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ON CERTAIN SMALL REPRESENTATIONS OF INDEFINITE

ORTHOGONAL GROUPS

CHEN-BO ZHU AND JING-SONG HUANG

Abstract. For any n ∈ N such that 2n ≤ min(p, q), we construct a represen-

tation πn of O(p, q) with p+q even as the kernel of a commuting set of n(n+1)
2

number of O(p, q)-invariant differential operators in the space of C∞ functions
on an isotropic cone with a distinguished GLn(R)-homogeneity degree. By
identifying πn with a certain representation constructed via the formalism of
the theta correspondence, we show (except when p = q = 2n) that the space
of K-finite vectors of πn is the (g, K)-module of an irreducible unitary repre-
sentation of O(p, q) with Gelfand-Kirillov dimension n(p + q − 2n − 1). Our
construction generalizes the work of Binegar and Zierau (Unitarization of a
singular representation of SOe(p, q), Commun. Math. Phys. 138 (1991),
245–258) for n = 1.

1. Construction of the representation πn

Let V = Rp,q ' Rp ⊕ Rq be the real vector space equipped with the quadratic
form

(v, w) =

p∑
t=1

xtyt −
p+q∑

t=p+1

xtyt,

where v =

( x1

...
xp+q

)
, w =

( y1

...
yp+q

)
∈ Rp,q. Let G = O(p, q) be the isometry group.

Fix a natural number n. We always assume p + q even and 2n ≤ min(p, q).
Let V n be the direct sum of n copies of V , which can be identified with the space
Mp+q,n(R) of (p+ q)× n real matrices.

Let

X =
(
xij
)
1≤i≤p+q,1≤j≤n ∈Mp+q,n(R),

and X be the following cone

X = {X ∈Mp+q,n(R)|XtIp,qX = 0n, the n× n zero matrix}.
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Let X = (X1, · · ·Xn) so that Xi is the ith column vector of X , and for 1 ≤ i, j ≤
n, let rij be quadratic forms defined by

rij(X) = (Xi, Xj) =

p∑
t=1

xtixtj −
p+q∑

t=p+1

xtixtj ,(1.1)

then X ∈ X if and only if rij(X) = 0 for 1 ≤ i ≤ j ≤ n. We shall thus call X the
isotropic cone.

Define the following subset of X
X 00 = {X ∈ X| rankX = n}.

It is dense in X , since 2n ≤ min(p, q).
The group G = O(p, q) acts on V n 'Mp+q,n(R) and the action is identified with

left multiplication:

X 7→ gX, g ∈ O(p, q), X ∈Mp+q,n(R).

The group H = GLn(R) acts on Mp+q,n(R) on the right by

X 7→ Xh−1, h ∈ GLn(R), X ∈Mp+q,n(R).

Clearly the actions of G and H on Mp+q,n(R) commute, and both actions preserve
the isotropic cone X , and X 00. Our hypothesis 2n ≤ min(p, q) implies that O(p, q)
acts on X 00 transitively (Witt’s Lemma). Thus X 00 is a homogeneous space of
O(p, q).

Define the following set of differential operators

∆ij =

p∑
t=1

∂2

∂xti∂xtj
−

p+q∑
t=p+1

∂2

∂xti∂xtj
,(1.2)

Eij =

p+q∑
t=1

xti
∂

∂xtj
,(1.3)

for 1 ≤ i, j ≤ n. Then {rij ,∆ij , Eij}1≤i,j≤n generate the algebra of O(p, q)-
invariant polynomial differential operators on Mp+q,n(R).

For α ∈ C, let C∞(X 00, α)± be the space of C∞ functions f on X 00 such that

f(Xh) = | deth|α(
det h

| deth| )
εf(X), h ∈ GLn(R), X ∈ X 00,

where ε = 0, 1 respectively. Likewise we define C∞(U, α)± for any open conical
neighborhood U of X 00, namely any open neighborhood of X 00 which is stable
under GLn(R).

Since the action of G commutes with the H action, G preserves C∞(X 00, α)±.
Let U be an open conical neighborhood of X 00. Observe that the induced action

of GLn(R) on C∞(U) is given by

(h · F )(X) = F (Xh), F ∈ C∞(U), h ∈ GLn(R), X ∈ U.
Let eij be the n×nmatrix with one at the (i, j) entry and zeros elsewhere. Together
they form a basis for the Lie algebra gln(R) of GLn(R). Then the derived action
of gln(R) on C∞(U) is given by

eij 7→ Eij .
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Clearly if F ∈ C∞(U, α)±, then

EijF = αδijF, 1 ≤ i, j ≤ n.

Let f ∈ C∞(X 00, α)±. We would like to apply the differential operator ∆kl to
it. To this end, we first extend f to a conical neighborhood U of X 00 in a conical
way, namely we require the extension f̃ to belong to C∞(U, α)±. This can always

be done. Now we can apply ∆kl to the extension f̃ and then restrict ∆kl(f̃) back
to X 00. The problem is of course that the restriction may depend on the choice of
the extension. We shall show for α = n+1− p+q

2 , ∆kl(f̃)|X 00 is independent of the

extension f̃ . It clearly suffices to demonstrate the following

Proposition 1.1. Let U be a conical neighborhood of X 00 in Mp+q,n(R). If F ∈
C∞(U, n+ 1− p+q

2 )± and F |X 00 = 0, then ∆kl(F )|X 00 = 0 for 1 ≤ k, l ≤ n.

Proof. Since 2n ≤ min(p, q), we see that the n(n+1)
2 polynomials rij (1 ≤ i ≤ j ≤ n)

are algebraically independent. In fact the Jacobian matrix J(r11, r12, ..., rnn) at

any point of X 00 has full rank n(n+1)
2 ([T], Lemma 2.9). Thus they are functionally

independent. Using this fact and the fact F |X 00 = 0, we can write

F =
∑

1≤i,j≤n
rijFij ,

where Fij = Fji ∈ C∞(U ′), for a small conical neighbourhood U ′ ⊂ U of X 00.
Denote by I the ideal in C∞(U ′) generated by {rij}1≤i≤j≤n, then each Fij is
unique modulo I.

We compute

∆kl(
∑
ij

rijFij) =
∑
ij

rij∆kl(Fij) +
∑
ij

[∆kl, rij ]Fij .

We have

[∆kl, rij ] = δjkHil + δilHjk + δjlHik + δikHjl,

where

Hij = Eij +
p+ q

2
δij , 1 ≤ i, j ≤ n.(1.4)

Now since F =
∑

ij rijFij ∈ C∞(U, α), we have (as functions in C∞(U ′))

Ekl(
∑
ij

rijFij) = αδkl(
∑
ij

rijFij), 1 ≤ k, l ≤ n.(1.5)

A simple computation gives

Ekl(rij) = δlirkj + δljrki.
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Thus we have

Ekl(
∑
ij

rijFij) =
∑
ij

Ekl(rij)Fij + rijEkl(Fij)

=
∑
ij

(δlirkj + δljrki)Fij + rijEkl(Fij)

=
∑
ij

rij(δikFlj + δikFjl + Ekl(Fij))

=
∑
ij

rij(2δikFlj + Ekl(Fij)).

Comparing the coefficients in front of rij in Equation (1.5) (after symmetrization),
we obtain

δikFlj + δjkFli + Ekl(Fij) ≡ αδklFij , (mod I).

Therefore we have

Ekl(Fij) ≡ αδklFij − δikFlj − δjkFli, (mod I)

and so

Hkl(Fij) ≡ (α+
p+ q

2
)δklFij − δikFlj − δjkFli, (mod I).

We continue our computation∑
ij

[∆kl, rij ]Fij =
∑
ij

(δjkHil + δilHjk + δjlHik + δikHjl)Fij

≡
∑
ij

δjk((α +
p+ q

2
)δilFij − Flj − δjiFli)

+
∑
ij

δil((α +
p+ q

2
)δjkFij − δijFkj − Fki)

+
∑
ij

δjl((α+
p+ q

2
)δikFij − Fkj − δijFki)

+
∑
ij

δik((α+
p+ q

2
)δjlFij − δjiFlj − Fli)

≡ 2(α+
p+ q

2
)Flk + 2(α+

p+ q

2
)Fkl − 2nFlk − 2nFkl − 2Flk − 2Fkl

≡ 4(α+
p+ q

2
− n− 1)Fkl, (mod I).

To summarize, we have

∆kl(
∑
ij

rijFij) ≡
∑
ij

rij∆kl(Fij) + 4(α+
p+ q

2
− n− 1)Fkl, (mod I).

If α = n+ 1− p+q
2 , then we clearly have

∆kl(
∑
ij

rijFij)|X 00 = 0.
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Thus for 1 ≤ k ≤ l ≤ n, we have the following differential operator ∆′
kl defined

on C∞(X 00, n+ 1− p+q
2 )±

∆′
kl(f) = ∆kl(f̃)|X 00 , f ∈ C∞(X 00, n+ 1− p+ q

2
)±,

where f̃ is a conical extension of f to a conical neighborhood U of X 00. Since the
action of G commutes with ∆kl, the action of G also commutes with ∆′

kl.

Set ε ≡ p−q
2 (mod 2). Let

Hn = {f ∈ C∞(X 00, n+ 1− p+ q

2
)ε|∆′

kl(f) = 0, for 1 ≤ k ≤ l ≤ n}.(1.6)

Then G acts on Hn. We denote this representation of G by πn, where 2n ≤
min(p, q).

The following is our main result and its proof is given in §4 and §5.

Theorem 1.2. For any natural number n such that 2n ≤ min(p, q) (except for
p = q = 2n), we have

(a) the K-finite vectors of πn is the (g, K)-module of an irreducible unitary rep-
resentation of O(p, q), and

(b) πn has the Gelfand-Kirillov dimension n(p+ q − 2n− 1).

Remarks. A) For n = 1, our construction reduces to that of Binegar and Zierau
([BZ]), which in turn is a generalization of the work of Kostant for p = q = 4 ([K1],
[K2]). It turns out that π1 is the minimal representation of O(p, q) (p + q even,
min(p, q) ≥ 2, except for p = q = 2). In [BZ] the irreducibility and the unitarizabil-
ity of π1 is proved by long and intriguing calculations involving spherical functions
and Gegenbauer polynomials. Our strategy of proving the irreducibility and uni-
tarizability of πn is to identify it with a certain representation constructed via the
formalism of the theta correspondence. Then the statement on the irreducibility
and the unitarizability will be derived from the powerful result of Li on the theta
lifting in the stable range ([L1]).

B) We remark also that for n = 1, the infinitesimal structure of C∞(X 00, α)± as
an O(p, q) module is the main object of study in Howe and Tan’s work [HT], and is
completely determined for any α. In particular, they pointed out that when p+ q
is even, the space

C∞(X 00, 2− p+ q

2
) = C∞(X 00, 2− p+ q

2
)+ ⊕ C∞(X 00, 2− p+ q

2
)−

contains a unitary constituent whose K-types are distributed along a single line (a
ladder representation), and they went on to say that this representation should
be obtained from the theta lift of the trivial representation for the dual pair
(O(p, q), SL2(R)). Our article is partly motivated by their important observation.
In this connection, we would like to point out a mistake in [BZ]. In our notation, π1

is a submodule of C∞(X 00, 2− p+q
2 )ε, where ε ≡ p−q

2 (mod 2), instead of ε ≡ 2− p+q
2

(mod 2). The latter statement which is claimed in [BZ] is not correct when p and
q are both odd. See [HT] for details.

C) The representation πn is a subrepresentation of the degenerate principal series
representation

Ind
O(p,q)
(O(p−n,q−n)·GLn(R))nNχ,



ON SMALL REPRESENTATIONS OF O(p, q) 195

where the inducing representation χ is the character | det |n+1− p+q
2 ( det

| det | )
p−q
2 on

GLn(R) defined in the obvious way and is trivial on O(p − n, q − n) n N . This
degenerate series representation itself is not K-multiplicity free except in the case
of n = 1, but the subrepresentation πn is K-multiplicity free. Moreover, πn is not
spherical except when p = q. We would also like to point out that πn has ZNk-rank
2n in the sense of Howe, where ZNk is the center of the unipotent radical Nk of
a certain parabolic subgroup Pk of O(p, q) with k = min(p, q), the real rank of
O(p, q). See [H5], [L2].

D) The representations πn can be thought of as the orthogonal analog of some
unipotent representations of hermitian symmetric groups (e.g. Sp(2n,R)) con-
structed by Sahi ([S]). The approaches there are rather different from ours, but
from the point of view of the local theta correspondence, the nature of the repre-
sentations constructed are really quite similar. They are all theta lifts of unitary
characters in the stable range. For more results in this direction (both stable and
unstable range), we refer the reader to [LZ1], [LZ2].

E) Philosophically it is rather conceivable that the representation πn has the
GK-dimension n(p+ q − 2n− 1). The space of C∞ functions on the isotropic cone

with a fixed GLn(R) homogeneity degree satisfies n(n+1)
2 + n2 equations. As the

kernel of n(n+1)
2 differential operators on that space, the representation πn “should”

have GK-dimension n(p + q) − (n(n+1)
2 + n2) − n(n+1)

2 = n(p + q − 2n − 1). Our
argument relies on a description of K-types of πn and thus its asymptotic behavior
is readily computed.

2. Theta lifting of unitary characters in the stable range

Let (G,G′) be a reductive dual pair inside some real symplectic group Sp. Let

S̃p be the metaplectic two fold cover of Sp. Let ω be the oscillator representation
of S̃p, realized on a Hilbert space Y. Let Y∞ be the space of smooth vectors of Y,
and ω∞ be the associated smooth representation of S̃p. For a reductive subgroup
E of Sp, let Ẽ be the inverse image of E inside S̃p. Denote by R(Ẽ) the set of
infinitesimal equivalence classes of continuous irreducible admissible representations
of Ẽ on locally convex space. Let R(Ẽ, ω) be the set of elements of R(Ẽ) which

are realized as quotients by ω∞(Ẽ)-invariant closed subspaces of Y∞.

Given ρ ∈ R(G̃′, ω), let Ω(ρ) be the maximal quotient of Y∞ on which G̃′ acts
by a representation of class ρ. We have

Ω(ρ) ∼= ρ′ ⊗ ρ

where ρ′ is a G̃ module. By the result of [H2], ρ′ is a finitely generated admissible

quasi-simple representation of G̃, and has a unique irreducible G̃ quotient, denoted
by θ(ρ). The correspondence

ρ 7→ θ(ρ)

is usually called the (local) theta correspondence or the Howe quotient correspon-
dence.

Let Z2 = {±1} be the kernel of the projection from S̃p to Sp. Let ˆ̃G(ε) (resp.
ˆ̃G′(ε)) be the subset of the unitary dual of G̃ (resp. G̃′) consisting of those repre-
sentations whose restriction to Z2 is a multiple of the unique non-trivial character
of Z2.
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Suppose that (G,G′) is a type I dual pair and it is in the stable range with G′

the small member. By the result of [L1], ˆ̃G′(ε) ⊂ R(G̃′, ω), and the Howe duality
correspondence gives rise to an injection

ˆ̃G′(ε) ↪→ ˆ̃G(ε).

(The case of (G,G′) = (O(p, q), Sp(2n,R)) with p = q = 2n is excluded for some
technical reason).

Proposition 2.1. Suppose that (G,G′) is in the stable range with G′ the small

member. Then for any unitary character χ ∈ ˆ̃G′(ε), χ′ is already irreducible. Thus
χ′ = θ(χ) is irreducible and unitary.

Remark. In the p-adic case, a result of the same nature was first shown by Kudla
and Rallis (Proposition 3.1, [KR2]).

The proof of Proposition 2.1 relies on Li’s construction in the stable range of

θ(ρ), for ρ ∈ ˆ̃G′(ε), described below.

Let ρ be realized on a Hilbert space Hρ. Consider the G̃× G̃′ module ω∞ ⊗ ρ∞
on the algebraic tensor product

Y∞ ⊗H∞
ρ ,

where a superscript ∞ denotes the smooth representation or the space of smooth
vectors, as usual. For the ease of notation, we shall write ω⊗ ρ for ω∞⊗ ρ∞. Note
that ω⊗ρ is in fact a representation of G. The unitary structures of Y and Hρ give
rise to an inner product (, ) on Y∞ ⊗H∞

ρ .
For any Φ1,Φ2 ∈ Y∞ ⊗H∞

ρ , define

(Φ1,Φ2)ρ =

∫
G′

(Φ1, (ω ⊗ ρ)(g)Φ2)dg.

The result of [L1] tells us that if (G,G′) is in the stable range with G′ the small

member, then the above integral is convergent and defines a G̃-invariant Hermitian
form.

Let Rρ be the radical of the form (, )ρ, which is preserved by G̃. Denote the

representation of G̃ on the quotient space

H(ρ) = (Y∞ ⊗H∞
ρ )/Rρ

by π(ρ). The following is the main result of [L1].

Theorem 2.2. Suppose that (G,G′) is a type I dual pair in the stable range with
G′ the small member (except for (G,G′) = (O(2n, 2n), Sp(2n,R))). Then for any

ρ ∈ ˆ̃G′(ε),
(a) π(ρ) is non-zero and irreducible;
(b) The form ( , )ρ is non-negative, and therefore π(ρ) is unitary;
(c) θ(ρ) ∼= π(ρ∗).

Now let ρ = χ ∈ ˆ̃G′(ε) be a unitary character, so that Hχ
∼= C. Thus we have a

canonical isomorphism

Y∞ ⊗H∞
χ
∼= Y∞.
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Denote by Jχ the minimal ω∞(G̃′)-invariant closed subspace of Y∞ such that

G̃′ acts on the quotient by a multiple of χ. Thus we have

Ω(χ) = Y∞/Jχ.
Proposition 2.1 will follow from Theorem 2.2 and the following simple lemma.

Lemma 2.3. We have

Rχ̄ = Jχ = closure of the span {(ω(g)− χ(g))f |g ∈ G̃′, f ∈ Y∞}.
Proof. Let Iχ = closed span of the set {(ω(g) − χ(g))f |g ∈ G̃′, f ∈ Y∞}. Then

clearly Iχ is a G̃′-invariant closed subspace of Y∞ and G̃′ acts on the quotient

by a representation of class χ. Moreover, any G̃′-invariant closed subspace of Y∞
for which G̃′ acts on the quotient by a representation of class χ must contain Iχ.
Therefore Jχ = Iχ.

Next we let Φ = (ω(g1) − χ(g1))f , where g1 ∈ G̃′, f ∈ Y∞. Then for any
Φ2 ∈ Y∞, we have

(Φ,Φ2)χ̄ =

∫
G′

((ω(g1)− χ(g1))f, χ̄(g)ω(g)Φ2)dg

=

∫
G′

(f, χ̄(g)ω(g−1
1 g)Φ2)dg − χ(g1)

∫
G′

(f, χ(g)ω(g)Φ2)dg

=

∫
G′

(f, χ̄(g1g)ω(g)Φ2)dg − χ(g1)

∫
G′

(f, χ(g)ω(g)Φ2)dg = 0.

This implies Φ ∈ Rχ̄ and so Jχ ⊆ Rχ̄.
Now let h ∈ Rχ̄∩J ⊥

χ , where J⊥
χ denotes the subspace of Y∞ which is orthogonal

to Jχ with respect to the unitary structure of Y∞. Then we have

0 = (h, h)χ̄ =

∫
G′

(h, χ̄(g)ω(g)h)dg =

∫
G′

(ω(g−1)h, χ̄(g)h)dg

=

∫
G′

(χ(g−1)h, χ̄(g)h)dg =

∫
G′

(h, h)dg.

We conclude that h = 0. Therefore Rχ̄ = Jχ.

3. Howe quotients R(0) and their K-types

In this section we specify the dual pair (G,G′) to be

(O(p, q), Sp(2n,R)) ⊂ Sp(2(p+ q)n,R).

Let K ∼= O(p) × O(q) and K ′ ∼= U(n) be the fixed maximal compact subgroups
of G and G′, respectively. We may choose a maximal compact subgroup U of
Sp(2(p+ q)n,R) in such a way that

K = U ∩G and K ′ = U ∩G′.
We shall apply the Howe Duality Theorem in the context of (g, K̃)-modules. Let

ω be the oscillator representation of S̃p(2(p+ q)n,R) which we fix by specifying a

non-trivial unitary additive character of R. Let S be the space of Ũ -finite vectors
of ω, which consists of polynomials in a Fock model of ω. Then S is naturally
a (g′, K̃ ′)-module. Let R(0) be the maximal quotient of S on which (g′, K̃ ′) acts
trivially. The Howe Duality Theorem [H2] tells us that R(0) is a quasi-simple

(g, K̃)-module of finite length and has a unique irreducible quotient, denoted by
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Q(0). Thus Q(0) is the representation of (g, K̃) which corresponds to the trivial

(g′, K̃ ′) module under the Howe quotient correspondence.
We now assume that the dual pair in question is stable with G′ the small member,

namely 2n ≤ min(p, q). Furthermore, we let p+q be even. Then the coverings G̃→
G, G̃′ → G′ are both trivial. By Li’s result [L1] we see the Howe correspondence will

then give rise to an injection Ĝ′ ↪→ Ĝ. On the other hand, we know by Proposition
2.1 that R(0) is already irreducible and so it coincides with Q(0), which is unitary.
We shall record this as

Theorem 3.1. If 2n is less than or equal to min(p, q) (except for p = q = 2n),
then R(0) is the (g, K)-module of an irreducible unitary representation of O(p, q).

Remark. In [KR1], Kudla and Rallis consider the dual pair (O(p, q), Sp(2n,R)) ⊆
Sp(2(p+ q)n,R) and study the Howe quotient which corresponds to the trivial rep-
resentation of O(p, q), among other things. Subsequently in [LZ1] and [LZ2], Lee
and Zhu examine in more detail the dual pairs (U(p, q), U(n, n)) ⊆ Sp(4(p+q)n,R)
(resp. (O(p, q), Sp(2n,R)) ⊆ Sp(2(p + q)n,R)), and investigate the Howe quo-
tients which correspond to various one dimensional representations of U(p, q) (resp.
O(p, q)). In particular, they were able to determine completely the structure of
these Howe quotients and their relationship with some degenerate series represen-
tations of U(n, n) and Sp(2n,R). One of the objectives of the present paper is to
reverse the role of the two members in the dual pair (O(p, q), Sp(2n,R)) and study
the Howe quotient which corresponds to the trivial representation of Sp(2n,R).

We proceed to describe the K-types of R(0). We first introduce some notations.
As usual, we shall parameterize representations of U(n) by their highest weights
with respect to the upper triangular Borel subalgebra, or their corresponding Young
diagrams. Following Weyl ([W], [A]) we parameterize representations of O(p) by
restriction from U(p). Thus given a Young diagram Y with rows of length a1 ≥
a2 ≥ ... ≥ ap ≥ 0 such that the sum of the lengths of the first two columns is less
than or equal to p, the irreducible O(p) representation associated to Y is defined
to be the irreducible summand of the representation of U(p) given by Y which
contains the highest weight vector. More precisely, if the rows of Y are of the form

(a1, ..., ak, 0, ..., 0), ak > 0, k ≤ [
p

2
],

or

(a1, ..., ak, 1, ..., 1︸ ︷︷ ︸
l

, 0, ..., 0), ak ≥ 1, 2k + l = p,

the O(p) representation associated to Y will be denoted by (a1, ..., ak, 0, ..., 0; 1) or
respectively (a1, ..., ak, 0, ..., 0;−1). In order to avoid repetition, we may require k <
p
2 in (a1, ..., ak, 0, ..., 0;−1) if p is even, since in that case we have (a1, ..., a p

2
;−1) '

(a1, ..., a p
2
; 1) if a p

2
6= 0.

Proposition 3.2. Let (G,G′) = (O(p, q), Sp(2n,R)) be the reductive dual pair in

Sp(2(p+ q)n,R), ω be the oscillator representation of S̃p(2(p+ q)n,R). Then the
K-types in R(0) are of the form

(a1, a2, ..., ak, 0, ..., 0; ε1)⊗ (b1, b2, ..., bl, 0, ..., 0; ε2),
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satisfying the following equality of n-tuples:
p

2
1n + (a1, ..., ak, 1, ..., 1︸ ︷︷ ︸

1−ε1
2 (p−2k)

, 0, ..., 0) =
q

2
1n + (b1, ..., bl, 1, ..., 1︸ ︷︷ ︸

1−ε2
2 (q−2l)

, 0, ..., 0),

where εi = ±1, 1n = (1, ..., 1), and k ≤ [p2 ], k + 1−ε1
2 (p − 2k) ≤ n, and l ≤ [ q2 ],

l+ 1−ε2
2 (q − 2l) ≤ n. Moreover, each such K-type occurs with multiplicity one.

In particular, we have
(a) if p = q, then K-types in R(0) are of the form

(a1, a2, ..., ak, 0, ..., 0; ε)⊗ (a1, a2, ..., ak, 0, ..., 0; ε),

where ε = ±1, k ≤ [p2 ], and k + 1−ε
2 (p− 2k) ≤ n, and

(b) if 2n ≤ min(p, q), then K-types in R(0) are of the form

(a1, a2, ..., an, 0, ..., 0; 1)⊗ (b1, b2, ..., bn, 0, ..., 0; 1),

where a1 ≥ ... ≥ an ≥ 0, b1 ≥ ... ≥ bn ≥ 0, and ai + p
2 = bi + q

2 for 1 ≤ i ≤ n.

Proof. Suppose σ = σ1 ⊗ σ2 is a K-type. Let Sσ be the σ-isotypic submodule of S
so that we have

S =
∑

σ∈Σ⊂K̂
Sσ,

where Σ is a known subset of K̂.
Let J be the span of {ω(X)v, (ω(k′)− 1)v|v ∈ S,X ∈ g′, k′ ∈ K̃ ′} so that

R(0) = S/J .
Since g′, K̃ ′ preserve Sσ, we have

S/J '
∑

σ∈Σ⊂K̂
Sσ/(Sσ ∩ J ).

Recall the seesaw dual pair [Ku]

K = O(p) ×O(q) Sp(2n,R)

|
⋂

|
⋂

G = O(p, q) Sp(2n,R)× Sp(2n,R),

where Sp(2n,R) ↪→ Sp(2n,R)× Sp(2n,R) is the diagonal embedding.
By the standard result of Howe ([H2]), we have

Sσ ' σ ⊗ π(σ)

for some irreducible (sp(2n,R)⊕sp(2n,R), L̃) module π(σ), where L = U(n)×U(n).

Since g′, K̃ ′ act only on the second factor of the decomposition Sσ ' σ ⊗ π(σ),
we see that Sσ/(Sσ ∩J ) ' σ⊗π(σ)0, where π(σ)0 is the maximal quotient of π(σ)

on which (sp(2n,R), Ũ(n)) acts trivially.
Thus we conclude that a K-type σ occurs in R(0) if and only if π(σ)0 6= 0, and

the dimension of π(σ)0 gives the multiplicity of σ in R(0).
We know ([KV], [A]) that if

σ1 = (a1, a2, ..., ak, 0, ..., 0; ε1),

σ2 = (b1, b2, ..., bl, 0, ..., 0; ε2),
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then π(σ) = π1 ⊗ π2, where π1 (resp. π2) is the lowest (resp. highest) weight

(sp(2n,R), Ũ(n))-module with the lowest (resp. highest) Ũ(n)-type τ1 (resp. τ2),
and the highest weights of τ1 and τ2 are respectively

p

2
1n + (a1, ..., ak, 1, ..., 1︸ ︷︷ ︸

1−ε1
2 (p−2k)

, 0, ..., 0),

− q

2
1n + (0, ..., 0,−1, ...,−1︸ ︷︷ ︸

1−ε2
2 (q−2k)

,−bl, ...,−b1).

Here k ≤ [p2 ], k + 1−ε1
2 (p− 2k) ≤ n, and l ≤ [ q2 ], l+ 1−ε2

2 (q − 2l) ≤ n.

For π(σ) to have a non-zero maximal quotient such that (sp(2n,R), Ũ(n)) acts

trivially, it is equivalent to the fact that there exists a non-zero (sp(2n,R), Ũ(n))-
equivariant map π1 ⊗ π2 7→ C. Clearly it is equivalent to the condition π2 ' π∗1 ,
and in this case π(σ)0 is one dimensional. This happens if and only if τ2 ' τ∗1 as

representations of Ũ(n), namely if and only if

p

2
1n + (a1, ..., ak, 1, ..., 1︸ ︷︷ ︸

1−ε1
2 (p−2k)

, 0, ..., 0) =
q

2
1n + (b1, ..., bl, 1, ..., 1︸ ︷︷ ︸

1−ε2
2 (q−2l)

, 0, ..., 0).

Assume p = q. Then if ε1 = ε2 = ε, the above condition clearly implies k = l and
ai = bi for all i. If ε1 = 1 and ε2 = −1, then we get k = q − l. Since k ≤ [p2 ] = [ q2 ],
l ≤ [ q2 ], we must have q = 2d and k = l = d. This contradicts our convention to
avoid repetition of labeling representations of O(q), since ε2 = −1, and q = 2d, but
l = d. Similarly it is also impossible to have ε1 = −1 and ε2 = 1.

Assume 2n ≤ p. If ε1 = −1, then k ≤ [p2 ], and k + (p − 2k) ≤ n. Clearly
k ≤ n ≤ p

2 and p − k ≤ n ≤ p
2 , thus k ≥ p

2 . So we must have p = 2d and k = d.
This again contradicts our convention. Therefore we have ε1 = 1. Similarly ε2 = 1.
The rest of the assertion is then clear.

4. Identification of πn with the Howe quotient

Let X =

(
Y
Z

)
∈ X 00, where Y ∈Mp,n(R), Z ∈Mq,n(R). Then first we have

(
Y
Z

)t
Ip,q

(
Y
Z

)
= 0n,

namely Y tY = ZtZ. Since X ∈ X 00 has rank n, the rank of XtX = Y tY +ZtZ =
2Y tY is also n. We conclude that both Y and Z have rank n.

Let Sp,n be the following Stiefel manifold

Sp,n = {V ∈Mp,n(R)|V tV = In}.
O(p) acts transitively on Sp,n by the left matrix multiplication and we have Sp,n '
O(p)/O(p − n) as an O(p) homogeneous space. Similarly we define the Stiefel
manifold Sq,n.

Let Pn be the set of n× n positive definite symmetric matrices. We can write

Y = V R
1
2 , where V ∈ Sp,n, R ∈ Pn,

Z = WS
1
2 , where W ∈ Sq,n, S ∈ Pn.



ON SMALL REPRESENTATIONS OF O(p, q) 201

Then it is clear that X =

(
Y
Z

)
∈ X 00 if and only if R = S. So we have the

following “polar coordinates” decomposition of X 00

X =

(
V
W

)
R

1
2 , V ∈ Sp,n, W ∈ Sq,n, R ∈ Pn.

We fix R ∈ Pn. Given any neighborhood U of X 00 and f ∈ C∞(U), define

JR(f) =

∫
Sp,n×Sq,n

f(

(
V
W

)
R

1
2 )dV dW,(4.1)

where dV, dW are the rotation-invariant probability measures on Sp,n and Sq,n

respectively. It is easy to see that
(a) JR(f) depends only on f |X 00, and
(b) JR(f1(∆klf2)) = JR((∆klf1)f2), for f1, f2 ∈ C∞(U).

Recall that we have the oscillator representation ω of S̃p(2(p+q)n,R) associated
to the dual pair (G,G′) = (O(p, q), Sp(2n,R)) ⊂ Sp(2(p + q)n,R). The oscillator
representation ω is realised on L2(V n) via the Schrodinger model. This induces

an action of S̃p(2(p + q)n,R) on S = S(V n), the space of Schwartz functions on
V n. It is well-known that S is the space of smooth vectors of ω, and it carries the
standard Frechet topology. Define

S0 = span {(ω(K̃ ′)− 1)S, ω(g′)S}
where K ′ ∼= U(n) is a maximal compact subgroup of G′ = Sp(2n,R), and g′ is
the Lie algebra of G′ = Sp(2n,R) as before. Let S̄0 be its closure in the Frechet

topology. Clearly S̄0 is also the closed span of {(ω(G̃′)− 1)S}.
Let Ω(0) = S/S̄0. Note that the underlying Harish-Chandra module of Ω(0) is

the Howe quotient R(0). It is irreducible and unitary (except for p = q = 2n) (cf.
§3).

Denote by Xsing = X −X 00, the complement of X 00 in X . It is the singular part
of the isotropic cone. Note that X 00 is contained in V n −Xsing as a closed subset.

Let C∞(V n −Xsing) be the space of smooth functions on V n −Xsing . Define a
subspace N0 of C∞(V n −Xsing) as follows: we say f ∈ N0 if there exist two finite
sets of functions {hi}, {Fj} in C∞(V n − Xsing) such that f =

∑
i(ω(ki) − 1)hi +∑

j ω(gj)Fj in a neighborhood of X 00, where ki ∈ K̃ ′, and gj ∈ g′.
We endow C∞(V n−Xsing) with the topology induced by the semi-norms ||f ||pd,R

= JR(|pd(f)|2), where pd runs over the set of polynomial coefficient differential
operators on V n, R runs over the set Pn of n × n positive definite symmetric
matrices, and JR is as in Equation (4.1). Denote by N̄0 the closure of N0 in this
topology. Let C∞(V n − Xsing)/N̄0 be the coset space of C∞(V n − Xsing) with
respect to N̄0.

Recall that ε ≡ p−q
2 (mod 2). We define an O(p, q)-equivariant map

T : C∞(X 00, n+ 1− p+ q

2
)ε −→ C∞(V n −Xsing)/N̄0(4.2)

as follows. For f ∈ C∞(X 00, n + 1 − p+q
2 )ε, extend f to f̃ ∈ C∞(V n − Xsing)

such that f̃ |U ∈ C∞(U, n + 1 − p+q
2 )ε, where U is an open conical neighborhood

of X 00. Define Tf to be the coset of f̃ in C∞(V n − Xsing)/N̄0. The map T is

well-defined since any two extensions f̃1 and f̃2 of f differ in a neighborhood U ′ of
X 00 by an element of the form

∑
ij rijfij where fij ∈ C∞(U ′), and so they differ
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by an element of N0 ⊂ N̄0 and are thus in the same equivalence class. Since O(p, q)

commutes with the actions of H = GLn(R), ω(K̃ ′) and ω(g′), we see that T is
O(p, q)-equivariant.

Recall that Hn is the subspace of C∞(X 00, n+ 1− p+q
2 )ε, on which O(p, q) acts

by the representation πn.

Proposition 4.1.

T |Hn : Hn −→ C∞(V n −Xsing)/N̄0

is an O(p, q)-equivariant embedding.

Proof. Let f ∈ Hn, namely f ∈ C∞(X 00, n + 1 − p+q
2 )ε, and ∆klf̃ |X 00 = 0 for

1 ≤ k ≤ l ≤ n.
Suppose Tf = 0, i.e. f̃ ∈ N̄0. Then there exists a net {α} and a set of

functions fα ∈ N0 such that fα → f̃ in the topology of C∞(V n − Xsing). Since

f̃ ∈ C∞(X 00, n+1− p+q
2 )ε, we have f̃(Xb) = ( det b

| det b| )
p−q
2 f̃(X), for X ∈ U , a conical

neighborhood of X 00. Here b is any element of P ′ ∩ K ′ ∼= O(n), where P ′ is the
maximal parabolic subgroup of Sp(2n,R) preserving V n. This implies in particular

that f̃ |U is invariant under the (two-element) kernel of the covering map K̃ ′ → K ′.
Since fα ∈ N0, there is a neighborhood Uα of X 00 such that

fα|Uα =
∑
i

(ω(kαi )− 1)hαi +
∑
j

ω(gαj )Fα
j ,

where hαi , F
α
j ∈ C∞(Uα), and kαi ∈ K̃ ′, gαj ∈ g′. By intersecting if necessary, we

may assume Uα ⊂ U .
Since f̃ |Uα is invariant under the (two-element) kernel of the covering map K̃ ′ →

K ′, we may assume (by averaging if necessary) that fα|Uα has the same property.
Thus we can write

fα|Uα =
∑
i

(ω(kαi )− 1)hαi +
∑
j

ω(gαj )Fα
j ,

where kαi ∈ K ′, instead of K̃ ′. Since K ′ ∼= U(n) is connected, we may further
assume that hαi = 0, namely fα|Uα =

∑
j ω(gαj )Fα

j , gαi ∈ g′, Fα
j ∈ C∞(Uα).

We have

ω(g′) = span {r,∆, H},
where r = span {rij}1≤i,j≤n, ∆ = span {∆ij}1≤i,j≤n, H = span {Hij}1≤i,j≤n. See
Equations (1.1), (1.2), (1.3), (1.4) in §1 for the definitions of rij , ∆ij and Hij . Since
H is the commutator algebra of r and ∆, we may write

fα|Uα =
∑
i,j

∆ij(h
α
ij) +

∑
i,j

rijf
α
ij ,

where fαij , h
α
ij ∈ C∞(Uα).

For any R ∈ Pn, we have JR(f̃∆ij(h
α
ij)) = JR((∆ij f̃)hαij) = 0, since ∆ij f̃ |X 00 =

0. This implies that JR(f̃ fα) = 0. Since fα → f̃ in the topology of C∞(V n−Xsing),
we have JR(f̃(f̃ − fα)) → 0, and so JR(f̃2) = JR(f̃ fα) + JR(f̃(f̃ − fα)) → 0. Thus

we have JR(f̃2) = 0. This implies that f̃ |Sp,n×Sq,n×{R} = 0. Since R ∈ Pn is

arbitrary, we see that f = f̃ |X 00 = 0.
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We now prove part (a) of Theorem 1.2. We have the restriction map r: S 7→
C∞(V n − Xsing), and the image is clearly dense in the given topology of
C∞(V n−Xsing). Moreover, since the topology in the image induced by the Frechet
topology of S is stronger than the subspace topology of C∞(V n−Xsing), and since
r(S0) ⊂ N0, we obtain an O(p, q)-equivariant map

Ω(0) = S/S̄0 7→ C∞(V n −Xsing)/N̄0(4.3)

which has a dense image. On the left-hand side of (4.3), the K-isotypic subspaces
are finite dimensional (§2), and since the mapping (4.3) has dense image, the K-
isotypic subspaces on the right-hand side must also be finite dimensional, and the
mapping (4.3) must carry the space of K-finite vectors of Ω(0) onto the space of K-
finite vectors of C∞(V n−Xsing)/N̄0. Since the former is irreducible, the underlying
Harish-Chandra module of C∞(V n−Xsing)/N̄0 is also irreducible and is isomorphic

to R(0). Since Hn 6= 0 (for example |∆n|n+1− p+q
2 ( ∆n

|∆n| )
p−q
2 ∈ Hn, see [KV] for the

definition of ∆n here), we conclude from Proposition 4.1 that the Harish-Chandra
module of πn must be isomorphic to R(0).

5. Gelfand-Kirillov dimension of πn

We first recall the definition of Gelfand-Kirillov dimension ([V]) for a finitely
generated U(g)-module V , where g is a Lie algebra over C and U(g) is the enveloping
algebra of g. Choose a finite dimensional subspace V0 so that V = U(g)V0. For
each positive integer k, let Uk(g) be the subspace of U(g) spanned by products of at
most k elements in g. We set dV,V0(k) = dim(Uk(g)V0). Then there is a polynomial
φ of degree at most dim g such that dV,V0(k) = φ(k) for large k. Moreover, the

leading term which we write as c(V )
(DimV )!k

DimV is independent of the choice of V0.

We say that DimV is the Gelfand-Kirillov dimension of V .
Recall that G = O(p, q) and K = O(p) × O(q), and let g = O(p + q,C) be the

complexified Lie algebra of G. Let V = πn with 2n ≤ min(p, q). Since V ∼= Ω(0),
V admits the following K-isotypic decomposition

V |K '
∑
λ∈R

Vλ,

where R is the set {λ = (λ1, ..., λn)|λ1 ≥ ... ≥ λn ≥ 0}, and for λ = (λ1, ..., λn) ∈
R, Vλ denotes the representation of O(p) × O(q) given by (λ1, ..., λn, 0, ..., 0; 1) ⊗
(λ1 + p−q

2 , ..., λn+ p−q
2 , 0, ..., 0; 1) (cf. §3). Now for each λ = (λ1, ..., λn) ∈ R, we let

|λ| = λ1 + · · ·+λn. Let V0 = V(0,...,0) and Vk =
∑

λ∈R,|λ|=k Vλ, for a positive integer

k. Now g admits a Cartan decomposition g = k⊕ p, where k is the complexified Lie

algebra of K, and p = {
(

0 a
at 0

)
: a ∈Mp,q(C)}. We have

p(V0) = V1, and p(Vj) = Vj−1 ⊕ Vj+1, (j > 1).

It follows from this that Uk(g)V0 =
∑

j≤k Vj . Therefore if dim Vk is a polynomial

in k of degree s− 1, then dim(Uk(g)V0) is a polynomial in k of degree s and so the
Gelfand-Kirillov dimension of V is equal to s.

Lemma 5.1 (Lemma 6.4, [LZ1]). Let φ(α1, ..., αn) be a polynomial of total degree
d. Write φ = φh + φ′, where φh is homogeneous of total degree d and φ′ is of
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total degree less than or equal to d − 1. Suppose that the coefficients of φh are
non-negative. Then for any given positive integers c1, ..., cn,

ψ(k) =
∑

{
α1, ..., αp ≥ 0∑n

i=1 ciαi = k

φ(α1, ..., αn)

is a polynomial in k of degree d+ n− 1.

We are now ready to prove part (b) of Theorem 1.2.

Proposition 5.2. The Gelfand-Kirillov dimension of πn is equal to n(p+ q−2n−
1).

Proof. We make the following change of variables

µi = λi − λi+1, 1 ≤ i ≤ n− 1, µn = λn,

and we shall write V (µ) for Vλ. Observe that λ ∈ R and |λ| = k if and only if
µ1, ..., µn ≥ 0, and

∑n
i=1 iµi = k. Thus∑

λ∈R,|λ|=k
dim Vλ =

∑
{
µ1, ..., µn ≥ 0∑n

i=1 iµi = k

dim V (µ).

We shall only examine the case where p = 2p′, q = 2q′ are both even. The other
case (p, q both odd) is similar. By the Weyl dimension formula, we have

dimVλ = 2p
′+q′−2

∏
1≤i<j≤p′

(li − lj)(li + lj)

(2p′ − 2)!(2p′ − 4)! · · · 2!

×
∏

1≤i<j≤q′

(mi −mj)(mi +mj)

(2q′ − 2)!(2q′ − 4)! · · · 2!

where li = mi = λi+p
′−i for 1 ≤ i ≤ n, li = p′−i for n < i ≤ p′ and mi = q′−i for

n < i ≤ q′. In the new variables, we see that dimV (µ) is a polynomial in µ1, ..., µn
of total degree

2[(p′ − 1) + ...+ (p′ − n)] + 2[(q′ − 1) + ...+ (q′ − n)] = n(p+ q − 2n− 2).

Moreover for i < j, we have λi−λj =
∑j−1

l=i µl, λi+λj =
∑j−1

l=i µi+2
∑n

l=j µl, and

so the positivity condition on the coefficients of the homogeneous part of dimV (µ)
specified in Lemma 5.1 is satisfied. Therefore∑

{
µ1, ..., µn ≥ 0∑n

i=1 iµi = k

dimV (µ)

is a polynomial in k of degree

n(p+ q − 2n− 2) + n− 1 = n(p+ q − 2n− 1)− 1.

Thus dimVk =
∑

λ∈R,|λ|=k dim Vλ is a polynomial in k of the same degree. It

follows from this and the discussion before Lemma 5.1 that the Gelfand-Kirillov
dimension of πn is equal to n(p+ q − 2n− 1).
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6. A Final Remark

It is well believed, as stated by Kirillov and Kostant, that coadjoint orbits are
closely related to unitary representations. In this section we remark on the relation
between the small representations we constructed and some nilpotent orbits.

Let G be a complex simple Lie group and B a Borel subgroup of G. Let g be
the Lie algebra of G. We may identify coadjoint orbits in g∗ with adjoint orbits
in g by using the Killing form. McGovern studied a certain family of nilpotent
adjoint orbits and the ring of regular functions on them [M]. These orbits can
be characterized as nilpotent orbits which contain open B-orbits. We call these
orbits spherical nilpotent orbits. The ring of regular functions R(O) on a spherical
nilpotent orbit is multiplicity-free under the adjoint action of G. All spherical orbits
are contained in the closure of the single largest spherical orbit, which is called the
model orbit by McGovern.

Now we specify G to be O(2m,C), the complex orthogonal group of type Dm.
By a theorem of Gerstenhaber, the nilpotent orbits of G in g = so(2m,C) are in
one to one correspondence with partitions of 2m such that the even parts have even
multiplicity (cf. Theorem 5.1.6 in [CM]). Though it is not needed in this paper,
we note that for G = SO(2m,C), there are two orbits corresponding to a partition
with only even parts, which are labeled by I and II. There are two families of
spherical orbits (cf. Table 8 of [M]). One family is corresponding to the partitions
(3, 22k, 12l+1) such that k = 0, 1, · · · , [m2 ] − 1 and l = m − 2k − 2. The other

family is corresponding to the partitions (22k, 12l) such that k = 0, 1, 2, · · · , [m2 ]
and l = m− 2k.

The second family of orbits Ok with partition (22k, 12l) has dimension equal
to k(2m − 2k − 1). It is conceivable that the orbit Ok is related to the small
representation πk for k = 0, 1, · · · , [m2 ]. Denote by G0 = O(p, q) with p + q = 2m
a real form of G and g0 the Lie algebra of G0. The intersection of Ok with g0 is a
nilpotent G0-orbit inside g0 if and only if 2k ≤ min(p, q). This coincides with the
condition 2n ≤ min(p, q) we needed for the lifting to get unitary representations
πn. When m = 2n is even and G = O(2n, 2n), the largest spherical orbit or the
model orbit On corresponding to the partitions (22n) may or may not be related
to the representation πn. This is exactly the exceptional case when p = q = 2n,
which has been excluded from the discussion in the previous sections. It remains
an interesting problem to realize πk as geometric quantization of Ok. For k = 1
the quantization of the minimal orbit corresponding to the partition (22, 12m−4)
has been done by Brylinski and Kostant. They also succeeded in quantizing the
minimal nilpotent orbit for other simple groups [BK].
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