ− (B.Γ).A − (Γ.A).B)).

The second term is

〈B,Γ〉
3

(3φ(v)w − φ(w)v) ⊗A

+ v ⊗ 2φ(w)((B.Γ).A +B.(Γ.A)− Γ.(B.A) − 〈B,Γ〉
3

A)

and the third term is

− 〈A,Γ〉
3

(3φ(w)v − φ(v)w) ⊗B

− w ⊗ 2φ(v)((A.Γ).B +A.(Γ.B) − Γ.(B.A)− 〈A,Γ〉
3

B).

The sum is clearly zero.
Finally, suppose that all three elements are in V ⊗ J ((V ⊗ J )′ is similar), the

Jacobi identity quickly reduces to the following two formulas:

u4(v ∧ w) + w4(u ∧ v) + v4(w ∧ u) = 0

and

C2(A×B) +A2(B × C) +B2(C ×A) = 3〈A,B,C〉LI .
The first one is routine; the second follows from equations (8) and (3).

Theorem 5. g is a simple Lie algebra.
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Proof. The only thing that remains to be checked is the simplicity. Suppose that
a ⊂ g is a non-zero ideal. In particular, a is a representation of g0. But as a g0-
module, g is the direct sum of four irreducible representations: sl(3), M0, (V ⊗J )′

and V ⊗J . Thus, a contains at least one of these spaces. However, it is clear from
the formulas that an ideal containing an element from any of these must contain
elements in all of them. It follows that a = g.

1.4. Dual pairs. Recall that if a and b are sub-Lie algebras of a Lie algebra c,
then a and b are said to form a dual pair if they are mutual centralizers, that is, if
the centralizer of a in c is b, and the centralizer of b in c is a. In this section, we
will identify certain dual pairs in simple Lie algebras g from Theorem 5. Also, we
will identify these Lie algebras as those in the final column of Freudenthal’s magic
square.

We begin by defining some sub-Lie algebras of g.
Let g2 ⊂ g be the Lie algebra generated by sl(3), V ⊗ I and V ′⊗ I. This is a Lie

algebra of type G2. Pick a basis of simple roots for g2, say α long and β short. We
assume that the embedding Sα : sl(2) → g2 corresponding to α is given by

Sα :

(
a b
c d

)
7→
a b 0
c d 0
0 0 0

 ∈ sl(3) ⊂ g2.

It is easy to see that we can choose the map Sβ : sl(2) → g2 to satisfy

Sβ :

(
a 0
0 −a

)
7→
−a 2a

−a

 ⊂ sl(3).

We now choose an embedding of h into g. There are many natural choices
corresponding to different J ⊂ V ⊗ J . Let v2 = (0, 1, 0) ∈ V . Then we take h ⊂ g
to be generated by M0, v2 ⊗ J and v′2 ⊗ J . It is not difficult to check that with
this choice, the image of the map Sβ : sl(2) → g2 ⊂ g, lies in h. In fact, the Lie
algebra M ⊂ h ⊂ g is the direct sum of M0 and the abelian Lie algebra of matrices

aβ =


−a 2a

−a

 ⊂ sl(3).

For future use, let us make two remarks. First, we note explicitly that h∩sl(3) =
aβ. Second, since M = M0 ⊕ aβ, there is an augmentation, d, on M given by
d : (m0, diag(−a, 2a,−a)) 7→ 3a, for m0 ∈ M0. A more invariant definition is as
follows. Let

X(t) =

0 t 0
0 0 0
0 0 0

 ∈ sl(3).

Then

[X(t),m] = X(d(m)t).

Obviously, M0 = ker(d).
It is now easy to identify the dual pairs.
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g2
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"
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bb

Figure 1. Dual Pairs.

Proposition 6. The following dual pairs exist in g: (sl(3),M0), (g2,M
(A)
0 ), and

(sl(2), h) where this

sl(2) =


a 0 b

0 0 0
c 0 −a

 ⊂ g.

Remark. It is convenient to express this proposition with the “see-saw” formalism
as in Figure 1.

Proposition 7. For each degree three simple Jordan algebra, J , there is a sequence
of simple Lie algebras,

M
(A)
0 ⊂ M0 ⊂ h ⊂ g

whose types correspond to a row of Freudenthal’s magic square. We get the first,
second, third, and fourth rows when the dimension of J is 6, 9, 15, or 27, respec-
tively. Furthermore, in the p-adic case, as J runs through the degree three central
simple algebras, g runs through all forms of the algebras in the final column of the
magic square.

Proof. The only things that are not standard are the statements relating to g.
By counting dimensions, it is clear that we get forms of F4, E7 and E8 when the
dimension of J is 6, 15 or 27. By a dimension count alone we can’t tell whether g
is a form of E6, B6 or C6 when dimJ = 9. However, we have shown that in this
case g has a dual pair of the form (A2 +A2, A2) and it is well-known that B6 and
C6 can’t have dual pairs of this form. Thus, we get E6.

That we get all forms of the exceptional algebras (in the p-adic case) follows by
simply counting and referring to the tables in [T2]. Indeed, it is enough to take J
to be either the Jordan algebra associated to a nine-dimensional division algebra,
or else the Jordan algebra of 3×3 hermitian matrices over a composition algebra. It
is easy to see that the g’s we obtain are distinct and by [T2] this is all of them.

Remarks. (1) In the real case, we do not get all forms in this way. In particular,
we do not get the compact forms.

(2) There exist other degree three central simple Jordan algebras besides those
mentioned in the proof. However, if J is reduced (see section 2.5) there exists a
diagonal matrix, Γ, with entries in F , so that J is the set of three by three matrices
over the composition algebra which satisfy x = Γx̄′Γ−1. (See [Sch].)
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A1 A2 C3 F4

A2 A2 +A2 A5 E6

C3 A5 D6 E7

F4 E6 E7 E8

Figure 2. Freudenthal’s Magic Square.

(3) By dropping the requirement that J be central simple, we can construct
many other Lie algebras including G2 and 3D4. See the appendix.

2. The group G

2.1. Generalities and notations. We now begin the study of certain algebraic
groups. They will be defined over a fixed p-adic field F , although, as in section
1, most of the results are also valid over Archimedean or global fields. We will
abuse notation and write G both for an algebraic group defined over F and for the
F -points of that group. Throughout the discussion we fix J , a rank three central
simple Jordan algebra over F .

In the last chapter, we associated to J four Lie algebras,

M
(A)
0 ⊂ M0 ⊂ h ⊂ g.

Let M
(A)
0 ,M0, H and G be the corresponding simply connected groups (except that

in the case dimJ = 6 we take M
(A)
0 to be the adjoint group). Recall that

g = sl(3)⊕M0 ⊕ (V ⊗ J )⊕ (V ⊗ J )′,

and the Lie algebra g2 satisfies

sl(3) ⊂ g2 ⊂ g.

Let G2 be the group corresponding to g2.
We will need notations for various subgroups of SL(3) ⊂ G2. Let T be the

diagonal subgroup of SL(3), and set

h(t1, t2) =

t1 0 0
0 t2 0
0 0 t−1

1 t−1
2

 ∈ T ⊂ SL(3).

We write hα(t) = h(t, t−1) and hβ(t) = h(t−1, t2). The corresponding subgroups of
T are hα and hβ . Finally, we write x(r), y(s) and z(t) for the elements1 r 0

0 1 0
0 0 1

 ,

1 0 0
0 1 s
0 0 1

 , and

1 0 t
0 1 0
0 0 1

 ,
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2 3 2 1

3 9 6 3

2 6 4 2

1 3 2 1

Figure 3. Orders of fundamental groups in magic square.

respectively. Often we will abuse notation and write x(t) for the group consisting
of all x(t) etc.

Let v1, v2, v3 be the standard basis of V ; v1 corresponds to (1, 0, 0), v2 corre-
sponds to (0, 1, 0) and v3 corresponds to (0, 0, 1). The dual basis is denoted v′i. On
the Lie algebra level we can write

V ⊗ J = (v1 ⊗ J )⊕ (v2 ⊗ J )⊕ (v3 ⊗ J ) ⊂ g,

and similarly

(V ⊗ J )′ = (v′1 ⊗ J )⊕ (v′2 ⊗ J )⊕ (v′3 ⊗ J ) ⊂ g.

The vi⊗J and v′i⊗J are abelian sub-Lie algebras of g. Denote the corresponding
abelian unipotent subgroups of G by Ei and E′i. Typical elements are written Ei(A)
and E′i(B) for A,B ∈ J . Occasionally, we will write E(v1 ⊗ A) instead of E1(A)
etc.

Finally, let M ⊂ G be the subgroup corresponding to the Lie algebra M, M0 ⊂
M ⊂ g. It is clear that H is generated by M,E2 and E′2 and that hβ ⊂ M .
Corresponding to the augmentation d on M there is a homomorphism d : M → F ∗.
For example, d(hβ(t)) = t3.

The following lemma is immediate.

Lemma 8. T normalizes all of the groups Ei and E′i, i = 1, 2, 3. In fact, if r =
diag(r1, r2, r3) ∈ T , then rEi(A)r−1 = Ei(riA), and rE′i(A)r−1 = E′i(r

−1
i A).

Proposition 9. (1) G2 is generated by SL(3) and the Ei(I) and E′i(I) where I
is the identity in J .

(2) There are inclusions

M
(A)
0 ⊂M0 ⊂ H ⊂ G.

These groups satisfy
(a) H ∩ SL(3) = hβ ⊂M .
(b) M0 ∩ SL(3) = {hβ(µ)|µ3 = 1}.
(c) M

(A)
0 ∩ SL(3) = {1}.

Moreover, ZG = Z
M

(A)
0

; that is, the centers of G and M
(A)
0 coincide.

For the proof of our proposition it will be convenient to record the orders of the
fundamental groups of the the groups in the magic square. This is in Figure 3.

Proof. Statement (1) is clear. Also, because of the Lie algebra inclusions, to prove
the inclusions in (2), we need only prove that we can take the groups to be simply
connected. For this we may work over the algebraic closure. Since the root systems
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of M0 and H are subsets of the root system of G, it is clear that, as G is simply

connected, M0 and H are also simply connected. For M
(A)
0 we argue case by case.

Note that M
(A)
0 is the fixed points of an involution on M . F4 is always simply

connected. We have Sp(6) ↪→ SL(6), SL(3) ↪→ SL(3)× SL(3), SO(3) ↪→ SL(3). So

M
(A)
0 is simply connected unless dimJ = 6 in which case it is adjoint.
It is also clear from the above reasoning that Z

M
(A)
0

⊂ ZM0 . But by proposition 6,

M
(A)
0 centralizes G2. Also, M0 and G2 generate G. This proves that Z

M
(A)
0

⊂ ZG.

Comparing the orders of these groups, we see that Z
M

(A)
0

= ZG.

Next, we establish (a), (b) and (c). Recall from the last chapter that M =
M0⊕aβ and h∩sl(3) = aβ. Thus, both M and H∩SL(3) contain the one-parameter
subgroup corresponding to aβ . But this is exactly hβ. On the other hand, since
H commutes with z(t), H ∩ SL(3) ⊂ hβ. Hence (a). For part (b), we use the fact
that M0 and SL(3) centralize each other. This implies that M0 ∩ SL(3) ⊂ ZSL(3) =

{hβ(t)|t3 = 1}. On the other hand, it is clear that M0 = {m ∈ M |d(m) = 1} ⊃
ZSL(3). This proves (b). Finally, for (c) we have M

(A)
0 ∩ SL(3) ⊂ Z

M
(A)
0

∩ZSL(3) =

ZG ∩ ZSL(3). But by the lemma, this is trivial.

2.2. Parabolic subgroups. Consider the action of the one-parameter subgroup
h(t2, t) on the Lie algebra g on the left. It induces a decomposition

g = g(−)⊕ g(0)⊕ g(+)

where γ ∈ g(i) when h(t2, t)γ = tiγ, and i is zero, positive or negative, respectively.
Let UB be the unipotent subgroup of G corresponding to g(+). Let LB be the
normalizer of UB. Then B = LBUB is a parabolic subgroup of G of corank 2. As
follows immediately from Lemma 8, UB is generated by x(t), y(t), z(t), E1, E2 and
E′3, and LB = TM = hαM . The root system of G relative to B is of type G2; see
Figure 4.
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Let α and β be simple roots for G2 ⊂ G with α long. Then,

sα =

 0 1 0
−1 0 0
0 0 1

 and sβ = E2(I)E′2(−I)E2(I) ∈ G2 ∩H

are representatives for the corresponding generators of the Weyl group of G2. It is
clear that the Weyl group of G is generated by the Weyl group of M together with
the images of sα and sβ .

Let Pα, Pβ ⊂ G be the parabolic subgroups generated by B and sα, sβ , respec-
tively. Write the Levi decompositions as Pα = LαUα and Pβ = LβUβ . These
groups are easily identified. First,

Lα =

∗ ∗ 0
∗ ∗ 0
0 0 ∗

M and Uα = y(t)z(t)E1E2E
′
3.

Also, Lβ = hαH and Uβ = x(t)y(t)z(t)E1E
′
3.

For us, Pβ will be extremely important. To avoid cumbersome notation, we will
usually just write P = LU instead of Pβ = LβUβ, and just s for sβ . We will also
need to consider P ◦ = [P, P ]. Clearly, P ◦ = L◦U where L◦ = [L,L] is semi-simple.
In fact, L◦ = H .

The unipotent group U is a Heisenberg group with center Z = z(t). If we pick
maximal abelian subgroups W = x(t)E1 and W ′ = E′3y(t), then clearly, W , W ′ and
Z generate U . It is well known that U/Z is a symplectic space with form given by
(u1Z, u2Z)U/Z = c if u1u2u

−1
1 u−1

2 = z(c). Furthermore, if we abuse notation and
use W and W ′ also for the images in U/Z, then W and W ′ are maximal isotropic
subspaces. We will sometimes use the notation (t, A,B, u), or (w,w′), for elements
of U/Z.

We need to fix an identification of W ′ with W ∗, the dual of W . If E′3(B)y(u)Z =
w′ ∈W ′ and x(t)E1(A)Z = w ∈W , then let

w′(w) = 〈A,B〉 + tu.

Proposition 10. The symplectic form on U/Z may be written as

((w1, w
′
1), (w2, w

′
2))U/Z = w′2(w1)− w′1(w2).

Proof. It is enough to assume that w′1 = w2 = 0 and consider separately the cases
w1 = x(t), w′2 = y(t) and w1 = E1(A), w′2 = E′3(B). That is, we must show
that x(t)y(s)x(−t)y(−s) = z(st) and E1(A)E′3(B)E1(−A)E′3(−B) = z(〈A,B〉).
The first formula is simple, and the second follows from equation (15) in the last
section.

Consider the right action of L on U . Recall that Z ⊂ U is precisely the subgroup1 0 ∗
0 1 0
0 0 1

 ⊂ SL(3).

Now clearly H acts trivially on Z. (See Proposition 6.) Moreover, since hα(t) =
diag(t, t−1, 1) ∈ SL(3), right conjugation by hα(t) acts as multiplication by t−1 on
Z. This implies that the action of L on U factors to a map p : L → GSp(U/Z).
Moreover, the image of H is in Sp(U/Z). Now consider a Heisenberg representation
of U . By the work of Weil, it extends to a representation of the semi-direct product
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Mp(U/Z) nU . Our idea is to show that, when dimJ is odd, the metaplectic cover
is split over p(H) and thus we obtain a representation of P ◦ = HU . Before turning
to this, however, we need to be very explicit about the action of H on U/Z and the
action of hα = P/P ◦ on P ◦.

2.3. Formulas. We record the right action of H on U/Z. Throughout, J denotes
an arbitrary element of the Jordan algebra J .

Claim 11. The action of E2(J) on U is as follows:

x(t)E2(J) = x(t)E1(tJ)E′3(−tJ × J)y(tn(J))z(t2n(J))

E1(A)E2(J) = E1(A)E′3(−2J ×A)y(〈J × J,A〉)z(〈A×A, J〉)
E′3(A)E2(J) = E′3(A)y(−〈J,A〉)

y(t)E2(J) = y(t)

Proof. These formulas follow from the standard commutation formulas and the
formulas for the Lie-algebra bracket (equations 13 to 15). We give details starting
from the bottom; refer to Figure 4. The last formula is obvious. Next,

E′3(A)E2(J) = E′3(A) exp([v′3 ⊗A, v2 ⊗ J ])

= E′3(A)y(−〈J,A〉)
Similarly,

E1(A)E2(J) =E1(A)E([v1 ⊗A, v2 ⊗ J ])

× exp([[v1 ⊗A, v2 ⊗ J ], v2 ⊗ J ]/2)z(
−1

2
〈A, [v1 ⊗A, v2 ⊗ J ]〉)

=E1(A)E′3(−2J ×A)y(〈J × J,A〉)z(〈A×A, J〉)
Finally,

x(t)E2(J) = x(t)E(µ)E(ν) exp(η)z(ξ)

where

µ = [X(t), v2 ⊗ J ]) = tv1 ⊗ J

ν = [µ, v2 ⊗ J ]/2 = −tv′3 ⊗ J × J

exp(η) = exp([ν, v2 ⊗ J ]/6)) = y(t〈J, J × J〉/3) = y(tn(J))

ξ =
−1

2
(〈µ, ν〉 + tη) = t2n(J)

Corollary 12. The action of E2(J) on U/Z is given by

(t, A,B, u)E2(J)

= (t, A+ tJ, B − tJ × J − 2J ×A, u+ tn(J) + 〈J × J,A〉 − 〈J,B〉)
It is important to introduce some notations which make this formula more trans-

parent. Define µJ : W → W by µJ(t, A) = (t, A + tJ). Also define νJ : W ′ → W ′

by νJ(B, u) = (B, u − 〈J,B〉). Note that νJ = (µ∗)−1. Finally define a map

Q̂J : W →W ′ by

Q̂J(t, A) = (−2A× J − tJ × J,−〈J × J,A〉 − 2tn(J)).
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Corollary 13.

(w,w′)E2(J) = (µJ (w), νJ (w′ + Q̂J(w))).

The next claim may be proved by the same sort of argument as the last.

Claim 14. The action of E′2(J) is as follows:

x(t)E
′
2(J) = x(t)

E1(A)E
′
2(J) = E1(A)x(〈J,A〉)

E′3(A)E
′
2(J) = E′3(A)E1(−2A× J)x(−〈J × J,A〉)z(−〈A×A, J〉)

y(t)E
′
2(J) = y(t)E′3(−tJ)E1(tJ × J)x(tn(J))z(−t2n(J))

Claim 15.

x(t)s = y(t)

E1(A)s = E′3(A)

E′3(A)s = E1(−A)

y(t)s = x(−t)
Proof. This follows immediately from the last two claims. For example, y(t)s =

y(t)E2(I)E
′
2(−I)E2(I) = y(t)E

′
2(−I)E2(I). But

y(t)E
′
2(−I) = y(t)E′3(tI)E1(tI)x(−t)z(t2)

Thus,

y(t)s =y(t)E′3(tI)y(−3t)E1(tI)E′3(−2tI)y(3t)z(3t2)

× x(−t)E1(−tI)E3′(tI)y(−t)z(t2)z(t2)

=x(−t)z(−2〈tI, tI〉+ t2)z(5t2)

=x(−t)
The other formulas can be proved in a similar way. Alternatively, one may observe
that the claim is obvious up to a possible factor of −1 which we have now checked.

Corollary 16. The action of s on U/Z is given by

(t, A,B, u)s = (−u,−B,A, t)
Claim 17. Write the action of m ∈ M on E2 as E2(A)m = E2(Am). Then the
action of m on U is given by

x(t)m = x(d(m)t)

E1(A)m = E1(d(m)Am)

E′3(A)m = E′3(d(m)−1Asms
−1

)

y(t)m = y(d(m)−1t)

Proof. The formula for the action of m on x(t) follows immediately from one of our
definitions of d on M; see page 140. For the next formula, we have, by the first
formula in Claim 11,

(x(−1)E2(−A)x(1)E2(A))m = E1(A)mE′3(−A×A)my(n(A))mz(n(A))m.
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On the other hand,

(x(−1)E2(−A)x(1)E2(A))m = x(−d(m))E2(−Am)x(d(m))E2(Am)

= E1(d(m)Am)E′3(−d(m)Am ×Am)

× y(d(m)n(Am))z(d(m)2n(Am)).

This proves that E1(A)m = E1(d(m)Am). Also, since m commutes with z(t),
z(d(m)2n(Am)) = z(n(A)), and hence n(Am) = d(m)−2n(A). Using this, we get
y(t)m = y(d(m)−1t).

Finally, we apply Claim 15. First, y(t)m = (x(−t)ms

)s
−1

= y(d(ms)t). Thus,

d(ms) = d(m)−1. Next, E′3(A)m = (E1(−A)m
s

)s
−1

= E′3(d(ms)Am
s

) which equals
E′3(d(m)−1Am

s

) by the last computation.

Corollary 18.

(t, A,B, u)m = (d(m)t, d(m)Am, d(m)−1Bsms
−1

, d(m)−1u).

The next claim is very easy; in fact, it is mostly a special case of the last one.
Nevertheless, it is convenient to state it separately.

Claim 19. hβ(a) ∈M acts via the following formulas.

E2(A)hβ(a) = E2(a−2A)

x(t)hβ(a) = x(a3t)

E1(A)hβ(a) = E1(aA)

E′3(A)hβ(a) = E′3(a−1A)

y(t)hβ(a) = y(a−3t)

Corollary 20.

(t, A,B, u)hβ(a) = (a3t, aA, a−1B, a−3u).

Now we turn to the problem of the left action of hα on P ◦. It is very simple to
check that

Claim 21. hα commutes with M . Also, hα(a) maps

hα(a)E2(A)hα(a)−1 = E2(a−1A)

hα(a)x(t)hα(a)−1 = x(a2t)

hα(a)y(t)hα(a)−1 = y(a−1t)

hα(a)z(t)hα(a)−1 = z(at)

hα(a)E1(A)hα(a)−1 = E1(aA)

hα(a)E′3(A)hα(a)−1 = E′3(A)

Finally,

hα(a)shα(a−1) = hβ(a−1)s.
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2.4. Quadratic forms. We begin with some notation. Let c = dimJ . Let δ ∈
F ∗/(F ∗)2 be the discriminant of the non-degenerate bilinear form 〈A,B〉 on J .
Also, (·, ·)F is the quadratic Hilbert symbol in F . Note that when discussing the
Hilbert symbol we will assume that F does not have residue characteristic two,
so that (−1,−1)F = 1. On the other hand, this is mostly for convenience as the
results have analogs in the residue characteristic two (or the real) case.

Recall that, for any J ∈ J , in section 2.3 we defined a map Q̂J : W →W ′ by

Q̂J(t, A) = (−2A× J − tJ × J,−〈J × J,A〉 − 2tn(J)).

We now wish to investigate the corresponding quadratic forms on W :

QJ(t, A) =
1

2
Q̂(t, A)(t, A) = −1

2
〈A, 2A× J + tJ × J〉 − t

2
〈J × J,A〉 − t2n(J)

= −〈J,A×A〉 − t〈A, J × J〉 − t2n(J).

We will write DJ and SJ for the discriminant and Hasse invariant of QJ , respec-
tively.

Proposition 22. (1) tQJ(t, A) = n(A) − n(A+ tJ).
(2) DJ = (n(J)/2)c+1δ if n(J) 6= 0.

(3) SJ = SI(δ, n(J))cF (−1, n(J))
c(c+1)/2
F if n(J) 6= 0.

Proof. Part (1) is very simple; writing out the right-hand side we find

n(A)− n(A+ tJ) = 〈A,A,A〉 − 〈A+ tJ, A+ tJ, A+ tJ〉
= −3t〈J,A,A〉 − 3t2〈A, J, J〉 − t3n(J)

= −t〈J,A×A〉 − t2〈A, J × J〉 − t3n(J)

which is the left-hand side. Before proving (2) and (3), notice that

Lemma 23. If r = n(J) 6= 0, then QJ and rQI are equivalent as quadratic forms
via the change of variables (t, A) 7→ (t, J.A).

Proof. We wish to show that rQI(t, A) = QJ(t, J.A). Clearly, it is enough to prove
this when t 6= 0. However, by (1), this is the same as proving

r(n(A) − n(A+ It)) = n(J.A)− n(J.A+ Jt)

which is clear.

To prove (2), it only remains to compute the discriminant of QI . This form splits
into a direct sum in the following way. Let J◦ be the subspace of J consisting of
elements with trace zero. If A ∈ J , we can write A = A◦ + aI where A◦ ∈ J◦.
Now take (t, a, A◦) as coordinates on W . We have,

QI(t, a, A◦) = −Tr(A×A)− tTr(A)− t2

=
1

2
(Tr(A.A)− Tr(A)2)− 3ta− t2

=
1

2
Tr(A2

◦)− (t2 + 3ta+ 3a2).

Clearly, the discriminant of −(t2 + 3ta + 3a2) is 3. Thus, DI is 3(1/2)c−1 (or,
equivalently, 3(1/2)c+1) times the discriminant of Tr(A2◦). But δ is the discriminant
of Tr(A2) = Tr(A2

◦) + 3a2. Thus, DI = (1/2)c+1δ, and (2) is proved.
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For the proof of (3), recall the definition of Hasse invariant in terms of Hilbert
symbols. Let e1, · · · , ec+1 be an orthogonal basis for W in terms of QI – or QJ , it
is the same by the lemma. Set ai = QI(ei). Note that

∏
i ai = DI . By definition,

SI =
∏
i<j

(ai, aj)F .

Thus,

SJ =
∏
i<j

(rai, raj)F

=
∏
i<j

(ai, aj)F (ai, r)F (aj , r)F (r, r)F

= SI(DI , r)
c
F (r, r)

c(c+1)/2
F

= SI(δ, r)
c
F (1/2, r)

c(c+1)
F (r,−1)

c(c+1)/2
F

= SI(δ, r)
c
F (r,−1)

c(c+1)/2
F .

Here we have used properties of the Hilbert symbol as well as part (2). Part (3) is
proved.

Using Proposition 22, we can get information on the γ-invariants of the quadratic
forms QJ . See [W] or [R] for the definition of γ. We will usually write γ(J) instead
of γ(QJ).

Corollary 24. Suppose that c is odd. If n(J) 6= 0, then

γ(J)

γ(I)
= (δ, n(J))F (−1, n(J))

(c+1)/2
F .

Proof. Recall that γ is a homomorphism from the Witt ring of F , WF , to C∗.
Elements of WF are determined by three invariants: dimension, discriminant, and
Hasse invariant. By assumption, the dimensions of QI and QJ are the same and
even. Also, by Proposition 22 part (2), the discriminants coincide. Finally, by part
(3) of the same proposition,

SJ = SI(δ, n(J))F (−1, n(J))
(c+1)/2
F .

Thus, as an element of WF , QJ/QI has dimension zero, discriminant 1, and Hasse

invariant (δ, n(J))F (−1, n(J))
(c+1)/2
F . But γ is known to be non-trivial when re-

stricted to dimension zero forms of discriminant 1 [W, Proposition 4]. The corollary
follows.

Corollary 25. Suppose that c is odd and n(J) 6= 0. Then QJ ⊕Q−J is trivial in
WF . In particular, γ(J)γ(−J) = 1. Finally, γ(I)2 = (δ,−1)F .

Proof. We must show that the three invariants vanish on QJ ⊕Q−J . The only one
that is not obvious is the Hasse invariant. The Hasse invariant of QJ ⊕ Q−J is
SJS−J(δ, δ)F . But SJS−J = (δ,−1)c, so the Hasse invariant is trivial.

For the final statement, we have γ(I)2 = γ(I)
γ(−I) ; now apply Corollary 24.

Corollary 26. Suppose that c is odd and that for i = 1, 2, 3, Ji ∈ J satisfies
n(Ji) 6= 0. Then,

γ(J1)γ(J2)γ(J3) = γ(−J1.J2.J3).
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Remark. Since γ(J) depends only on n(J), we do not need to specify the order of
multiplication of the Ji.

Proof. By Corollaries 24 and 25,

γ(J1)γ(J2)γ(J3) =γ(I)3(δ, n(J1.J2.J3))F (−1, n(J1.J2.J3))
(c+1)/2
F

=γ(I)(δ,−n(J1.J2.J3))F (−1,−n(J1.J2.J3))
(c+1)/2
F

=γ(−J1.J2.J3).

2.5. When J is reduced. In this section, we review some of the properties of
reduced Jordan algebras and extend the discussion of the last two sections in the
case J is reduced.

A rank three Jordan algebra is reduced if it contains non-zero elements I1, I2, I3
so that Ii.Ii = Ii, and Ii.Ij = 0 for i 6= j. It follows that I1 + I2 + I3 = I. Set

Ji,i = {A ∈ J |Ii.A = A}.
Also, for i 6= j, set

Ji,j = {A ∈ J |Ii.A =
1

2
A = Ij .A}.

Obviously, Ji,j = Jj,i. It is a fact from the theory of Jordan algebras that

J =
⊕
i≤j

Ji,j .

In the next claim, the notation is that Ai,j ∈ Ji,j and i, j, k are all distinct. For
the proof see [J].

Claim 27. For all 1 ≤ i, j, k ≤ 3, the following hold.

Ii.Ai,i = Ai,i Ii ×Ai,i = 0
Ii.Ai,j = 1

2Ai,j Ii ×Ai,j = 0
Ii.Aj,j = 0 Ii ×Aj,j = 1

2Ak,k
Ii.Aj,k = 0 Ii ×Aj,k = − 1

2Aj,k.

Also, Tr(Ai,i)Ii = Ai,i, and Tr(Ai,j) = 0.

Remark. The subgroup of G generated by SL(3) and the Ei(Ij) and E′i(Ij) for all
choices of i, j is a split group of type D4.

For 1 ≤ i ≤ 3, define

si = E2(Ii)E
′
2(−Ii)E2(Ii).

It is easy to check that [v2⊗ Ii, v′2⊗ Ij ] = 0 if i 6= j. Consequently, the si commute
and s = s1s2s3. Just as in section 2.3, one proves

Claim 28. The si act as follows:

x(t)si = E1(tIi)

E1(A)si = x(−〈A, Ii〉)E1(2A.Ii − 2〈A, Ii〉Ii)E′3(−2A× Ii)

E′3(A)si = y(−〈A, Ii〉)E′3(2A.Ii − 2〈A, Ii〉Ii)E1(2A× Ii)

y(t)si = E′3(tIi)
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For ease of notation, from now on we assume that the reduced Jordan algebra
J has the form 3 × 3 matrices over a composition algebra A. As discussed at the
end of section 1.4, although this does not include all reduced Jordan algebras, it
is enough to give all forms of the p-adic exceptional groups. On the other hand,
this assumption is not essential, as it would be straightforward to modify all of our
results to include the general case.

If A ∈ J , we will use the notation

A =

a d e

d b f

e f c

 .
Here A1,1 = a, A1,2 = d etc. Of course, a, b, c ∈ F and d, e, f ∈ A. The map d 7→ d
is the standard involution on A. The norm and trace are the obvious ones. We can
now write elements x(t1)E1(A1)E′3(A2)y(t2)Z ∈ U/Z as

((t1; a1, b1, c1, d1, e1, f1), (a2, b2, c2, d2, e2, f2; t2)).

Corollary 29. The action of the si on U/Z is as follows

((t1; a1, b1, c1, d1, e1, f1), (a2, b2, c2, d2, e2, f2; t2))s1

= ((−a1; t1, c2, b2, d1, e1,−f2), (t2,−c1,−b1, d2, e2, f1;−a2))

((t1; a1, b1, c1, d1, e1, f1), (a2, b2, c2, d2, e2, f2; t2))s2

= ((−b1; c2, t1, a2, d1,−e2, f1), (−c1, t2,−a1, d2, e1, f2;−b2))

((t1; a1, b1, c1, d1, e1, f1), (a2, b2, c2, d2, e2, f2; t2))s3

= ((−c1; b2, a2, t1,−d2, e1, f1), (−b1,−a1, t2, d1, e2, f2;−c2))

Set

hi(u) = E2(uIi)siE2(u−1Ii)s
−1
i E2(uIi)s

−1
i .

Using the last corollary and the known action of E2 on U/Z, it is easy to compute
the action of hi(u). Notice that h1(u)h2(u)h3(u) = hβ(u).

Corollary 30.

((t1; a1, b1, c1, d1, e1, f1), (a2, b2, c2, d2, e2, f2; t2))h1(u)

= ((ut1;u−1a1, ub1, uc1, d1, e1, uf1), (ua2, u
−1b2, u

−1c2, d2, e2, u
−1f2;u−1t2))

((t1; a1, b1, c1, d1, e1, f1), (a2, b2, c2, d2, e2, f2; t2))h2(u)

= ((ut1;ua1, u
−1b1, uc1, d1, ue1, f1), (u−1a2, ub2, u

−1c2, d2, u
−1e2, f2;u−1t2))

((t1; a1, b1, c1, d1, e1, f1), (a2, b2, c2, d2, e2, f2; t2))h3(u)

= ((ut1;ua1, ub1, u
−1c1, ud1, e1, f1), (u−1a2, u

−1b2, uc2, u
−1d2, e2, f2;u−1t2))

Finally, it is convenient to record the action of the si on E2. We give the action
of s1; the others are similar.
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Claim 31.

E2(A1,1)s1 = E′2(A1,1)

E2(A2,2)s1 = E2(A2,2)

E2(A3,3)s1 = E2(A3,3)

E2(A1,2)s1 = exp(LA1,2 + 2L(I1, A1,2)) ∈M0

E2(A1,3)s1 = exp(LA1,3 + 2L(I1, A1,3)) ∈M0

E2(A2,3)s1 = E2(A2,3)

We need a result like Proposition 22 except with Ii in place of I. Let qA denote
the norm form on A, qA(d) = dd, and let δ̃ be the discriminant of qA. Also, recall
that c = dimJ . Then clearly dimA = c/3− 1.

Lemma 32. δ = 2c/3−1δ̃.

Proof. A simple computation shows that

〈A,A〉 = a2 + b2 + c2 + 2(qA(d) + qA(e) + qA(f)).

Thus, δ = 2dimAδ̃ = 2c/3−1δ̃.

We state the next proposition in terms of I1 for convenience; the analogous result
for I2 and I3 also holds.

Proposition 33. (1) QI1(t; a, b, c, d, e, f) = −bc+ qA(f).
(2) DkI1 = −(k/2)c/3+1δ for any non-zero k ∈ F .

(3) SkI1 = SI1(δ, k)cF (−1, k)
c(c+1)/2
F .

Proof. Part (1) is a simple computation:

QI1(t, A) = −Tr(I1.A×A)

= −Tr(I1.(A.A)) + Tr(A) Tr(A.I1)− 1/2 Tr(A)2 + 1/2 Tr(A.A)

= −(a2 + qA(d) + qA(e)) + (a+ b+ c)(a)− 1/2(a+ b+ c)2

+ 1/2(a2 + b2 + c2 + 2qA(d) + 2qA(e) + 2qA(f))

= −bc+ qA(f).

This proves part (1) and that DI1 = −δ̃. Since it is clear that QkI1 = kQI1 , part
(2) follows from the lemma. Finally, using the same argument as for part (3) of
Proposition 22, we get that

SkI1 = SI1(DI1 , k)
c/3
F (k, k)

c/3(c/3+1)/2
F .

By statement (2), (DI1 , k)
c/3
F = (δ, k)

c/3
F (1/2, k)

c/3(c/3+1)
F (−1, k)

c/3
F which equals

(δ, k)cF (−1, k)cF . Thus,

SkI1 = SI1(δ, k)cF (−1, k)cF (−1, k)
c(c+3)/2
F

= SI1(δ, k)cF (−1, k)
c(c+1)/2
F .

Statement (3) is proved.

Just as with Proposition 22, there are corollaries about γ invariants.
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Corollary 34. Suppose that c is odd. If k 6= 0, then

γ(kIi)

γ(Ii)
= (δ, k)F (−1, k)

(c+1)/2
F

Corollary 35. Suppose that c is odd and k 6= 0. Then QkIi ⊕ Q−kIi is trivial in
WF . In particular, γ(kI1)γ(−kIi) = 1. Finally, γ(Ii)

2 = (δ,−1)F .

Corollary 36. Suppose that c is odd and that a, b, c ∈ F are non-zero. Then,

γ(aIi)γ(bIi)γ(cIi) = γ(−abcIi)
We conclude this section with a version of the Bruhat decomposition for H . The

proof is straightforward.

Proposition 37. Set P = ME2. If H has rank one, then H = P ∪ PsP, disjoint
union. Otherwise, J is reduced and H = P ∪ Ps1P ∪ Ps1s2P ∪ Ps1s2s3P.

3. The representation

3.1. Representation of P . As we have seen, the action of H on U/Z leads to a
map p : H 7→ Sp(U/Z). It is easy to see that the kernel of p is precisely ZG. Since
U is a Heisenberg group, for each fixed character Ψ, U has a canonical unitary rep-
resentation. We can realize the Heisenberg representation on V̂ = L2(W ). Denote
the action by π̂Ψ. By the well known theory of the Weil representation, using the
map p, π̂Ψ extends naturally to a projective representation of P ◦ = HU . As we
will see, the cocycle corresponding to this projective representation is trivial if and
only if c = dimJ is odd. The analysis in each case will be similar. Nevertheless,
to simplify the discussion, the case of c even (which leads to G of type F4) will be
discussed in section 3.5. Until then, we assume c is odd.

We will need some terminology from [R]. In Theorem 3.5 of [R], Rao gives
formulas which define a projective representation of Sp(U/Z). This is the standard
Weil representation. His notation is r(σ) for the operator corresponding to σ ∈
Sp(U/Z). The multilpier of the standard Weil representation are the numbers
c(σ1, σ2) which satisfy r(σ1)r(σ2) = c(σ1, σ2)r(σ1σ2). In section 5 of [R], Rao
defines normalization factors, m(σ), which have the property that the multiplier of
the normalized representation, r̃(σ) = m(σ)r(σ), takes values in ±1.

The next lemma follows from [R] Theorem 4.1 and some simple calculations.

Lemma 38. The multiplier, c(·, ·), of the standard Weil representation restricted
to p(H) has the following properties.

(1) Suppose that r, r1, r2 ∈ P = ME2 and that η1, η2 are arbitrary. Then
c(r1η1r, r

−1η2r2) = c(η1, η2).
(2) c(η, 1) = c(1, η) = 1 for η arbitrary.
(3) c(σ1m,σ2) = 1 where σ1, σ2 ∈ {s±1, s±1

i , (sisj)
±1} and m ∈M .

(4) c(s−1E2(J), s) = γ(J).
(5) If J is reduced, c(s−1

i E2(kIi), si) = γ(kIi).

In the next proposition, we define normalization factors which elliminate the
multiplier entirely.

Proposition 39. Suppose that c = dimJ is odd. Then, the cocycle corresponding
to the projective representation π̂Ψ splits over H. In particular, π̂Ψ extends to a
representation of P ◦.
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Furthermore, the action of H on L2(W ) is related to the standard Weil repre-
sentation by the following normalization factors:

φ(mE2(A)) = (d(m), δ)F (d(m),−1)
(c+1)/2
F ,

φ(s) = γ(I) and, if J is reduced, φ(si) = γ(Ii) and φ(sisj) = γ(Ii)γ(Ij) for i 6= j.
Also, φ(m1E2(A1)σm2E2(A2)) = φ(m1m2)φ(σ) for σ = s, si or sisj.

Remark. φ is well defined on all of H by Proposition 37.

For the proof, we will need the following lemma which follows from the work of
Steinberg and is well known; see e.g. [S1].

Lemma 40. Let G1 ⊂ G2 be simple, split, simply connected groups with maximal
tori T1 ⊂ T2. If α is a root of Gi, normalize the killing form, 〈·, ·〉i, so that
〈α, α̂〉i = 2. Then, the non-trivial degree n cover of G2 splits over G1 if and only
if 〈·, ·〉2|T1 = nm〈·, ·〉1 for some integer m.

We will apply the lemma in the case of the metaplectic cover of Sp(W ), and
various SL(2) ⊂ Sp(W ).

Proof. Let us consider the SL(2) ⊂ H corresponding to β, that is, generated by
E2(kI) and E′2(kI) and with torus hβ(t). We find that p restricted to this SL(2)
is injective. Using Lemma 40 and our formulas for the action of hβ(t), it is now
easy to see that the metaplectic cover splits over this subgroup. Note that this fails
when dimJ = 6.

Next, we compute the normalizing factors for this subgroup. Lemma 38 and sec-
tion 5 of [R] imply that φ|E2(kI) is a homomorphism F → Q/Z. Thus, φ(E2(kI)) =

1. Also, since s = E2(I)s−1E2(I)sE2(I), φ(s) = φ(s−1)φ(s)γ(I) = γ(I) by Lemma
38. It remains to compute φ(h(t)). Using the relation

h(t)s = E2(tI)s−1E2(t−1I)sE2(tI)

as well as Lemma 38, we see that

φ(h(t))φ(s) = φ(s−1)φ(s)c(s−1E2(t−1I), s) = γ(t−1I).

Thus,

φ(h(t)) =
γ(t−1I)

γ(I)
.

Hence, by Corollary 24,

φ(h(t)) = (δ, t−3)F (−1, t−3)
(c+1)/2
F .

If J is reduced, similar reasoning, using Lemma 40 and Corollary 34, shows that
the metaplectic cover splits over the corresponding SL(2)’s – that is, those generated

by E2(kIi) and E′2(kIi) – and that φ(si) = γ(Ii) and φ(hi(t)) = (δ, t)F (−1, t)
(c+1)/2
F .

To complete the argument, we must show that for any η1, η2 ∈ H ,

φ(η1)φ(η2)c(η1, η2) = φ(η1η2)(16)

In the case that H has rank one, Lemma 38 and Proposition 37 imply that it is
enough to consider η1 = s−1E2(B) with B invertible, and η2 = s. We have,

η1η2 = E2(B−1)smBE2(B−1)
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with d(mB) = n(B). Thus, we need to check that

γ(B) = γ(I)(n(B), δ)F (n(B),−1)
(c+1)/2
F

which is correct by Proposition 22.
If H does not have rank 1, we can still use Lemma 38 and Proposition 37 to

reduce the problem, but there are more cases to check. This can be done, but
it is rather tedious. Instead, we argue as follows. It is a result of Prasad and
Ragunathan ([Pr-R] Theorem 9.5) that if a cocycle on a simply connected group
is trivial on an SL(2) corresponding to a long root, then it is trivial on the whole
group. It follows that the cocycle must be trivial on H . Then, since equation (16)
must hold, it follows from the calculations above that φ is as we claimed.

Remark. Since Lemma 40 is true for any local field of characteristic zero, so is the
fact that π̂Ψ extends to a representation of P ◦.

Now that we have explicit knowledge of the splitting, we can easily deduce for-
mulas for π̂Ψ from the standard Weil representation in [R]. The vector space is

V̂ = L2(W ); we will take (r, R) ∈ W as the variable. Also, we write (a,A) and
(B, b) for x(a)E1(A) and E′3(B)y(b), respectively.

Proposition 41. The representation π̂Ψ : P ◦ → unitary operators on V̂ is given
by the following formulas:

π̂Ψ(a,A)f(r, R) = f(r + a,R+A)

π̂Ψ(B, b)f(r, R) = Ψ(〈R,B〉+ rb)f(r, R)

π̂Ψ(z(t))f(r, R) = Ψ(t)f(r, R)

π̂Ψ(m)f(r, R) = (d(m), δ)F (d(m),−1)
(c+1)/2
F |d(m)|(c/3+1)/2f(d(m)r, d(m)Rm)

π̂Ψ(hβ(t))f(r, R) = (t, δ)F (t,−1)
(c+1)/2
F |t|(c+3)/2f(t3r, tR)

π̂Ψ(E2(J))f(r, R) = Ψ(QJ(r, R))f(r, R + rJ)

π̂Ψ(s)f(r, R) = γ(I)

∫
F×J

Ψ(〈R̃, R〉+ rr̃)f(r̃, R̃)dr̃dR̃

Remark. We should be more precise about the meaning of the integral operator
π̂Ψ(s) (essentially the Fourier transform). This integral converges on Schwartz-
Bruhat functions but need not converge on a general L2 function. However, since
the Schwartz-Bruhat functions are dense in L2, the operator has a canonical exten-
sion. Henceforth, we will use this convention without comment.

If J is reduced, we use the notation R = (a, b, c, d, e, f) where a, b, c ∈ F and
d, e, f ∈ A as in section 2.5. Also, it is useful to have notations for those elements
of J which commute with Ii. We have C1 = (0, b, c, 0, 0, f), C2 = (a, 0, c, 0, e, 0),
and C3 = (a, b, 0, d, 0, 0). We usually view Ci ∈ J as an element of W . Then,
Csii ∈ J ⊂ W ′. We write the corresponding map on elements of J as Ci 7→ C′i.
For example, C ′1 = (0,−c,−b, 0, 0, f). Finally, set C

(ν)
1 = (0, νb, νc, 0, 0, νf) etc.

Proposition 42. If J is reduced,

π̂(s1)f(r, a, b, c, d, e, f) = γ(I1)

∫
F×F×A

Ψ(〈C(ν)
1 , C′1〉)f(−a, r, νb, νc, d, e, νf ) dC

(ν)
1
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π̂(s2)f(r, a, b, c, d, e, f) = γ(I2)

∫
F×F×A

Ψ(〈C(ν)
2 , C′2〉)f(−b, νa, r, νc, d, νe, f) dC

(ν)
2

π̂(s3)f(r, a, b, c, d, e, f) = γ(I3)

∫
F×F×A

Ψ(〈C(ν)
3 , C′3〉)f(−c, νa, νb, r, νd, e, f) dC

(ν)
3

Set π = IndPP◦ π̂ψ . The representation π may be realized on V = L2(W × F );
here are the formulas for the action.

Proposition 43. The representation π : P → unitary operators on V is given by
the following formulas:

π(hα(t))f(r, R, u) = f(r, R, tu)

π(a,A)f(r, R, u) = f(r + u2a,R+ uA, u)

π(B, b)f(r, R, u) = Ψ(〈R,B〉+ rbu−1)f(r, R, u)

π(z(t))f(r, R, u) = Ψ(ut)f(r, R, u)

π(m)f(r, R, u) = (d(m), δ)F (d(m),−1)
(c+1)/2
F |d(m)|(c/3+1)/2f(d(m)r, d(m)Rm, u)

π(hβ(t))f(r, R, u) = (t, δ)F (t,−1)
(c+1)/2
F |t|(c+3)/2f(t3r, tR, u)

π(E2(J))f(r, R, u) = Ψ(Qu−1J (r, R))f(r, R + ru−1J, u)

π(s)f(r, R, u) = γ(uI)|u|−(c+3)/2

∫
F×J

Ψ(〈R̃, u−1R〉+ u−3rr̃)f(r̃, R̃, u)dr̃dR̃

Furthermore, π is irreducible. In fact, π restricted to hαU is irreducible.

Remark. Observe that Qu−1J(r, R) = u−1QJ(u−1r, R).

Proof. The formulas follow immediately from Proposition 41 and the formulas for
the left action of hα on P ◦ (see Claim 21) and Corollary 24.

We now prove that π|hαU is irreducible. Clearly, π = IndhαUU ρ were ρ is the
unique irreducible representation of U with central character Ψ. (Recall that U
is a Heisenberg group.) Thus, as follows from Mackey’s theory of representa-
tions of semi-direct products, if ρt is the representation of U given by ρt(u) =
ρ(hα(t)uhα(t−1)), then it is enough to show that for each t ∈ F , the ρt are distinct.
But ρt has central character Ψt where Ψt(x) = Ψ(tx).

Corollary 44. The representation π is independent of Ψ.

Proof. Let (Vc, πc) be the representation with Ψ(x) replaced by Ψc(x) = Ψ(cx).
We must define a map Ω: V → Vc which intertwines the action of P . By checking
the formulas, it is easy to see that the map

Ω(f(r, R, u) = f(c2r, cR, cu)

works. Note that the definition of γ depends upon the choice of Ψ.

It is easy to check that hα(u)sihα(u−1) = hi(u
−1)si. Thus, using Corollary 30

and Corollary 34, we can deduce formulas for the π(si) from those of π̂(si). We get

Proposition 45. If J is reduced,

π(s1)f(r, a, b, c, d, e, f, u)

= γ(uI1)|u|−(c/3+1)/2

∫
F×F×A

Ψ(〈C(ν)
1 , u−1C′1〉)f(−ua, u−1r, νb, νc, d, e, νf , u) dC

(ν)
1
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π(s2)f(r, a, b, c, d, e, f, u)

= γ(uI2)|u|−(c/3+1)/2

∫
F×F×A

Ψ(〈C(ν)
2 , u−1C′2〉)f(−ub, νa, u−1r, νc, d, νe, f, u) dC

(ν)
2

π(s3)f(r, a, b, c, d, e, f, u)

= γ(uI3)|u|−(c/3+1)/2

∫
F×F×A

Ψ(〈C(ν)
3 , u−1C′3〉)f(−uc, νa, νb, u−1r, νd, e, f) dC

(ν)
3

3.2. Representation of G. Our goal now is to extend π to a representation of G.
We continue to assume that c is odd. The corresponding results for c even are in
section 3.5.

We begin by restricting π to B and then trying to extend it to a representation
of Pα.

Lemma 46. Pα is generated by B and sα with the following relations:

(1) sαy(t) = z(t)sα,
(2) sαE2(A) = E1(A)sα,
(3) sαE

′
3(A) = E′3(A)sα,

(4) sαm = mhα(d(m))sα,
(5) sαhα(t) = hα(t−1)sα,
(6) s2α = hα(−1),
(7) x(t)sαx(t−1)s−1

α x(t) = hα(t)sα.

Proposition 47. There is a unique extension of π from B to Pα. It is given by

π(sα)f(r, R, u) = Ψ

(
n(R)

r

)
f(−r, R,−r/u).(17)

Proof. First, we verify that equation (17) does define an extension of π to Pα. For
this, we must check relations (1)-(7) of Lemma 46. The hardest of these are (2)
and (7). We will check these and leave the rest as an easy exercise.

For (2), we get

π(sαE2(A))f(r, R, u) = Ψ

(
n(R)

r

)
Ψ

(
−uQA(u,R)

r

)
f(−r, R+ uA,−r/u)

= Ψ

(
n(R)

r

)
Ψ

(
−n(R)− n(R+ uA)

r

)
f(−r, R+ uA,−r/u)

using Proposition 22 part (1)

= Ψ

(
n(R+ uA)

r

)
f(−r, R + uA,−r/u).

On the other hand,

π(E1(A)sα)f(r, R, u) = Ψ

(
n(R+ uA)

r

)
f(−r, R+ uA,−r/u),

so (2) is proved.
For (7),

π(x(t)sαx(t−1)s−1
α x(t))f(r, R, u)

= π(x(t)sαx(t−1))Ψ

(
n(R)

r

)
f(−r +

r2t

u2
, R,

r

u
)
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= π(x(t)sα)Ψ

(
n(R)

r + u2t−1

)
f(−r − u2t−1 +

(r + u2t−1)2t

u2
, R,

r + u2t−1

u
)

= π(x(t)sα)Ψ

(
n(R)

r + u2t−1

)
f(
r2t

u2
+ r, R,

r

u
+
u

t
)

= π(x(t))Ψ

(
n(R)

r

)
Ψ

(
n(R)

−r + r2/tu2

)
f(u2t− r, R, u− r

ut
)

= π(x(t))Ψ

(
n(R)

r

)
Ψ

(
tu2n(R)

r(r − tu2)

)
f(u2t− r, R, u− r

ut
)

= π(x(t))Ψ

(
n(R)

r − tu2

)
f(u2 − r, R, u− r

ut
)

= Ψ

(
n(R)

r

)
f(−r, R, u− r + u2t

ut
)

= Ψ

(
n(R)

r

)
f(−r, R,− r

ut
).

On the other hand,

π(hα(t)sα)f(r, R, u) = Ψ

(
n(R)

r

)
f(−r, R,− r

ut
),

so (7) is proved.
It remains to prove that this extension of π to Pα is unique. The key is the

following lemma. Let l : F ∗ → F ∗/(F ∗)3 be the canonical projection. Then, for
δ ∈ F ∗/(F ∗)3, let Fδ = {x ∈ F |l(x) ∈ δ}.
Lemma 48. π restricted to TUα decomposes into the following direct sum of in-
equivalent irreducible representations of TUα:

π =
⊕

δ∈F∗/(F∗)3
Vδ

where Vδ = {f ∈ L2(Fδ ×W × F )} ⊂ V.

We will prove the lemma after using it to complete the proof of Proposition 47.
Let Σ be the operator π(sα) from the statement of the proposition, and suppose

that Σ0 is another unitary operator on V which extends π. Since TUα is invariant
under conjugation by sα, it follows from Schur’s lemma and Lemma 48 that, for
each δ ∈ F ∗/(F ∗)3, Σ and Σ0 preserve Vδ and are equal up to multiplication by
some constant cδ. Furthermore, relation (6) in Lemma 46 implies that cδ = ±1.

To prove that in fact each cδ = 1, we use relation (7) from Lemma 46. Actually,
let us re-write it as

x(t)sαx(t−1)s−1
α = hα(t)sαx(t−1).(18)

I claim that we can find an f ∈ Vδ and t ∈ F so that π(x(t−1))f ∈ Vδ and also
π(x(t−1)s−1

α )f ∈ Vδ. This would complete the proof because by applying both sides
of equation (18) – with this t – to f , we see that c2δ = cδ. Thus, cδ = 1 and Σ = Σ0.

To see that there exists such a t and f , let ε be a small number. Certainly there
is a Schwartz function f ∈ Vδ which satisfies f(r, R, u) 6= 0 only if ε < |r| < 1/ε
and ε < |u| < 1/ε. Notice that Σ−1(f) (or Σ−1

0 (f)) has the same property except
with ε2 in place of ε. Suppose that f satisfies this property. We wish to show that
we can find t so large that f(r + t−1u2, R, u) ∈ Vδ. We can certainly take t large
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enough so that the support is contained in ε < |r|. Furthermore, taking t larger
if necessary, we may assume that whenever this function is non-zero, |t−1u2r−1| is
so small that 1 + t−1u2r−1 is a cube. Thus, r + t−1u2 ∈ δ implies r ∈ δ. In other
words, π(x(t−1))f and π(x(t−1)s−1

α )f are in Vδ.
This completes the proof of Proposition 47.

We now prove Lemma 48.

Proof. It is clear from the formulas that π restricted to TUα is the direct sum of
the Vδ. We must show that the Vδ are irreducible and inequivalent. Consider Vδ
restricted to Uα. For each b, c ∈ F , I will define a quotient of Vδ in the space
L2(J ); evaluate smooth functions at r = b, u = c, and then extend by continuity.
Denote this unitary representation of Uα by χb,c. Of course, by the definition of
Vδ, χb,c is non-zero exactly when b ∈ Fδ. Furthermore, it is easy to check that
the non-zero χb,c are distinct; just restrict to K = y(s)E1E

′
3Z ⊂ Uα which is the

direct sum of an abelian group – y(s) – and a Heisenberg group. The representation
χb,c restricted to K is the tensor product of the character Ψbc−1 of y(s) and the
Heisenberg representation with central character Ψc. This also proves that the χb,c
are irreducible.

Now, T acts on Uα by conjugation and thus acts on the space of irreducible repre-
sentations of Uα. More precisely, if τ ∈ T and m ∈ Uα, χτb,c(m) = χb,c(m

τ ). I claim

that if τ = hα(t1)hβ(t2) then there is an equivalence of unitary representations:

χτb,c = χt32b,t1c.

The proof of this fact is straightforward but tedious so I will omit the details.
The point is that both representations may be realized in L2(J ) and formulas for
the actions are easily deduced from the formulas for π and the action of T on Uα
(section 2.2); one checks that the formulas coincide after making the change of
variable f(J) 7→ f(t2J). This proves, in particular, that the set of χb,c with b ∈ δ
forms a single orbit under the action of T .

Thus we see that Vδ restricted to Uα is the direct integral of irreducible repre-
sentations in a single T -orbit. In other words, Vδ restricted to Uα is identified with
IndTUαT 0Uα

χb0,c0 restricted to Uα, where T 0 is the stabilizer of χb0,c0. By Mackey’s
theory, this shows that the Vδ are irreducible representations of TUα. It also proves
that they are inequivalent because their restrictions to Uα are distinct.

Lemma 48 is proved.

We have the following corollary of Proposition 47.

Corollary 49. There is at most one representation of G whose restriction to P
coincides with π.

Theorem 50. Suppose that c = dimJ is odd. There exists a unique unitary rep-
resentation, π, of G so that π restricted to P is given by Propositions 43 and 45,
and π restricted Pα is given by Proposition 47.

The uniqueness is clear. Here is a strategy for proving existence. It follows from
[T1, section 13], that G is the free product of P and Pα amalgamated by B, and
subject to the following braid relations. In the rank two case

(sαsβ)3 = (sβsα)3,(19)
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and in the reduced case

sαsisα = sisαsi,(20)

for i = 1, 2, 3. Since our representations of P and of Pα coincide on P ∩Pα = B, to
prove Theorem 50 it suffices to establish that the operators π(sα) and π(sβ) satisfy
equation (19) (or (20)).

This strategy works when J is reduced. In the next section, we prove that
π satisfies equation (20) and so prove Theorem 50 in this case. This will make
essential use of Weil’s computation of the Fourier transform of a quadratic function.
Unfortunately, I do not know how to check directly that π satisfies equation (19);
this would seem to require understanding the Fourier transform of cubic functions
(such as Ψ(n(R))). Therefore, we use an indirect method for proving the existence
part of Theorem 50 in the rank two case. The highly non-trivial braid relation is
then a consequence of the theorem.

3.3. Braid relation (reduced case).

Theorem 51. For i = 1, 2, 3, there is an equivalence of unitary operators

π(sα)π(si)π(sα) = π(si)π(sα)π(si).

The argument is essentially the same for each i = 1, 2, 3 so we just give the case
i = 1. For convenience, we will write the operators π(sα) and π(s1) as A and B,
respectively. Thus, we must prove that

ABA = BAB.

The main part of the proof turns out to be the following theorem.

Theorem 52. Set

Φ(r, R, u) = γ(− r
u
I1)|r/u|−(c/3+1)/2Ψ(

n(R)

r
).

Then B(Φ) = Φ.

For the proof we will need some notation and a lemma. We use the notation
defined before the statement of Proposition 42 except we write just C instead of
C1 etc. Also, set D = (0, qA(d), qA(e), 0, 0, d, e). It is straightforward to prove

Lemma 53.

n(R)

r
=Q−a

r I1
(1, C − 1/aD)

=Q−a
r
I1(1, C′ − 1/aD′)

and

n(R)

r
= 1/r〈C,D′〉+Q− a

r
I1(1, C).

Proof (Theorem 52). The main point is to use Weil’s computation of the Fourier
transform of a quadratic function. As a matter of notation, we will write the
operator B as an integral (see remark on page 156). Alternately, we could write it
out in terms of F , the Fourier transform.
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Using the second part of the lemma,

B(Φ(r, R, u)) =γ(uI1)|u|−(c/3+1)/2γ(aI1)|a|−(c/3+1)/2

×
∫
C(ν)

Ψ(〈C(ν), u−1C′〉)Ψ(−1/ua〈C(ν), D′〉)Ψ(Q r
au2 I1(1, C(ν)))dC(ν)

=γ(uI1)γ(aI1)|ua|−(c/3+1)/2

×
∫
C(ν)

Ψ(〈C(ν), 1/u(C′ − 1/aD′)〉)Ψ(Q r
au2 I1(1, C(ν)))dC(ν).

By the definition of γ (i.e. Weil’s computation)

=γ(uI1)γ(aI1)γ(r/au2I1)|ua|−(c/3+1)/2|r/au2|−(c/3+1)/2

×Ψ(Q−au2

r I1
(1, 1/u(C ′ − 1/aD′)))

using Corollary 36

=γ(−r/uI1)|r/u|−(c/3+1)/2Ψ(Q−a
r I1

(1, C′ − 1/aD′))

by the lemma

=Φ(r, R, u).

Proof (Theorem 51). Let S(W × F ∗) be the space of Schwartz-Bruhat functions.
Then S(W × F ∗) ⊂ V is dense. Thus, to show that ABA = BAB, it it enough
to show that ABA(f) = BAB(f) for f ∈ S(W × F ∗). The point is that for such
f the integral formula for B is valid (see the remark on page 156). Furthermore,
it is easy to see that the integral formula is valid for B applied to A(f). Now we
compute:

ABA(f) =

∫
C(ν)

Kf(−ra/u, u, νb, νc, d, e, νf , a)dC(ν)

where

K =Ψ

(
n(R)

r

)
γ(− r

u
I1)|r/u|−(c/3+1)/2Ψ(−〈C(ν), u/rC′〉)

×Ψ(Q−u2

ra I1
(1, C(ν) − 1/uD))

=γ(− r
u
I1)|r/u|−(c/3+1)/2Ψ(Q−a

r I1
(1, ua−1C(ν) − 1/aD))

×Ψ(Q−a
r I1

(1, C − 1/aD))Ψ(−a/r〈ua−1C(ν), C′〉)
=γ(− r

u
I1)|r/u|−(c/3+1)/2Ψ(Q−a

r I1
(1, C + ua−1C(ν) − 1/aD))

=Φ(r, R + ua−1C(ν), u).

To compute BAB(f), first note that

AB(f) = Ψ

(
n(R)

r

)
γ(− r

u
I1)|r/u|−(c/3+1)/2

×
∫
C(ν)

Ψ(−〈C(ν), u/rC′〉)f(ra/u, u, νb, νc, d, e, νf ,−r/u)dC(ν).
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Thus

BAB(f)

= γ(uI1)|u|−(c/3+1)/2γ(aI1)

∫
C(ξ)

Ψ(〈C(ξ), u−1C′〉)Ψ(Q r
u2a

I1(1, C(ξ) − 1/uD))

×
[∫

C(ν)

Ψ(〈C(ν), a(C(ξ))′〉)f(−ra/u, u, νb, νc, d, e, νf , a)dC(ν)

]
dC(ξ)

Reversing the order of integration,

BAB(f) =

∫
C(ν)

Lf(−ra/u, u, νb, νc, d, e, νf , a)dC(ν)

where

L = γ(uI1)|u|−(c/3+1)/2

∫
C(ξ)

Ψ(〈C(ξ), u−1(C + u/aC(ν))′〉)

× γ(aI1)Ψ(Q r
u2a

I1(1, C(ξ) − 1/uD))dC(ξ)

= B(Φ)(r, R + ua−1C(ν), u).

This procedure makes sense as long as we interpret the last integral as a notation for
a certain Fourier transform (see the proof of Theorem 52). Now, since B(Φ) = Φ,
this proves that L = K and thus ABA(f) = BAB(f).

Theorem 50 in the reduced case is now proved.

3.4. Rank two case. In this section, we prove the existence part of Theorem 50 in
the case J is the Jordan algebra coming from a nine-dimensional division algebra,
and hence G is the rank two form of E6. We use a wonderful trick of Kazhdan.
The idea is to use Langlands analytic continuation of Eisenstein series to prove the
existence of a certain representation globally. Kazhdan proves that if the restriction
of an automorphic representation to P is equivalent to π for at least one place, then
it is equivalent at every place. Since we already know locally that there is at most
one representation with the correct restriction (Corollary 49), it follows that the
one constructed this way must satisfy the requirements of Theorem 50.

Since we are now working globally, our notation will be somewhat different than
in other sections. Let K be a global field of characteristic zero and Σ the set of
places of K. If ν ∈ Σ, Kν denotes the completion of K at ν. Fix an odd-dimensional
rank three central simple Jordan algebra, JK , over K. (As indicated above, we are
most interested in the case JK a nine-dimensional division algebra over K.) Let
G be the algebraic K-group corresponding to JK (see sections 1 and 2). It is easy
to see ([J] V.7 and [Sch] II.2 and IV.2) that the corresponding localized Jordan
algebras, JKν , are also rank three central simple Jordan algebras of odd dimension.
It follows that, for each ν ∈ Σ (including Archimedean places), G(Kν) is one of the
groups considered in section 2.

We will write GK for G(K) and Gν for G(Kν). Similarly, if A is the ring
of adeles of K then GA = G(A). The same conventions hold for the subgroups
H,P , U etc. In this section, ΨΨΨ denotes a choice of non-trivial additive character of
A, trivial on K. We have ΨΨΨ =

⊗
ν Ψν . Since Uν is a Heisenberg group, it has a

canonical irreducible representation with central character Ψν which we have seen
extends to a representation of P ◦ν (see the remark following the proof of Proposition
39). In previous sections, we were concerned with the Hilbert space version of this
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representation and denoted it by π̂Ψν . Here we will also be concerned with the
corresponding smooth representation; call it ρΨν .

We begin with a result of Weil [W]. Recall that z(t) parametrizes the center of
the Heisenberg group U .

Lemma 54. Let (ρΨΨΨ,WΨΨΨ) be the natural representation of UA in the space of
smooth functions, f : UA → C, which satisfy f(γz(a)u) = f(u)ΨΨΨ(a) for γ ∈ UK ,
a ∈ A and u ∈ UA. Then ρΨΨΨ is isomorphic to the restricted tensor product of the
ρΨν . In particular, ρΨΨΨ extends to a representation of P ◦A .

It is necessary to be more precise about the action of HA, the Levi component
of P ◦A .

Lemma 55. Suppose that h ∈ HA and f is a vector in ρΨΨΨ. Then,

ρΨΨΨ(h)f(u) = f(uh).

Proof. On the one hand, this formula respects the action of UA. On the other hand,
the extension of ρΨΨΨ to P ◦A is unique.

Corollary 56. If γ ∈ P ◦K then

ρΨΨΨ(γ)f(u) = f(γ−1uγ).

Here is Kazhdan’s rigidity result ([K]). For the convenience of the reader, we
indicate the proof.

Suppose that for each ν ∈ Σ, σ
(2)
ν is an irreducible unitary representation of Gν ;

we write just σν for the corresponding smooth representation. Suppose further that
for almost all ν, σν has a vector fixed under the hyperspecial maximal compact
subgroup (which exists at all but finitely many places). Then it makes sense to
consider the restricted tensor product σ =

⊗
ν σν . It is an irreducible representation

of GA.

Proposition 57. Let (σ, V ) =
⊗

ν σν be as above. Assume that σ has a non-trivial
GK-equivariant functional, and that for at least one place, ν1, σν1 restricted to Pν1
is equivalent to ρΨν1

. Then at every place σν restricted to Pν is equivalent to ρΨν .

Proof. Clearly, to prove the proposition it is enough to construct an PA-equivariant
embedding, R, from (σ, V ) to {f : PA → WΨΨΨ|f(p◦p) = ρΨΨΨ(p◦)f(p)∀p◦ ∈ P ◦A}. By
assumption, there is a non-zero GK -invariant map T : (σ, V ) → C. We can now
define R by

R(v)(p)(u) =

∫
A/K

ΨΨΨ(−a)T (σ(z(a)up)v)da

for v ∈ V , p ∈ PA and u ∈ UA. It is clear that R(v)(p) ∈ WΨΨΨ. It remains to check
two things. First, we must show that R is injective, and second that for any v ∈ V ,
p◦ ∈ P ◦A , and p ∈ PA,

R(v)(p◦p) = ρΨΨΨ(p◦)R(v)(p).(21)

Note that equation (21) is obvious if p◦ ∈ UA ⊂ P ◦A .
I claim that the kernel of R is precisely the set of v which are invariant by σ(z(a))

for all a ∈ A and, in particular, Ker(R) is invariant by PA. This would imply that
Ker(R) is actually trivial, because otherwise it would contradict our assumptions
about σν1 . Now, it is obvious from the definition that R(v) = 0 for all v with this
property. We now prove the converse. Pick x ∈ K∗. It is possible to choose γ ∈ PK
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so that z(a)γ = z(ax−1) (see remarks following Proposition 10 or Claim 21). By
assumption,

0 = R(v)(γp)(1) =

∫
A/K

ΨΨΨ(−a)T (σ(z(a)γp)v)da

since T is GK-equivariant

=

∫
A/K

ΨΨΨ(−a)T (σ(γ−1z(a)γp)v)da

=

∫
A/K

ΨΨΨ(−ax)T (σ(z(a)p)v)da.

Since every nontrivial character of A/K has the form Ψ̃ΨΨ(a) = ΨΨΨ(ax), this implies
that T (σ(z(a)p)v) is independent of a. Furthermore, since P normalizes z(a), we
have that T (σ(pz(a))v) = T (σ(p)v) for all a ∈ A and p ∈ PA. I claim that this
implies σ(z(a))v = v. It is equivalent to the following lemma.

Lemma 58. The map V → functions on PA, given by v 7→ T (σ(p)v), is injective.

Remark. We will actually prove the following equivalent statement: For any nonzero
element v ∈ V , there is an element p ∈ PA so that T (σ(p)v)) 6= 0.

Proof. Suppose that v ∈ V is such that T (σ(p)v) = 0 for all p ∈ PA. Then, because
T is GK-equivariant, T (σ(γ)v) = 0 for all γ ∈ GK . But GKPA is dense in GA. Thus,
T (σ(g)v) = 0 for all g ∈ GA. The set of such v clearly forms a GA-invariant subspace
of V which is not all of V because T is not zero. By irreducibility, v = 0.

We now turn to the verification of equation (21). If p◦ ∈ UA ⊂ P ◦A , it is ob-
vious. In particular, fixing p ∈ PA, R gives a map from V to WΨΨΨ which is a
UA-homomorphism, and so in particular, a Uν1 -homomorphism; call it r. But since
there is a unique extension of ρν1 from Uν1 to P ◦ν1 , our assumptions imply that r
must be actually be a P ◦ν1 -homomorphism. In particular, equation (21) holds for
p◦ ∈ P ◦ν1 .

Next, suppose that γ ∈ P ◦K . Then

R(v)(γp)(u) =

∫
A/K

ΨΨΨ(−a)T (σ(z(a)uγp)v)da

since T is GK equivariant and P ◦ commutes with Z,

=

∫
A/K

ΨΨΨ(−a)T (σ(z(a)(γ−1uγ)p)v)da

= ρΨΨΨ(γ)R(v)(p)(u)

by Corollary 56.
We have now proved that equation (21) holds for all p◦ ∈ Hν1HKUA. By strong

approximation, Hν1HK is dense in HA. Thus, equation (21) holds for all of P ◦A .

Recall that we wish to use Proposition 57 to prove Theorem 50 in the case
of the rank two form of E6. Suppose that ν0 ∈ Σ satisfies Kν0 = F . Pick a
nine-dimensional division algebra, D, over K which is ramified at ν0. Let JD be
the Jordan algebra over K obtained by modifying the multiplication on D in the
usual way (namely, a.b = 1

2 (ab+ ba)), and suppose that G is the simply connected
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algebraic group over K obtained from JD using the method of sections 1 and 2.
With these notations, our goal is to prove the existence part of Theorem 50 for Gν0 .

Let ∆ be the modulus character on P , and set I(s) = Ind
G(A)
P (A) ∆s; we use normal-

ized induction. In [Ru2] it is proved that the corresponding Eisenstein series has a
simple pole at s = 7/22. Furthermore, the residue representation, θD, satisfies the
assumptions of Proposition 57 with ν1 any finite place where D is split. It follows
that (θD)ν1 (really its unitary closure) is an irreducible representation of Gν0 which
agrees with π on Pν0 . Theorem 50 is proved.

3.5. The case of F4. In this section we construct the representation π for G
derived from the Jordan algebra of three by three symmetric matrices over F under
the product M.N = 1/2(MN+NM). In particular, J is reduced and c = dimJ =
6. The group is split of type F4. Note that F4 has no fundamental group.

Just as in the odd case, the unipotent group U is a Heisenberg group and the
action of H on U/Z leads to a map H → Sp(U/Z). Thus, by the theory of the
Heisenberg representation, there is a canonical projective representation, π̂Ψ, of
P ◦ = HU ; it may be realized on V̂ =  L2(W ).

Lemma 59. The extension of H corresponding to π̂Ψ is not split.

Proof. It is enough to show that the cover is not split over the SL(2) ⊂ H corre-
sponding to β, that is, generated by E2(kI) and E′2(kI). We can view this SL(2) as
a subset of Sp(U/Z) by composing with the map H → Sp(U/Z). It is then part of
a dual pair with a certain odd-dimensional unitary group. (Note that dimJ even
implies that dimW odd.) It is well known that the cover does not split in this case;
see [M-V-W, Theorem 3.III.1].

On the other hand, it was proved by Weil that π̂Ψ may be normalized so that the
cocycle takes values in ±1. Explicit formulas for the normalization are in section
5 of [R]. Our notation will be Γ(x) and γ(1) for what Rao would call γF (x, 1

2Ψ)

and γF (1
2Ψ), respectively. See also the remark following the proof of Corollary 68

below.

Proposition 60. The following formulas define a projective representation P ◦ →
unitary operators on V̂ whose cocycle takes values in ±1.

π̂Ψ(a,A)f(r, R) = f(r + a,R+A)

π̂Ψ(B, b)f(r, R) = Ψ(〈R,B〉+ rb)f(r, R)

π̂Ψ(z(t))f(r, R) = Ψ(t)f(r, R)

π̂Ψ(m)f(r, R) = Γ(d(m))−1|d(m)|3/2f(d(m)r, d(m)Rm)

π̂Ψ(hβ(t))f(r, R) = Γ(t)−1|t|9/2f(t3r, tR)

π̂Ψ(E2(J))f(r, R) = Ψ(QJ(r, R))f(r, R + rJ)

π̂Ψ(s)f(r, R) = γ(1)−7Γ(−1)−1

∫
F×J

Ψ(〈R̃, R〉+ rr̃)f(r̃, R̃)dr̃dR̃

Also,

π̂(s1)f(r, a, b, c, d, e, f) =γ(1)−3

∫
F×F×A

Ψ(〈C(ν)
1 , C′1〉)f(−a, r, νb, νc, d, e, νf ) dC

(ν)
1
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π̂(s2)f(r, a, b, c, d, e, f) =γ(1)−3

∫
F×F×A

Ψ(〈C(ν)
2 , C′2〉)f(−b, νa, r, νc, d, νe, f) dC

(ν)
2

π̂(s3)f(r, a, b, c, d, e, f) =γ(1)−3

∫
F×F×A

Ψ(〈C(ν)
3 , C′3〉)f(−c, νa, νb, r, νd, e, f) dC

(ν)
3

It is useful to note explicitly

Corollary 61.

π̂Ψ(h1(t))f(r, a, b, c, d, e, f) =Γ(t)−1|t|3/2f(tr, t−1a, tb, tc, d, e, tf)

π̂Ψ(h2(t))f(r, a, b, c, d, e, f) =Γ(t)−1|t|3/2f(tr, ta, t−1b, tc, d, te, f)

π̂Ψ(h3(t))f(r, a, b, c, d, e, f) =Γ(t)−1|t|3/2f(tr, ta, tb, t−1c, td, e, f)

Note that π̂Ψ(s1)π̂Ψ(s2)π̂Ψ(s3) = π̂(s)Ψ(−1,−1)F = π̂Ψ(s) and

π̂Ψ(h1(t))π̂Ψ(h2(t))π̂Ψ(h3(t)) = π̂Ψ(hβ(t))(−1, t)F .

It is a fact that every split, simply connected group over a p-adic field has a
unique two-fold cover. We will write G̃ for the double cover of G. According
to [St], the universal central extension of G is generated by symbols Xη(t), for
η a root and t ∈ F , which are additive in t and satisfy the Serre relations (here
we are assuming rankG > 1). Set wη(t) = Xη(t)X−η(−t−1)Xη(t) and mη(t) =
wη(t)wη(−1). Matsumoto shows in [Ma] that if we require also that m(t)m(r) =
(t, r)Fm(rs) for long roots η, then we obtain a complete set of generators and

relations for G̃.
We will view the double cover of G in terms of these generators and relations.

Restricting to H ⊂ G, we obtain a double cover, H̃ , of H . It is easy to check
that it is not split. We also have the double cover of H ⊂ P ◦ defined by the
cocycle in Proposition 60. Of course, these coverings coincide. On the other hand,
it is not immediately clear how to relate the covering defined by generators and
relations with the one defined by the representation. Put another way, we wish to
write formulas for the representation π̂Ψ in terms of the generators of Steinberg-
Matsumoto.

Let θ : P̃ ◦ → P ◦ be the natural projection.

Proposition 62. π̂Ψ defines an ordinary representation of P̃ ◦. It satisfies the
following formulas: π̂Ψ(mi(t)) = (−1, t)F π̂Ψ(hi(t)) and π̂Ψ(wi(1)) = π̂Ψ(si) for
i = 1, 2, 3. Also, if p ∈ M0UB (notation from 2.2) is some Xη(t), wη(1) or mη(t),
then π̂Ψ(p) = π̂Ψ(θ(p)) as given in Proposition 60.

Proof. Lemma 5.4 of [Ma] implies that if cη(r, t) is the cocycle corresponding to a
root η (i.e. mη(r)mη(t) = cη(r, t)mη(rt)), then

cη(r, t)〈η,δ〉 = cδ(r, t)
−〈δ,η〉.

Here 〈η, δ〉 = 2(η,δ)
(δ,δ) . Using this it is easy to see that H̃ splits over M0. Thus, the

portion of the proposition concerning M0 is clear. Also, P̃ ◦ splits over UB so this
is no problem.

Finally, we consider the wi(1) and mi(t). Clearly, π̂Ψ(mi(t)) = (−1, t)εF π̂Ψ(hi(t))
where ε is zero or one. Similarly, π̂Ψ(wi(1)) = (−1,−1)εF π̂Ψ(si). But (−1,−1)F =
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1; this proves the claim about wi(1). Furthermore,

π̂Ψ(mi(t)) = π̂Ψ(Xi(t))π̂Ψ(wi(1))π̂Ψ(Xi(t
−1)π̂Ψ(wi(−1))π̂Ψ(Xi(t))

= π̂Ψ(E2(tIi))π̂Ψ(si)π̂Ψ(E2(t−1Ii)π̂Ψ(s−1
i )π̂Ψ(E2(tIi))

= π̂Ψ(hi(t))κ(siE2(tI1), s−1
i )

where κ(·, ·) is the cocycle from Proposition 60. But, an easy computation using
Theorem 5.3 of [R] shows that κ(siE2(tI1), s−1

i ) = (−1, t)F . Proposition 62 is
proved.

Remark. It is interesting to compare the case of F4 with that of G2 (see [S1]). In
both cases the minimal representation lives on a central extension of the linear
group, but the extensions arise for different reasons. As we have seen, for F4 the
metaplectic cover does not split over the image of H in Sp(U/Z). Thus, we need a
double cover already for π̂Ψ. But for G2, the corresponding Jordan algebra is one
dimensional (see the appendix) so Proposition 39 applies. Hence, in this case π̂Ψ

lives on the linear group P ◦ and the issues in Propositions 60 and 62 do not arise.
The reason that a central extension is required for the minimal representation of
G2 is related to the braid relation.

We will continue to work with G̃ and its subgroups in terms of the Steinberg-
Matsumoto generators. However, in order to emphasize the parallels between the
case of F4 and the case of an odd-dimensional Jordan algebra, we refer to the gener-
ators by their canonical projections. For example, since si = θ(wi(1)), we will write
si instead of wi(1). Similarly, we will write hi(t) and E2(tIi) instead of mi(t) and
Xi(t). Finally, since s = θ(w1(1)w2(1)w3(1)) and hβ(r) = θ(m1(r)m2(r)m3(r)), we
will write s and hβ(r) instead of w1(1)w2(1)w3(1) and m1(r)m2(r)m3(r).

Set π = IndP̃
P̃◦ π̂Ψ. The representation π may be realized on V = L2(W×F ), and,

if we identify P̃ /P̃ ◦ with hα(u), it is easy to write formulas for the action. The key
point is to understand the commutators [hα(u), ·]. This we can do using the formu-
las in [Ma]. In particular, [hα(u), hα(t)] = (u, t)F . Also, hi(u)s = hi(u

−1)sihα(u)
and hα(u)s = hβ(u−1)shα(u).

Proposition 63. The representation π : P̃ → unitary operators on V is given by
the following formulas:

π(hα(t))f(r, R, u) = (t, u)F f(r, R, tu)

π(a,A)f(r, R, u) = f(r + u2a,R+ uA, u)

π(B, b)f(r, R, u) = Ψ(〈R,B〉+ rbu−1)f(r, R, u)

π(z(t))f(r, R, u) = Ψ(ut)f(r, R, u)

π(m)f(r, R, u) = (d(m), u)FΓ(d(m))−1|d(m)|(c/3+1)/2f(d(m)r, d(m)Rm, u)

π(hβ(t))f(r, R, u) = (t, u)FΓ(t)−1|t|9/2f(t3r, tR, u)

π(E2(J))f(r, R, u) = Ψ(Qu−1J (r, R))f(r, R + ru−1J, u)

π(s)f(r, R, u) = γ(1)−7Γ(−1)−1Γ(u)−1|u|−(c+3)/2∫
F×J

Ψ(〈R̃, u−1R〉+ u−3rr̃)f(r̃, R̃, u)dr̃dR̃
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Also,

π(s1)f(r, a, b, c, d, e, f, u) = (−1, u)F γ(1)−3Γ(u)−1|u|−(c/3+1)/2

×
∫
F×F×A

Ψ(〈C(ν)
1 , u−1C′1〉)f(−ua, u−1r, νb, νc, d, e, νf , u) dC

(ν)
1

π(s2)f(r, a, b, c, d, e, f, u) = (−1, u)F γ(1)−3Γ(u)−1|u|−(c/3+1)/2

×
∫
F×F×A

Ψ(〈C(ν)
2 , u−1C′2〉)f(−ub, νa, u−1r, νc, d, νe, f, u) dC

(ν)
2

π(s3)f(r, a, b, c, d, e, f, u) = (−1, u)F γ(1)−3Γ(u)−1|u|−(c/3+1)/2

×
∫
F×F×A

Ψ(〈C(ν)
3 , u−1C′3〉)f(−uc, νa, νb, u−1r, νd, e, f) dC

(ν)
3

and

π(h1(t))f(r, a, b, c, d, e, f, u) =Γ(t)−1|t|3/2f(tr, t−1a, tb, tc, d, e, tf, u)

π(h2(t))f(r, a, b, c, d, e, f, u) =Γ(t)−1|t|3/2f(tr, ta, t−1b, tc, d, te, f, u)

π(h3(t))f(r, a, b, c, d, e, f, u) =Γ(t)−1|t|3/2f(tr, ta, tb, t−1c, td, e, f, u)

Furthermore, π is independent of Ψ and irreducible. In fact, π restricted to hαU is
irreducible.

This proposition follows from the arguments of Proposition 43 and Corollary 44.
Next, we wish to extend π to G̃. Just as in section 3.2, the first step is to extend

it from B̃ to P̃α. Note that, although G is split, in our notation B is not the Borel
subgroup (see 2.2).

Proposition 64. There is a unique extension of π from B̃ to P̃α. It is given by

π(sα)f(r, R, u) = (−r, u)F (r,−1)FΨ

(
n(R)

r

)
f(−r, R,−r/u).(22)

Proof. It follows from the formulas in section 5 of [Ma] that Lemma 46 continues

to hold in the context of two-fold covers. That is, P̃α is generated by B̃ and sα
subject to the relations (1)-(7) listed in the lemma. Thus, to check that equation
(22) defines an extension of π, we must check these relations. Of course, except
for factors of ±1, we have already done so in the proof of Proposition 47. Thus,
we need to check only that the factors work out. The hardest are (4) and (7). We
leave the others as an exercise.

For relation (4), the factors on the left side are (−r, u)F (r,−1)F (d(m),−r/u)F .
On the right side we get

(d(m), u)F (d(m), u)F (−d(m)r, d(m)u)F (d(m)r,−1)F

= (−r, d(m)u)F (d(m), u)F (d(m), d(m))F (d(m),−1)F (r,−1)F

= (−r, d(m)u)F (d(m), u)F (r,−1)F

= (−r, u)F (d(m),−ru)F (r,−1)F .

The right-hand side of relation (7) gives (t, u)F (−r, ut)F (r,−1)F . The left-hand
side we work out in stages. First, since s−1

α x(t) = hα(−1)sαx(t) we get the term
(u,−1)F (−r,−u)F (r,−1)F . Next, x(t−1) gives

(u,−1)F (−(r + u2/t),−u)F (r + u2/t,−1)F .
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Including sα we get

(−r, u)F (r,−1)F (−r/u,−1)F (r − r2/u2t), r/u)F (−r + r2/u2t,−1)F

=(−r, u)F (r,−1)F (−r/u,−1)F (r, r/u)F (1−r/u2t), r/u)F (−r,−1)F (1−r/u2t,−1)F .

This simplifies to (1 − r/u2t), r/u)F (1− r/u2t,−1)F . Finally, adding x(1) gives

(1 − (r + u2t)/u2t), (r + u2t)/u)F (1− (r + u2t)/u2t,−1)F

= (−r/u2t, r/u(1 + u2t/r))F (r/u2t,−1)F

= (−rt, ru)F (rt,−1)F

= (t, u)F (t, r)F (−r, u)F (r,−1)F (t,−1)F

= (t, u)F (−r, tu)F (r,−1)F .

The existence part of Proposition 64 is now proved. The uniqueness follows from
the same arguments as in Proposition 47.

We can now state the main result of this section.

Theorem 65. There exists a unique unitary representation, π, of G̃ so that π
restricted to P̃ is given by Proposition 63 and π restricted P̃α is given by Proposition
64.

Just as in section 3.3 it is enough to prove

Theorem 66. For i = 1, 2, 3 there is an equivalence of unitary operators

π(sα)π(si)π(sα) = π(si)π(sα)π(si).

Since the argument is essentially the same for each i = 1, 2, 3, we just give the
case i = 1. Let A and B be the operators π(sα) and π(s1), respectively. We wish
to show that

ABA = BAB.

Lemma 67. Set

Φ̃ = |r/u|−3/2Ψ(
n(R)

r
).

Then

B(Φ̃) = (−1, u)F γ(1)−3Γ(u)−1γ(
r

au2
I1)Φ̃.

The proof is just the easy part of the argument in Theorem 52.

Corollary 68. B(Φ̃) = Γ(−ura)(−u,−ra)F Φ̃.

Proof. By Proposition 33, the quadratic form QkI1 has the form QkI1(b, c, f) =
−kbc+ kf2. Thus,

γ(
r

au2
I1)γ(1)−3 = (ra,−1)FΓ(−ra).(23)

Furthermore, Γ(u)−1 = (−1, u)FΓ(u). Hence by the lemma,

B(Φ̃) = (ra,−1)FΓ(u)Γ(−ra)Φ̃.

But Γ(u)Γ(−ra) = Γ(−ura)(u,−ra)F . Thus, we have reduced the corollary to the
statement (ra,−1)F (u,−ra)F = (−u,−ra)F which is clear.



MINIMAL REPRESENTATIONS OF EXCEPTIONAL p-ADIC GROUPS 171

Remark. There is one subtle point about equation (23) that should be noted. Since
in his definition of the normalization factors, Rao includes a 1

2 , it seems that we

need to have QkI1(b, c, f) = −kbc + 1
2kf

2 to make things work. However, this is
not the case. The confusion arises because we chose the identification of W ′ with
W ∗ given by w′(w) = 〈R, J〉+ tu where w = (t, R) ∈ W and w′ = (J, u) ∈ W ′. In
the case of F4 this leads to an inner product on U/Z given by

((t1; a1, b1, c1, d1, e1, f1), (a2, b2, c2, d2, e2, f2; t2))

= t1t2 + a1a2 + b1b2 + c1c2 + 2(d1d2 + e1e2 + f1f2).

The definition of the inner product used in [R] does not include the factor of two.

Proof (Theorem 66). Just as in the proof of Theorem 51, it is easy to prove that

ABA is an integral operator with kernel (r, u)F (a, ru)FΓ(−ru)−1γ(1)−3Φ̃.
On the other hand, one checks that BAB is the same operator except with kernel

(a, u)FΓ(a)−1γ(1)−3B(Φ̃). Thus, by Corollary 68, it is enough to prove that

(r, u)F (a, ru)FΓ(−ru)−1γ(1)−3 = (a, u)FΓ(a)−1γ(1)−3Γ(−ura)(−u,−ra)F .

Equivalently,

(r, au)F = (−u,−ra)F (−ru,−1)FΓ(−ura)Γ(a)−1Γ(−ru)−1.

The right side equals (−u,−ra)F (−ru,−1)F (a,−ru)F = (−u,−ra)F (−ru,−a)F =
(−u, r)F (r,−a)F = (r, au)F which is the left-hand side. Theorem 66 is proved.

This completes the proof of Theorem 65.

4. Minimality

In this section we prove that the representation π constructed in section 3 is
minimal. As was pointed out by Kazhdan, this is morally clear because, by results
of Howe, π restricted to a Borel subgroup has the character that you expect. If G
is split (and simply laced), this was made into a proof by Savin in [S2].

Essentially the same argument can be given in general. Of course, G may not
have a Borel subgroup so Howe’s Kirillov theory for solvable groups is not directly
applicable. It turns out that this is not necessary. In section 2 we prove directly
that π restricted to P has the expected character. Then we present the proof of
minimality closely following [S2] except working with P in place of a Borel subgroup.

Remark. Although in this chapter we use the language of linear groups, virtually
the same arguments apply to F4 as well.

4.1. Definitions. Let F be a p-adic field. Let G = G(F ) be the F -rational points
of a connected reductive group defined over F . Let g be the Lie algebra of G, and
g∗ the dual of g. There are two topologies on these spaces: Zariski and p-adic.
Unless otherwise indicated we will work with the p-adic topology. We will now
define congruence subgroups of G. Since G is an algebraic F -group, there is an
F -rational injection G(F̄ ) → GLn(F̄ ) for some n, and a corresponding F -rational
injection g(F̄ ) → Mn(F̄ ). Let In be the identity in GLn, R ⊂ F the ring of
integers and $ ∈ R a uniformizing parameter. Then, for r a positive integer, set
Gr = G∩ (In +$rMn(R)); cf. [Pl-R] section 3.1. As is well known (see [H1]) when
r is large enough, log provides a homeomorphism from Gr to an R-module gr ⊂ g
which is closed under the bracket operation.
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Let SG be the space of Schwartz-Bruhat functions on G; that is, SG is the space
of locally constant compactly supported (complex valued) functions on G. Also,
let dg be (a choice of) Haar measure on G. If (ρ, V ) an irreducible representation
of G, define the operator ρ(f) on V for each f ∈ SG by

ρ(f) =

∫
G

f(g)ρ(g)dg.

It is known that since ρ is irreducible, ρ(f) is a finite rank operator. Thus, we can
define the character of ρ by

Θρ(f) = Tr(ρ(f)).

It is a distribution on G. Note that this trace is the same whether we take for ρ an
irreducible Hilbert space representation, or the corresponding smooth representa-
tion.

Choose r so large that log gives a homeomorphism from Gr to gr ⊂ g. If f ∈ SG
is supported in Gr, then we may view it as a function on g. Let f̂ be the Fourier
transform of f with respect to the Killing form. It is a function on g∗. In this
situation, Harish-Chandra [H-C] has proved that there are numbers, cO, indexed
by the nilpotent coadjoint orbits O ⊂ g∗, so that if r is large enough,

Θρ(f) =
∑
O
cO
∫
f̂µO.

Here µO is a suitably normalizedG-invariant positive measure onO. It is convenient
to write simply

Θρ =
∑
O
cOµ̂O.

The numbers cO are obviously invariants of ρ. Two less refined invariants are
the Gelfand-Kirillov dimension of ρ,

GK(ρ) = max
{O|cO 6=0}

dimO
2

,

and the wave front set,

WF(ρ) =
⋃

{O|cO 6=0}
O ⊂ g∗.

Here O is the closure of O.
A nilpotent coadjoint orbit, Omin, is minimal if Omin = Omin ∪ {0}. A represen-

tation is called minimal if its wave front set is the closure of a minimal orbit. If G
has a unique minimal orbit, then it is equivalent to define a minimal representation
to be one with smallest possible (positive) Gelfand-Kirillov dimension.

We now specialize to G as in section 2. I will show that G has a unique minimal
orbit. It may be characterized as follows. Let

ω =

0 0 0
0 0 0
1 0 0

 ∈ sl(3) ⊂ g.

Identifying g with g∗ using the Killing form, we may view ω as an element of g∗.

Lemma 69. G has a unique minimal orbit, namely Omin = Ad∗(G)ω.



MINIMAL REPRESENTATIONS OF EXCEPTIONAL p-ADIC GROUPS 173

Proof. First, it is easy to see that over the algebraic closure there is a unique
minimal orbit and it is generated by ω. (For example, one can adapt the argument
in [C-M] Chapter 4.) Thus, if u is in a minimal orbit, then it is conjugate to ω over
F̄ . We will be done if we prove that u is rationally conjugate to ω.

This is a problem in Galois cohomology as follows. Let Γ be the Galois group
of F̄ /F and let C(F̄ ) be the centralizer of ω in G(F̄ ). We know that there exists
g ∈ G(F̄ ) with u = gωg−1. Since u and ω are rational, if σ ∈ Γ we have u =
σ(g)ωσ(g−1). It follows that g−1σ(g) ∈ C(F̄ ). In fact, is easy to see that the map
ρ : Γ → C(F̄ ) given by ρ(σ) = g−1σ(g) is a 1-cocyle.

I claim that ρ is a coboundary. This would mean that there exists an element
a ∈ C(F̄ ) so that ρ(σ) = a−1σ(a). That is, a−1σ(a) = g−1σ(g) for all σ ∈ Γ,
and so ga−1 = σ(ga−1) for all σ ∈ Γ. In other words, ga−1 ∈ G(F ). Since
ga−1ωag−1 = gωg−1 = u, this means that ω and u are rationally conjugate.

It remains to prove that ρ is a coboundary. Certainly it is enough to prove that
H1(Γ, C(F̄ )) is trivial. To do this, first recall that when computing H1, we can
replace any group with its reductive part (see [Pl-R] Proposition 2.9.). Now it is
easy to see that the reductive part of C(F̄ ) is, in the notation of section 2.1, H(F̄ ).
Consequently, H1(Γ, C(F̄ )) = H1(Γ, H(F̄ )). Next, since H is semi-simple and
simply connected (Proposition 9), Theorem 6.4 of [Pl-R] implies H1(Γ, H(F̄ )) =
1.

Remark. The preceding argument used, via Proposition 9, the fact that we took G
simply connected. However, it is straightforward to prove that if a simply connected
group has a unique minimal orbit, then so does any isogenous group.

Let p be the Lie algebra of P . We can identify p∗ with p (the opposite parabolic)
and consider ω ∈ p∗. Let OP be the coadjoint P -orbit containing ω. Corresponding
to the injection p → g there is a map κ : g∗ → p∗; κ can be identified with the natural
projection g = p⊕ u → p.

It is easy to check that dimOmin = dimOP . Since κ is P -equivariant, this
implies

Lemma 70. κ is a P -equivariant bijection between an open set in Omin and OP .

4.2. Parabolic theory. Let σ = π|P . Set Pr = P ∩Gr and pr = p∩ gr. The goal
of this section is to prove the following result.

Proposition 71. There is an explicit constant r so that if h is a function on pr
such that supp ĥ ∩ OP is compact, then σ(h) is trace class and

Trσ(h) =

∫
OP

ĥµOP .

Here µOP is a suitably normalized P -invariant measure on OP .

If P were a solvable group, such as a Borel subgroup, then this proposition
would be valid for any irreducible representation, and is due to Howe [H2]. We are
not generalizing his results to more general groups (it would be false) but rather
claiming that it works for our one specific representation.

Let P = LU ⊂ G as earlier. Pick r so large that Gr is sufficiently small in the
sense of [H1, Theorem 1.1]. We will explain what this means. For ease of notation,
let K = Gr and K = gr. Howe defines a constant β, and the condition is that
[K,K] ⊆ $β+1K. Here $ is a uniformizer in F .
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Choosing r larger if necessary, we may assume that P and K are in good position,
and that there is a λ ∈ L strictly dominant with respect to the pair (P,K). This
means that if KL = L ∩K, KU = U ∩K, and KU = U ∩K, then K = KUKLKU .
Also, if Un = λ−nKUλ

n, then Ad(λ) normalizes KL and
⋃
n Un = U . Thus, it

makes sense to define Cn = KLUn, and C∞ =
⋃
n Cn = KLU .

Remark. Using the formulas in section 2.3 it is easy to find a such a λ. For example,
pick a ∈ F ∗ very large. Then λ = hα(a−2)hβ(a−1) works.

Lemma 72. The groups Cn satisfy the assumptions of [H1, Theorem 1.1].

Proof. Let K and Cn be the subalgebras of g corresponding to K and Cn, respec-
tively. By assumption, [K,K] ⊆ $β+1K. We must show that [Cn, Cn] ⊆ $β+1Cn.
Suppose that k, k′ ∈ KL and kU , k

′
U ∈ KU . Then,

[k + λ−nkUλn, k′ + λ−nk′Uλ
n]

= [k, k′] + λ−n[kU , k
′
U ]λn + λ−nkUλnk′ + kλ−nk′Uλ

n − λ−nk′Uλ
nk − k′λ−nkUλn

= [k, k′] + λ−n[kU , k
′
U ]λn + λ−n[Ad(λn)(k), k′U ]λn + λ−n[kU ,Ad(λn)(k′)]λn.

Since the adjoint action of λ preserves KL, the lemma follows.

In the same way that Howe proves Proposition 1.1 of [H2], we can now apply
Theorem 1.1 of [H1] to the Cn and take an inductive limit. Set C∞ =

⋃
n Cn. We

get the following:

Proposition 73. Let Ĉ∞ be the Pontryagin dual of C∞. Then

(1) There is a natural homeomorphism B : Ĉ∞/Ad∗ C∞ → Ĉ∞ where Ĉ∞ is the
space of irreducible unitary representations of C∞ suitably topologized.

(2) If ρ is an irreducible representation of C∞, and f is a Schwartz-Bruhat func-
tion on C∞, then the character of ρ, Chρ : f 7→ Tr(ρ(f)), makes sense.

(3) If ρ = B(O) for some Ad∗ C∞-orbit O ⊂ Ĉ∞, then Chρ(f) =
∫
O f̂1µO where

f1 = f ◦ exp is a Schwartz-Bruhat function on C∞, and µO is the unique
C∞-invariant measure on O suitably normalized.

By choosing a character of F , we can identify p∗ with p̂. Then, corresponding
to the injection C∞ ⊂ p, there is a projection λ : p∗ → Ĉ∞. It is easy to see that,
using λ, we can view ω as an element of Ĉ∞. Let O∞ be the coadjoint C∞-orbit
containing ω. Also, let R = {x ∈ F ∗|hα(x) ∈ K} and suppose that {xi}, i ∈ Z is a
set of coset representatives for F ∗/R. Then it is clear that

λ(OP ) =
⋃
i

Ad∗(hα(xi))O∞.(24)

Lemma 74. Let ρ = B(O∞). Then σ restricted to C∞ is the direct sum of the
representations Ad∗(hα(xi))ρ.

Proof. Recall how σ = π|P was constructed. Begin with the Heisenberg represen-
tation of U corresponding to a non-trivial additive character of F , Ψ. As we saw
in Corollary 44, σ is independent of this choice. The Heisenberg representation ex-
tends uniquely to a representation of P ◦ = HU which we called π̂. Finally, induce
π̂ from P ◦ to P . Note that P/P ◦ may be identified with hα.

It is now clear that σ restricted to C∞ may be constructed as follows. Extend
the Heisenberg representation to KHU where KH = K ∩H ; call it ρ̂. Next induce
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from KHU to hαKHU , and finally restrict back to hα(R)KHU = C∞. Thus by
Mackey’s theory,

σ|C∞ =
⊕

Ad∗(hα(xi)) IndC∞KHU
ρ̂.

Let τ = IndC∞KHU
ρ̂. It remains to check that ρ = τ . Recall that W ′ ⊂ U is a

maximal isotropic subspace. Let A ⊂ C∞ be the subgroup generated by z(t),W ′

and KH , and let A be its Lie algebra. Then {ω} ∈ Â is a coadjoint A-orbit. The
corresponding representation of A is the character z(t)w′k 7→ Ψ(t). It follows from

the theory of the Heisenberg representation that τ = IndC∞A Ψ.

On the other hand, ω ∈ Â is obviously in the image of O∞ under the canonical
map Ĉ∞ → Â. Since the map B from Proposition 73 is natural, this means that
there is a map from ρ|A to Ψ. Thus by Frobenius reciprocity,

ρ ⊂ IndC∞A Ψ = τ.

Hence, to show τ ∼= ρ, it enough to check that τ is irreducible. This follows from
the arguments in Proposition 43.

Finally, we can prove Proposition 71. We are assuming that the support of h is
contained in pr ⊂ C∞. Thus, by Proposition 73, Lemma 74, and equation (24),

Trσ(h) =
∑
i

∫
Ad∗(hα(xi))O∞

ĥµi

=

∫
λ(OP )

ĥµ.

Note that only finitely many terms of the sum are nonzero because supp ĥ ∩ OP
is compact. Moreover, because we are dealing only with functions on C∞, we can
normalize the measure on OP so that∫

λ(OP )

ĥµ =

∫
OP

ĥµOP .

Proposition 71 is proved.

4.3. Proof of Minimality.

Theorem 75. π is a minimal representation of G.

For any nilpotent coadjoint orbit O, set 2d(O) = dimO. Let d = GK(π) and
d0 = d(Omin). Since Omin is the unique minimal coadjoint G-orbit, to prove Theo-
rem 75 it is enough to show that d = d0.

Of course, the main idea is to find functions on G whose support is very close
to P so that we can relate Θπ and Tr(σ). First some notation. Set Un = U ∩Gn,
and let χUn

be the characteristic function of Un normalized to have total integral
one. Also, recall the notation introduced after Proposition 71, K = Gr and K =
KUKLKU . So, for x ∈ K, we can write x = zy where z ∈ U and y ∈ P . Now, if
h(y) is a Schwartz-Bruhat function on P which vanishes outside of Pr, we define
fn(x) = χUn

(z)⊗ h(y); fn vanishes outside of K.

Lemma 76. There is an integer n0 so that for n ≥ n0

π(fn) = σ(h)π(χn).

Here χn is the characteristic function of Gn with total integral one.
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Proof. Since h is locally constant and with compact support contained in Pr, we
can choose n0 so large that for all n ≥ n0 there are constants ci and elements
pi ∈ Pr (depending on n) so that

h(y) =
∑

ciχPn(p−1
i y).

Thus,

fn(x) =
∑

ciχn(p−1
i x).

Now,

σ(h)π(χn) =
(∑

ciπ(χPn)π(pi)
)
π(χn).

But pi ∈ Pr ⊂ P1 so it normalizes Gn. Thus,

σ(h)π(χn) =
∑

ciπ(χPn)π(χn)π(pi)

=
∑

ciπ(χn)π(pi)

= π(fn).

Corollary 77. Suppose that supp ĥ ∩ OP is compact. Then

lim
n→∞Θπ(fn) = Tr(σ(h)).

Remark. The assumptions of the corollary imply that ĥ(0) = 0 and thus f̂n(0) = 0.

Lemma 78. (1) f̂n = χ̂Un ⊗ ĥ.

(2) χ̂Un+1
≥ χ̂Un

≥ 0.

(3) Suppose that ĥ ≥ 0 and supp ĥ∩OP 6= ∅. Then if O is any non-zero nilpotent
coadjoint orbit,

µ̂O(fn) > 0.

Remark. It is clear that there exist h satisfying the hypotheses of both part (3) and
Corollary 77.

Proof. Parts (1) and (2) are obvious. Also, they immediately imply that µ̂O(fn) ≥
0. To prove (3), it remains to check that the support of f̂n intersects O. Since both

sets are open, it is enough to check that the support of f̂n intersects O. But since
G has a unique minimal orbit,

O ⊃ Omin ⊃ OP .

The following result is proved in [M-W].

Proposition 79 (Moeglin-Waldspurger). If GK(ρ) = d and O is a nilpotent coad-
joint orbit of dimension 2d, then cO is a non-negative integer.

It follows from Lemma 78 and Proposition 79 that we can choose h so that∑
dimO=2d

cOµ̂O(fn)(25)

is bounded away from zero. The strategy of the proof is to show that if d > d0

then the limit as n→∞ of expression (25) is zero. Thus, d = d0.
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The essential idea of Savin is to consider not just the single family of functions
fn, but several related families in order to separate the orbital integrals of different
dimensions. We need the following result from [H-C, Lemma 3].

Proposition 80 (Harish-Chandra). Let g(x∗) ∈ Sg∗ , and let O be a nilpotent coad-
joint orbit of dimension 2d(O).Then∫

g(r−1x∗)µO = |r|d(O)

∫
g(x∗)µO

for any r ∈ F ∗.
Remark. Here Sg∗ is the set of Schwartz-Bruhat functions on g∗.

For any f ∈ Sg, define f (r)(x) = |r|dim gf(rx). Then it is easy to check that

f̂ (r)(x∗) = f̂(r−1x∗). Thus,

Corollary 81. Let f and O be as above. Then µ̂O(f (r)) = |r|d(O)µ̂O(f).

It is easy to see that f
(r)
n = χ

(r)

Un
⊗ h(r), where these functions are defined in

the analogous manner. Furthermore, if the residue field of F has q elements and

|r| = qk, then χ
(r)

Un
= χUn+k

. It follows that Corollary 77 holds for f
(r)
n . That is,

lim
n→∞Θπ(f (r)

n ) = Tr(σ(h(r))).

Of course, using Corollary 81

Θπ(f (r)
n ) =

d∑
k=d0

∑
d(O)=k

cOµ̂O(f (r)
n )

=

d∑
k=d0

∑
d(O)=k

|r|kcOµ̂O(fn).

(Recall that f̂n(0) = 0.) Furthermore, since µOP is up to a constant the restric-
tion of µOmin to OP (see Lemma 70), statements analogous to Proposition 80 and
Corollary 81 hold for µOP . Thus, by Proposition 71,

Tr(σ(h(r))) = |r|d0 Tr(σ(h)).

This proves that

lim
n→∞

d∑
k=d0

∑
d(O)=k

|r|kcOµ̂O(fn) = |r|d0 Tr(σ(h))(26)

for all r ∈ F ∗. For each d0 ≤ i ≤ d, pick ri so that |ri| 6= |rj | for i 6= j.
Next, rewrite the corresponding family of expressions (26) as follows. Let T be
the (d − d0) × (d − d0) matrix with Ti,j = |tj |i, d0 ≤ i, j ≤ d. Also, Xn is the
(d− d0)-vector given by

(Xn)i =


∑

d(O)=i

cOµ̂O(fn) if i > d0,

(cOmin µ̂Omin(fn))− Tr(σ(h)) if i = d0.

With this notation, we can write

lim
n→∞TXn = 0.
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However, det T is easily seen to be non-zero; it is a Vandermonde determinant.
Thus, limn→∞ Xn = 0. But we have already shown (equation (25)) that∑

d(O)=d

cOµ̂O(fn)

is bounded away from zero. Thus, d = d0. In other words, π is a minimal repre-
sentation. Theorem 75 is proved.

Appendix A. Jordan Algebras and Lie Algebras

In this appendix, we extend the results of section 1 in two ways. First, we
construct more Lie algebras. Second, we give a technique for constructing large
tables of dual pairs in exceptional Lie algebras.

In section 1, we associated a Lie algebra to any central, simple, rank three Jordan
algebra, J , over a field, F . When F is a p-adic field, we observed that these include
all Lie algebras of type E6, E7, E8 and F4. However, the construction actually uses
only the fact that J has rank three. By considering J ’s which are not necessarily
central simple, we obtain a wider class of Lie algebras. For example, if E is a cubic
extension of F and J = E as a vector space, with multiplication a.b = 1

2 (ab+ ba),
then we obtain a quasi-split rank two form of D4 (“triality D4”). Also, J = F with
norm x 7→ x3 and trace x 7→ 3x, gives G2.

One general way to obtain a rank three Jordan algebra is as the direct sum of a
trivial rank one Jordan algebra with a central simple rank two Jordan algebra. It
is a fact that every central simple rank two Jordan algebra is the Jordan algebra of
a symmetric bilinear form. These have the form V × F1 where V is a vector space
equipped with a quadratic form, (·, ·). The multiplication is given by v.v′ = (v, v′)1
for v, v′ ∈ V , and a1.b1 = ab1 for a, b ∈ F . Note that V ×F1 embeds in the Clifford
algebra of V as the tensors of degree less than or equal to one; here, of course, the
associative Clifford algebra is made into a Jordan algebra in the usual way.

It is easy to check that if d = dimV is odd, then the Lie algebra coming from
the Jordan algebra F ⊕ (V ×F1) is a form of D(d+1)/2+3. Similarly, if d is even, we
get Bd/2+3. Of course, these orthogonal Lie algebras may be constructed in other
ways. On the other hand, this construction makes it easy to define embeddings of
orthogonal algebras into exceptional algebras as discussed below.

Recall from section 1 that the Lie algebra M is generated by the LA for A ∈ J .
Using this, one can check that if I ⊂ J are two rank three Jordan algebras, then
M(I) ⊂ M(J ). More generally, any of the Lie algebras associated to I constructed

in section 1, g(I), h(I),M0(I),M
(A)
0 (I), are sub-Lie algebras of the corresponding

algebras associated to J . Furthermore, it is easy to prove the following result (cf.
[S2, Theorem 7.3]).

Proposition 82. Suppose that I ⊂ J are rank three Jordan algebras. Let L =
{m ∈ M0(J )|m(A) = 0 ∀A ∈ I}. Assume that (M0(I),L) is a dual pair in M0(J ).
Then (h(I),L) and (g(I),L) are dual pairs in h(J ) and g(J ), respectively.

The proposition leads to the construction of many dual pairs. For example,
consider the following set of inclusions of Jordan algebras. Let J0 be the exceptional
Jordan algebra (three by three hermitian matrices over the octonians). Next let Ji,
i = 1, 2, 3 be three by three hermitian matrices over the quaternions, a quadratic
algebra, and the field itself, respectively. It is clear that we can set things up so
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A1 A2 C3 F4

A2 A2 +A2 A5 E6

C3 A5 D6 E7

F4 E6 E7 E8

finite A1 G2

finite F 2 A3
1 D4

finite

finite F 2

A1 A3
1

G2 D4

A1

F A2

F

A1 A2

Figure 5. Table of dual pairs.

that Ji ⊃ Jj when i < j. Next, take J4 to be the diagonal matrices in J3, and J5

the elements diag(a, a, a). The corresponding inclusions of Lie the algebras g(Ji)
are

G2 ⊂ D4 ⊂ F4 ⊂ E6 ⊂ E7 ⊂ E8.

We could now write a large see-saw diagram for the corresponding dual pairs in E8,
another for E7 and so on (special care is needed for J5 as the proposition does not
apply). Instead, we will represent this information in Figure 5. The last column
represents the inclusions above together with A1 ⊂ A2 ⊂ G2 (if we wish, we can
view A2 as coming from the “zero” Jordan algebra). The rows record the dual
pairs. Thus, in E8, A1 pairs with E7, A2 pairs with E6, G2 pairs with F4 and so
on. Similarly for the other rows. For example, A2 is paired with A5 in E7 and
with A2 + A2 in E6. Furthermore, if we delete the last column, the diagram has
the same meaning. Thus, for example, (A1)3 pairs with D4 in E7 and with (A1)3

in D6. The same phenomenon occurs if we delete the last two columns.

Remarks. (1) One astonishing feature of this particular collection is its symmetry.
I can not explain why it is true.

(2) The word “finite” in the figure means that the dual pair in question involves
a finite group (and so may not exist on the Lie algebra level).

Using our construction of orthogonal Lie algebras above, we can get many more
dual pairs in exceptional Lie algebras. For example, two by two hermitian matrices
over the quaternions are easily seen to form a Jordan algebra of a symmetric bilinear
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form of dimension 5. Thus, considering matrices of the forma d 0

d b 0
0 0 c

 ,
we can embed D6 into E7. Similarly, if we set a = b, we get B5. In this manner, one
can construct long inclusions of rank three Jordan algebras and thus large diagrams
similar to Figure 5. In general, of course, they will not be symmetric. Nevertheless,
it is easy to see that we can enlarge Figure 5 by including B4 between D4 and F4,
and B3 between G2 and F4. The resulting diagram is still symmetric.
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