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PERIODIC W-GRAPHS

G. LUSZTIG

INTRODUCTION

0.1. We begin by recalling the definition [KL1] of a W-graph. Let (W, S) be a
Coxeter group.

Let A = Z[v,v™!] where v is an indeterminate. Let Y be a set. Assume that
for each y € Y we are given a subset J, of S and that for any z,y in Y such that
J. ¢ 3, we are given an integer i, 4 so that

—v_ly, ifyeY,sed,,
TsY = Yoy + Z peyz, ifyeY,sé¢d,
z2€Y;s€T,

defines a representation of the braid group of W (or rather, of the corresponding
Hecke algebra) on the free A-module A[Y] with basis indexed by Y. (Here s € S
and it is assumed that only finitely many terms of the sum above are non-zero.)
In other words, for any s # s’ in S such that ss’ has finite order m, we have

TeTs/ Ts - .. = T/ TsTsr - ... We then say that (Y, (Jy)yey, (12,y)) is a W-graph.
—_———  —
m factors m factors

0.2. One of the main results of [KL1] was a construction of a W-graph with
Y = W and with J, being the set of all s € S such that the length of sy is less
than the length of y. Moreover, there is an induced W-graph structure on certain
subsets of W (the “left cells” of W). In the case where W is finite, the W-graphs
attached to the left cells come close to realizing all irreducible representations of
the Hecke algebra. In particular, when W is a symmetric group &,,, all irreducible
representations of the Hecke algebra arise from left cells.

If W is infinite, the left cells do not come even close to realizing the irreducible
representations of the Hecke algebra. To remedy this, we give the following defini-
tion.

0.3. A W-graph is said to be periodic if the underlying set Y has a given free
action of a finitely generated free abelian group 7 such that 7\Y is finite, J;, = T,
for all t € 7,y € Y and such that the p-function is preserved by the action of
7. From such a graph we can obtain a family of finite dimensional representations
of the Hecke algebra (over a field K of characteristic 0). Namely, for any ring
homomorphism A[7] — K, we can form the finite dimensional K-vector space
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A[Y] ® 4;77 K which is a module for the Hecke algebra, and is provided with a
canonical decomposition as a direct sum of lines.

0.4. Assume that (W, S) is an affine Weyl group. The W-graphs attached to the
left cells of W are not in general periodic. An example of a periodic W-graph is
constructed, in this case, in [L1]. The associated family of finite representations of
the affine Hecke algebra (see 0.3) is a version of the principal series representations.
It is not the standard version, since in contrast with the standard version, it admits
intertwining operators that are everywhere defined, without poles. This comes from
the fact that the W-graph admits a as group of automorphisms not only 7" but W
itself.

0.5. The aim of this paper is to construct a family of periodic W-graphs where
(W, S) is an affine Weyl group. Namely, for any partial flag manifold of the algebraic
group corresponding to W, we are seeking a W-graph Y which is periodic with
respect to an action of 7 = Z" (where r is the dimension of the second homology
space of the partial flag manifold) and the cardinal of 7\Y is the Euler characteristic
of the partial flag manifold. This periodic W-graph should then give rise as in 0.3
to a family of representations of the affine Hecke algebra depending on r continuous
parameters, which are generically irreducible of dimension x(G/P) (a degenerate
principal series).

Note however that we are not entirely successful in achieving our aim; namely,
what we actually construct is a periodic W-graph in a wider sense (as defined in the
Appendix) in which the local finiteness implicit in the definition 0.1 is not assumed.
In fact, the definition of W-graph adopted in the rest of this paper is not the one
in 0.1, but the slightly wider one, in the Appendix. This is most likely a temporary
situation, since I believe that what we construct are W-graphs in the sense of 0.1;
only the proof is missing for the time being. In the case of the full flag manifold,
our W-graph reduces to the one in [L1]; in particular, in that case it is a W-graph
in the sense of 0.1.

0.6. The set Y of vertices of our graph is the set of alcoves contained in a certain
region = of an euclidean space R™ (n = rank(W)) which is homeomorphic to R"
times a compact space.

Let M¥ be the set of formal A-linear combinations of elements in Y. In 4.6
we show that M¥ is naturally a module over the affine Hecke algebra. In 4.13 we
define two submodules ME M of M¥ by the requirement that the support of an
element be bounded above (or below) with respect to a certain natural partial order
on Y. In 4.14 we construct an involution b of M% which is antilinear with respect to
the Hecke algebra structure. This is obtained by composing several simpler maps
which may go out of M%X. Then in 11.2 we define, for each element A € Y, a
canonical b-invariant element A> € MX which is of the form A plus a (possibly
infinite) linear combination of elements strictly smaller than A with coefficients of
the form c_v ™' +c_ov~2+.... The integers c_; then provide the main ingredient
(the p-function) in the definition of a W-graph and in 11.14 we do indeed show that
a W-graph is obtained in this way. We expect, but cannot prove, that in fact the
elements A” have finite support (they do, in the case K = (}, studied in [L1], and in
the case where G has rank 2). (This would imply that the W-graph we construct
is locally finite.)



PERIODIC W-GRAPHS 209

Much of the effort in §6-§10 is concerned with developing methods to prove a
result (11.17) which, while doesn’t show that AP has finite support, it points in that
direction. Namely, we show that the polynomials ¢_1v~! +c_ov~2 +... above (in
v~1) have a universally bounded degree. The proof involves among other things,
the use of the K-theoretic methods in [KL2] of a study of representations of affine
Hecke algebras (there was no need for such methods in the case K = ) in [L1]).

0.7. Apart from the matters mentioned in the last paragraph, the methods used
in this paper are completely elementary. Our results suggest a connection with
geometry, namely it appears that our construction can be interpreted as providing
a canonical basis of a certain equivariant K-homology group (see 13.15).

0.8. I am indebted to David Vogan for some valuable information on intertwining
operators and also for his help with typesetting the figures.
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1. PRELIMINARIES

1.1.  The basic reference for the results in this section is [B, Ch.5]; see also [L1,
§1].

Let E be an affine euclidean space of finite dimension with a given set § of
hyperplanes. Let T be the vector space of translations of E. The natural action
E xT — E is denoted by (e,z) +— e+ x. Let G be the group of isometries of E;
we regard G as acting on F on the right. Then T is naturally a subgroup of G. For
each H € §, let o € G be the orthogonal reflection with fixed point set H. Let Q)
be the subgroup of G generated by the oy (H € §).

We assume that Q) is a discrete cocompact subgroup of G, leaving stable the set §.
(In [L1] we assumed also that the action of Q on T is irreducible; that assumption
was not essential. Therefore we feel free to quote results from [L1].)

Let 7’7 be the set of all x € T such that the following holds: for any H € § we
have H +x € §. This is a lattice in T. Let 7 = T N (intersection in G); this is a
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subgroup of finite index of 7’. For H € §,
dir(H)={z€T|H+z=H}

is a linear hyperplane in 7. The set F of linear hyperplanes in T' of the form
dir(H) for some H € § is finite with, say v elements. A connected component of
T —Upezh is called a chamber.

We assume that a chamber Ct has been chosen.

Let C- = —C*t. Let I be the subset of F consisting of the walls of C*. For
h € F,let r, : T — T be the orthogonal reflection with fixed point set h. The
subgroup of the orthogonal group of T" generated by the r; is a finite Coxeter group
(a Weyl group) W' with standard generators {r;|i € I}. We shall regard W as
acting on T on the right. For any subset K of I we denote by W the parabolic
subgroup of W generated by {r;|i € K}; let wl be the longest element of WX.

We have a natural homomorphism Q — W/ (with kernel 7') which for any H € §
takes og to rp, where h = dir(H). If w € Q is mapped by this homomorphism to
w € W, then (e +2)w =ew +aw forec E,x € T.

The set of points of E that are not contained in any hyperplane in § is a union of
connected components called alcoves. The set of points of E that belong to exactly
one hyperplane in § is a union of connected components called faces.

Let X be the set of alcoves. It is known that 2 acts simply transitively on X.
Let S be the set of Q-orbits in the set of faces. Then S is finite. For any alcove A
and any s € S, there is a unique face 65(A4) in the Q-orbit s such that §5(A) C cl(A).
(For any subset Y of E we denote by cl(Y) the closure of Y in E.) If A is an alcove,
we say that H € § is a wall of A if there exists s € S such that the face 65(A) is an
open subset of H.

For s € S, we define an involution A — sA of X as follows. Given an alcove
A, we denote by sA the unique alcove # A such that 65(A) = 65(sA). The maps
A — sA generate a group of permutations of X which is a Coxeter group (W, S) (an
affine Weyl group). It acts simply transitively (on the left) on X and it commutes
with the action of 2 on X.

A point € € F is said to be special of E if for any H € §, there exists H' € §
such that H' is parallel to H and € € H'. It is known that there exist special points
in E. If € is a special point, let AT (resp. AZ) be the unique alcove contained in
€+ CT (resp. in e +C7) and having € in its closure. Let Q. = {w € Qlew = €}. Let
We be the (parabolic) subgroup of W consisting of all w € W such that the closure
of wAZT contains e. There is a unique group isomorphism j. : 2 = W such that
Je(W)AF = Atw for all w € Q. This restricts to an isomorphism Q. — W,. The
restriction of Q — W' to Q. is an isomorphism Q. — W7,

For any subset K of I we denote by we x the element of €, corresponding to
wl € WI. We write w, instead of w 1.

Note that 7’ acts (by translation) simply transitively on the set of special points
in E. Moreover, if z € 7’ and A is an alcove, then A + z is an alcove.

For a special point € € E we define D(e) to be the set of all alcoves A € X
that contain e in their closure. For w € W we set Acw = AZw where w € Q,
corresponds to w under the canonical isomorphism . — WI. Then w — Acw is
a bijection W! = D(e).

If E has dimension 0, then § = 0, @ = W = W! = {1}, X has exactly one
element and S, I are empty.
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1.2. If H € §, then E — H has two connected components EI'_'},E;I; EIJ; meets
e+C™ for any special point €, and E}; is disjoint from e+ C* for some special point
€.
Let A € X. Let L(A) be the subset of S consisting of those s € S such that
AC EZ, sA C E}, where L is the hyperplane in § that supports the common face
of A, sA.
For A,B € X and H € § we set

1 ifAcCEg BCE},
m(A,B) =¢ -1 if AC E};,BC Ey,
0, otherwise .

(For fixed A, B, the third alternative occurs for all but finitely many H.)
Following [L1, 1.4] we define a function d: X x X — Z by

d(A,B) =Y 7u(A B).
Heg

We have d(A, B) =Y, .7 dn(A, B) where, for h € F, we set
d(A,B)= Y 7u(AB).

Heg
dir(H)=h

We have dj (A, A) = 0; moreover, for A, B,C € X, we have the additivity property
dn(A, B) +dp(B,C) + dn(C, A) = 0.
Hence, d(A, A) =0 and, for A, B,C € X, we have the additivity property
d(A,B)+d(B,C)+d(C,A) =0.

1.3. Roots, coroots. For any h € F there is a unique element oy, € T such that,
for any H € § with dir(H) = h, properties (a)-(d) below hold:

(a) ay, is orthogonal to H;

(b) H+ oy, C E;

(c) H+ 1oy €5;

(d) if z € R satisfies 0 < z < %, then H + zoy, ¢ 3.

Then ap, € T and {Fau|h € F} is a root system in T with a set of simple roots
{a;|i € I'} (which is a Z-basis of 7).

For h € F, the coroot ¢y, : T — Z corresponding to aj satisfies the equality

(e) an(t) =dn(A,A+1t).
Let 7t =3, ./Nag, Tgom = {z € Tlas(z) € N Vi e I}. Clearly, if e € E is
special and « € 7 then the following three conditions are equivalent: x € Zgom;
etz ec(e+Ch); Az Cce+CT.

1.4. Let A,B € X. Following [L1, 1.5], we say that A < B if there exists a
sequence of alcoves A = Ag, A1,..., A, = B such that for any j € [1,n] we have
d(Aj—1,A;) = 1 and A; = Aj 10y, for some H; € §. Then A < B is a partial
order in X. We write A < B instead of A < B, A # B. Note that A < B implies
d(A, B) > 0.

1.5. For any subset K C I weset T =3, Za; C 7.
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2. STUDY OF A K-ALCOVE

2.1. Let K be a subset of I. Let T C T be the intersection of the hyperplanes 4
where ¢ runs through K; then Tk is a vector space of dimension dim(E) — |K|. Let
EX = E/Tk, that is, the quotient space of E by the action of Tk (by translation);
let p: E — EX be the canonical map. We may regard EX naturally as an affine
euclidean space of dimension | K|; the distance between two points p, p’ of EX is the
minimum distance (in E) between a point of p~!(p) and a point of p~1(p’). The
space of translations of EX is T/Tx. Let % be the subset of § consisting of those
H such that H + T = H. Let FX be the subset of F consisting of hyperplanes
of the form dir(H) with H € F¥. Let QX be the subgroup of 2 generated by the
reflections op with H € K. Then (EX T /Ty, K, QK) is like (E,T,F,Q) in 1.1.
In particular, we can define as in 1.1 (relative to E¥) special points, alcoves, faces,
walls of alcoves in EX. (In the case where K = {i},i € I, we write §*, Q" instead
of g{i}7 Q{i}.)

Note that a point of EX is special precisely when it is the image under p of a
special point of E. The inverse image of an alcove of EX under p is said to be
a K-alcove. This is the same as a connected component of £ — (Jyczx H. The
walls of a K-alcove are by definition the inverse images under p of the walls of the
corresponding alcove in E¥. Thus the walls of a K-alcove are hyperplanes in FX.
Clearly, the natural action of Q¥ on the set of K-alcoves is simply transitive.

2.2. In the remainder of this section we assume that a special point € of EX has
been fized.

For each i € K there is a unique hyperplane H; € §* such that p~1(¢) C H;. We
have automatically p~1(€) = (;cx Hi.

There is a unique K-alcove = such that 2 C ;¢ E}'}? and such that p~1(€) C
cl(Z). Then H;(i € K) are among the walls of Z.

Let Xz be the set of alcoves in X that are contained in =.

2.3. Let S be the set of all special points € € E such that € € c/(Z). Let S¢ be the
set of all special points € € E such that p(e) = €. This set is non-empty since € is a
special point of EX. We have S: C S.

Let € € S;. We define an isometry k. : E — E by

Ke(e+2) = (€ — 2)we ¢ = € — 2w

for all z € T. The computation . (ke(e+x)) = ke(e — 2wk ) = e + Wl wl = e+

for x € T shows that k. is an involution.
Here are some simple properties of k.

(a) ke maps the set § into itself; hence it maps any alcove onto an alcove.

(b) k. maps the set FX into itself; hence it maps any K-alcove onto a K-alcove.

(¢) ke(E) = E. Hence k. maps any alcove contained in = onto an alcove contained
in =.

(d) If H € §—FX and H' = k. (H), then k. (Ey) = E}, k. (Ef;) = Eg..

Since w, i clearly maps § into itself and FX into itself, to verify (a) and (b) it
suffices to check that the involution of E given by € + z — ¢ — z (with € T)
maps § into itself and ¥ into itself. This follows from the fact that this involution
maps H € § to Hopgr where H' is the unique hyperplane in § that contains € and
is parallel to H.
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We verify (c). From the definition we see that k. permutes among themselves
the open half spaces Ef; with i € K (notation of 2.2). Hence kc(N;cx Bfy,) =
Miex Ef,- Tt is clear that k. maps S¢ into itself. From the definition, Z is the
unique K-alcove contained in (7., EIJ% and whose closure contains S¢. By the
previous argument k¢(Z) is again a K-alcove contained in (., E;{I and whose
closure contains Sg. By uniqueness, we have = = k¢(Z). Thus (c) is verified. Now
(d) follows easily from the definitions.

More generally, we can define the map k. : E — E for any € € S (not necessarily
in S¢). Let Z’ the K-alcove which is the image of Z under the involution e+xz — e—x
with € T and let w be the unique element of Q¥ such that Z'w = Z. We then set
ke(e+x) = (e — x)w = € — zw. (We have necessarily ew = e.) Properties (a),(b),(c)
above continue to hold in this more general case.

2.4. For any e € S we set D=z(e) = {A € D(¢)|A C E}. For example, if € € Sg,
then AF € Dz(e). Let A\ = k. (AF) = AZw. k. By the results in 2.3, A is an
alcove contained in Z. Since k. (€) = €, we see that AL € D=(e).

Lemma 2.5. Let e € S;.

(a) Let A be an alcove contained in = such that A C e +CT. Then there exists
a sequence Ao, A1, ..., Ay of alcoves contained in E such that Ay = AT, A, = A
and such that the following holds. For any n € [1,p], there exists s, € S such that
sn € L(Ap) and Ap—1 = spA,. In particular, AT < A.

(b) Let B be an alcove contained in = such that B C e+C~w{S. Then there exists
a sequence By, By,..., By, of alcoves contained in = such that By = A!E,Bp =B
and such that the following holds. For any n € [1,p], there exists s,, € S such that
s ¢ L(B,) and B,_, = s/, B,,. In particular, B < A'.

We prove (a). Since A C e +C™, we have
(c) At c Ep,AC Ef

for any hyperplane H that separates AT from A. Tt follows that d(AF, A) is equal to
the number of hyperplanes in § that separate AT from A. In particular, d(AT, A) >
0 and we have d(AF, A) = 0 if and only if AT = A.

We prove (a) by induction on d = d(AF, A). The case where d = 0 is trivial
since in that case, AT = A. Hence we may assume that d > 1 and that the result
is known for d — 1 instead of d. Since AT # A, there exists a wall H of A such
that A, A} are on different sides of H. By (c), we have AT C Ey;, A C Ef;. Let
A" = Aoy. We have A’ = sA for a well defined s € S and A’ C E;. In particular,
s € L(A) and d(A’, A) = 1. Now, for any wall H' of =, the alcoves A}, A are on
the same side of H’ (since they are both contained in Z, which is an intersection
of open half spaces defined by the walls of Z). It follows that H # H’, so that
Aoy is on the same side of H' as A. We thus see that A’ C Z. Similarly, for any
i € I, the alcoves AT A are on the same side of € + i (since they are both contained
in € + C*, which is an intersection of open half spaces defined by the hyperplanes
e+, with ¢ € I). It follows that H # € + i, so that Aoy is on the same side of
e+ as A. We thus see that A’ C e+ C*. It follows that A’ C 2N (e +C™T). Since
d(A’, A) = 1, we have d(AF, A’) = d — 1. The induction hypothesis is applicable
to A’. Hence we can find a sequence Ay, A1, ..., Ay of alcoves contained in = such
that Ag = AF, A, = A" and such that for any n € [1,p'], there exists s,, € S such
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that s, € L(A,,) and A,_1 = sp,A4,. Then the sequence Ay, Ay,..., Ay, A is as
required for A. This proves (a).

Next, we prove (b). Let B be as in (b) and let A = k.(B). Then A is an alcove
contained in Z such that A C e+C™T. Let Ag, A1,..., A, a sequence of alcoves in =
attached to A as in (a). Let By, = ke(Ay,) for u=0,1,...,p. Then By, B1,..., B,
are alcoves contained in Z and By = Al, B, = B. Let n € [1,p]. Then A,_1, A,
have a common face and one is the mirror image of the other with respect to the
hyperplane H € § containing that common face; moreover A,y C E, A, C E;{I
Since A,_1, A, are both contained in Z, we must necessarily have H € § — §X.
Applying k., we see that B,_1, B, have a common face and one is the mirror
image of the other with respect to the hyperplane H' = x.(H) € § containing that
common face; moreover B,,_1 C k(Ep), By C /@E(E;;). Since H € §—FX, we have
ke(Ey) = Ef, ke(Ef;) = Ef,. Thus, B,—1 C E};,, B, C Ey,. Denoting by s/, the
type of the common face of B, _1, B, we see that s/, ¢ L(B,,) and B,,_1 = s, B,.
This proves (b).

Lemma 2.6. (a) Let A be an alcove contained in = and let H € § — FX. Then
there exists € € S¢ such that AT C Ey; and A Ce+C™T.

(b) Let A, As, ..., Ay be a finite collection of alcoves contained in E. Then there
erists € € Sz such that Ay, Ce+CV foru=1,2,....p.

We prove (a). We set 7 = 7 NTgk. This is a lattice in the R-vector space Tk
(since 7 is a lattice in T' and Tk is the R-subspace of E generated by a subset of
7).
Let ¢’ be a point in S;. For any t € 7, we have ¢ +t € Sz and A:C_H = A:C +t.
Hence it is enough to show that, for some ¢t € 7, we have AT +t C Ej and
Acé+t+Ct.

For any i € I, let f; : T — R be a linear form whose kernel is ¢ and is such
that f;(C*) C (0,00). Let h = dir(H) and let g : T — R be a linear form such
that ¢g=1(0) = h,g(C*) C (0,00). Using the definitions we see that g = >, ., ¢ifi
where ¢; € R>¢ for all i € 1. Let fi, @ be the restrictions of f;, g to Tk. From the
definitions we see that f; = 0 for i € K and that f; (for i € I — K) form an R-basis
of Tx. Hence g = EieI_K cifi. Since H € § — §¥, we have H + Tx = E, so that
g is not identically zero; thus, we have ¢; > 0 for some i € I — K. Since A7 is a
bounded subset of £ and H+Tx = FE, there exists yo € Tk such that A;H—yo C Ey.
Clearly, if z € T satisfies g(z) < 0, then E;; +x C Eg, hence A} +yo +x C Ey.
We deduce that for z € T such that §(z) < §(yo) we have A% +2z C Ey. Similarly,
since A is a bounded subset of E and i + Tx = T (for i € I — K), there exists
x; € T such that A—ax; C €+ f7(0,00). Clearly, if z € T satisfies f;(x) < 0, then
£710,00) =2 € ;7 1(0,00), hence A —x; —x C ¢ + f;71(0,00). We deduce that for
2z € Ty such that f;(2) < fi(z;) we have A C ¢’ 4 z+ f;71(0,00). The last inclusion
holds also for i € K (for arbitrary z € Tk); indeed, in this case, since A C = we
have A C ¢+ f;71(0,00). On the other hand, we have T + f;*(0,00) C f; (0, 00)
since f; is zero on Tk .

Since ;7 (¢ + 2z + f;1(0,00)) = € + 2+ C*, we see that, if z € Tk satisfies
3(2) < glyo) and fi(z) < fi(x;) for all i € [ — K, then AY + 2 ¢ E and A C
€ + 2+ C™T. Tt is therefore enough to prove that the set

{z € Tx|§(2) < G(wo), fi(z) < filw;) forallie I — K}
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has a non-empty intersection with 7. Hence, it is enough to show that, given real
numbers d;(i € I — K) and d’, the set

P(d';d;) ={zeTxl|j(z) <d', fi(z)<d;foraliel—K}

has a non-empty intersection with Z. Since P(d’;d;) C P(d';d;) if d' < d’ and
d; < d; for i € I — K, we see that it is enough to prove the assertion in the previous
sentence assuming that d < 0 and d; < 0 for 7+ € I — K. We first show that
P(d';d;) is non-empty. In terms of the coordinates z; € R (with i € I — K) given
by z; = fi(z), we can identify

P(d;di) ={(z) e R"K| Y cizi<d, z<diforalliel—K}
iel-K
This is clearly non-empty, since ¢; > 0 for all ¢ € I — K and ¢; > 0 for some
1 € I — K. Since the set P(d’;d;) is non-empty and obviously open in Tk, it must
have non-empty intersection with the set ZU (37) U (3Z) U ..., which is dense in
Tk since 7 is a lattice in Tx. Thus, there exists z € P(d';d;) and ¢ € {1,2,3,...}
such that gz € 7. Since d < 0 and d; < 0, we have qd’ < d’;qd; < d; hence
qP(d';d;) C P(d';d;). Tt follows that ¢z € P(d';d;) N Z. This proves (a).
The proof of (b) is entirely similar.

2.7. Recall that X= is a set of representatives for the Q¥ -orbits on X: for 4 € X,
we can find a unique w € QF such that Aw € Xz. Setting 7(A) = Aw we get a
map 7 : X — Xz whose restriction to Xz is the identity. We have m(A 4+ «;) =
m(A) for all A € X,i € K, since A+ «; is in the Qg-orbit of A.

Lemma 2.8. Let A € X and s € S. Let H € § be the hyperplane separating A
from sA.

(a) If H € §K, then m(sA) = 7(A).

(b) If H ¢ K, then m(sA) = sm(A).

Let w € QX be such that Aw € X=. Assume first that H € §X. Then oy € QF
and sA(cgw) = Aw with ogw € QX shows that 7(sA) = 7(A). Assume next that
H ¢ FX. It is then enough to show that, if B = Aw, then sB € Xz. Note that
B, sB are separated by the hyperplane H' = Hw. Since w € QX we have H' ¢ FX.
Assume that sB ¢ X=z. Then H' must be a wall of Z. But any wall of Z is in F¥.
This contradiction proves the lemma.

The following lemma will not be used. We include it since its proof serves as a
model for the proof of 2.10.

Lemma 2.9. Let A be an alcove contained in = and let H € F—FX be a hyperplane
such that A C Ef;. Let A’ = Aoy. Then m(A') < A.

By 2.6, we can find € € S¢ such that AF C E; and A C e +C™T. Using 2.5, we

can find a sequence Ay, A1, ..., A, of alcoves contained in Z such that

(a) Ao =AF, A, = 4

(b) for any n € [1, p], there exists s, € S such that s, € L(4,) and A,,_1 = s, A,,.
Since Ay C E, A, C EY;, it follows that there exists n € [1,p] such that A,,_1 C
E; A, C EIJ; Since A,,—1 = $pA,, it follows that A,,_1 = A,op. From (a),(b)
we have A = s,8,_1...s1AT. We deduce that

A= spsp1 ... s1A oy = SpSp—1---SnAn—10H = SpSp—1...5nAn

— — +
= SpSp—1--- Sn+1An_1 = SpSp—1---Sn4+1Sn—1--- 81A€ .
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Applying 7 and using repeatedly 2.8, we see that w(A’) = sy, Sk, , - - sk, AT where
{k1 < ka <...kg}isasubset of {1,2,....,.n—=1}U{n+1,n+2,...,p}. From (b)
we see that d(A,—1,A,) =1 for all n € [0,p]. By the additivity property of d(, ),
we have d(Ag, Ap) = D0 _, d(An—1,A,) = p so that d(Af, spsp—1...514F) = p.
From this we deduce, using [L1, 3.4] that s, sg,_, ...k AT < spsp_1...5147 = A
or equivalently, 7(A’) < A. The lemma is proved.

Lemma 2.10. Let A be an alcove contained in Z and let i € I. We have
7T(A — ai) S A.

If i € K, then m(A— ;) = m(A) = A (see 2.7) so the result is trivial in this case.
In the remainder of the proof we assume that ¢ € I — K. In this case, the proof will
be similar to that of 2.9.

We can find (uniquely) H', H” € §' such that E};, NEp,, contains A but contains
no hyperplane in §'. Let H = H"op € §. Then A — a; = Aogrog and A C
Ef, C Ef;, Aoy C Ef; N Ey,. By 2.6, we can find € € S¢ such that AY C E}; and
AcCe+CT.

Using 2.5, we can find a sequence Ay, A4,..., A, of alcoves contained in = such
that

(a) AO = AijP = A;

(b) for any n € [1, p], there exists s, € S such that s, € L(A4,) and A,,—1 = s, A,.
Since Ay C E, A, C EY;, it follows that there exists n € [1,p] such that A,,_1 C
E A, C E;{I Since A,_1 = s, A,, it follows that A,_1 = A,og. We have
automatically A, C Ey,. Since A, C Ey,, A, C EIJ;,, it follows that n < p and
there exists m € [n+1, p] such that A,,_; C E,, Ay, C Ef,. Since A1 = s A,
it follows that A,,—1 = Ao’ .

From (a),(b) we have A = s,s,_1...s1AF. We deduce that

AoHiOH = SpSp—1 - .. s1AT ooy
= SpSp—1--- SmAm_lUH/O'H = SpSp—1--- SmAmUH
= SpSp—1--- Sm+1Am_1UH = SpSp—1---Sm+15m—-15m—2 - - - snAn_loH
= SpSp—1---Sm+1Sm—-15m—-2--- SnAn = SpSp—1---Sm+1Sm—15m—-2-- - Sn+1An_1
— AT
= SpSp—1---Sm+15m—15m—-2++-Sn4+15n—-15n—-2...514, .

Applying 7 and using repeatedly 2.8 we see that m(Aog of) = Sk, Sk,_, - - - Sk AT
where {k1 < ko < ...kq} is a subset of

{1,2,...,n—=1}U{n+1,n+2,....m—1}U{m+1,m+2,...,p}

As in the proof of 2.9, we have d(A},spsp—1...514F7) = p. From this we de-
duce, using [L1, 3.4], that si sk, , ... 5% AF < spsp_1...51A5 = A or equivalently
m(Aogog) < A. The lemma is proved.

Lemma 2.11. Let A€ X.

(a) There exist A1, As,..., A, in X such that the following holds. If B € X
satisfies B < A, then B = A, —t for some u € [1,p] and some t € TT. (See
1.3.)

(b) There exist A}, Ay, ..., A, in X such that the following holds. If B € X

satisfies A < B, then B = Al, +1t' for some u € [1,p] and some t' € T™.
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Let Z be a §-orbit on the set of special points of E. For any C' € X we can find
a unique € € Z such that B € D(e) (see 1.1); we set C = A}. We first verify the
following statement.

(c) If C,C" € X satisfy C < C’, then C' = C" —t for some t € T+,

By the definition of <, we may assume that there exists H € § such that C = C'oy,
d(C,C") = 1. Let ¢, € Z be such that C € D(¢),C’ € D(¢'). Then € = ¢'oy.
Hence € = ¢ —t¢ where t € T is an integer multiple of the root oy, where h = dir(H)
(see 1.3). We claim that this is in fact a multiple by an integer > 0. Indeed, we have
C' C Ef;,C C Ej;; (otherwise, using [L1, 3.1] we would deduce that d(C,C") < 0);
hence €’ is in the closure of E}; and € is in the closure of Ey; and our claim follows.
In particular, we have ¢t € 7+. We have AT = A} , = A —t and (c) is proved.

Let ¢ be a special point in Z such that A € D(¢’). We enumerate the elements
of the finite set D(¢’) as A1, Aa,..., Ap. Now let B € X be such that B < A. Let
€ be a special point in Z such that B € D(¢). By (c) we can find ¢ € 77 such that
B = A —t. Then we also have ¢ = ¢ —t. We can find a sequence Si,S2,...,8q of
elements of S such that B, 513, 52513, ey 8¢Sq—1--- 513 = B are all contained in
D(e). Applying translation by ¢ we deduce that

B—Ft:A,SlB—Ft:81A,5251B+t25251f~1,...,
sqsq_l...slé—l—t:B—l—t:sqsq_l...slfi

are all contained in D(¢). Thus we have B+t € D(¢'). Hence B = A, —t for some
u € [1,p]. This proves (a).

We prove (b). We choose a special point € in E. Applying (a) to Aw., we see
that there exist A;, As, ..., A, € X such that the following holds: if B € X satisfies
Bw, < Awe (or equivalently, A < B, see [L1, (1.5.1)]), then Bw. = A, —t for some
u € [1,p] and some t € T+. We set A, = Asw, for s € [1,p] and ¢/ = —tw{ € TT.
Then B = A}, +¢'. This proves (b). The lemma is proved.

2.12. Lett € 7'. Since E +t is a K-alcove, there is a unique w € Qf such that
E+t = Zw ! hence cl(Z2)+t = cl(E)w™ L. Let v : E — E be defined by e +— (e+1t)w.
By restriction to c/(Z) we obtain a homeomorphism cl(Z) — cl(Z) denoted again
by 7¢. (This is the composition of the homeomorphism x — x + ¢ of cl(Z) onto
cl(Z) +t with the homeomorphism z +— zw of ¢l(Z) +¢ onto ¢l(Z).) Since x — x+1t
and z — zw map § into itself it follows that v; maps any alcove contained in = onto
an alcove contained in =. Hence we have an induced permutation v; : Xz — X=.

We show that ¢ — -, is an action of the group 7’ on cl(Z). Let x € cl(E) and let
w,w’ € QX be such that v (x) = (z + t)w, v ve(7) = (ve(x) + ). Let w € WE
be the image of w under Q — W!. We have t'w™! = #' 4+ p where p € TX (it is
enough to check this in the case where w is a generator r;,i € K of W'). Hence
we have

Yy (@) = vo (x + )w) = (2 + w + )’ = (z +t +tw Hww’

= (@ +t+t +pw’ =y (2).
Note also that vo(z) = x. Our assertion follows.
From the definitions we see that, if t € 75, then 7, : cl(Z) — cl(E) is the identity

map. Hence t +— ~y; defines an action of 7//7% on cl(Z) and on X=.
We have the following result.
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(a) Let A be an alcove contained in = and let t € TT. We have y_4(A) < A.
We argue by induction on n = >, ;. n; where t = 7., n;a; mod TKE. If
n =0 then t € TX and v_;A = A so that (a) holds. We may assume that n > 1.
Then there exists i € I — K so that n; > 1. Then ¢ =t —a; € T+. By the
induction hypothesis we have y_(A) < A. We have

Y=t(A4) = V=t (A) = V=0, 7-1 (A) < y—pr(A)

where the last inequality follows from 2.10 applied to v_¢/(A) instead of A. Using
the transitivity of < it follows that v_;(A4) < A and (a) is proved.

We now verify the following statement.

(b) If x € S (see 2.3) and t € T', then v¢(x) € S. Moreover, x — v(x) is a
simply transitive action of T'/T™ on S.

The first assertion and the transitivity in the second assertion follow from the
fact that 7’ acts transitively on the set of special points of E. Now let x € S,t € T’
be such that v;(z) = z. It remains to prove that t € 7K. We have z +t = zw for
some w € QF. We can find #' € T such that 2w = 2 +#'. Then from x+t = z +#'
we deduce t = ¢’ so that t € TX.

The following result relates ; with the function d: X x X — Z.

(c) If A,B are contained in E and t € T', then d(v(A),w(B)) = d(A, B).
Clearly d(A+t,B+t) = d(A,B) and A + t,B + t are contained in the same
K-alcove. Hence it suffices to verify the following statement.

If A, B are contained in the same K-alcove and w € QF, then d(Aw, Bw) =
d(A, B).

We may assume that w is one of the generators oy (H € §',i € K) of Q. The
map H' — H'cop is a bijection between the set of hyperplanes in H that separate
A from B and the set of hyperplanes in H that separate Aoy from Boy. It is then
enough to show that corresponding hyperplanes have the same attached sign (used
to define d(A, B) or d(Aog, Boy)). If H' € § separates A from B, then H' ¢ §K
(since A, B are contained in the same K-alcove). In particular, H' ¢ §'. Hence
from [L1, 1.2] it follows that E}j,on = Ef;., .Epon = Ep,.,, . Our assertion
about signs follows and (c) is proved.

The following result relates 7; with the maps k. in 2.3.

(d) Lett € T' and let e € S. Let € = vy(e) € S. We have Vike = Koyt = KeY—t -
E — E. Moreover, k. is an involution of E.

For e, e’ € E we write e ~ ¢ instead of “e,e’ are in the same Q¥ -orbit”.

Let w,w’ € QF be such that y:(e) = (e + t)w, k(e + ) = (¢ — x)w’ for all
e € E,x € T. Let w,w' € W! be the images of w,w’ in W!. Then k.(e + z) =
e—aw,yle+z)=€¢+awforzeT.

Let wy € QX be such that y_¢(e) = (e — t)w; for all e € E; let t; € T be defined
by ew; = e+ t;. Let wy be the image of wy in W1, For any ¢ € T, we have

o’

Yeke(e+x) ~e—aw +t~e—x+t,
KeYi(€e +2) = ke (€ +aw) =€ —zw= (e +t)w —a2W ~ e+ 1 — 1z,

key—t(e+2) = ke((e+x —t)w1) = Ke(e+t1 + (. —Hwy) ~e—t1 — (x — t)w;y
~ewy —tiwy — (z — twl = e+t —tw — (x — w? ~e— (z — 1),

hence Vike(€ + ) ~ Keyi(e + @) ~ Key—t(€ + ).
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If we choose z € T so that e + x € = then, since 7, ke, ke map Z into itself, we
have yike(e+2) € B, keyi(e+2) € E, key—t(e+x) € Z. But two points of = that are
in the same Q¥ -orbit must be equal; hence ik (e4+2) = keYi(e+x) = Key_i(e+T).
Now e — yike(€), e — kevi(e), e — key—i(e) are analytic on E and coincide on the
open set =; hence they coincide on E. This proves the first assertion of (d). To
prove the second assertion of (d), we choose t € 7' so that v, () = ¢’ € S¢ (see (b)).
Then k. is an involution (see 2.3) hence k. = 7, 1f<a€/% is also an involution.

The following result is a variant of 2.6(a).

(e) Let A € Xz and let € € S;z. There ewists t' € TT such that Aj, < v A.
By 2.6(a) and its proof we can find € € S¢ such that A C € + Ct and such that
€ = e+t wheret € TNTk. Let Ag,A1,..., 4, be a sequence as in 2.5(a).
We set A, = 4:(As) for s € [0,p]. This is a sequence of alcoves in Xz. Since
v is an isometry of E preserving H, for any s € [1,p], A._;, A’ are symmetric
with respect to some hyperplane in H; moreover, by (c), we have d(A,_,, AL) =
d(As—1,As) = 1. Tt follows that Ay < Aj, or equivalently v(AF) < 1 A. Since
t € Tk, the translation by ¢ maps = into itself; hence it coincides with ~; in
particular, v (AF) = Af,, = A}, Next we can find t; € 7+ so that t +¢, € 7.
By 2.12(a) we have v A < 4, v (A) = vi44, (A). Thus, AL, < 444, (4). This proves
(e).

Next we prove the following result.

(f) The action of T /TX on Xz (restriction of the action of T'/T¥ ) is free and,
for any € € S, the set D=(e) is a set of representatives for the orbits of T /TX on
X=.

Assume that ¢ € 7, A € Xz satisfy 7(A) = A. Then A 4+t = Aw for some
w € QK. Since the action of Q on X is free, it follows that t € 7 N QX = 7K and
our first assertion is proved.

Now let us fix € € S. If B € Xz, then there exists a special point ¢ € F such
that ¢ = e+t for some t € T and € € cl(B). Then ¢ = y(¢). (Indeed, v;(€) and
€+t are in the same Q¥ -orbit and are both in cl(Z) hence they coincide.) From
€ € cl(B) we deduce that € = y_;¢’ € cl(y_+B) hence v_;B € D=(e). Thus any
T/TX orbit on Xz meets Dxz(e).

Finally, assume that A, A’ € Dz(e) are in the same 7 /7% orbit. Then A’ = 1 A
for some t € 7. Since € € cl(A), we have vy (¢) € cl(yA) = cl(A"). We have also
€ € cl(A"). Thus, both v;(e), e (which are special points of E in the same -orbit)
belong to cl(A’). But this implies ;(¢) = ¢. Now using (b) we deduce that t € TX.
This completes the proof of (f).

Lemma 2.13. (a) Let A € Xz. There exist A1, A, ..., Ay in Xz such that the
following holds. If B € Xz satisfies B < A, then B = y_;A, for some u € [1,p]
and somet € TT.

(b) Let Ay, As, ..., Ay in Xz. There exists A € Xz such that the following holds.
If B € Xz satisfies B = vy_1A, for some u € [1,p| and some t € T, then B < A.

(c) Let A € Xz. There exist Ay, Ag, ..., Ap in Xg such that the following holds.
If B € Xz satisfies A < B, then B = v A, for some u € [1,p] and some t € TT.

(d) Let A1, A, ..., Ap in X=. There exists A € Xz such that the following holds.
If B € Xz satisfies B = v Ay, for some u € [1,p] and some t € T+, then A < B.

We prove (a). By 2.11(a) we can find A7, A, ... A}, in X such that the following

holds. If B € X satisfies B < A, then B = A], —t for some u € [1,p] and some
t € TT. In particular this holds if B € Xz satisfies B < A. Let Ay = n(4}), A3 =
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m(A4y),..., Ap = w(A},). We can write A}, = A,w™" where w € QF. Let w € W
be the image of w under the canonical map Q — W7’. We then have

B=7(B)=n(A, —t) =m(Auw™ ' —t) = 1(A, — tw)w™ ') = 1(A, — tw)
=m(A, —t—t1) =7(Ay — 1) = y—:(4y).

Here we have used tw = t 4 t; for some t; € TX. This proves (a).

We prove (b). In the setup of (b) let B € Xz be such that B = v_;A, for
some u € [1,p] and some t € 7+. By 2.12(a) we have B < A,. It remains to
show that there exists A € Xz such that A, < A foru =1,2,...,p. Let ¢ € S¢
and let B, = ke(Ay) for v =1,2,...,p. By 2.6(b) we can find € € S¢ such that
B, Cé€ +C*tforu=1,2,... p. Applying x. we deduce that A, C ¢’ +C~w{ for
u=1,2,...,p, where ¢’ = k.(¢') € Sz. By 2.5(b) we have A, < A where A = A.,,.
This proves (b).

Now (c) is deduced from 2.11(b) in the same way as (a) was deduced from 2.11(a).

We prove (d). In the setup of (d) let B € Xz be such that B = v, A, for some
u € [1,p] and some t € T+. By 2.12(a) we have A4, < B. It remains to show that
there exists A € Xz such that A < A, for u =1,2,...,p. By 2.6(b) we can find
€ € S¢ such that A, C e +C* foru=1,2,...,p. By 2.5(a) we have AT < A, for
u=1,2,...,p. Thus we can take A = AF. This proves (d).

The lemma is proved.

2.14. We define dx : X x X — Z by dx(A,B) = Y, c7x dn(A,B). We have
dig (A, A) = 0; moreover, for A,B,C € X, we have dx(A4,B) + dx(B,C) +
dx(C,A) =0.

3. THE MODULE M AND INTERTWINING OPERATORS

3.1. Let A= Z[v,v™!] where v is an indeterminate. The Hecke algebra H associ-
ated to the affine Weyl group W' is the associative A-algebra which, as an .A-module,
has basis elements T}, (one for each w € W) and multiplication defined by the rules

(Ts+ v H(Ts—v) =0, (s€9),
TowTw = T if l(w) + 1(w') = l(ww');
here, [ is the standard length function on W.

3.2. Let M be the set of all functions X — A. If m € M we shall generally
denote by ma € A the value of m at A € X and we write m = >,y maA. We
regard M as an A-module in the obvious way. For m € M, we set supp(m) =
{A € X|my # 0} (the support of m).

A family (m*)aea of elements of M is said to be locally finite if, for any A € X,
the set {\ € A|A € supp(m?*)} is finite. In this case, the sum > ,., m* is a well
defined element of M, namely >, (3" cp m)A.

For any s € S we define T, : M — M by TS(ZA maA)=>, maTsA where

Fd {SA, if s ¢ L(A),
sA+(v—v YA, ifs¢ L(A).

Note that the family (mATSA)AGX is locally finite, so that the sum »_ , maTsA is
defined. One checks that this defines an H-module structure on M.
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Let i € I. A function A — m4 from X to A is said to be i-bounded above (resp.
i-bounded below) if for any A € X there exists na € Z such that maine, = 0 for
all integers n > n4 (resp. n < ny).

Let M; < (resp. M;>) be the set of all elements m € M such that A — my
is i-bounded above (resp. i-bounded below). It is clear that M; < and M; > are
‘H-submodules of M.

3.3. The map 60p. Here (and until the end of 3.7) we fix i € [ and H € §".
If A€ X, the Q"orbit of A is (A%).ecz where A’ = Aoy and d;(A%, A*H1) =1
for all z € Z. (These conditions define uniquely A% for z € Z.) We set
(a)
OpA =01 (A" —o A puT2A% — 0B A ) (A v AR AR )

= v TAY Y ()P e AT € ML
n=1

If m € M; <, then the family of elements (mafgA)scx in M is locally finite.
Hence the infinite sum ) , ma0y A makes sense as an element of M. We then set
Opm =3, mafgA. This is in fact an element of M; >.

Let (m))xea be a locally finite family of elements of M. We say that this family
is é-bounded above (resp. i-bounded below) if for any A € X there exists na € Z
such that A+na; ¢ supp(my) for all A € A and all integers n > n4 (resp. n < ny).
Using the definitions, we see that the following “continuity property” of 6y holds.

If (my)xea is locally finite and i-bounded above, then (0 (my))ren is locally
finite and i-bounded below and O (Y, mx) =, 0u(my). It is easy to see that
Om : M;, < — M;> is an isomorphism; its inverse is given by

A vA® + 2:(—1)"(11"Jrl R T V.
n=1
Lemma 3.4. Let A € X and let A e X be the alcove in the Q-orbit of A such
that d;(A, A) = 1. We have 0y (A+v=tA) = Aoy +v Aoy,

With our earlier notation we have

Op(A) =v A"+ ()" — o hAn,
n=1

GH(U_]-A) — 'U_2A1 + Z(_l)n(v—n+1 _ ’U_n_l)A”.
n=2

Adding, we get 0y (A + U‘lfl) = v 1A% + A' = Aoy + v 'Aoy. The lemma is
proved.

Lemma 3.5. 0y : M; < — M; > is an H-linear map.

Lemma 3.4 shows that 0, restricted to the A-submodule of M generated by the
elements (A+v~'A) as in 3.4, coincides with the map 6 defined in [L1, 2.4]. (But
note that the basis elements A considered in [L1] differ by powers of v from those
considered here.) Then, from [L1, 2.4] we deduce that, for any s € S, the maps
05T, and T0y from M; < to M; > coincide on all elements of the form (A+ v_lfl)
with A € X and A as in 3.4. Clearly, any element m € M; < can be written uniquely
as an infinite sum Y,y ga(A + v~ 1 A) where A — g4 € A is i-bounded above.
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Then (ga(A+ v~ 'A))acx is a locally finite family of elements which is i-bounded
above. Using the continuity property of 6 and the analogous continuity property
of T we deduce that 0gTs(m) = Ts0g(m). The lemma is proved.

3.6. For any special point € € E, we set e, = ZAGD(e) v dAAD A € M. Note
that supp(e.) is a finite set. Hence e, belongs both to M; < and to M; >.

Lemma 3.7. 0y (e.) = ecoyy -

Let ¢ = eoy. Let Hy € §° be defined by the condition that ¢ € H; and let
similarly H{ € §° be defined by the condition that ¢’ € Hj. Let Y (¢) be the set of
all A € D(e) such that d;(Aog,,A) = 1. We then have also d(Aog,,A) = 1. (See
[L1, 2.5].) Tt follows that

Z p=dAAD) (A+v " Aoy,).
A€Y (e)

Using 3.4, we see that

Om(e) = Z v_d(A’Aj)GH(A—Fv_lAUHl)
A€Y (e)
= Z pmdAAL 0y (Aog, o + vt Aoy).
A€Y (e)

Now o, 0 is a translation by an element x € 7, so that

Aopg,og +v Aoy = (A+ ) +v (A + T)og;-

~

Moreover, A — A + x defines a bijection Y () — Y(¢') and d(A4,AF) =
d(A+z, AT +z) = d(A+z,A). Hence

O (ee) = Z v_d(A,’Aj’)(A’ +o ' Aopy) = ee.
A’eY (€¢')

The lemma is proved.

3.8. Let U be a subset of 7. Let S(U) be the set consisting of all subsets of X
that are finite unions of subsets of form | J, (A + x) for various A € X.

Let M(U) be the set of all m € M such that supp(m) is contained in some
subset of X which is in S(U). In other words, m € M(U) means that there exist
Ay, As, ..., A, in X such that

supp(m) C U (A + ).

ke[l,n];zeU

It is clear that M (U) is an H-submodule of H.

Now let U, U’ be two subsets of 7. A group homomorphism ¢ : M (U) — M (U")
is said to be continuous if the following holds.

Let (F)\)xea be a family of elements of M (U) which is locally finite and is such
that (Jyc, supp(Fh) is contained in some P € S(U). Then (c(Fx))rea is a locally
finite family of elements of M (U”) such that (J,, supp(c(F))) is contained in some
P’ € S(U"). Moreover, ¢(>_, F\) = >, c(Fy).



PERIODIC W-GRAPHS 223

3.9. We fix a subset K of I. Let ji,J2,...,7¢ be a sequence in K such that
i i i . . K . I . . .

Tj, - -Tj,Tj is a reduced expression for wy' in W*. Let i1,12,...,i, be a sequence

. . . . I

in [ such that r;, ...ry,7,7j, ... 75,75 is a reduced expression in W+.

Lemma 3.10. Fiz k € [1,p] and H € F*. Let

U= Z (—N)airilriz SN S Z Zairilrig e T 1
i€l-K €K

!
U = E (—N)(Jéi’l”il’l”i2 e Ty + E Zai’l”“?”zé e Ty
i€l—-K ice K

Then
(1) M(U) C Mik)g,
(11) M(U’) C Mik72-
(ili) O : M;, < — M;, > carries M(U) into M(U').
For any A € X we denote by (A*),cz the sequence defined in terms of A and H

as in 3.3 (for iy instead of 7). Note that A*T2 = A% + o, for all z € Z.
Let m € M (U). There exist Ay, Aa,..., A, in X such that

(a) my #0 = A:Au—Zgiairilriz...rikfl
iel
for some u € [1,n] and g; € Z fori € K, g; € N for i € I — K. Applying oy and
using A° = Aoy, AY = A, oy we see that
(b) ma#0 = A°= A% — Zgiairilriz T 1 Tig
iel
for some u € [1,n] and g; € Z fori € K, g; € N for i € [ — K. From the definitions,
A=A 4227 = A=Al +a.
Hence
(c) ma#0 = A=Al - Zgiairilriz e Tie q Tig
iel
for some u € [1,n] and g; € Z for i € K, g; € N for i € I — K. Next we note that
the assumptions of the lemma imply

(d) Qg Tip_q o - TigTiy = Z C; O
il
where ¢; € N for all 4 € I. Assume that ¢; = 0 for all i € I — K. Using again the
assumptions of the lemma, we see that cu, 1, _, ... 75,7475, ... 74,75 € Ziel No;.
On the other hand, a, ri,_, ... 75,7575, - TuTj = (X ex Ga)wl € =3 Nay
since, for any i € K, we have a;wl’ = —a; for some i/ € K. It follows that
Qg Tip_q v - TizTilqu ce T T = 0.

This is a contradiction. We have thus proved that ¢; > 0 for some i € [ — K.
Applying r;,7iy ... 174,_, to (d), we deduce that

' _ . . - - . .
(d") @, = E CiQUTiy Tig « - Tip_yy Qi = — E CiQUi Ty Tig « Ty T+
il il
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We show that m € M;, <. Let A € X,y € N be such that maiya, # 0. From (a),
we have A+ya;, = Ay — 05 giuri, i, ... 7, _, for some u € [1,n] and g; € Z for
i€ K,g, € Nforiel—K. Using (d'), we can rewrite this as

(e) A+ Z YCi QT Tig -+« - Tip_y, = Ay — Zgiairilriz e Tip -
i€l iel
Since {auri iy .. .13y, | € I} is a basis of T, and A, A, are bounded subsets of E,
there exists N4, > 0 independent of y such that yc; + g; < Na,, for all: € I. We
can choose ¢ € I — K such that ¢; > 1; since for that ¢ we have g; > 0, it follows that
y < wyc; + g; hence y < Ny ,. Since u takes only finitely many values, we see that
y is bounded above. Thus we have proved that m € M;, <. Hence (i) is proved.
We prove (ii). Let m’ € M(U’). There exist A}, A5,..., Al in X such that

(f) my #0 = A=A, —Zggairilmz Ty

iel
for some v € [1,n] and ¢, € Z fori € K, g, e Nfori € I — K. Let A € X and let
y € N be such that m;‘_ymk # 0. From (f) we have

A—ya,;, = Al — Z GheuTi Ty Ty
iel
for some u € [1,n] and g} € Z for i € K, g, € N for i € I — K. Using (d'), we
obtain

A + ZyCiOZi’I”ilTiz Ty = A'/u, — Zggairilrw e Ty
iel iel
Since {a;ri, 74, ... 73|t € I} is a basis of T, we see as in the earlier argument that
y must be bounded above (for fixed A). Thus, m’ € M;, > and (ii) is proved.
We prove (iii). Assume that m4 # 0 and that B € X appears with non-zero
coefficient in 0y A. Then B = A* for some z € N; hence there exists y € N such
that either B = A° 4+ ya;, or B = A' + ya;,. From (b),(c) we deduce that

B = A +ya;, — Z GiQuTi Tig « .. iy
iel
for some u € [1,n], some z € {0,1}, some y € N and some g; € Z (with g; € N for
i€ l—K). Using (d'), we deduce that B = A} — >,/ (9: +yci)oiri, v, . .. 75, . For
i € I — K we have ¢; + yc¢; € N. Hence 0y (m) € M(U’). The lemma is proved.

Lemma 3.11. In the setup of 3.10, g : M(U) — M(U’) is continuous.

The proof is a refinement of the argument in the proof of 3.10(iii).

Let (F)\)xea be a family of elements of M (U) which is locally finite and is such
that Jyc supp(F)) is contained in some P € S(U). Then there exist A1, Ao, ..., A,
in X such that

(a) if A € supp(Fy) for some X, then A = Ay = ;o1 9iQiTs,Tiy - . . T4y, for some
ue[l,n] andg; €Z fori e K, g; e N forie I - K.

From this we deduce, as in the proof of 3.10:
(b) if A € supp(Fy) for some X, then for z € {0,1} we have

z z §
A% = Au - GiQGTi Tig « o« Ty,
iel
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for somew € [1,n] and g; €Z fori € K, g, e N forie I — K.

We fix B € X such that B € supp(f0(Fy)) for some A € A. Then there exists
A € supp(F)) and z € N such that B = A%. Hence there exists A € supp(Fy), z €
{0,1} and y € N such that B = A* 4+ yoy,. From (b) we deduce that B =
Az Fyou, — D ,cr 9iTi Ty - . .14, for some u € [1,7n], some z € {0,1}, some y € N
and some g; € Z (with g; € N for ¢ € I — K). As in the proof of 3.10, we deduce

B = Ai - Z(gi + yci)airilriz B T

iel
For i € I — K we have g; +yc; € N. This shows that |, supp(0m (Fy)) C P’ where
P = U (A2 + ) € S(U).

u€(l,n],z€{0,1},x€U’

For any A € X, let Z(A) = {\ € A|A € supp(F»)}. Let R be the set of all triples
(A, z,y) where A € X,z € {0,1},y € N are such that Z(A4) # ) and B = A% +ya, .
We show that R is a finite set. Let (4, z,y) € R. Since (b) is applicable to A, we
see that

B —yoy, = AZ — Z GiQiTiy Tig - . . Ty,
il
for some u € [1,n] and g; € Z for i € K, g; € N for i € I — K. Using 3.10(d’), we
can rewrite this as

B+ quo&ﬂ"ilﬂé Ty = AZ - Zgiairilrh ce Ty
iel iel
for some u € [1,n] and ¢g; € Z for i € K, g; € N for i € I — K. From this we see
as in the proof of 3.10(i) that y is bounded above by a constant depending only
on B. Hence, when (4, z,y) runs through R, the coordinate y takes only finitely
many values. From the equation B = A% 4+ ya, it follows that A* also takes only
finitely many values. Since z € {0,1}, it follows that A takes only finitely many
values, say A(1), A(2),...,A(f). In particular, R is finite.

Now let Y = {\ € A|B € supp(fg(F)))}. For any A € Y, we consider the set
R(\) consisting of all triples (A,b,y) € R such that A € Z(A). As we have seen
above, R(A\) # (0 for any A € Y. It follows that Y C Z(A(1))UZ(A(2))U---UZ(A(f))
which is a finite set since each Z(A) is finite. Thus, Y is finite. We have thus proved
that (0 (F)))aea is a locally finite family of elements of M (U").

Finally, we prove the equality

() 0n(Y_Fn) =Y 0u(F).
A A

We now fix B € X and we use the notation relative to B in the earlier part of the
proof. We have

Z O (Fy)B = Z Or(Fx)p = 0u( Z F)\)B.

AEY AEZ(A(1)U--UZ(A(F)) AEZ(A(1)U--UZ(A(F))

It is then enough to show that GH(Z)\¢Z(A(1))U---UZ(A(f)) Fy)p = 0. If this were
not true there would exist A ¢ Z(A(1))U---U Z(A(f)) and A € X such that
A € supp(Fy) and such that B appears with non-zero coefficient in 0y A (that is,
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B = A? for some z € N). But this contradicts the definition of A(1),..., A(f).
The lemma is proved.

3.12. We preserve the notation of 3.9. Let H; € §,Hy € §%,... JHy € Fiv.
Applying p times 3.10, we see that the maps

M < Z (—N)a; + Z Zai> ﬂ M ( Z (—N)ar;, + Z Zairh)

i€l—K i€EK i€l—-K €K
0w,
— M E (—N)Ozﬂ'il Ti, + E Zoyri, i,
icel-K €K

011 Om,
— ... — M Z (—N)OziTilTi2...Tip+ZZQiTilTi2...’I‘ip

icl-K ie K

are well defined homomorphisms of H-modules. Their composition is a homomor-
phism of H-modules

Om, Hy,.. 1, + M ( Z (—N)a; + Z Zai>

icl-K i€ K

— M < Z (—N)(Jéi’l”il’l”i2 NN T‘ip + Z Zairilri2 NN ri,_,) .

icel-K ie K

(a)

This homomorphism is continuous (in the sense of 3.8); this follows by applying p
times 3.11. Using p times 3.7, we see that, for any special point € € F we have

(b) 9H1,H2,~»,Hp(66) = Ceom ony-Om,

3.13.  Let j1,J2,...,Jq be as in 3.9 and let i1,42,...,4p in I so that r;, ...r,7,
is a reduced expression for wlw{. Moreover, we choose a special point € € E and
take Hy = €+ 41, Hy = € +42,..., H, = ¢ +14p. Then the previous discussion is
applicable. We use the notation

Ug= Y (-N)ai+Y Zo; T, Uf= > Nai+ )y Za.
iel-K ieK iel-K ieK
Let i — 4* be the involution of I given by a;w} = —a;-. Let K* be the image of K
under this involution. For ¢ € I — K, we have aiw{f =q; + EjeK cija; for some
integers ¢;;. Aplying w{, we obtain cywfwl = —a;+ + > ek Cijaj-- On the other
hand, for i € K, we have a;w{{ = —a;o where i + i® is a well defined involution
on K. Applying wl, we obtain c;wl wl = ajo«. It follows that

E (—N)airilriz c T, + E Zairilriz c T,

iel-K €K
K, I K, I +
= E (—N)ywy wy + E Zowy wy = E Na; + E Zo; = Up..
iel—K i€ K iel—K* ieK*

Hence the homomorphism 3.12(a) becomes in our case a (continuous) homomor-
phism of H-modules

(a) Oty 1y, 11, M(Ug) — M(UE.).

p
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Lemma 3.14. We preserve the setup in 3.13. Let €' be a special point in E. We
have

9H1,H2,»~,Hp (ee’) = €Clwe gwe-
Using p times 3.7 we have
9H17H27...,Hp (ee’) = 96+ip cee 0e+i2 96+i1 (ee’) = ee’ae+,ilae+732...ae+73p = €Celwe gwe+
The lemma is proved.

3.15. Let —: A — A be the ring involution which sends v™ to v=" for any n € Z.
Let = : H — H be the ring involution which sends U”Tw to v_”i;,ll foranyn € Z
and w € W. If My, My are H-modules, a group homomorphism x : M; — Ms is
said to be H-antilinear if x(hm) = hx(m) for all h € H,m € M;.

For any special point € € F we define a map ¢. : M — M by

be( Z maA) = Z v A Awe.

AeX AeX
We show that

(a) e : M — M is H-antilinear.

(Compare [L1, 2.10].) Let s € S and A € X. It is enough to show that b (T, A) =
T ¢.(A). Using the fact that s € L(A) < s ¢ L(Aw,) we see that

Tpe(TsA) = Toge(sA) = v Ty(sAwe) = v™" Awe = $(A)
if s¢ L(A) and
Tode(TsA) = Tope (sA+ (v — v A) = v " Ty(sAwe + (v — v) Aw,)
=07 (Awe + (v — v V) sAwe + (VT = v)sAw.) = vV Aw,e = ¢ (A)
if s € L(A).
Lemma 3.16. If e, € are special points in E, then ¢c(ec) = ecr,. .

Note that A — A’ = Aw, is a bijection between D(€') and D(€'’) where € = € w;
it carries A} to AZ,. Hence

belea) = o Y vTUAAD 4

AeD(e)
— + — ’ +
=v" E v AAD Ay, = vV g plAweAn) A7,
AeD(€) A’eD(e")

It remains to show that d(A'w,, AY) — v = —d(A’, AY,). The left hand side equals

—d(A', AT w.) —v = —d(A,AZ) —d(AD,, Al) = —d(A', AT).

e’

The lemma is proved.

Lemma 3.17. In the setup of 3.13, ¢. : M — M restricts to a continuous homo-
morphism ¢e : M(U.) — M(Uy).

For any A € X, we have (A+Ujt. )we = Aw. +Uj; since w{ maps {o;|i € I—K*}
onto {—qyli € I — K} and {«;]i € K*} onto {—a;|i € K}. Thus, ¢, restricts to a
homomorphism as shown. The continuity is obvious.
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Proposition 3.18. In the setup of 3.13, the composition of the maps Ou, u,,.. H,
in 8.13(a) and ¢ in 8.17 is a continuous H-antilinear map ¢0m, u,,..m, : M(Ug)
— M(Uy) which takes ecr to e, , for any special point € € E.

This follows from 3.13(a), 3.17, 3.15(a), 3.14, 3.16.

4. THE ANTILINEAR INVOLUTION b: ME — ME

4.1.  In the remainder of this paper, we fir a subset K of I, a special point € € E¥
and the K-alcove = as in 2.2.

Lemma-Definition 4.2. MX is the A-submodule of M consisting of elements
m € M that satisfy the equivalent conditions (a),(b),(c) below.
(a) ma, = vIEAAD 4 for any A € X and any w € QK.
(b) maw = v3x (A A o for any A € X= and any w € Q.
(¢) maw = v WA 4 for any A € X and any w € QX of the form o for
some He F,ic K.

The equivalence of (a),(b) follows from the implication

UdK(A,Aw) di (A, Aww’) di (Aw,Aww’)

maw = ma, MAvw’ =V maA = MAww’ =V mAw
using
,UdK(A,Aww'),U—dK(A,Aw) — ,UdK(Aw,Aww')
and the fact that Xz is a set of representatives for the Q%-orbits on X.
The equivalence of (a),(c), follows from the implication
Ma, = ’UdK(A7Aw)mA, M A = ,UdK(Aw,Aww')mAw = Magy = ’UdK(A7Aww/)mA.

(We use the fact that the group Q¥ is generated by {oy|H € §,i € K}.)

Proposition 4.3. M¥ is an H-submodule of M. Moreover, if for any A € X we
set Py =) cox vix(AA9) Ay e MK | then for any A € X,s € S we have
(a) TsPa = Poa if s ¢ L(A), L ¢ §,
(b) Y:SPA = Psa+ (v — U_l)PA if s€ L(A),L ¢ SK,
(c) TsPs =vPy if L € X, where L € § is the hyperplane that separates A from
SA.
(d) For any A € X and w' € Q¥ we have Pa, = pdx(AAS) p

In the proof we shall use the following result.

Lemma 4.4. Let A€ X,s € S and let L € § be the hyperplane separating A from
SA.
(a) Letie€ I and H € §* be such that s € L(A),s ¢ L(Aoy). Then L € F'.
(b) Assume that L ¢ FX. Let w € Q¥. Then we have s € L(A) if and only if
s € L(Aw).

We prove (a). Assume that L ¢ §'. Since s € L(A),s ¢ L(Aog), we have
A C Ef and Aoy C Ej, . We deduce that Aoy C Efoy. Thus, E;,  has
non-empty intersection with Ef o. The assumption L ¢ § implies by [L1, 1.2]
that Ef oy = Ef, . Hence E7_  has non-empty intersection with E7_ . This is
a contradiction; (a) is proved.
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We prove (b). We can write w = opy,0m,...0n, where H, € F* where
i1,19,...,in are in K. We argue by induction on n. When n = 0 there is nothing to
prove. When n = 1, the result follows from (a). Assume now that n > 1. Let w’ =
OH,OH, ---0H,_,. Note that the hyperplane separating Aw’ from sAw’ is Lw’ which
is not in . Hence, by (a), the conditions s € L(Aw'),s € L(Aw'og,) = L(Aw)
are equivalent. By the induction hypothesis, the conditions s € £L(A),s € L(Aw")
are equivalent. It follows that the conditions s € £(A),s € L(Aw) are equivalent.
The lemma is proved.

4.5. Proof of Proposition 4.3. We first show that, if L ¢ ¥, then
(a) di (A, Aw) = dk (sA, sAw)

for any w € Q. Indeed, we have di (sA, sAw) = —dx(A,sA) + dg (A, Aw) +
di (Aw, sAw) hence it is enough to show that dx(A,sA) = di(Aw,sAw). But
in fact dg(A,sA) = 0 since the hyperplane separating A, sA is not in F¥ and
dr (Aw, sAw) = 0 since the hyperplane separating Aw, sAw is not in FX.

Assume that we are in the setup of 4.3(a). Using 4.4(b), we have

T.Py = Z VI (AA) g Ay = Py

weNkK

Assume that we are in the setup of 4.3(b). Using 4.4(b), we have

TPy = Z I AAD s Ay 4 (v —07Y) Z vIE A Ay = Py + (v — v 1) Pa.
weNK weQK

In the setup of 4.3(c), we have sA = Aw; for some involution w; € QF. We can
partition Q¥ into two element subsets {w,wjw}. Hence it is enough to prove that

TS(UdK(A7Aw)Aw + ,UdK(A7Aw1w)Awlw) — ,U(,UdK(A7Aw)Aw + ,UdK(A7Aw1w)Awlw)

or, equivalently, that T}, (Aw + v9x (Aw:sA9) 5 Ay = y(Aw 4 v¥x (A05A) 5 Aw) for any
w € QK. But this follows immediately from the definition of T since dg (Aw, sAw)
islifsé¢ L(Aw) and is —1 if s € L(Aw). (Note that the hyperplane separating
Aw, sAw is in FE.) Thus, 4.3(a),(b),(c) are verified.

Next, 4.3(d) follows immediately from the definitions. It remains to verify the
first assertion of 4.3. This follows from the earlier part of the proof, since any
element of M X can be written uniquely in the form >4 faPa where A runs over
over Xz and f4 € A. Proposition 4.3 is proved.

4.6. Let M¥ be the set of all functions Xz — A. If m € MY we shall generally

denote by ma € A the value of m at A € = and we write m = ), .zmaA. We
regard M¥ as an A-module in the obvious way. Let

(a) resg : ME = MK

be the map given by >,y maA — >, maA (or restriction of functions).

From the definition of M¥ based on 4.2(b), it follows that resx is an isomorphism
of A-modules, since Xz is a set of representatives for the Q% -orbits on X. It follows
that there is a unique H-module structure on M such that resg is an isomorphism
of H-modules.
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Lemma 4.7. The following holds in the H-module M¥ . Let s € S and let A € X=.
Let H € § be the hyperplane that separates A from sA.

(a) If s ¢ L(A) and H is not a wall of Z, then T, A = sA.

(b) If s € L(A) and H is not a wall of Z, then TsA = sA+ (v — v~ 1)A.

(¢) If H is a wall of Z, then TsA = vA.

We apply resk to the identities in 4.3(a),(b),(c) with A € Z. Note that resg (Pa)
= A for A € X=. The lemma follows.

4.8. The support of an element m € MX is the subset
supp(m) = {A € Xz|m # 0}

of X=. (Compare 3.2.)

A family (m*)xea of elements of M ¥ is said to be locally finite if, for any A € Xz,
the set {\ € A|A € supp(m?)} is finite. In this case, the sum >, ., m* is a well
defined element of M, namely 3 4o x_(3"5cp mA)A. (Compare 3.2.)

Let ME be the set of all m € M such that there exist Ay, As, ..., A, in Xz with
supp(m) C {y-+(Au)|u € [1,p],t € T+}. Let ME be the set of all m € MX such
that there exist Aj, As,..., A, in Xz with supp(m) C {y(A,)|u € [1,p],t € TT}.
Let

ME =M¥nMUy), ME=MEnMUL).

From 4.3 it follows that

(a) ME, ME are H-submodules of M.

We show that the isomorphism resg : M5 — M (see 4.6) restricts to isomor-
phisms

(b) ME = MK MK = MK,

Let 7 € M and let m = resg(m) € M*. Assume first that m € MEX. Then
there exist Ay, As,..., A, in X such that any A € supp(m) is of the form

A=A, — E n;o; + E Zi0
icl-K ieK

where u € [1,p],n; € N,z; € Z. Now let A € supp(m). Then A € supp(m) hence
it is of the form above. Let B, = m(A,). Since m(A) = A, we have

A=m(Ay — Z nio;) = v-¢(Bu)

iel—K
where t =3, ;- nio; € TT. This shows that m € ME.
Conversely, assume that m € MX. Then there exist By, Ba, ..., B, in Xz such

that any B € supp(m) is of the form vy_;(B,) where v € [1,p] and t € 7*. Now
let A € supp(r). Then there exists B € supp(m) and w € Q¥ such that A = Bw.
Thus A = v_4(By)w for some u € [1,p], some t € T+ and some w € Q. Hence
A= (B, — t)w' for some u € [1,p], some t € T and some w’ € QF.

We can find a finite subset F of Q% such that any element of Q¥ is the product
of an element of F with a translation in 7X. Hence we have A = (B, —t)f + ' for
some u € [1,p], some t € 7T, some f € F and some t' € T5X. We have

A= (B, —t)f +t =B,f —t+1t"
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where t” € TX. Since B, f runs through a finite subset of X we see that m €
MZXE. This establishes the first isomorphism (b). The second isomorphism (b) is
established in an entirely similar way. From (a) and (b) it follows that

(c) ME ME are H-submodules of MX.

4.9. Let e € S¢ (see 2.3). For A € D(e) (see 1.1), the following two conditions are
equivalent:

(a) A CE (that is, A € D=(¢)),

(b)y ACE}, forallic K.
Let W/ be the set of all w € W such that w has maximal length among the
elements in the coset wW . From the description (b) of D= (e) we see that

(c) Dx=(e) = {Ac plw € W
(Notation of 1.1.) Note that Al = A i
€e, K = Z = dAAD A ¢ MK

AeD=(e)
(For K = (), this specializes to e in 3.6.)
Lemma 4.10. Recall that T =3, Zoy =T N QK.
(a) For any t € T, the function A — dg (A, A+1t) on X is constant. Let puy(t)
be its value. We have g (t) =), czx an(t) for allt € T. The map t — px(t) is

a group homomorphism T — 7. )
(b) If € € Se, the sum >, c7x V"5 Peciy (in M) belongs to M¥ and

t
Ce, K = I'eSK( Z U'uK( )€€+t).
teTK

A = A, 1. We set

(¢) For any t € T we have pug(t) + px (twl) =0 and px-(t) + pr (twl) = 0.

(a) follows immediately from 2.14 and 1.3(e).
We prove (b). For t € 7K we have A € D(e) & A+t € D(e+1t),Af, = AF +1
and d(A +t, AT +t) = d(4, A¢) , hence

(d) Z o We, = Z ol By =d(AAD) (4 44,
teTK teTK;AeD(e)

Let © be the stabilizer of € in QX or equivalently, the stabilizer of € in Q. Note
that Dz(e) is a set of representatives for the {'-orbits on D(e). Hence the expression
(d) is equal to

Z UdK(A7A+t)—d(Aw’7Aj)(Aw/ +1)
teTK;AeDz(e)w’ €V
We want to show that the exponent of v satisfies:
(e) di(A, A+1) —d(Aw', AT) = di (A, A" +t) — d(A, AT)

or equivalently (by the additivity of d,dk): dx(Aw’ +t, A+t) = d(Aw’, A). Since
drg (AW +t, A+1t) = dg(Aw’, A), it suffices to show that di (Aw’, A) = d(Aw', A).
This follows from the fact that any hyperplane in § that separates Aw’ from A must
contain € and is automatically in . (This is the known property which asserts
that for an element y in a standard parabolic subgroup of a Coxeter group, the
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length of y computed in W coincides with the length of y computed in the parabolic
subgroup.) Thus (e) is proved and we may therefore rewrite (d) as follows:

Z UdK(A,AwUrt)—d(A,Aj)(Aw/ +1).
teTK;A€D=(e);w’ €V

We now observe that Q¥ is the semidirect product of Q' and 7% hence the previous
expression equals

Z UdK(A,Aw)—d(A,Aj)Aw.
A€Dz(€);we

This clearly belongs to M¥ and its image under resx is > Aep=(0) p=dAAD) A =
€e,K -

We prove the first equality (c). Let A € X and let € € FE be a special point. It
suffices to show that dg (A, A+t) + dx (Awe i, Awe i +twl’) = 0. This is a special
case of the equality

(f) dK(A,B) = —dK(Aw@K,BwE)K)

valid for any A, B € X. To prove this we note that H — Hw i is a bijection
between the set of hyperplanes in ¥ that separate A from B and the set of hy-
perplanes in ¥ that separate Awe i from Bwe ). Moreover, the signs attached
to corresponding hyperplanes are opposite. The desired equality follows.

We prove the second equality (¢). Let A € X and let € € E be a special point.
It suffices to show that dx« (A, A +t) + dx (Awe, Aw, + twl) = 0. This is a special
case of the equality

(g) di+(A, B) = —dg (Awe, Bwe)

valid for any A, B € X. To prove this we note that H — Hw, is a bijection between
the set of hyperplanes in FX  that separate A from B and the set of hyperplanes
in §¥ that separate Aw, from Bw.. Moreover, the signs attached to corresponding
hyperplanes are opposite. The desired equality follows.

The lemma is proved.

4.11. Let e € S;. We set ¢ = d(AL, AT). Let B € D=(e); we set r = d(A., B).
From the description 4.9(c) of Dz=(€) we can deduce that the following holds: 0 <
r < ¢ and there exists s, s5,...,s, in S such that B = s,.s,_,...s{ AL, Af =
spsh_q ... S{AL Moreover, s}, € L(s], 15}, ..., AL) for n € [1,q].

Lemma 4.12. Let A € X= and let € € S¢ be such that A C e +CT. By 2.5 there
exist $1,82,...,5p i S such that p = d(AF, A) and A = spsp—1...51A . Then in

the H-module M*, both expressions TSPT Ty (e i), Ts_plTS;fl . .Ts_ll(eE,K)

Sp—1 *

are of the form A+ an A-linear combination of elements A’ € X= with A’ < A.

From the definition of e. x we see that it is enough to prove statements (a),(b)

below.
(a) Both expressions Ts,Ts, , ... TSIA;",TSjTS;L . T;YAY are of the form A

plus an A-linear combination of elements A’ € Xz with A’ < A.

(b) If B € D=(e),B # Af, then both expressions T Ts, , ...
T, B, TSjTS—pL ... T;'B are A-linear combinations of elements A’ € Xz with

A < A
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We prove (a). Using the formulas for the Ti-action (see 4.7) and the equality
T7' =T, + (v~' —v), we see that both expressions in (c) are A-linear combinations
of elements A’ € Xz such that A" = sj, s, ,...s;, Al for some p > ji > jp_1 >
-+ > 43 > 1. These are all < sps,_1...514F7 = A, by [L1, 3.4]. Moreover, the
element s,5,_1 ...s1 A} = A appears with coefficient 1 in this .A-linear combination.

To prove (a) it is then enough to show that, if & < p then sj, s, ,...s;; AT #A
(so it is < A); this follows from the fact that d(AF,sj, sj. , ..s;, AF) < k, while
d(Ar,A)=p>k.

We now prove (b). As above, the two expressions in (b) are A-linear combinations
of elements B’ € Xz such that B’ = s;,s;, ,...s; B for some p > jp > jr—1 >
el > jl Z 1.

If 51,585,...,s, in S and r are as in 4.11, then r < ¢ (since B # Af) and,
by [L1, 3.4], sj, ...8,B = sj, ...85,805._1...s1AL < 5,... 5185y _1 s AL =

+_ .
5p...51AFT = A since

d(AL, spsp 1. .s18080 ... shAY) = d(AL A) = d(AL, AF) +d(AF, A) = q +p.

q°q—1"-
It remains to show that s;, s, ,...s; B # A. But
1 1 !
d(AL, 8, Sjk v -8 B) =d(AL, 8j.Sjp 1 - SjySnsh_1...S1A) <k+r

while d(AL, A) = p+q > k +r (since p > k and ¢ > r). The lemma is proved.

4.13. A subset R of Xz is said to be bounded above (resp. bounded below) if there
exists Ay € Xz such that R C {B € Xz|B < Ap} (resp. R C {B € X=|A4q < B}).
Let ME (resp. MX) be the set of all elements m € M such that supp(m) is
bounded above (resp. below). Lemma 2.13 can be reformulated as follows:

(a) ME =ME, ME=ME.

Since MX, MX are H-submodules of M¥ (see 4.8(c)), it follows that

(b) ME, ME are H-submodules of MX.

Let ¢ : Mﬁ( — Mjf be a group homomorphism where - is one of <,>; ' is
one of <,>. In analogy with a definition in 3.8, we say that c is continuous if the
following holds.

Let (F))aea be a family of elements of M which is locally finite (in M%) and is
such that [, supp(#) is bounded above (if - is <) and bounded below (if - is >).
Then the family (¢(Fx))aea in M is locally finite in M and [, , supp(c(Fy)) is
bounded above (if + is <) and bounded below (if 4" is >). Moreover, ¢(>_, F)\) =
2o c(FX)-

We now come to the main result of this section.

Theorem 4.14. (a) There exists a unique H-antilinear map b : MEX — ME which
is continuous (see 4.18) and satisfies b(eo k) = e i for any € € S:. B

(b) For any A € X=, b(A) is of the form A+ an A-linear combination of elements
A e Xz with A’ < A;

(c) b? is the identity map.

To begin the proof, we consider the map a : M é{ — M given by the composition
ME = ME 25 ME 22 MUg) 2 M(U) 25 M

where the equality is given by 4.13(a), a1 is the inverse of the isomorphism 4.8(b),
az is the obvious inclusion, a3 = ¢c0m, m,,...m, is as in 3.18 (in the setup of 3.13)
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and a4 is the obvious inclusion. Here, € is chosen in S;. Note that a is H-antilinear,
since ag is H-antilinear and ay for k # 3 are H-linear.
The proof will be completed in 4.23 after various preparations in 4.15-4.22.

4.15.  Assume that for any A’, A € Xz such that A’ < A we are given an element
par,a € A such that par 4 = 1 whenever A’ = A. For any A, A € Xz such that
A’ < A we set

ParA= E (=1)"pay,atpar Ay - DAl A

where the sum is taken over all sequences A{, A}, AL, ..., Al in Xz such that A" =

Ay <Al <Ay < <AL= A

There are only finitely many such sequences. This is due to the obvious inequality
r < d(A’, A) together with the following finiteness property:

(a) For any A', A € X= such that A’ < A the set {B € Xg|A' < B < A} is
finite.

This follows from a more general property [L1, 3.5]:

(b) for any A’, A € X such that A’ < A, the set {B € X|A’ < B < A} is finite.

Note that pg,4 = 1 for any A. We have ZBGXE;A’<B<ApA/>BﬁB>A = 6ar.A.
Hence, if ég = ZA’GXE;A’SBpA/>BA/ S Mg, then A = ZBEXE;BgAﬁB>A§B'

(The last sum makes sense in MX since, for fixed A € Xz, the family (PB,AER)
of elements of M¥ (indexed by {B € X=z|B < A}) is locally finite: for any C € Xz,
the set of all B € Xz such that C' appears with non-zero coefficient in pg 4&p is
contained in the finite set {B € X=|C < B < A}.)

4.16. We choose a function 4 — €4 from X= to S; such that A C €4 + CT for all
A. (Such a function exists by 2.6.) For any A we denote by w4 the element of W
such that wa(A},) = A. By 4.12, for any A € Xz, we can write

(a) €ai=Tosecrxk= Y,  paad,
ATEXZ;AI<A
/. mp—1 _ /
(b) §a:=T “r1€esx = > qaad
4 AeXz AI<A

where par.a € A, gara € A are 1 whenever A’ = A and are zero for all but finitely
many A’. Let par,a € A be defined in terms of pas 4 as in 4.15 and let Gas, 4 be
defined similarly in terms of gas 4. As in 4.15, for any A € X=, we then have

(c) A= Z pB.alp, A= Z dp,a€p.

BeXz;B<A BeX=;B<A
Lemma 4.17. For any A € Xz we have a(€4) = resi' (€)), a(€y) =resg'(€a).
Using the definition of €4, ¢/, and the fact that a is H-antilinear, we see that it

is enough to show that a(e., k) = resl}l(eeA,K). We show more generally that, for
€ € S: we have

(a) alee k) = resl_(l(ee/,K).

Note that €'w, x = € since we g acts as identity on e+ Tk, which contains €’. (Here
we use our assumption that e € S¢z.) Using 4.10(b), 3.18, we have

t — t — t
alea ) =as( Y v Weare) = Y 0 Ve, o= D 0T Doy
teTK teTK teTK
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We make the substitution ¢’ = tw{’ and we obtain Y, .7« vrtwie, o We
then use the identity —ux (Hwl) = px (t') (see 4.10(c)). Thus (a) follows and the
lemma is proved.

Lemma 4.18. Let A € X=.
(a) The family of elements resy (pp,all) (where B varies through {B € X=; B <
A}) is locally finite in M and we have a(A) =Y pcy_.p<a res (Pp.all).
(b) We have a(A) € M¥.

We prove (a). We start with the equality A = > 5« . pc4PB,alp. When
B varies through {B € Xz;B < A}, the elements pp a&p form a locally finite
family in M X and their supports are all contained in {C € Xz|C < A} and hence
are contained in some finite union of sets of the form {y_;(4;)[t € T} with
Aj € X=. (See 2.13.) Then, by the argument in 4.8, we have that the elements
as01(pB,4a&p) (With B as above) form a locally finite family in M and their supports
are all contained in some set in S(>, ., (=N)a; + >, Zay), independent of B;
moreover, we clearly have asa;(A) = ZBGXE;BQ‘ asa1(pp,a€p). By the continuity
of ag (see 3.12), the elements a4a3a2a1(f)37,4§3_) (with B as above) form a locally
finite family in M and we have

a40a30201 (A) = Z a3a2al(ﬁB,A€B)'
BeXg;B<A

Using 4.17, we deduce that the elements resy' (pp,4£%) (with B as above) form a
locally finite family in M and a(A) =Y pcy_.p<a resy’ (Pp,A&%R). (a) is proved.

Now (b) follows from (a) using the following statement, whose verification is
immediate.

Let (m*)aea be a locally finite family of elements of M. If m* € ME for any
AE A, then Y cam™ € MX.

The lemma is proved.

Lemma 4.19. Let m € Mé{

(a) The family of elements maa(A) (where A runs through Xz) is locally finite
in M and a(m) =) s maa(A).
(b) We have a(m) € M¥.

The proof is along the same lines as that of 4.18. We can find C' € Xz such that
supp(m) C {B € Xz|B < C}. When A varies through Xz, the elements m4 A form
a locally finite family in M* and their supports are contained in {B € X=z|B < C}
and hence are contained in some finite union of sets of the form {y_;(4;)|t € T}
with A; € X=. (See 2.13.) Then, by the argument in 4.8, we have that the
elements asai(maA) (with A € Xz) form a locally finite family in M and their
support is contained in some set in S(>_, ., (=N)ai + >, i Zay), independent
of A; moreover, we clearly have azai(m) = . x_ aza1(maA). By the continuity
of ag (see 3.12), the elements asazazai(m) (with A € Xg) form a locally finite
family in M and we have asazazai(m) = 3 4 x. aaazazai(maA). This proves (a).

Now (b) follows from (a), using 4.18(b), by the same argument as in the proof
of 4.18(b). The lemma is proved.

4.20. From 4.19 we see that the image of the homomorphism a : Mé{ — M is
contained in M. Using the isomorphism resg : M* — M¥ we deduce that there
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is a unique map a’ : Mg — MX such that res}1 (a’'(m)) = a(m) for all m € Mg a
is H-antilinear since a is H-antilinear. By 4.17, we have a’(£4) = &4, d/(£)) = €a.

Lemma 4.21. Let A € X=.
(a) The family of elements pp A&y (where B varies through {B € X=z; B < A})
is locally finite in M and we have a'(A) = ZB@XE;B<A1E§33'
(b) We have supp(a’(A)) C {B € X=|B < A} and the coefficient of A in o' (A) is
1.

We prove (a). Using 4.18, we see that it is enough to verify the following state-
ment.

Let (my)xea be a family of elements of M™ such that (resi' (my))aen is a locally
finite family of elements of M. Then (mx)xea s a locally finite family of elements
of MK and resit (3, my) = .y resit (my).

The verification is immediate.

We prove (b). The coefficient of C in a'(A) is Y pc x_.p<a PB,aqc,z- This is
zero unless C' < B for some B in the sum. Hence it is zero unless C < A. If now
C = A, the only contribution to the coefficient is from B = A and it gives 1 since
ga,a =Da,a = 1. The lemma is proved.

Lemma 4.22. Let m € Mg

(a) The family of elements maa’(A) (where A runs through X=) is locally finite
in MK and a'(m) =Y , maad (A).
(b) We have a'(m) € Mé{

The proof of (a) is entirely similar to that of 4.21(a). (We use 4.19 instead of
4.18.)

We prove (b). We can find C € Xz such that supp(m) C {B € X=|B < C}.
Now let D € supp(a’(m)). Then there exists A such that ma # 0 (hence A < ()
and D € supp(a’(A)) (hence D < A by 4.21(b)). Thus, we have D < C and (b) is
proved.

4.23.  We now prove Theorem 4.14. Lemma 4.22(b) shows that there is a unique
homomorphism b : MEX — ME such that b(m) = a/(m) for all m € MX. Now b is
H-antilinear since o is H-antilinear. From 4.17(a) we see that -

(a) blee k) = eer.k for any € € Se.

From 4.21(b) we see that

(b) for any A € Xz, b(A) is of the form A+ an A-linear combination of elements
A€ X= with A’ < A.

From 4.22(a) we see that

(c) for any m € ME, we have b(m) =" , mab(A).

We show that b is continuous in the sense of 4.13. Let (Fx)aea be a family of
elements of M% which is locally finite (in M%) and is such that J, ., supp(F)) C
{A € X=|A < Ap} for some Ay € X=. From (b),(c) we see that |J, ., supp(b(F))) C
{A e Xz|A < Ap}. Let B € X=. From (b),(c) we see that

{A € A|B € supp(b(Fy))} C U {A € A|C € supp(Fy)}
CeX=;B<C<Ag

so that {A € A|B € supp(b(F)))} is finite. Thus, (c(F)))rea is locally finite in
M. Finally, from (c) we see that ¢(}", FA) = >, ¢(F)). Thus, the continuity of
b is established. The existence part of 4.14(a) is proved.
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To establish the uniqueness part of 4.14(a), it suffices to verify the following
statement.

(d) Let c: ME — ME be a H-antilinear continuous map such that c(ec ) =0
for any € € S¢. Then ¢ = 0.

From the definition of {p and the assumptions on c it follows that ¢({g) = 0 for
all B € Xz. For a fixed B € Xz, we consider the family ma = pa péa (see 4.16)
in MX indexed by {A € X=|A < B}. This family is locally finite in M* and the
union of supports of the elements in the family is bounded above (by B). By the
continuity of ¢ we have

cB)=c( Y. pasa)= Y. c(papa)=0.
A€X=;A<B A€X=;A<B
Thus, ¢(B) =0 for any B € Xz=.

Let m € ME. The family (mpB)pez in MX is locally finite in MX and the
union of supports of the elements in the family is bounded above. By the continuity
of ¢ we have c(m) = 3 pcy_c(mpB) = 0. Thus, c =0 and (d) is proved. Hence,
4.14(a) is proved.

Now 4.14(b) is just (b) above. It remains to prove 4.14(c). The H-linear map
c=b%—1: ME — MZX satisfies the hypotheses of (d). Hence it is 0. Thus, b2 = 1.
Theorem 4.14is proved.

4.24. For any A, B € Xz we define Ra,p € A by b(B) =} 4. x. Ra,pA.

5. A[T']-MODULE STRUCTURE ON M¥

5.1. Let A[T'] (vesp. A[T]) be the group algebra of 7' (resp. 7) with coefficients
in A. The basis element of A[T’] corresponding to ¢ € 7' is denoted by [¢]. The
A-module structure on M extends to a A[7’]-module structure by

[tlm= > ma A= ma(A+t)
AeX AeXx

for m € M,t € T'. Tt is easy to check that, if t € 7, then the action of ¢t on M is
‘H-linear.

If i € I and H € §*, then M; < and M; > are A[7’]-submodules of M; using the
definitions we see that

(a) Ou([t]m) = [tri|0m(m)
for all m € M; <,t € T'. For any U C T, M(U) (see 3.8) is a A[7"]-submodule of
M; using (a), we see that, for any m € M (U ), we have
(b) Ou, ..., ([tJm) = [t 0, b, 1, (M)
I

where t' = try, i, .1, = twiwf. (Notation of 3.14.) If € € E is a special point
and t € 7', we see, using the definitions, that, for any m € M we have

(c) e([t]m) = [twg] pe(m).
(Notation of 3.15.) Using (b),(c), we see that, in the setup of 3.18, we have
() ¢0r1, Ha.....m, ([tIm) = [twg’ | 0b0m, 1.1, (M)

for any t € 7’ and any m € M (U).
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5.2. We show that M’ is a A[7’]-submodule of M. Indeed, let m € M¥ and
t €T'. Then [t|m =Y oy m/4A where m/y = ma_y. Let w € QF, let w be the
corresponding element of W/ and let A € X. We have tw™! = t+t' where t’ € TX.

We have
/ dg (A—t,(A—t—t’
Mpy, = MAw—t = MA—tw— o = MA-t—t)w =V x( ( )w)mA—t
— ,UdK(A—t,Au)—t)mfA — ,UdK(A,AUJ)m{A

and our assertion follows.
5.3. The A-module structure on M ¥ extends to a A[7’]-module structure by
tlom=3 my ad= ) ma(nA).
AeX= AeX=

Note that m + [t] om depends only on the coset of t modulo 7%. Hence, there is
a unique A[7 /T ¥]-module structure a[t], m +— a|f| om on MX where t € T/TK,
t is a representative of ¢ in 7 and [t] denotes the basis element of the group algebra
A[T /T¥] defined by t.

Lemma 5.4. Lett € T. Form € M¥ we have |t]o(resg(m)) = v ®) vesg (|t|m)
where resk s as in 4.6(a) and pk(t) is as in 4.10(a).

We have

[t] oresg(m) = [t] o < Z mAA> = Z My, AA,

AeX= AeXz

O respe ([t|m) = v5® resg <Z mA—tA> = yphr®) Z ma—A.

AeX AeXs
We must only prove that
(a) Moy A = UﬂK(t)mA_t

for any A € X=. Let w € Q¥ be such that (4 — t)w € X=. We have

dic (A—t,(A—t)w)

(b) My_ A = MA-t)w =V mA—t

since m € M. We show that

() dr(A—t,(A=t)w) = px(t).

We have

dg(A—t,(A—tw) =drg(A—t,A) + dx (A, (A — t)w) = ux(t) + dx (4, (A — t)w).

Thus, (¢) would follow if we show that di (A, (A — t)w) = 0. More generally, we
show that dx (A, B) = 0 for any A,B € X=. If H € §¥, then any K-alcove is
contained either in E}} or in E. It follows that A, B lie on the same side of H.
From the definition of dg it therefore follows that dx (A, B) = 0. Thus, (c) is
proved.

We introduce (c) into (b). We obtain (a). The lemma is proved.
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5.5. Since resg : MX — MX is an isomorphism of H-modules, we see from 5.4
and 5.2 that, for ¢t € 7, the map m — [t| om from M¥ into itself is H-linear.

Lemma 5.6. (a) ME = MX and ME = ME are A[T']-submodules of M*.

(b) For any subset U C T, M(U) (see 3.8) is an A[T']-submodule of M.

(¢) ME and MX are A[T'])-submodules of M.

We prove (a). Let t € 7'. If m € MX then there exist Ay, Aa,..., 4, in Xz
with supp(m) C {y—v(Au)lu € [1,p],t' € T+}. Let B € supp(y:(m)). Then
v—¢(B) € supp(m) so that v_(B) = v_¢(A,) for some u € [1,p|,t' € TT. Then
B = ~y_¢(vtAy). This shows that [t] om € MX. Thus, ME is a A[T']-submodule
of M¥. Similarly, M¥ is a A[T’]-submodule of M. This proves (a). The proof
of (b) is entirely similar.

To prove (c) it remains to note that M K and M K are intersections of M¥ with
a subspace of the form M (U) and both these subspaces are A[7’']-submodules of
M.

Proposition 5.7. Fort € T', the map m — [t]om from Mg into itself commutes
with b : Mé{ — Mg

With the notation in 4.14 we have aqasasa; = ¢ res;(1 cob where ¢ : MK —
M,cy: ME — M are the obvious inclusions. Let m € MX. We have

crres ! eab([t] 0 m) = asazasay([t] o m) = agazas(v"* M |t]ay (m))
= v "% Waya|t|agar (m) = v Oay [twl |azasa; (m)
= kK () Ltw?]awwwl (m)
= v HEO | 1l ey resit cob(m) = vHE ey | twl | resit cab(m)
_ U—ux(t)v—MK(twé{)cl resi_(l(LtJ o (e2b(m)))
— gy Hre ()= h (twg) o) resy' ca([t] o b(m)).

(The second and eighth equality follow from 5.4; the fourth equality follows from
5.1(d); the other equalities follow from the definitions. We have also used the
identity |twd | o (c2bm) = |t] o (c2bm) which follows from the fact that twl =t
mod 7TK))

Since c; resi! ¢y is injective, it follows that b(|t] o m) = v (Oy=hr(tw) [ 4] o
(bm). It remains to use the identity px (t) + pr(twk) = 0 (see 4.10(c)).

6. THE ISOMORPHISM 0, : ME — ME

6.1. In this section we fix € € S;. We define an involution . : M¥ — M¥ by
Ke( Z maA) = Z make(A) = Z My (a)A
AeXz AexXz AeX=
(notation of 2.3).

Lemma 6.2. k. restricts to a bijection Mf = ME

K or, equivalently, Mg =
Mg, see 4.13(a), denoted again by k..

Using the identity vike = key—t : E — E for t € T (see 2.12(d)) we see immedi-
ately that x. maps M isomorphically onto MX. This proves (b).
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Lemma 6.3. k. : ME = ME and its inverse k71 : ME = ME (which is just
the restriction of k. : M¥ — M) are continuous in the sense of 4.13.

The proof is a refinement of the argument in the proof of 6.2. Namely, let
(F)\)xea be a family of elements of M% which is locally finite (in M) and is such
that (Jyc, supp(Fi) is bounded below. By 2.13(c), there exist Ay, As,..., A, in
Xz such that the following holds. If B € supp(F)) for some A € A, then B = v A,
for some u € [1,p] and some ¢t € TT. Using the identity yske = kv : B — E for
t € T (see 2.12(d)) we deduce that the following holds. If B € supp(keFh) (that
is, kB € supp(F))) for some A € A, then B = y_;k.A, for some u € [1,p] and
some t € 7F. Using now 2.13(b), we deduce that (J,., supp(kc(Fy)) is bounded
above. The family (kc(F)))rea in ME is locally finite in M% since (Fy)xea is
locally finite in M*% and k. : Xz — Xz is a bijection. This also shows that
ke(3oy Fr) = D, ke(F)). The continuity of «. is proved. The continuity of £ ! is
proved in an entirely similar way.

6.4. Let s+ s* be the involution of S defined by the following requirement: if Z
is a face of type s then the image of Z under the map ¢ + x — ¢ — x (with x € T)
is a face of type s*. (It follows that k.(Z) is a face of type s*.)

Lemma 6.5. (a) Let m € MY and let s € S. We have Ty(kc(m)) = k(T (m)).
(b) For any € € S¢ we have kc(ee k) = v'Keer g where v is the number of
elements of F — FX and ¢ = k.(¢') € S:.
(¢c) For any t € T' we have [t]| o (kem') = ke(|—t] om/).

We prove (a). Let A € Xz and let H € § be the hyperplane separating A, sA.
Then H; = k(H) is the hyperplane in § separating r.(A) from k.(sA) = s*k.(A).
Now H is a wall of Z (that is, H € §X) if and only if H; is a wall of = (that is,
H; € §5); see 2.3(b). In this case we have k(T (A)) = ke(v'A) = vk (A) =
Ts(kc(A)). Assume now that H, H; ¢ §. Using 2.3(d), we see that s* € L£(A) if
and only if s ¢ L(kc(A)). Hence, ki (T='(A)) = ke(s*A) = skc(A) = Ta(k(A)) if
s* e L(A);

ke(T7HA)) = ke(s* A4+ (071 —0)A) = k(5™ A) + (v — v )k (A)
= s5kc(A) 4+ (v — v K (A) = Ts(ke(A)),

if s* ¢ L(A). Thus we have x (T:'(A)) = Ts(k(A)) in all cases. We now use the
continuity of k.; (a) follows.

We prove (b). Using 2.3(c), we see that it suffices to show that d(4, A%) =
vic — d(ke(A), AL,) for any A € D=(€'). We have vx = d(Al,, A,) hence vk —
d(rc(A), AL) = d(AL,, Kk (A)) = d(ke(Al), ke(A)). Hence it is enough to show
that

d(A, B) = —d(ke(A), ke(B)) for any A, B € X=. The proof is similar to that of
4.10(f). We note that H — k.(H) is a bijection between the set of hyperplanes in
§ that separate A from B and the set of hyperplanes in § that separate k.(A) from
ke(B) (these hyperplanes are automatically in ). Moreover, the signs attached
to corresponding hyperplanes are opposite. The desired equality follows; (b) is
proved.

(c) follows from 2.12(d).
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6.6. Let 0. : M2 = Mg be the bijection defined by the equality
b=v""% K0, : Mg = Mé(
where k. : Mg = Mg is as in 6.2.

Proposition 6.7. (a) For any s € S and m € Mg, we have O (Ty-(m)) =
Ts(0c(m)).

(b) For any €' € Sz we have O.(ecr k) = eer ik where € = ke(€').

(c) For any t € T' and any m’ € ME we have [t] o (cm’) = Oc([—t] om').

(a) follows from the H-antilinearity of (b) and 6.5(a); (b) follows from the defi-
nition of b (see 4.14(a)) and 6.5(b); (c) follows from 5.7 and 6.5(c).

Proposition 6.8. (a) The map 0. : Mg = M? is continuous in the sense of
4.13.
(b) The map 071 : Mg = Mg is continuous in the sense of 4.13.

This follows from the continuity of k., k! (see 6.3) and the continuity of b = b1.
The following characterization of 6. (similar to that of b) follows from 4.14(a).

Proposition 6.9. 6. is the unique continuous map Mé( — M? that satisfies

6.7(),(b).

6.10. Let MX be the A-submodule of M ¥ consisting of all elements m € M¥ such
that supp(m) is a finite set. Then MK is a A[7]-submodule and a H-submodule
of MX.

Lemma 6.11. Let o = [[,cz_zx (1 —v=27#x(@0) o, ]) € A[T]. For any B € X=
we have g o 0.(B) € MX.

For i € I and H € §, we define a A-linear map 0y : M — M by

() O (X acx mad) = ¥ gex ma((v1 A" + AY) — o= (071 AL + A7)
where A% are as in 3.3. From 3.3(a) we see that 05 (A) — v=2| ;|0 (A) = 05 (A)
for any A € X. Hence 0y (m) — v=2| ;|05 (m) = 0 (m) for any m € M; <.

Let Pp = ) cox vix(B:BY) By, e MK (see 4.7); then resgx(Pg) = B. The
QX _orbit of B decomposes into finitely many 7 %-orbits and we fix a set of repre-
sentatives By, Ba, ..., By for these 7X-orbits. We have

N
PB = Z’UdK(A7Bj) Z ’UHK(t)(Bj + t)
Jj=1 teTK

In the setup of 3.13, we have b(B) = resg(dclcti, - - -OetirOcyi,(P). Let o) =
[Ther_7x- (1 —v7%|an]) and let oh = [T,crpr- (1 — v?|[—an)).
Using several times 5.1(a), we have
Qlloe_;_ip . .9€+1‘1PB
= (1 — ’U_2 LO(ZPJ)(l — ’U_2 Laipfln-pj) . (1 — U_2 |_Oéi17'i27'i3 N TipJ)ae_H‘p N 95+i1PB

= (1 = v i, )eqi, (1 = 07| |)0esin (1 = 072 @i, |)0eyiy Pr

N
= ée-{-ip e éﬁ-i-iz ée—i—il PB = Z ’UdK(A’Bj) Z U“K(t)é€+ip e 954_1'2 ée-{-il (Bj =+ t),
Jj=1 teTK
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hence, using 5.1(c):

9/2¢695+ip e 95+i1PB = ¢59/195+ip .. -05+i1 PB

N

py Z o3 (A,B;) Z O i BeyiyBeriy (By + ).
Jj=1 teT K

Using (a) and the definition of ¢., we see that there exist B; ;; € X and a; ; € A

for j € [1, N],j/ S [1, N/] such that ¢€95+ip c. 95+i295+i1 (BJ) = Zj’E[LN’] CLjJ‘/Bj)j/.

It follows that

Seri, - OcyinOeriy(Bi+1) = D aj5(Bjy + twg)
3 E[LN]

for any t € T (see 5.1). Thus we have

Q/Q(béaﬁ"rip coileriy P = Z v (455 Z o™ Z aj»j’(BjJ' + tw(lf)'
JE[1,N] teTK J'€1,N]
3'€[LN]
If we apply resg to the right hand side of the last equality, we obtain an A-
linear combination of at most NN’ alcoves in Xz since for any C' € Xz and any
J,j' there is at most one ¢t € TX such that C = Bjj + twl. It follows that
resk (0h@eleti, - - - Oeriy PB) € ME. Let o} = [Therpr-(1— v2orr(en) | —ap|).
Using 5.4, we have

g/g o b(B) = 9/3 resK(qbeGer .. .9€+1‘1PB) = reSK(Q/Q(beee+ip . 9€+1‘1PB) S MCK

Applying k-1 to g4 o b(B) € MX | we deduce that po 6.(B) € MX. The lemma is
proved.

7. MX AS AN INDUCED ‘H-MODULE

7.1. Let MX be the A-submodule of M* which corresponds to MX under the
isomorphism resx : MX =5 MX. This is then an H-submodule of M*. The
elements P4 (see 4.3), where A runs over a set of representatives for the Q% -orbits
in X form an A-basis of MX. (This follows from 4.3(d).)

7.2. In this section we fix € € S;z. This allows us to identify I with a subset of .S:
to i € I corresponds the element s; € S such that the face 8,,(AY) is supported by
€+ 1.

Let W) be the (parabolic) subgroup of W generated by {s;|i € I} and let W (¥)
be the (parabolic) subgroup of W generated by {s;|i € K}. We have W) = W,
with the notation of 1.1. We denote by Wi the set of elements w € W which have
minimal length in the coset W ).

Lemma 7.3. The alcoves w™ AT, = w™'(AF + 2) (for various w € Wk and
various * € T1=X) form a set of representatives for the QX -orbits on X. Hence
the elements P, 1 .+ (with w,x as above) form an A-basis of MX.

e+

For A, B in X we write A ~ B instead of “A, B are in the same Q%-orbit”.
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If Ae X, then A = wflALzl for a unique w; € W& and a unique z; € 7.
We can write uniquely w; = w'w where w € Wi, w' € WE), Let ' € Q be the
element corresponding to w’ under j.; then w’ € Q5. We have

A=w A +2) = w (W AT + 2)
—w 'l ATw M +2) =w N A + 2!
for some 1 € 7. Writing ;1 = 2’ + 2" where 2’ € TT7K 2/ € TX we see that
A~vw Y AT 4 2) =w AT 42" + 2" ~w AT 2

Thus, A ~ w™t AT + /. Tt remains to verify the following statement:

Let w,w' € Wi and x,2' € TT=X be such that w1 (AT +z) ~ w'~L(AF + 7).
Then w = w' and x = z’. Our assumption implies A} + z ~ ww' " (AF + 2')
and AF ~ ww' ~1(AT +2') — x. But the Q¥-orbit of A consists of the alcoves
wy A + 21 with wy € WE) 2y € TK. Thus, there exist wy € W) 2, € TK such
that ww' ~1(AF +2') —x = w1 AF +z1. It follows that ww'~! = w; and 2’ —x = 2;.
This forces w = w’, 2’ = x. The lemma is proved.

7.4. The restriction of j. : @ = W (see 1.1) gives an isomorphism = — a” of
T onto a normal subgroup of W. For z € 7 we set ¥, = Ta_zé Ter1 € H where
r1,T9 € Tgom are such that x = z1 — zo. Then 99, is a well defined element of H.
(See [L2, 2.6].)

Lemma 7.5. Let € € e+ 7. Forx € T we have U5(Py+) = VHE@P =

e/t

U“K(I)P,YIA: .
We prove the first equality in the lemma. Using the definition of ¥, and
the linearity of the function = — pg(x) we see that it is enough to do that
under the additional assumption that © € Zgom. From [L1, 3.6] we see that
d(Aj,,a””(A:I) = I(a”). Hence there exists a sequence s(1), 5(2),...,5() in S such

that a® = 5(,)8(—1) - - - 5(1), n = I(a”) and
Ao < S(l)AE/ < 8(2)5(1)146/ << S(n)S(n—1) -+ - 8(1)A€/ =a"Ae.
For A € X and s € S such that s ¢ £(A) we have
(a) TePya = Psaif L ¢ SK; TsPy = ’U2PSA if L e SK.
Here L is the hyperplane separating A, sA. (The first equality is just 4.3(a);

the second equality follows from 4.3(c), since we now have Py = vPs4 by 4.3(d).)
Using this repeatedly we see that

T T T _ 2N _ 2N
TaIPA:r, —Ts(n) ...TS(I)PA: =" Ps(n)___s(l)A: =" PamAj,
_ 2N _ 2N
= PA:_HU—’U PA:+Z

where N is the number of consecutive pairs of alcoves in the sequence
At +

S smALs@sWAL s SmSm-1) - S AL

such that the hyperplane separating them is in F%. In other words, we have
N = dK(A:';, S(n)S(n_l) N S(l)A:) = dK(A:';, A:;+z) = uK(x).

The first equality in the lemma follows. We prove the second equality in the lemma.
Let A= AZ. Let w € QK be such that (A + z)w € X=; then

P’YzA = P(A-l—w)w = ,U—dK(A-l—w,(A-‘,—w)u.;)})A—’_z
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and it remains to use —dg (A + z, (A + z)w) = px (x) which follows from 5.4(c).

Lemma 7.6. Lete c e+ T.
(a) If v € TX, then VoPys = vhE@ P

e/

(b) If w e W) then T Py = v WP, .
(c) Ifw e W then TJIPAﬁ = U2"Pw,1A+/ for some n € Z.

(a) follows from 7.5; (b) follows by repeated application of 4.3(c); finally, (c)
follows by repeated application of 7.5(a), using the equality d(w=A4/,, A%) = l(w).
The lemma is proved.

Lemma 7.7. Ty, 9, — 0y, Ts, = (v — v_l)% foriel andxeT.

(The last fraction is a well defined element of the .A-submodule of H spanned by
{9yly € T}.) See [L2]. There is a slight difference between the equality in the
lemma and that in [L2]; this is due to the fact that what was a left action in [L2]
is now a right action, hence we have to adjust formulas accordingly.

Lemma 7.8. Letw' € W) and let x € T'=5. We have TJ,lﬁm = ﬁmj-;;/l'ﬂm_mi}/—l
plus an A-linear combination of elements of the form ¥, Tyny with z € TI-K u e
TK and w" € WE) [(w") < I(w). Here @' is the image of w = j=*(w') € Q in
W@, (Note also that © — xi@/ ' € TK.)

The proof (by induction on I(w’)) is based on [L2]. We omit the details.

Lemma 7.9. The elements T;;'0, (with w € W and x € T) form an A-basis
of H.

The arguments in [L2] show that the elements T,,-19, (with w € W) and
x € T) form an A-basis of H. But this basis is related to the family of elements
in the lemma by an “upper triangular matrix with 1 on diagonal”. The lemma
follows.

Lemma 7.10. (a) The elements Tglﬁwﬂ;}ﬁm/, we Wg,w e WE ¢ e TI-K,
' € TK, form an A-basis of H.
(b) The elements
() Ty 0o (T 0 — v M @HeED) oy € Wio € THE W e W) o
e TK (w', x) # (1,0), and
(0%) Ty, w € Wi, € T'=5 form an A-basis of H.

From the definition of Wg, W) we have TowTw = Ty for w' € WE) w e
Wi . We see that 7.9 can be restated as follows.

The elements lelj’;/lﬁzﬁm/, we Wig,w € WE) ¢ e TI-K 3/ ¢ TK form
an A-basis of H. Using 7.8, we see that this last basis is related to the family
T 9T g1, w € Wieyw' € WU g€ TIZK o/ € TK 4 as in 7.8
by an “upper triangular matrix with 1 on diagonal”. Hence the last family is an
A-basis of H. By a change of indexing, we see that the elements in (a) form an
A-basis of H. Now the family of elements in (b) is related to the previous basis by
an “upper triangular matrix with 1 on diagonal”. The lemma follows.

7.11. Let HX be the A-submodule of H spanned by the elements
T . (W' € W 2 e TKY;
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these elements form a A-basis of HE. Let H'E be the A-submodule of H spanned
by the elements T, 9, (w' € W) 2’ € T); these elements form a A-basis of
H'K. Note that HE c H'%X. From 7.7 we see that HX, H'K are A-subalgebras of
H.

Lemma 7.12. (a) The elements ﬂITJ,lﬁm/, w e W) geT!=K o ¢ T form
an A-basis of H'. The elements T, 0y, w' € W) o' € TX | form an A-basis
of HE.
(b) The elements
(%) o (T 0 — v @)@ g e TI-K gt ¢ W) o/ € TR (w/,x) # (1,0),
and
(xx) 9z, x € TI=E form an A-basis of H.

The proof is the same as that of 7.10.

7.13. From 7.6(a),(b), we see that there is a well defined .A-algebra homomorphism
X : H® — A such that HP,+ = x(H)P,+ for all H € H®. In fact, we have
(T 0,) = v 1w Hre ) for o € W) o/ € TK. Consider the left ideal J of
H generated by the elements H — x(H) for various H € H¥. From 7.10, it follows
easily that J is exactly the A-submodule of H spanned by the elements (%) in that
lemma. Hence the images of the elements (%) in 7.10 in H/J form an A-basis of
H/T.

Similarly, let J' be the left ideal of H'X generated by the elements H — y(H) for
various H € H¥. From 7.12, it follows easily that J' is exactly the A-submodule
of H'X spanned by the elements () in that lemma. Hence the images in H'% /7" of
the elements (*x) in 7.12 form an A-basis of H'% /J’. Thus we have an isomorphism
of A-modules A[TT=K] = H'K/J’ (the first of which is a group algebra) given
by z — v~ <@y, . we use this to identify these two .A-modules. In particular,
A[TT=X] becomes an H'K-module (a quotient of H'¥).

Let us consider the tensor products H ®4x A, H'X @y A, where H, H'K are
regarded as a right H®-module using the algebra imbeddings H*X c H'X C H and
A is regarded as a left H®-module via y. Then H ®x A is naturally a H-module
and H'%X @4« A is naturally a H'®-module. From the definition of tensor product,
we have

(a) H/J = H@ux A = H Quix (H/K Qurx A) = H Qux (H/K/j/) =
H Qpr K A[TI_K]

Proposition 7.14. (a) The A-linear map H @yx A — ME given by H® 1
HP,+ is a well defined isomorphism of H-modules.

(b) The A-linear map H®yx A — ME given by H®1 — HAT is a well defined
isomorphism of H-modules.

(¢) The A-linear map H®4px A[TT=5] — ME given by H®x +— v Hx @) {9, AT
= H(vAY) = v.(HAY) (with x € T'=X) is a well defined isomorphism of H-
modules.

We prove (a). The map H — MX given by H — HP,+ is clearly zero on J (as

in 7.13) hence it induces an A-linear map H/J — M. The image under this map
of the basis element T, ', (with w € Wi,z € TI=K) is, by 7.5 and 7.6(c), the
element P, _, A7, times a power of v; and these elements form an .A-basis of MX
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(by 7.3). Thus our map takes an A-basis of H/J onto an A-basis of MX; hence it
is an isomorphism. This proves (a), since H/J = H Qux A.

Since resg : MX — MX is an isomorphism of H-modules carrying P,+ to A7,
we see that (b) follows from (a). Finally, (¢) follows from (b) via the isomorphism
7.13(a). The proposition is proved.

8. THE ELEMENT A € A[T/TX]

8.1. Throughout this section we use the following notation. An underlined symbol
denotes C®z(that symbol). For example, A = C @z A, H = C ®z H.

8.2. Let G be a reductive connected adjoint algebraic group over C with a fixed
maximal torus T such that the group of characters T — C* is the group 7 in
1.1 and such that {a;]i € I} (in 1.3) are the simple roots of G with respect to
T and to a Borel subgroup containing T. Let g,t be the Lie algebras of G, T.
We fix standard Chevalley generators e;, f;, h;(i € I) for g so that h; span T and
e;, f; corresponds to oy, —ay; in the usual way. Let w : G — G be the involutive
automorphism of G whose tangent map satisfies e; — f;, f; — e;, h; — —h; for all
i. Note that w(t) =t~! for all t € T.

83. Let Tk = {t € T|ay(t) = 1 Vi € K}; this is a torus in T. Let Gg
be the centralizer of Tk in G. Let gx be the Lie algebra of Gi. Clearly,
w(Tk) = Tk,w(Gk) = Gg. We can find uniquely strictly positive real num-
bers c;(i € K) such that e = > ., cie;,f = > . pcifi,h = ZZGK c?h; satisfy
the sly-relations [e, f] = h, [h, e] = 2e, [h, f] = —2f. (In fact, c? € N.) Then & =
(e—f+h)/2,f = (—e+f+h)/2,h = —e—f again satisfy the sly-relations and in addi-
tion, the tangent map of w takes e, f,hto—& —f h respectively. There is a unique
homomorphism of algebralc groups p : SLs(C) — G whose tangent map satisfies
(98)—&(99)—f,(§ %)~ h. Thenu=p(}}) is a regular unipotent element
of Gk such that @w(u) = u~!. For any A € C* we set p'(\) = p(0 W) € Gg.
Then p'(A)up’(A)~! = u*” and @w(p/(N)) = p/(A) for all A € C*.

Let B, be the variety of Borel subgroups of G that contain u. The torus T x C*
acts on By by (g,\) : B — @M B = gp/(A\)B(gp'(\)) "%

8.4. In this section we will use for G some results which appear in [KL2] in the
case of simply connected groups; however, the results we need can be deduced from
the corresponding results for the simply connected covering of G.

We consider the (complexified) equivariant K-homology space K © *C(B,). We
regard this space as a H-module by composing the H-module structure in [KL2]
with the algebra involution ® : H — H given by Ty — T ! for all s € S or,
equivalently, by Ty, — —T;* for allie I and ¥, —9_, forall z € 7.

This K-homology space is naturally a module over the (complexified) represen-
tation ring R, xc+ which is just the algebra of all regular functions Tx x C* —
C and this module structure commutes with the H-module structure. In fact,
KOTK xC (B.) may be regarded as a space of sections of an algebraic vector bundle
V — Tk x C* and the action of H may be regarded as an algebraic family of finite
dimensional representations of H on the various fibres of V; moreover, these finite
dimensional representations of H are irreducible for almost all fibres.

Since w(u) = u~!, we have B € B, = w(B) € By,; thus, we obtain an
involution w : B, — B,. Note also that this involution is related to the action of
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T x C* on B, by w(\9Y B) = "9:) (x(B)) for all B € B, and (g, \) € T x C*;
here 7 is the involution (g, \) — (g7, \) of Tx x C*. Then w induces, as in [KL2,
1.3(j)], an involution w! : KT**C (B,) — KT**C (B,). From the definitions
we see that w' is a semilinear automorphism of the H-module Kg" xer (By) with
respect to the A-algebra involution of H such that Ty +— T (where s € S and s* is
as in 6.4). Also from the definitions we see that ' is a semilinear automorphism
of the R, xc--module Kg ¥ *C"(B,) with respect to the C-algebra involution of
Rt xc- induced by 7. Equivalently, there exists an involution @' : V — V (as a
vector bundle) inducing 7 on the base Tk x C*.

8.5. There exists a unique parabolic subgroup P of G with Lie algebra p such
that
(a) Gk is a Levi subgroup of P;
(b) the Tx-module G/P is a direct sum of one dimensional modules correspond-
ing to characters of the form ay, : Ty — C* where h € F — Fg.

(Note that P is not stable under w, in general.) Let (g/p), = ker(l — Ad(u) :
g/p —a/p).

8.6. Let B, be the variety of Borel subgroups of Gg that contain u. We may
identify B, with a point of By, namely the unique Borel subgroup of G that is
contained in P and contains u.

We regard the (complexified) equivariant K-homology space Kg ¥ *C(B,) as a
H'%-module obtained by composing the H'%X-module structure in [KL2] with the
algebra involution of H obtained by restricting ® : H — H. The K-homology space
above may be naturally identified with R, xc+ and the obvious R, xc+-module
structure commutes with the 2’ *-module structure. Let &’ be the ring obtained
by adjoining A’~! to R, xc+ where A’ : Tx x C* — C is given by

A'(g,A) = det(1 — > Ad(gp'(N)), (8/p)u)-
By [KL2, 6.2] the natural H-module homomorphism
(a) H @y Kg 7 (By) — Kg “* (B.)
induced by the inclusion Bu C B, is an isomorphism after tensoring over R, xc=
by the ring of fractions R’.

8.7.  We may identify

(a) H @px KO (By) = H @prx Rroxce = H Qg ATT-K] = ME
where the third equality is deduced from 7.14(c) by tensoring with C. Hence we
may regard 8.6(a) as a homomorphism of (H, R, xc~)-bimodules

(b) ME — K§**"(B,)
which becomes an isomorphism after tensoring over R, xc~ by the ring of fractions
. (We regard M as an A[T/T*]-submodule of M see 5.3, and we identify

(c) A[T/T"] = Rr,exc-
by attaching to vz , where n € Z,x € 7 /TX, the function (g, \) — A"i(g~?!)
where & € T is a representative of x.) We may regard M. f as the space of sections
of an algebraic vector bundle V! — Tk x C* and the action of H on Mf may be
regarded as an algebraic family of finite dimensional representations of H on the
various fibres of V'. The map (b) can then be interpreted as a morphism of vector
bundles
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d)¢: V-V
(inducing the identity on the base Tk x C*) such that this morphism is an iso-
morphism over the open dense subset U/ of Tx x C* defined by the condition
that A’ # 0. This morphism is compatible with the H-actions. In particular, the
representations of H on the fibres of V' are irreducible for almost all fibres.

8.8. Now from 6.11 and 6.7(c) we see that . defines a meromorphic map of vector
bundles V' — V' inducing 7 on the base Ty x C*.

Proposition 8.9. There exists an integer N > 1 such that, for any (reqular) sec-
tion o of V', A'NO.(0) is a (regular) section of V'.

The square of 6. induces the identity on the base and (by 6.7(a)) it commutes
with the H-action. Since H acts irreducibly on almost all fibres, it follows that this
square is given by multiplication by some (meromorphic) function Tx x C* — C.
On the other hand, from 6.7(b) we see that, if € € S¢, then e g (regarded as
a section of V') is mapped to itself by the square above. Hence the meromorphic
function just considered must be identically 1 so that the square of 6. is the identity
map of V.

Consider the meromorphic vector bundle map 6.~ 'w!¢ of V’ into itself (recall
that ¢ : V! — V is regular map but its inverse (~! is only a meromorphic map).
This induces the identity on the base T x C*. It commutes with the action of H
(since both ' and 6, are H-semilinear with respect to T, — Ti-, see 6.4, 6.7(a),
and ( is H-linear). Since H acts irreducibly on almost all fibres of V', it follows that
0. 'w¢ is multiplication by some (meromorphic) function f : Tx x C* — C.
Hence 0. = f¢( 'w'¢. Since both 6. and (~'w’¢ have square 1, it follows that
f? =1so that 6. = £ 'wi(.

Let o be a (regular) section of V/ and let o1 = 0.(0) = +¢("'w'((s) (a mero-
morphic section on V’). Since (™! is regular over the open set ¢/ and w',( are
regular everywhere, it follows that o1 is regular over the open set /. Hence there
exists a regular section oo of V/ and an integer N > 1 such that A’Noy = 0. In
other words, A’V (o) is a regular section of V’. Note that the integer N > 1 can
be chosen independently of o since the space of sections of V' is a finitely generated
module over the algebra of regular functions on the base. The proposition is proved.

8.10. The function (g,\) +— det(l — A72 Ad(g~*p'(A71)), (g/p)u) on Tk x C*
corresponds, under the identification 8.7(c), to an element A € A[T /T X].

Lemma 8.11. There exist homomorphisms @,52, coy&n : T — C* that are re-
strictions of roots oy, : T — C* with h € F—FX, and ky, ko, ... kn in {2,3,4,...}
such that

(a) A(g,N) = TT—, (1 = A%¢&;(g)) for all (9,)) € T x C*;

(b) A=TI_, (1 —vMg)).

We prove (a). Let V be a finite dimensional C-vector space with a given algebraic
representation p : T x SLy(C) — GL(V') such that all characters of T appearing
in the Tx-module V are restrictions of roots oy, : T — C* with h € F — FK.

Then we can define A}, : Txg x C* — C as the determinant of the linear
transformation 1 — A2p(g, (5 ,%1)) on ker(1—p(1,(§1)): V. — V).

We will show that A{, has a factorization of the form stated in the lemma for
A’. (This will imply (a) since A’ = Af, for V = g/p.) To do this, we may assume
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that V is an irreducible Tk x SLo(C)-module. Then T acts on V via a one-
dimensional character §& and SLy(C) acts on V irreducibly. But then it is clear
that Af,(g,\) = 1 — XImV+L¢(g). This proves (a). Now (b) follows immediately
from (a), using the definitions. The lemma is proved.

Proposition 8.12. (a) We have A € A[T /TX].
(b) There exists an integer N > 1 such that, for any m € MX, the element

c

ANG.(m) (which belongs to Mg, by (a)) actually belongs to MX.

(a) is clear from 8.11(b). To prove (b), it suffices to show that our element
in (b) belongs to M*. (An element of M% which is contained in M is also
contained in MJ*.) Let Ay = [[/_ (1 —vM[-¢]) € A[T/TX]. Since A =
(—1)rp=Uatetkn) |60 4.0 €, ]Ay, in order to show that AN o (§om) € ME
it is enough to show that AN o (§.m) € MX. But this follows from 8.9. The
proposition is proved.

8.13. Tt is likely that one can take N = 1 in 8.12(b). This is true if K = (}, as well
as in the following examples (in which I = {1,2}, aa(dy) = —1):

(a) type A2, K ={1}; A =1 —v73[ag);

(b) type Ba, K = {1}; A = (1 — v 3[ag])(1 — v ?[2a2));

(c) type B2, K = {2}; A =1 — v o).

8.14. In general, the number n in 8.11 (number of factors of A) is equal to
dim B,,. Indeed, by definition, n = dimker(1 — Ad(u) : g/p — g/p). Moreover,
dimker(1 — Ad(u) : gx — gx) = rankgg = rankg since u is regular unipotent
in Gg. Hence dimker(1 — Ad(u) : g — g) = 2n + rankg. On the other hand,
dimker(1 — Ad(u) : g — g) is the dimension of the centralizer of v in G and this is
known to be equal to 2 dim B, + rank g; our assertion follows.

9. STUDY OF A PAIRING (,): ME x ME — A

9.1. We define an A-bilinear pairing (,) : MEX x ME — A by (m,m/) =
> aex= mamly. The sum makes sense since supp(m) N supp(m’) is a finite set
whenever m € MX m/ € ME.

We shall make the following conventions (for fixed s € S). For A € Xz we write
A Qif (s,A) is as in 4.7(a); we write A : & if (s, A) is as in 4.7(b); we write
A: #if (s, A) is as in 4.7(c). Note that for any A, exactly one of the statements
A:Q,A: &, A: & holds. Note that A : O if and only if sA : &. We write A : &t
if either A : & or A : & holds.

Lemma 9.2. For m € Mg,m’ € Mg,w e W we have (Ty(m),m') =
(m, Ty (m)).

We may assume that m = A,m’ = A’ where A, A’ € Xz and that w = s € S.
We use the conventions of 9.1 relative to s.

(i) Assume that A:Q and A’ : ©. Then sA : & and sA’ : &, hence A # sA’ and
A’ # sA. We have

(Ts A, A') = (sA,A') = 65400 =0, (A, T, A") = (A,54") = 64,44 = 0.
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(ii) Assume that A : & and A’ : &. Then sA: Q and sA’ : © hence A # sA’ and
A’ # sA. We have

(T.A,A) = (sA+ (v —v A A) = ban + (=1 8aa = (V-0 )oan,
(A, T A) = (A, sA + (v —v " HA) =6aa + (v =044 = (v—v"1)6a4.
(iii) Assume that A: & and A’ : &. We have
(TA,A') = (vA, A') = véaar, (A ToA) = (AvA") =véa 0.
(iv) Assume that A:Q and A’ : &. We have
(TA, A) = (sA, A') = Sga,ar,
(A, T, A = (A, sA + (v —v H)A) =6a5a + (v —v")oa 4.
It remains to use 64,54/ = 0s4,4- and 64 4 = 0. The case where A : & and
A’ : Q is entirely similar.
(v) Assume that A:Q and A’ : &. Then sA : & hence sA # A’. We have
(T A, A') = (sA, A') = 6a.n =0, (A, ToA) = (A, vA") = v64 4 = 0.
The case where A : # and A’ : Q is entirely similar.

(vi) Assume that A: & and A’ : &. Then sA : © hence sA # A’. We have
(T A, A") = (sA+ (v —v DA A) =bsaa + (v —v" 1644 =0,
(A, T, A") = (A, vA") = v64, 4 = 0.

The case where A : & and A’ : & is entirely similar. The lemma is proved.

Lemma 9.3. Let € € S; and let m € M¥. Let N = Y wewk v~ 2 W) where 1
denotes the length function of WX. We have

Z mAU—d(A,Aj):N Z mAU—d(A,Aj).
AED(e) A€Dz(e)

With notation as in the proof of 4.10(b) we have

Z mAv—d(A,Aj) _ Z mAw,,U—d(Aw’,Aj)
A€eD(e) AeD=(e)
w' e
_ Z mAUdK(AAw/)U—d(AwQAj).
AeD=(e)
w' e
Here we replace d(Aw’, AT) by d(A, AFT) —d(A, Aw’) and (using the definitions and
an argument in the proof of 4.10(b)) we replace d(A, Aw’) = dx (A4, Aw’) by —I(w)
where w € WX corresponds to w’ under the canonical isomorphism €' = WX,
Our sum becomes

Z mAU—zl(w)U—d(A,Aj) - N Z mAU—d(A,Aj).
A€Dz(e);w' eWE A€Dz=(e)
The lemma is proved.

Lemma 9.4. Leti€ I andlet H € §'. Letm € M; < and let m' = 0y (m) € M; >.
Let € be a special point in E and let € = eoy. We have

Z m;w—d(A,Aj): Z mAU—d(AA:S).
A€D(e) A€ED(e)
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Let H1,H{,Y (¢),Y(€¢'),xz € T be as in the proof of 3.7. By an argument in that
proof we have

S AN = S A oty 07,
A€D(e) A€Y ()

Z mav —d(A,AT)

AeD(¢€)

= Z v_d(A’Aj/)(mA—FmAUH,v_l)
1
A€Y (¢)

_ Z v A+wA )(mA+1+m(A+w)oHiU_1)
A€Y (e)

—1
= Z v mA+z+m(A+w)UHiv )
A€Y (e)

—1
= E v” mAangH+mAaHv )-
A€Y (e)

We see that it is enough to verify the equality m/, + m;lo_Hlv_l = MAoy,on +
Mg, v~ ! for any A € Y(e). For any B € X, let (B*).cz be the sequence of alcoves
defined as in 3.3 in terms of H and B (instead of A). Note that for A, B € X and
z € Z, the conditions B* = A and A* = B are equivalent.

Let A€ Y(e). Weset A= Aog,. For z € N we define

cy = (_l)z—l(v—z+l _ ’U_Z_l)

if z> 0 and ¢y = v~'. From the definitions we have

i
my = E c,mp = E CoM A=,

2>0;BeX;B*=A z2>0
m;} = E c;mp = E c,mp = E CoM got1.
2>0;BEX;B*=A 220;BEX;B*+1=4 220

Hence

m'y —i—mf%Hlv_l = E c:ma- + E v e,ma-11 = v myo
220 220

1 o1 _ _
+ E (cz v cam1)maz =07 Ma0 +MAr = MAgy of +MAcyV
z>1

The lemma is proved.

Lemma 9.5. Let ¢,¢’ € S¢ and let €' = Kk (€'we k) € Se. Let m € Mé( We have

Z (eém)AU_d(A’A:”)Z Z mAv_d(A’A:/)

AeDz=(e") A€eDz=(€)
or, equivalently, (m, e k) = (€ Kk, 0em).

First note that, for any m’,mj € ML we have (from the definitions)
(a) (km/,m}) = (kmf,m’). Taking m} = e., xk where ¢; € S¢ and using 6.5(b),
we obtain

_ +
(B) X aepa(er) (M) av AAAL)

—vk+d(AAL )

— T
= ZAEDE(KeEl) myv
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A similar argument (using 3.16 instead of 6.5(b)) shows that for any m” € M
and any special point €5 we have

(c) ZAGD(EZ)(d)em//)A,U—d(A,A;) _ ZAED(ngE) migv_Qerd(A’Aj?“’e)-

Now let m € MK be defined by resg(m) = m. In the setup of 3.13, let
M = 0Ocqiy, - OcyinOcriym € M. Let €) be defined by € = €jwewe x = €10cti, - .-
OetiyOetir - Applying p times 9.4, we have

_, o —d(AAY) o —d(A,Ah)
12 A ) A
E myv 1 = E (Ocqiy - - OcqinOcyiym) av 1
AeD(e)) A€D(et)

- —d(A,AY )
= E (95"1‘1-1771 coOcyirOcriym) av 17etip
A€D(efoetiy)

—d(A,AT, )
_ Z v hoetiy TetipTetis

AED(EI10'5+71P~~~Ue+iQ Ue+711)
= Z ﬁlAv_d(A’Aj’) =N Z mAv_d(A’Aj').
AeD(¢€) A€Dz (')
(We used 9.3.) The first term of the last sequence of equalities equals (by (c)):

v— + v— +
ST (gan) ™ T ) N ST () 0™,
AeD(efwe) A€Dz=(ejwe)

(We have used 9.3 and bm = resg ¢.m’.) Hence we have

(d) N> acp=(e) m a4 AAD = NU—2UZAeDg(e’1we)(bm)AU_d(A’A:W)- Using
(b) and bm = v "5 k. f0.m, we see that
Z (bm)AU—d(A,Aj,lwe) K Z (neeem)Av_d(A’Ajiwe)
A€eDz(ejwe) A€D=(€jwe)
— VK Z (aem)A,U—VK-i-d(A,A:,,)'
A€eDz=(e")

Introducing this in (d) we obtain
N Z mAv_d(A’Aj') = Ny~ V%K Z (GEm)Av_d(A’Aj“).
AeDxz(e") A€D=(e")
It remains to use the equality N = Nv~2**2"% _ The lemma is proved.

Lemma 9.6. (a) There exists a unique H-antilinear map b: ME — ME such that
(b(m),m") = (m,b(m’)) for all m € ME m' € MX. - -

(b) We have b* = 1. ) - -

(c) For any A € Xz we have b(A) = ) pcx_ Ra,pB where Rap € A are as in
4.24.

(d) b: M§ — Mg is continuous in the sense of 4.13.

We prove (a). For m’ € ME, we set

(¢) b(m') = 3 4ex. (b(A), m)A. )
Using 4.14(b), we see that the last sum belongs to M§ Thus, m’ +— b(m') is a
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well defined group homomorphism b : M g — ME. Clearly, b satisfies the equation

in (a). For all p € A and m' € Mg we have b(pm’) = pb(m'). Let w € W, m €
Mg,m’ € M? We have

(m, Tpbm/) = (Ty-1m,bm') = (bTy-1m,m’) = (Tybm, m’) = (bm, Ty—1m')

= (m, bT,y—1m’).

Thus, (m, Twbm') = (m,bT,-1m’). Since this holds for any m, it follows that b
is H-antilinear; the existence part of (a) is proved. The uniqueness part of (a) is
obvious. 7

We prove (b). For any m € ME m/ € ME we have (m,b?m’) = (bm,bm/) =
(b>m,m’) = (m,m’) so that (m,b*m’) = (m,m’). Since this holds for any m, it
follows that b%m’ = m/ and (b) is proved; (c) follows from (a), taking m = B, m’ =
A; (d) follows from (e), using 4.14(b). The lemma is proved.

Theorem 9.7. (a) For m,m’ € ME we have (m,0.(m’)) = (m’,0c(m)).
(b) For m” € ML we have b(m") = v"Kbck(m”) = Kbk (m") =
VRO b (m).

(c) We have b(v"X e ) = v'Keu ¢ for any € € Se.

We prove (a). By 9.6, we have (b(m/),m") = (m’,b(m")) for any m’ € MX,
m’ € ME or, equivalently: (v="xr0.(m'),m") = (m’,b(m")). Using 9.5(a), we
see that the left hand side of the last equality equals v”% (k(m”), 8(m’)). Thus, we
have v/% (¢ (m"),0.(m’)) = (m/,b(m”)). We make the substitution m = r.(m”) €
MZX. We obtain the equality (m,0.(m’)) = v="<(m’,bx-"(m))x for any m,m’

as in (a). Let 7 be the composition MX L ME 2 MK Then we have
(m,0.(m’)) = (m’,7(m)) for any m,m’ as in (a). Now, for any s € S and m € ME,
we have 7(Ty-(m)) = 7(0:(m)) (by 9.6(a) and 6.5(a)). Moreover, 7 is continuous
in the sense of 4.13 since so are k. !, b.

Let € € S¢ and let € = k.(€'w, k). For any m’ € MX we have

(m/vT(ee/’,K)) = (ee“,Kvoe(m/)) = (m/vee’,K)

where the second equality follows from 9.5. Thus, (m/,7(ec.x)) = (M, e k).
Since this holds for any m’ € MX, it follows that T(eer k) = e k. We now see
that 7 satisfies the properties that characterize . (see 6.9). Hence we have 7 = 6.
This proves (a).

We prove (b). Let m’ € ME m” € ME. By the arguments in the proof
of (a) we have (m/,b(m”)) = (b(m/),m") = v’ (ke(m"),0(m’)) and, by (a),
the last expression is equal to v"% (m’,fckc(m")). Thus, we have (m/,b(m”)) =
vVE (m/, Ocke(m”)). Since this holds for all m’ € ME, it follows that b(m”) =
V"% @k (m”) and the first equality in (b) is proved. The second and third equali-
ties in (b) follow from the definition 6.6 of ..

Now (c) follows from (b) using 6.5(b) and 4.14(a). The theorem is proved.

Corollary 9.8. For any A,B € Xz we have Rap = R,_(B)x.(a)- (Notation of
4-24.)
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Using 9.7(b) and the formula b(C') = > 5. Rp,.cB (see 4.24), we see that

b(A) = k7 bre(A) = k! < Z RB7NE(A)B> = Z Ry (B) k(1) B

BeX= BeX=

for any A € Xg. We compare this with the formula in 9.6(c). The corollary follows.

10. INTEGRABILITY OF 6.(A)

10.1. Let 2 = Z[T/TX]((v™1)) be the ring of all power series in v~! with coeffi-
cients in the group algebra of 7/7X over Z; a typical element of 2 is
ZteT/TK;neZ an ¢[tJv"™ where a,; € Z and there exists ng € Z such that a, s =0
for n > np; moreover, for any given n € Z, a,; is zero for all but finitely many
t € T/TX. Note that 2 is an integral domain since 7 /7 X is a finitely generated
free abelian group. It contains as a subring the group algebra A[T /TX] of T /TX
over A. Let a — a* be the involution of the ring A given by

Z U, ¢ [t]0" — Z A t[—t]0™.

teT /TKneZ teT /TKneZ

Let M
ma.n € Z) such that there exists ng € Z with my4 , = 0 whenever n > ng and such
that, for any n € Z, the set {A|ma,, # 0} is finite.

For any m € M¥ and A € X=, we write my = Znez ma nv" where my , € Z;
we say that m is integrable if 3 4o x_.,cz ManV"A € MK . Note that MX c MK.

We regard M X as a A[T /T%]-module in which [tjm = [t]om for m € M¥; in the
right hand side, ¢ is an element of 7 while in the left hand side [¢] is determined by
the i 1mage oft € TinT/TK. Weregard ME, as an 2-module by (a,m) — am = m’

where m’y , =37 5 .. e (B)=Asptq=n ap7th 4- By restriction, we obtain on MK

(which is contained both in MX and in ML) two A[7/7%]-module structures,
which coincide.

be the set of formal expressions m = 3\ x_.,cz ManV"A (Where

10.2. We define a pairing (|) : M

int

(a) (mim) = > anetl"

teT /TK neZ

xMiIn(t—>ley

where an,t = > 4cx2 Dp geziptg=n MAPM,, 4,4~ We show that the right hand side
of (a) is a well defined element of 2. Let ng, n{ be integers such that, for all A,
ma,, = 0 whenever p > ng and m’ Aq = = 0 whenever ¢ > ng. Then a, ; = 0 whenever
n > po + qo. For fixed n, we may restrlct the sum over p, ¢ to those p, ¢ such that
p < no,q < ng,p+q = n. There are only finitely many such p, g. Hence it is enough
to show that for fixed p, ¢ such that p + ¢ = n, the set

{(A,1) € Xz x (T/T5)|maym, 4, # 0}

is finite. If (A, ) is in this set then, since m4 , # 0, we see that A runs over a fixed
finite set F' and ;A runs over a fixed finite set F’. But then ¢ runs over the set of
all #/ € T/T¥ such that 4+ A = B for some A € F and some B € F’. This set is
finite by 2.12(f). Our assertion is verified.
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10.3. From the definitions we see that, for any m, m’ € ME and a € A, (am|m’) =
(mla*m’) = a(m|m’), (m|m’) = (m'|m)*.
If m,m’ belong to MK, then clearly, (m, [t}m’) (notation of 9.1) is zero for all

but finitely many t € 7 /7%, so that
(mimy=" Y mamialtl= Y (m[m)[] € AIT/TF].
teT /TK;AeX= teT |TK

We now fix € € Sz. Let N > 1 be as in 8.12(b), so that m +— AN6.(m) is a well
defined A-linear map O, : MX — ME.
Lemma 10.4. If m,m’ € MK, then ©.m,0.m' € ME satisfy (m|®.m’) =
(m/|®cm).

By 10.3, it suffices to prove that (m, [t]©.(m’)) = (m/, [t]©.(m)) for t € T/TK.
We have

(m, [(]©c(m')) = (m, [[]AN(m")) = ([~H](AN) m, 0c(m))
= (m',0c([-1)(AY)tm)) = (', [t]AN Oe(m)) = (', [t]©c(m)).

(The third equality follows from 9.7(a).) The lemma is proved.
Lemma 10.5. For any m € MX we have ©%(m) = (AAHNm.

With notation in the proof of 8.9, the (meromorphic) map 6. : V' — V' has
square 1. This clearly implies the lemma.

Theorem 10.6. (a) For any m € MX we have 0.(m) € MK

int*

(b) For any my,ma € MXE we have (0.(m1)|0.(m2)) = (ma|my).

We prove (a). Let m’ = 6(m) € ML. By 8.12(b) we have ANm/ € MK and in
particular, ANm’ € ME, for some N > 1. Multiplying with A=" € 2 we obtain
m’ € M. This proves (a).

We prove (b). Using 10.4 with m = ©.(my), m’ = ma, as well as 10.5, we have

(©c(m1)[Oc(ma)) = (m2| O (m1)) = (m2|(AAH)NVimy) = (AAH)N (mz]m.).
On the other hand,
(AAH N (Be(m1)|0e(m2)) = (AN Oe(m1)| AVOc(m2)) = (Oc(m1)|Oc(m2)).

It follows that (AAH)N (0. (m1)|0c(m2)) = (AAY)N (my|my). This implies (b), since
(AAHN £ 0 and 2 is an integral domain. The theorem is proved.

Corollary 10.7. For A € X=, we write 0.(A) = ) ccx. f& 4C where f& 4 € A.
We also write f& o = _,cz f& anV" where f& 4., € Z. Then, for any A, B € Xz
we have

(a) > > Fenpte pg)V" = 64,5

neZ CeXz;p,q€Z;p+q=n
(By the integrability of 6.(A) and 6.(B), the coefficient of v™ is well defined for
any n, since it is given by a finite sum.)
We consider the map from 2 to the set Z((v™!)) of power series in v~! with
integer coefficients, given (with the notation of 10.1) by

Z U, t[t]0" — Z an,oV".

teT/TKneZ neZ
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We apply this map to both sides of the identity in 10.6(b) with m; = A, ms = B.
The corollary follows.

Corollary 10.8. (a) For any A,C € Xz we have f& 4 € Zlv™'].

(b) For any A € Xz there exists a unique alcove l(A) € X= such that f& 4 €
v 1Z[v™Y] for all C" #1.(A) and flayat v 1Z[v™Y. In fact, we have fiiaya €
sgn 4 +v 1 Z[v~] where sgn, = +1.

(c) If m € ME,, then m’ = >0 Me,, CV™, where

int’

/ _ 2 : €
mCm - mA»PfC7A;q’
A,p,¢;p+q=n

is a well defined element of ML, denoted by 0.(m). (This agrees with the earlier
meaning of O.(m), when m € MX.) Thus we have a map 0. : M, — ME . For
a€A,me ME  we have 0.(am) = a*0.(m).

(d) The map m — 0.(m) of ME, into itself has square 1.
(e) The map A — lc(A) of Xz into itself is an involution and sgn, = sgn; ().

The equality 10.7(a), with A = B, can be written in the form Y- _(f& 4)* = 1,
where the sum in the left hand side is convergent in the power series topology of
Z((v=1)). This implies immediately (a) and (b). (We use the fact that Zjvzl nf =0
with n; € Z implies n; = 0 for all j and that Zjvzl nf = 1 with n; € Z implies
nj = 0 for all but one j, for which n; = +1.)

We prove (c). We can find ng such that ma, = 0 whenever n > ng. Using
(a), we see that me ,, = >4, vo<noig<0prgmn MAp[E a4 Here (p,q) runs over
a finite set and then m4, = 0 unless A is in some finite set; thus, mg , is a
well defined integer. Clearly, m'Cn = 0 if n > ng. We consider, for fixed n, the
set {C|mg,, # 0}. If C is in this set, then there exist (A,p,q) running through
some finite set (depending on n) so that f&a,q 7 0. But then C can take only
finitely many values, since > f& 4., = 0(A) is integrable, by 10.6(a). Thus, m’
is integrable. The last assertion of (c) follows from the definitions, using 6.7(c).

We prove (d). The identity in (d) is equivalent to the collection of identities

() chp)q;pﬂ:n IB.cpfé a.q = 04,8000 for A Be Xz andn € Z.

From 10.5 we have, for any A € Xz=: (AAH)N(02(A)) = ANO(ANO.(A)) =
02(A) = (AAHN A, Multiplying with (AAY)=N € A gives 02(A) = A. This
implies (f); thus, (d) is proved.

We prove (e). We write (f) for A = B and n = 0, taking (a) into account:

Z facpléa,=1

C,p,q;p<0;q<0;p+q=0

or, equivalently, > f4 c.0f& 4.0 = 1. Now using (b), we can rewrite this in the
form f5 ; (4),0 = sgns = &1. Using (b) once more, we deduce that I.(I.(4)) = A
and sgn, = sgn;_(4). The corollary is proved.

Corollary 10.9. For any A,C € Xz, we have Ra,c € v "KZ[v]. More precisely,
Rac € v"ET1Z[] if ke (A) # 1(C) and Rac € sgnov "% + v VKT Zy] if
ke(A) = 1.(C). The coefficient of v™"5T1 in R ¢ is equal to fecay.cim-
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By the definition of R4 ¢ (see 4.24) we have
> RacA=bC)=v""k0:(C) =v"" k(Y fBcB)

AeX= BeX=

=y K Z Fh.cke(B) =vvx Z T .o A

BeX= AeXz

Hence Ra,c = v~ "k f;e( A).C and the conclusion follows from 10.8.

Conjecture 10.10. sgny =1 for any A.
This holds for K =, by [L1].

10.11. By extending the scalars of the A[7 /7 %]-module MX to the field of frac-
tions of A[T/T*], we obtain a vector space MX over that field. We can regard
0c, ke as isomorphisms MCK = MCK which are semilinear in a suitable sense. We
then define b, b’ : MX = MK by b= v "%k, and V' = 0.0 = v~ 2%k bk, =
VYK K.

Proposition 10.12. The operators b,b" from MCK to MCK coincide.

Since b? = 1, it suffices to show that bb’ = 1. We have bb' = k0.0 k. As we have
seen in the proof of 10.5, we have §2 = 1, hence bb’ = .k = 1. The proposition is
proved.

10.13. The operator 0, : M — MX can be characterized (up to multiplication
by £1) by the following three properties: it is linear over the field of fractions of
A[T /TX]; it is H-linear; it has square 1. (This follows from the argument in the
proof of 8.9.)

11. THE ELEMENTS B’

11.1.  We consider the Z[v~!]-submodule ME = {m € ME|m4 € Z[v™1] VA} of
ME. - -
Theorem 11.2. Let B € X=.

(a) There exists a unique element B € IME such that B* — B € v~ '"ME and
such that b(B”) = B°.

(b) We have B® = > aexz.a<pa,pA where lla p € v 1Z[v™1] for all A < B
and HB7B =1.

The elements R4 5 € A (see 4.24) for A, B € Xz satisfy Ra,p = 0 unless A < B.
The equation b?> = 1 can be written as

(c) Z RaBRc,A =0B,c
AeXz;C<A<B
for all C' < B. We have

(d) Rp,p =1 for all B.

We apply [L3, 24.2.1] with (H,<) = (Xz,>) and rg,a = Rap for A < Bin
Xz (that is B < A in H). The assumptions of that lemma are satisfied by (c),(d).
Replacing pp 4 in the conclusion of that lemma by II4 g we see that there exist
elements 114 g € Z[v™!] defined for A € Xz such that A < B so that

(e) HB,B = 1;

(f) Hap € v Zv~ Y if A< B;
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() e g = ZAEXE;CSASB II4,gRc, 4 for all C < B.

Setting B® = > aexz.a<pa,pA, we see that (g) implies b(B°) = B°. Thus,
the existence part of (a) is established (in the stronger form (b)).

We now prove the uniqueness part of (a). It suffices to prove the following
statement.

(h) Let G € v 9ME be such that b(G) = G. Then G = 0.

Assume that G # 0. Since supp(G) is bounded above, we can find B € supp(G)
such that A ¢ supp(G) for any A > B.

Assume that B appears with non-zero coefficient in Gab(A). Then B €
supp(b(A4)), so that B < A and G4 # 0, so that A € supp(G). Hence the in-
equality B < A cannot be strict. Thus B appears with coefficient 0 in G 4b(A)
except when A = B in which case the coefficient is Gg. It follows that B appears in
b(G) =Y scx. Gab(A) with coefficient G. Since b(G) = G, the coefficient of B in
G is equal to the coefficient of B in b(G). Hence Gp = Gg. Since Gp € v~ Z[v™1],
it follows that G = 0. This contradicts the assumption B € supp(G). The proof
is complete.

11.3.  We make the convention that 114 p = 0 if A f B. Thus, we have

B’ = Y lapA
AeXz

For any A, B in Xz we define ua 5 € Z to be the coefficient of v=1 in Il 4 p € Z[v™1].
Note that ps,p =0 unless A < B.

Example 11.4. Let € € S;. We have (Aj)b =€ K-

For A € Dz(e) we have A < AT hence —d(A,AF) < 0if A # A} and
—d(A,AF) =0if A= Af. Thus, ec x — AT € v71Z[v™1]. On the other hand, we
have b(ec k) = e,k by the definition of b. We see that e, x satisfies the defining
properties 5.2(a) of (AF)". Our assertion follows.

11.5. In the remainder of this section we use the conventions of 10.1 relative to
seSs.

Proposition 11.6. Let s € S and let B € Xgz. If B: Q, then

(Te+v™)B" = (sB)’ + > papA.
A:dd;A<B
Let

G=Ti+v " )B" — > papA —(sB).
A:dl;A<B
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We show that G satisfies the assumptions of 11.2(h). We have

G=> TepTC+> v 'MepC— > paplleaC—» HosC
c c A:%db;C;A<B c
=Y TepsC+ Y Top(sC+(v—v"")0)+ Y ollgpC
C:Q C:d C:h
+ Z’U_IHC7BC — Z pa,pllc,aC — ZHC7sBC
c A:&d;C;A<B c
= TepC+ Y MepC+ Y Tepv—v")C+ Y vllgsC
C:d C:Q C:d C:h
+ Z’U_IHC7BC — Z pa,pllcaC — ZHC»BG
c A:&d;C;A<B c
Thus,
Ge =Tlyop+v 'ep —Hosp — Z pa,Bllc
A:dM;A<B
if C:Q;
_ —1 —1
Ge =g +Uepv—v ") +v Iep — o sp — Z A, Bllc a
A:bhMd;A<B
if C:é;
Ge = (v+v e —Hesp — Z pa,Blo A
A:dMd;A<B

if C': #. Modulo v~1Z[v™1], we have
> paslloa= Y. papboa
A:d#d;A<B A:dM;A<B
and this is puc g if C : d# and is 0 otherwise. Hence modulo v~*Z[v~t], we have

Go =6sc,8—0csp=0if C:Q;

Gc = b6sc,B —6c,sB + e, — o, = 0if C @ &;

Geo =pe,B —6c,ss— po,g =0if C : M.

(If C' : &, we must have C # B since B : Q. If C' : #, we must have C' # sB
since sB : &.) Thus, Go = 0 mod v~ 'Z[v™"] for all C so that G € v™'ME. On
the other hand, using the continuity and the H-antilinearity of b we have

WG) = (To+v (B) = 3 pasb(A’) = b((sB))
A:dM;A<B
=(Ts+v )B" = > papd —(sB) =G.
A:dM;A<B
Thus, b(G) = G. Using 11.2(h), we see that G = 0. The proposition is proved.

Corollary 11.7. In the setup of 11.6, we have llp sp = v~ L. In particular,
uB,sB = 1.

By 11.6 and its proof we have G¢ = 0 for all C'. In particular Gg = 0 so that

(a) Usp,p+v Mpp—1psp— Z pta,Bllp A = 0.
A:dMd;A<B
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Since B < sB we have ll;5 g = 0. For any A in the sum we have II4, g = 0. Hence
(a) becomes v~z g — I s = 0. The corollary follows.

Lemma 11.8. Let s € S and let B € X=. If B : &8, then

Tst =vB’ — Z uA)BAb.
A:Q;A<B;sA#B
Note that the condition sA # B in the sum is automatic if B : & (since sA : &).
Let
GZTst—’UBb—F Z ,UJA,BAb.
A:Q;A<B;sA#B
We show that G satisfies the assumptions of 11.2(h). We have

G= ZHC,BTSC - Z'UHQBC + Z pa,Blc aC
C C A:Q;C;A<B;sA#B

= HepsC+ Y Hep(sC+ (v—v")C)+ Y vllesC
C:Q C:d C:h

- ZUHC7BC + Z MA,BHC,AC
C A:Q;C;A<B;sA#B

= ZHSC,BC + Z e, 5C + Z Hep(v—v"")C + Z vlle gC
C:d c;C:Q C:d C:H
- Z vllg, gC + Z pa,Bllc aC.
C A:Q;C;A<B;sA#B
Thus,

Ge = HsC,B — UHQB + EA:O;A<B;SA;£B ,LLA,BHQA if C:Q;

Geo =1l,¢,8 — ’U_lﬂc)B + ZA:Q?;A<B;3A7£B pwaBllc a if C: &;

Go = ZA:Q?;A<B;5A;£B paplleaif C: #.

The sum ZA:@;A<B;5A;£B pa,Bllc 4 is equal modulo v~*Z[v~!] to pc g if C :
©,sC # B and to 0 otherwise. If C' : © we have C # B. Thus, if C' : O,sC # B
we have (modulo v='Z[v7]) Go = —pc.p + pep = 0; if C: O, sC = B (so that
B : &) then we have (modulo v™'Z[v™!]) G¢ = 1 — psp,p and this is 0 by 11.7
applied to sB instead of B. If C' : & we have sC # B since sC : Q and B : &®.
Thus, in this case, we have G¢ = 0 (modulo v~ 'Z[v~1]). If C : & we again have
Gc = 0 (modulo v~ 1Z[v1]).

Thus, Gc¢ = 0 mod v=!Z[v™!] for all C so that G € v='9ME. On the other
hand, using the continuity and the H-antilinearity of b we have

b(G) = (Ts —v)b(B°) + Y pasb(A’) =(T.—v)B’+ > papA’.
A:Q

: A:Q
A<B A<B
SA#B sA;éB

Thus, b(G) = G. We may now use 11.2(h) and we see that G = 0. The lemma is
proved.

Lemma 11.9. We preserve the assumptions of 11.8. Let A € Xz be such that
A:Q,sA# B. We have ppa,p =0.

We may assume that A < B. We argue by induction on d(A4,B) > 0. If
d(A,B) = 0 we have A = B so that ua g = 0. Assume now that d(A, B) > 1.
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With the notation in the proof of 11.8 we have G¢ = 0 for any C'. In particular,
Gs4 = 0. Note that sA : & so that the equation G;4 = 0 reads

Map—v 'Teap+ Z par,llsgaa = 0.
A Q;A’<B;sA'#B
Taking the coefficient of v~! we obtain
(a) taB+ > prar Bpsa,ar = 0.
A:Q;sA<A'<B;sA’#B

since sA # B. Since A : O, we have A < sA hence for A’ in the sum we have
A < sA < A < B so that d(A’,B) < d(A,B). The induction hypothesis is
applicable to A" and gives 4 g = 0. Introducing this in (a), we obtain us g = 0.
The lemma is proved.

Proposition 11.10. Let s € S and let B € X=. If B : &®#, then T.,B" = vB’.

This follows immediately from 11.7, 11.8.

11.11. Let p ~— p' be the ring homomorphism A — A which takes v to (—v)"
for any n. Let x — x be the group homomorphism H — H which takes pT}, to
(—=1)"®)pf T, for any p € A and any w € W. It is easy to check that this is a ring
homomorphism with square 1, which commutes with™: H — H.

Let m — m' be the group homomorphism M% — MX defined by ZAGXE maA
— Y sexo(ma)iiaA where A — 14 is a fixed function X — {1,—1} such that
L(A)(B)™' = (=1)¥AB) for all A, B € X. (Such a function exists by the additivity
property of d.) It is clear that m +— m' has square 1. One checks easily that
(xm)" = xTmT for all x € H,m € ME.

Let bT : ME — MZX be defined by bf(m) = (b(m'))!. We show that bf = b.
First, b is continuous (in the sense of 4.13) since m — m! is obviously continuous
and b is continuous, by definition. Next, if y € H, m € MX, we have

bl (hm) = (b((hm)"))" = (b(hTm")" = (RTb(m"))T = b (m)

so that b' is H-antilinear. Finally, if € € S¢, we have

(ee,)l = Z v_d(AAj)(—l)_d(AAj)LAA = lyrCex

A€D=(e)
hence
bi(eer) = (b((ecxc)))t = Lot (blecr)) = Lot (eer)t = Latla+€e K = €c K-
Thus, b' satisfies the defining properties of b hence b' = b.

Proposition 11.12. For any A, B in Xz we have (Ila g)t = (—1)d(A’B)HA,B. In
particular, pa.p =0 if d(A, B) is even.

An equivalent statement is that

(a) 15(B") = B



262 G. LUSZTIG

for any B € Xz. Tt is therefore enough to show that 1p(B°)" satisfies the defining
properties 11.2(a) of B. First, we have 15(B")t = 15 > Aexe HTA)BLAA and this is
clearly equal to B modulo v~ "M% . Next, we have

b(es(B)") = s (01 (B"))" = tp(b(B"))1 = 15(B")
(we have used b = b, see 11.11). Thus, (a) is verified. The proposition is proved.

11.13. For any A € Xz let T4 be the set of all s € S such that either sA ¢ = or
sA€E,s e L(A) (or equivalently, A : &, relative to s, in the notation of 11.5).
For A, B € Xz such that J4 ¢ Jp, we set

HA,B it A < Ba
Wap =141 if B< A= sB for some s € S,
0 otherwise .

We prove the following statement.

(a) Let n > 1 and let (Ag, Ay,..., A,) € X2 be such that HWag A, Way ay -
“14"71,1471 is defined and non-zero. Then there exist wi,ws,...,w, in W such that
Hwr) < 1,1 we) < 2,...,0(wy) < n and such that Ag < w1 A; < wody < -+ <
wpA,.

We argue by induction on n. For n = 1 this follows directly from the defi-
nition of y/. Assume now that m > 2. By the induction hypothesis there exist
W1, W, ..., Wy—1 in W such that I(w1) < 1,l(we) < 2,...,0(wp—1) < n—1and
such that 4g < w141 < wedy < --- < w,_14,_1. Since “24”717An # 0 we have
either A,_1 < A, or A,_1 = sA, for some s € S. In the second case, we set
Wy, = Wp—18 and we have [(w,) < n and wy,—14,-1 = w, A,.

In the first case we apply the following statement with A = A,,_1, B = B,,w =
Wp—1 and we set w,, = w'.

Let A, B € = be such that A < B and let w € W. Then there exists w' € W such
that l(w') < l(w) and wA < w'B. We argue by induction on [(w). The result is
trivial in the case where I(w) = 0. Assume now that I(w) > 1. Then w = sw; where
s € S,l(wy1) = l(w)—1. By the induction hypothesis, there exists w] € W such that
l(w)) <l(wy) and un A < w)B. Let A’ = w1 A, B’ = w| B so that A’ < B’. From
[L1, 3.2] it follows that we have either sA’ < B’ or sA’ < sB’. Hence wA < w|B
or wA < swjB. This completes the proof.

Theorem 11.14. The triple (X=, (Ta) acxs, V') is a W-graph (see A.2).

We show that the finiteness condition A.1(a) is satisfied in our case. Let A, B €
Xz and let n > 1. Let Xz ,(A, B) be the set of all (Ag, A1,...,4,) € Xg“ such
that Ag = A, Ap, = B and ply, o W, a,---Ha, , a, is defined and non-zero. It is
enough to show that Xz, (A4, B) is finite. Let (Ao, A1,...,4,) € X=,(4,B). By
11.13(a) there exist wy, wa, . .., wy in W such that I(wy) < 1,1(w2) < 2,..., 1 (w,) <
n and such that

(a) Ap SwiA; Swrdy < -+ < wrAy.

Then each of wi,ws,...,w, can only take finitely many values. In particular,
wpAn, = wy, B takes only finitely many values. Since Ag = A, we deduce from
(a) and 4.15(b) that each of wy Ay, weAs, ..., wy_1A4,_1 takes only finitely many
values. Hence each of Ay, Ay, ..., A,_1 takes only finitely many values. Thus, the
finiteness condition A.1(a) is verified in our case.
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Next we note that any subset of = that is of finite type in the sense of A.3 is
necessarily bounded above. It is enough to check that for any B € Xz and any
n > 1, the set {A € X=|Xz (A, B) # 0} is bounded above. Let A be an element
of this set. Using again 11.13(a), we see that A < wB for some w € W such that
l(w) < n. Since w takes only finitely many values, we see that our set is indeed
bounded above.

As in A.3, we consider the set £ consisting of all formal sums ),y _cad
with ¢4 € A such that {A € Xglca # 0} is of finite type (and in particular,
bounded above). For any 3 4o y_ caA € €, the sum Y 4 y_ caA” is a well defined
element of MX. (The family of elements (caA®)acx= is locally finite in M)
The correspondence ) 4cx_ cad — D cx. caA” € MX identifies £ with an A-
submodule of M%. From 11.6 and 11.10 we see that & is a H-submodule of M X
and that the operator 7 on & coincides with the operator T, in this H-module
structure. It follows that the operators 7, satisfy the identity defining a W-graph
(see A.4(c)). The theorem is proved.

Proposition 11.15. Let B € Xz and let t € T'. We have |t] o B* = (vB)".
Equivalently, 11y, 4 v, = lla B for all A,B € X=. In particular, {iy,a,~,B = lA,B
forall A, B € X=.

We write B’ = ZAGXE ITa,gA. We have |t] o B = ZAGXE IT4, gyt A. Thus,
|t] o B> — B = > oaexzazp HapnA € v_limlg. Using the definition 11.2(a) of

(v:B)” we see that it remains to verify the equality b(|t] o B’) = |t| o B°. But this
follows from 6.7 and b(B”) = B”. The proposition is proved.

Proposition 11.16. Let ¢ € S. (See 2.3.)
(a) There is a unique alcove B € D=(€) such that d(C,B) > 0 for all C €

DE(E)v C # B.
(b) We have B® = ZAEDE(E) v—d(A.B) A

By 2.12(b), we can choose t € 7’ so that e—i—t € S¢. Since y_; is a homeomorphism
E — = carrying € + t to €, an alcove A C E contains € + ¢ in its closure if and
only if v_+A contains € in its closure. It follows that A — ~_;A is a bijection
Dz(e+t) — Dz(e). In particular, B = v_;Af,, € Dz(e). From 11.4 and 11.15 we
see that

B’ =|~tloccx= ) A ALy A,
A€Dz=(e+t)
We make the substitution v_;A = C and use 2.12(c); we obtain
B Y ,Ueng
CeDx=(e)

This, together with 11.2(b) shows that d(C, B) > 0 for all C € D=(¢),C # B. The

proposition follows.

Theorem 11.17. Let € € Sz. For any A,C € X=, we have 14 ¢ € v "5 Z[v].
More precisely, 1lac € v"KT1Z] if k(A) # 1(C ) and Ila ¢ € sgnov™"5 +
v VEHLZ ] if ke (A) = 1.(C). (Notation of 10.8.)

We have -

(a) Hac = Rac+ ZBEXE;B<C;A§B HpcRa,B.
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(For A < C this follows from 11.2(g); if A £ C, both sides of (a) are 0.) For any
B in the sum we have Il ¢ € v~ 'Z[v™!] hence [l ¢ € vZ[v]; on the other hand,
by 10.9, we have R4 p € v~ "% Z[v]. Hence lip,cRa 5 € v~ "*+1Z[v]. Hence our
sum over B belongs to v~"**1Z[v]. Combining this with the conclusion of 10.9, we
see from (a) that the theorem holds.

11.18. Let us write lI4 B = ZnGZ IT4 B:nv™ with 114 ., € Z. Picking up the
coefficients of v™% 1 in the two sides of 11.17(a) and using 10.9, 10.8, we obtain

(@) ILa, Bi—vie+1 — Wi s, (4),B;—1 580 () = fecay,p;—1 where fL ) g is asin
10.7. We have used that A < l.k¢(A), which follows from 10.9).

11.19. Let e € Se. Let A, B € D=(e). Write A= A, ,, B = A.,, where y,w € W/
(see 4.9). Then the polynomial IT4 g is (up to a power of v) the same as the
polynomial attached to y,w € W in [KL1] (with g replaced by v?). This is proved
in the same way as in the case K = ) [L1, 11.15].

12. THE ELEMENTS BF
12.1. We consider the Z[v™']-submodule ME = {m € ME[ma € Z[v™'] VA} of
ME.
Theorem 12.2. Let B € X=.
(a) There exists a unique element B* € SDIIZ( such that B* — B € v_limlg and

such that b(B*) = B*.
(b) We have B = Yo aexeip<a 4 A where Iy 4 € v Z[v™'] for all B < A

and Il p = 1.
(c) For any C € Xz such that B < C, we have ) pcx..p<p<c Up pllp,c =
oB,c-

(d) For any B,C € X= we have (C°, B¥) = 6¢ 5.
(e) For any C € Xz such that B < C, we have ) pcx..p<p<c Uppllp o =
6p.c-

For any C such that B < C we define Il , € Z[v™'] by induction on d(B,C)
from the formula 3~ p,c . p< p<c I pIlp,c = 6p,c together with Il 5 = 1. (If D
in the sum satisfies B < D < C, then d(B, D) < d(B, C); the term corresponding
to D = Cis Iz p.) From the inductive formula and 11.2(e),(f), we see that
Wy € v 'Zp™ '] if B < C. We show that 11 o = 4 yo.peacc Up aRac
satisfies the same inductive formula as Il’; . Indeed, we have I p = Il p = 1

and
1!
E B7DHD7C
D;B<D<C

= E II'p,aRa,pllp.c = E I'g aPa,c =dBc
A,D;B<A<D<C A;B<A<C

(the second equality follows from 11.2(g)). Our assertion is verified. It follows that
% o = ¢, that is,

(f) Z g aRac =g
AeX=;B<ALC
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for all C such that B < C. We set B¥ =3, .5, [Tz 4 A. We have
b(BY) = > Wpab(d)= Y  WpaRacC= > IpC=5
A;B<A A,C;B<A<C C;B<C
where the second equality uses 9.6(c) and the third equality uses (f). Thus the
existence part of (a) is proved. The proof of the uniqueness part of (a) is entirely
analogous to the proof of the corresponding part of 11.2(a). Thus (a) is proved.

The arguments above yield at the same time (b) and (c).
We prove (d). We have

(C°, B*) = ( Z IlpcD, Z 5 pD)

DeXz;D<C DeX=;B<D
= Y Hpclly p=idpe
DeX=;B<D<C
where the last equality uses (¢). This proves (d).
We prove (e). For B < C' we set x5,c = ). pex..g<p<c 11B,pllp . Clearly,
xp,p = 1. We now assume that B < C. Using (c) we have

! !
rp,Cc = E Hp plp o = E Hp,464,01lp
DeX=;B<DLC A,DeXz;B<SASDLC
! !
= E HB,AHA,FHRDHQC

= E TR,FTFC = 2TB,c + E TB,FTF,C-
FeX=;B<F<C FeX=;B<F<C

Thus, p.c = — Y pex..p<r<c TB,FTFc. This shows by induction on d(B,C)
that xp,c = 0. The theorem is proved.

12.3.  The W-graph complementary (see A.6) to the W-graph (Xz, (J4)acx=, 1)
in 11.14 is (XE,(jA)AGXE,[LI) where, for any A € Xz, J4 is the set of all s € S
such that sA € E,s ¢ L(A) (or equivalently, A : © relative to s with the convention
of 9.1) and, for A, B € Xz such that Ja ¢ I, we set

KB,A 1fB§A7
fap =11 if B< A= sB for some s € S,

0 otherwise .
Hence the following result holds.
Theorem 12.4. The triple (Xz, (J4) acx=z, i) is a W-graph in the sense of A.2.
The theorem can also be deduced from the following result.

Proposition 12.5. Let s € S and let B € Xz. We use the convention of 9.1
relative to s. ~

(a) If B: Q, then TSNBIi = —v1BE,

(b) If B : &, then (T, —v)B* = (sB)f + Do ADB<A pp AR

(c) If B: ®#, then (Ts —v)B* = D ADB<A up A A~

In the proof we shall use the following fact: if m € Mg satisfies (A°,m) = 0
for any A € Xz, then m = 0. (Indeed, if we assume that m # 0, we can find
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A € Xz such that my # 0 and such that my = 0 for any A’ < A. But then
(A°,m) = ma # 0, contradiction.)
A statement equivalent with that of the proposition is that

(d) TiB* = —v" ' B*6.45, +vB%se5, + Z Wp,cOseasCF

C;s¢Jc
where 05¢7, is 1if s € Jp and 0 if s € Tp while 65@3 isOifseJpand1lifs € Jpg.
Let G(B) be the left hand side of (d) minus the right hand side of (d). We can
rewrite 11.6 and 11.10 in the following form:

(e) TA =vA S5, —v ' Absg5, + D 1 absgz,C”
Cis€dc

for any A € X=. Let G'(A) be the left hand side of (e) minus the right hand side
of (e). Thus we have G'(A4) = 0. Using 12.2(d), we compute:

(14b7 G(B)) = (Ab7T5Bﬁ) + ’U_16A,B(Ss€33 — ’UéA,B(SSEjB — Z ,U//B70656356A,Ca
C;s¢Jc
0=(G'(A), B)=(T. A", B*) ~ 064 5bscar v '64.80sg5,— D 1o absgando.n.
Cis€Tc
Subtracting, we find (A°,G(B)) = (A°,T,B*) — (T, A”, Bf) = 0 where the last
equality follows from 9.2. Thus we have (A°, G(B)) = 0 for all A. Tt follows that
G(B) = 0. The proposition is proved.

13. CONJECTURES, COMMENTS

13.1. To simplify the statements in this section we will assume that Conjecture
10.10 holds; without this assumption, we would have to insert appropriate signs in
the various statements that follow. We fix ¢ € S;z. For B € Xz we set

(a) B =0.(1(B)") € ME = v 51 (1(B)").

(The second equality holds since I.(B)") is fixed by b.) We have

(b) B — B ¢ v~ 'L,

(c) 0:b0, " (BF) = B,
where ML is as in 12.1. Indeed, from 10.8(a) and the continuity of . we see
that A, maps ME into ME. Since I.(B)” = I(B) mod v~ "MK, it follows that
Bf = 0.(I(B)) mod v~ 'ME. But 0.(I(B)) = B mod v~ !9ME, by the definition
of I.(B). Hence (b) holds. (c) is obvious. -

In the remainder of this section we will assume that the following conjecture
holds and we will derive some consequences of it.

Conjecture 13.2. For any B € X= we have B® € MK,
This holds when K = (), by [L1], and in the examples of §14,815.
Consequence 13.3. For any B € Xz, we have B* = B".

Since, by assumption, I(B)” € MX, and x-! maps MX into MX we see (from
13.1(a)) that B® € MX. Hence from 13.1(b) we have that

(a) B* — B c v 'mK
where MK = 3", Z[v=1A ¢ MK. By 10.12, we have b/'(B*) = b(B") (equality in
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MX); this is in fact an equality in MX since b'(B?) = 0.b0-'b(B") = Bf ¢ MX.
Thus,

(b) b(B%) = B-.
From (a),(b), we see that B? satisfies the defining properties 11.2(a) of B® hence
B'=D.
Remark 13.4. Conversely, if the conclusion of 13.3 holds, then 13.2 holds as well.
Indeed, in this case we would have B* € MX B* = B € MX hence B” € MX n
ME = MK,

Consequence 13.5. We have Ge(Cb) = ZE(C')b for all C € X=. In particular, 0.
defines a bijection of {C°|C € X=} onto itself.

This follows from 13.3 using 13.1(a).
Consequence 13.6. We have I14 g = ’U_VKﬁ,{é(A)ylé(B) for any A, B € X=.

This follows from 13.3, using 13.1(a).
We take the coefficient of v=%*! in the two sides of the previous equality and
introduce it in 11.18(a); we then replace x¢(A) by A and we obtain
(a) pat.(B) — Hi(a),B = fap.-1
Consequence 13.7. We use notation of 11.13.
(a) Forany B € Xz, the set J;_(p) is the image of Ip under the involution s — s*

of S.
(b) Let A, B € Xz be such that 3o ¢ Jp. Then p'y p = /J’L(A),IE(B)'
We prove (a). If s ¢ Jp, then by 11.6 and 13.5, we have
() 0(TB") =b6(—v'B"+ > pppC’) =—v1(B) + Y pepl(C).
C;s€dc Cis€dc
In particular,
(d) 0.(T,B®) # vl (B)".
We show that
(e) s* & Ji.(m)-
Assume that s* € J; (). Then, by 11.10, TS*ZE(B)b = wl(B)". Applying 6.,
we obtain vl (B)’ = HETS*IE(B)" = TSGEIE(B)b hence (using 13.5) T.B" = vB’.
This contradicts (d); (e) is proved. Thus, J; gy is contained in the image of Jp
under s — s*. The same argument applied to [.(B) instead of B shows that Jp is
contained in the image of J; gy under s +— s*. This proves (a).
We prove (b). Choose s € S such that s € J4,s ¢ Jg. Then (c) above holds.
Using (a), 13.5 and 11.6 we have

0T, B") = Ty 0.B” = Tylo(B) = v (B + Yty () C”
Cis*€Jc
=B+ Yt el
C’s€T 01
where the last equality is obtained by the substitution C' = [.(C”), using (a). Com-

paring with (c), we deduce

v TM(BY + D popl(C) = —vTHAB) + Y oy mle(C)-
C;s€dc C;s€dc
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We now compare the coefficients of I.(A)” in the two sides of the last equality; (b)
follows.

Consequence 13.8. Let A € X=. Then the set {B € Xz|Ila g # 0} is finite.

Let C1,Cs,...,C), be a set of representatives for the orbits of the ~4-action of
T /T*-orbits on X=. For j € [1,n], let F; = {D € Xz|llp,c, # 0} (a finite set,
by 13.2). If IT4 g # 0, then, by 11.15, we have Il,,4,c, # 0 where t € T/TX and
j € [1,n] are such that v+B = C;. Note that ¢,; are uniquely determined by B.
Thus, it is enough to show that the set of all pairs (¢, j) in 7 /7% x [1,n] such that
~v¢A € F; is finite. But for each j € [1,n] there are only finitely many ¢ such that
v+ A € F; (since Fj is finite).

Consequence 13.9. Let M be the A-submodule of Mg spanned by {B’|B€ Xz}
(which is then an A-basis of MX ). Then M is an H-submodule of MX.

The fact that M} c MX follows directly from 13.2. The fact that M} is an
H-submodule of M¥ follows from 11.6, 11.10. (The sum appearing in 11.6 is finite,
by 13.2.)

Consequence 13.10. Let MK be the A-submodule of ME  spanned by
{B*|B € Xz} (which is then an A-basis of MX).

(a) MX is an H-submodule of M.

(b) ME c MX.

From 13.8 we see that, for fixed B € Xz, the set {A € X=|up, 4 # 0} is finite.
Hence (a) follows from 12.5. From 12.2(e) we see that, for any C' € Xz, we have
C = EBEXE HQBBﬁ. By 13.8, only finitely many of the coefficients Il g in the
sum are non-zero. It follows that C' € MX. This proves (b).

Conjecture 13.11. (a) We have A*ME c ME.
(b) We have AMX C M..

Using 12.2(d), we see that (a) and (b) are equivalent. Note that (b) implies that
Bf € M. In the case K =0, (b) holds by [Kt].

13.12. We want to give a conjectural relationship between the W-graph in 12.4
and the W-graphs in [KL1].

For any w € W we set A,, = wAT so that w — A, is a bijection W — X. Let
Wz be the subset of W corresponding to Xz C X under this bijection. For t € T,
the map ~; : X= — Xz corresponds under the bijection above to a map Wz — Wz,
denoted again by ;. An element ¢t € 7 is said to be large if ¢;(t) > 0 for all i € I.

For w € Wg, let 3!, be the set of all s € S such that I(sy;(w)) = I(y:(w)) — 1
where t is a large element of 7. For w,w’ in Wz such that 3, ¢ 73! ,, let p/(w,w")

be defined as p(yiw,yw’) where t € T is large and p is as in [KL1].

Conjecture 13.13. (a) (Wz, (3, wew=, 1) (as in 13.12) are well defined and they
form a W-graph isomorphic to the W-graph (X=, (jA)AGXE,[L/) in 12.4.

(b) There is a unique left cell T' of W such that, for any w € Wz, we have
vw € T for large t € T.

This holds for K = (), by [L1].
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13.14. 1In the setup of §8, the homomorphism 8.7(b) comes by complexification
from a natural homomorphism of A[7 /7 %]-modules and H-modules z : MX —
K, (’31“ xxC (B.) where the second space is (uncomplexified) equivariant K-homology.
Here equivariant K-homology is taken in the topological sense, but in the present
case it coincides with the K-group based on coherent sheaves on B, equivariant
with respect to the action of Tx x C*. (This coincidence can be proved using
techniques of [DLP].) Note also that K3 * xC'(B,) is a free A[T /T*]-module of
rank |[W1/WX|. (Again, this can be proved using techniques of [DLP].)
Thus, 2 is a homomorphism between free A[7 /7 ¥]-modules of the same rank.

Conjecture 13.15. There is a unique isomorphism KEKXC*(BU) = ME of
A[T /TX]-modules such that the diagram

K¢S (By) —— M
with the right vertical map as in 13.10(b), is commutative.

This isomorphism is then automatically compatible with the H-module struc-
tures. Under this isomorphism, the A-basis { B*| B € Xz} corresponds to an A-basis
B of K{f KX C (By). It would be very interesting to characterize this basis geomet-
rically, in terms of equivariant coherent sheaves on B,,. Note that the elements of
this basis are fixed by the composition of two maps (corresponding to . and k.);
the first of these maps is w! as in 8.4 and the second one is closely related to the
Serre-Grothendieck duality for coherent sheaves.

Conjecture 13.16. For any A, B € Xz, the coefficients of the polynomial I14 p €
Zv~1] are > 0.

13.17.  Consider the semisimple Lie algebra g’ over an algebraically closed field k
of sufficiently large characteristic p > 0, of the same type as g in 8.2. According to
[KW] the set € of isomorphism classes of finite dimensional irreducible representa-
tions of g’ has a natural partition & = [ |, £x where X runs over the linear forms
g — k. Let us fix A such that the element of g’ corresponding to A via the Killing
form is a nilpotent element that is regular inside a Levi subalgebra of a parabolic
subalgebra of type K. One can hope that the integers 114 (1), for A, B € Xz,
play the same role in computing the characters of the representations in £y as they
play in the case where K = () (which corresponds to A = 0, that is, to restricted
representations).

13.18. For any integer n > 0 we define the notion of alcove of level n by induction
on n. We say that B € Xz has level 0 if for any A € Xz we have II4 g = 0 or
Hap = v F for some k € N and if alas =, v~ 1) where w runs over
the set of elements of W which have minimal length in their left W¥%-coset. (In
particular, supp(B®) has |[W!/W¥| elements.) For example, if e € S, then A} has
level 0 (see 11.4); more generally, the alcoves B in 11.16 have level 0, but there
may exist alcoves of level 0 other than those just described. (See §15, Figure 2 and
4.) Assume now that n > 1. We say that B € Xz has level n if it does not have
level n’ with n’ < n and if there exists A € Xz of level n — 1 and s € S such that
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A < sA = Band (T, + v 1)A” — B is a finite A-linear combination of alcoves
A € X= of level <n — 1.

It seems likely that any alcove in Xz has a level and that the levels of the various
alcoves are bounded above. This property, which would imply 13.2, holds for K = (}
(see [L1, §10]) and for the examples in §14,§15. It would also follow that M (see
13.9) would be generated as an H-module by the elements B” with B of level 0.

13.19. In the case where K = () the W-graph 11.14 admits a large group of
automorphisms (see [L1, 8.10]) implementing the various intertwining operators of
the principal series.

The same holds in general, for the union of the W-graphs 11.14 corresponding to
the various subsets L of I that are of the form w(K) for some w € W!. Indeed, in
this case, the intertwining operators can be expressed as compositions of elementary
ones and for these elementary ones, the arguments in 13.5 can be used.

14. EXAMPLES IN TYPE A

14.1.  We fix an integer n > 1. Let (W, .S) be the affine Weyl group of type A with
a set of simple reflections s, indexed by p € Z/(n + 2)Z and such that s,sp41 has
order 3 for all p. Let H be the corresponding affine Hecke algebra over A.

14.2. Let Y = Z. Let A[Y] be the free A:module with basis (Ay)ecz. For any
p € Z/(n+ 2)Z we define an A-linear map T, : A[Y] — A[Y] by

Agy1, ifp=—a modn+ 2,
s, (Aa) = ¢ Aot + (v — v A, ifp=-—a+1 modn+2,
vAqyp, otherwise.

One checks that these formulas define a H-module structure on A[Y].

We can identify the H-module A[Y] with its A-basis (A,), with the H-module
MEX with its A-basis {A|A € Xz} where K corresponds to a maximal parabolic
subgroup of SL,4+9 with Levi subgroup GL,1, in such a way that the following
hold.

The polynomials IT4 , 4, of §11 are given by

I va,_“, if —n—-1<d —-a<0,
Ay Ag = .
° 0, otherwise .

The polynomials IT', , A, of §12 are given by

/ .
v* 7%  ifd <a,a—ad =0 modn+ 2,
/ .
Mo, 4, =4 —v*"% ifd <aa—d =1 modn+2,
0, otherwise.

The W-graph structure on Y (of 11.14) is given by

1, ifa—a ==+1,

5 o= {p: — od 2 fa =
a=1{p;p# —a mod n+ 2}, Ha'.a {0, otherwise .
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14.3. In the remainder of this section, we take Y = {(a,b) € Z*|0 < b—a < n}.
Let A[Y] be the free A-module with basis (A,,) indexed by Y.
For any p € Z/(n + 2)Z we define an A-linear map T, : A[Y] — A[Y] by

Agt1p, fp=—a modn+2andb—a>0,
Agpt1, fp=-b—1 modn+2andb—a<n,

TSP(Aa’b) = Agm1p+ (v— v_l)Aa,b, ifp=—a+1 modn+2andb—a<n,
Agp—1 —i—(v—v_l)Aa’b, ifp=—-b modn+2andb—a >0,
vAqp, otherwise.

It is easy to check that this is a well defined map (that is, the five cases above are
disjoint). One checks that these formulas define an H-module structure on A[Y].
We can identify the H-module A[Y] with its A-basis (A,), with the H-module
ME with its A-basis {A|A € Xz} where K corresponds to a maximal parabolic
subgroup of SL, 1o with Levi subgroup S(GLs x GL,), in such a way that the
following hold.
The polynomials I14 , , 4, , of §11 are given by

(a)

Ma, 4., = p@ T At iy g e {0,n}, -n<d-a<0, —-n<b-b<0;
A, e, =0 77wy (ap) + 0 T2 by (a)s

if

(b) 0O<b—a<n, -n—1<d—-a<0, —-n—-1<V-b<0,

where

1, ifb—a' <nor0<V —a,
Car b)Y, (ash) =

0, otherwise ,

- 1, ifn+1<b—a orbd —a<-1,
Slar ), (at) = 0, otherwise .

Let us verify directly that in the case (b) we have

(¢) P vy, (ap) € v YZ7Lif (o', V) # (a,b). Since @’ < a,b’ < b it follows that
a' +b —a—b <0 hence v¥ V0=t g y=1Z[p~1],

Assume that & —a < —1. We have o/ —b < a—b < —1 (since 0 < b — a) and
b —a < —1; adding, we obtain a’ + b —a — b < —2. If this is an equality, then
we must have ' —b=a—-b= -1, —a = —1. Hence a = a’ and ¥’ —a’ = —1,
contradicting 0 < b’ —a’. We see that a’ +b —a—b < —2 must be a strict inequality
hence v TV —a=b+2 ¢ y=1Z[y=1],

Assume that n+1<b—da'. Wehave) —a<b—a<n-—1 (since b—a <n)
and @' — b < —n — 1; adding, we obtain a’ +b —a — b < —2. If this is an equality,
then we must have ¥ —a=b—a=n—1and a’ —b= —n — 1. Hence b = V' and
a' —b = —n — 1, contradicting ¥’ — a’ < n. We see that a’ +b —a — b < —2 must
be a strict inequality hence v® 7' =2=0+2 ¢ ;=1 Z[=1]. Thus, (c) is verified.
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The W-graph structure on Y (of 11.14) is given by:
{pp#—-a+1 modn+2,p#-b modn+2}, f0<b—a<n,
Jap) = {p;p#—a+1 modn+2}, ifb—a=0,
{pip#—b modn+2}, ifb—a=n,

ifa =a+1,0 =b,

ifa' =a,b =b+1,

ifa' =a—1,0/ =bb—a#0,

ifa =a, b/ =b—1,b—a#n,

ifa l=a—-2,=b—-1,b—a=n—1,
, ifd=a-1V=b-2,b—a=1,

, otherwise .

H(a’ b"),(a,b) =

O = =

15. EXAMPLES IN RANK 2

The five figures below describe the elements B’ in type As, Bo, Go with |K| = 1.
In each picture, we specify the alcove B by inserting 1 in it; in other alcoves A € X=,
we insert the value of II4 g whenever it is non-zero. We only have to describe the
situation for one B in each 7-orbit on X=.

V-l
V2 1
V2 1
V-l
V-l
V2 1

FIGURE 1. Type A2, K = {i}
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V—2 V—l
V-3
vl 1
v3 | v2
v-3 1
v2Z |yl
v3 | v2
vl 1

FIGURE 2. Type Bo, K = {i1}
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v-3 1
v2 |yl

FIGURE 3. Type By, K = {is}
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V-3
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V-5
V-l
v4 |
- v2+y-4
vi+
v3 /
v-4 s
V-2
1
V-l
V-3
V-4
V—l
Vs v-
V2 4
v3 s
V-3
V—l
v2 v-z
Vs -
v4 l
v-1
v2 s
V-4
\% :
Vs |
vi v-l
v4 : 1
V-3
V-l
V-4
V-3
V-4
v2 1
V-l
V-4
V-5
v3 g
V-Z
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v3 |y2
v4 vl
V5 1
v-3 V-2
v vt
v2 |y3
v3 v2
v | v vi] 1
v-3 |y2
v vt
v |v-3 v2 vt
v3 |y2
v-5 v-2 v-3 1
v4 | v3 vz vt
2 +vAlyl+y3
V-4 v-3 V2 vt
v3 v 1 v2
V-5 v2 |y-3 A 1
v v-3 v2 vt
v3 | v v3 | v?
v4 1432 44 vl
2
V-3 Fgok (X v2
v4 |y v2 vt
v5 |v4 v-3 |v-2 vi|1
v-3 V-2 v-3 V2
v2 |3 vz | v
v3 v2 | y3 v2
v3 V-2
-4 -1
V4 |3 VI X2 |y Y v2 |yt
V-5 v2 v-3 v2 v3
vl | v vt v

FIGURE 5. Type Go, K = {i2}
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APPENDIX

A.1l. We want to give a definition of a W-graph which is slightly more general
than the one given in [KL1].

Let (W, S) be a Coxeter group; here S, the set of simple reflections, is assumed
to be finite. Let Y be a set. Assume that for each y € Y we are given a subset J,
of S and that for any y,y" in Y such that J, ¢ J,, we are given an integer u;’y,,
so that

(a) for any y,z € Y and any integer n > 1, the set

Yo (y, 2){ (Y0, Y15 - - yn) €Y yo =y, yn = 2,
n—1
H /'L:/Ut>yt+1 #0,3y, ¢ 3y, for j € [0,n—1]}
t=0
is finite.

A.2. Lets# s in S. For any integer n > 1 and any a,b € Y such that s’ €7, and

s' ¢ Jp (ifnisodd), s ¢ Jp (if nis even), we set fr.s s (a,b) = > Ht —0 My, yrs, Where

the sum runs over all (yo,y1,...,yn) € Y™ such that yo = a,Ty, N{s,s'} = {s}

fortodd in [1,n—1], J,, N{s,s'} = {s'} for t even in [1,n—1] and y, = b. The sum

is well defined by condition (a) above. We also set fo.s,s = 04, for any a,b € W.
For an integer m > 2 we define integers po m, P1,m,DP2,m - - - s Pm—1,m by

m—1

km _
H (v —2cos E) = po,m + P1,mv +p27mU2 + Dm0 L
k=1

We say that Y (with the additional data (J,)yey, p') is a W-graph if for any s # s’
in S such that ss’ has finite order m, we have

(D) fris,s'(asb) = frisr s(a,b) for alla, b € Y such that {s,s'} C Jo, TpN{s,s'} =0
and any n € [2,m]; and

(c) Yo 01 Pr,mfnis,s’(a,b) = 0 for all @ € Y such that {s,s'} NT, = {s'} and all
b € Y such that J, N {s, s’} ={s'} (if nis even), Jp N {s,s'} = {s} (if n is odd).

A.3. We return to the setup of A.1. For any z € Y and n > 1 we set P,(z) =
{y € Y|Y,(y,2) # 0}. For n =0 we set Py(z) = {z}. A subset P C Y is said to
be of finite type if it is contained in a union of finitely many sets of the form P, (2)
(for various z € Y and n > 0). For example, any finite subset of Y is of finite type.
Let € be the set consisting of all formal sums >_  cyy with ¢y, € A such that
{y € Yl|e, # 0} is of finite type. Then & is an .A-module in an obvious way. From
A.1(a) it follows that

neTar - Tt St X e

yey yey YyeY o'y
SETy s¢3, s€Ty s¢3,
E CyY — E VCyY — E v cyy + E E uy y,cy
yey yey yeY /ey
s€Ty s¢Ty s€Ty s¢3,

are well defined A-linear maps £ — £.

Proposition A.4. The following three conditions for' Y, (Jy)yev, 1t are equivalent:
(@) Y, (Ty)yey, i’ is a W-graph in the sense of A.2.
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(b) For any s # s’ in S such that ss' has finite order m, we have

TsTg'Tg oo — Tg'TgTg/ «vv
—_— Y
m factors m factors

(¢) For any s #s" in S such that ss’ has finite order m, we have
A
—TS/TSTS/... .
—_———
m factors m factors

The equivalence of (b),(c) holds since 7, = (7, where ¢ is the involution of &€
given by > oy cyy — > oy ¢,y and ¢ is the image of ¢, under the ring involution
of A which takes v to —v~!. The equivalence of (a),(b) is proved by computation.

A.5. The definition of a W-graph given above (which is adopted in this paper)
is slightly more general than that given in [KL1] in which the finiteness property
A.1(a) is replaced by the stronger property that P;(z) is finite for any z € Y (this
implies that P,(z) is finite for any 2z € Y and any n, so that £ is just the free
A-module with basis Y.)

A.6.  Assume that Y, (J,) ey, ¢ is a W-graph in the sense of A.2. Let J, = S—7J,
fory € Y. For y,y’ such that J, ¢ J,/ (that is, 3, ¢ J,) weset i’ (y,y") = p/'(v', v).
Then Y, (J,)yey, iV’ is again a W-graph. (This is clear from the definition in A.2.)

The W-graph Y, (Jy)yey, ' is said to be complementary to the W-graph
Y7 (jy)y€Y7 /1‘/'

INDEX OF NOTATION
1.1. Evsv Ta OH, Qa Ta T/vj?a C+7C_a Th, WIa WKvwga Xa Sa Cl()a VV,A:_,AE_, Qea
We, We Ky We, D(e)

1.2.  Ef;, E;, L(A),d(A,B),dy(A, B)
1.3. aiaT+a7aom

14. <
1.5, TK
2.1, Tk, 35, 0K
22, &E X=
2.3. S, Sg, Ke
2.4.  Dz(e), AL
2.14.  dx(A,B)
31, AH
3.2. M, Mi>§7Mi7Z
33. On
3.6. e
38. M(U)
3.13. Ut Ug
3.15. 7, ¢,
42. MK

4.6. MK resg
48. ME MX.
4.9. €e, K

4.10. ILLK(t)



4.13.
4.14.
4.24.
6.5.
6.6.
6.10.
7.2.
8.10.
9.6.
10.8.
11.1.
11.2.
11.3.

(B]
[DLP]

[KW]
[Kt]
[KL1]
[KL2]
L]
(L2]

(L3]
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ERRATUM: PERIODIC W-GRAPHS

G. LUSZTIG

I thank Jens C. Jantzen for pointing out the following misprints.

In the second line of the display in 3.2, replace s ¢ L by s € L.

In 3.8, replace the last H by M in the line: "It is clear that M(U) is an H-
submodule of H”.

In 14.2, in the third line of the first display, replace vA,, by vA,.

In the line 14.3(c) replace v~ 1Z~1 by v~ 1Z[v~1].



