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PERIODIC W -GRAPHS

G. LUSZTIG

Introduction

0.1. We begin by recalling the definition [KL1] of a W -graph. Let (W,S) be a
Coxeter group.

Let A = Z[v, v−1] where v is an indeterminate. Let Y be a set. Assume that
for each y ∈ Y we are given a subset Iy of S and that for any z, y in Y such that
Iz 6⊂ Iy we are given an integer µz,y so that

τsy =


− v−1y, if y ∈ Y, s ∈ Iy,

vy +
∑

z∈Y ;s∈Iz

µz,yz, if y ∈ Y, s /∈ Iy

defines a representation of the braid group of W (or rather, of the corresponding
Hecke algebra) on the free A-module A[Y ] with basis indexed by Y . (Here s ∈ S
and it is assumed that only finitely many terms of the sum above are non-zero.)
In other words, for any s 6= s′ in S such that ss′ has finite order m, we have
τsτs′τs . . .︸ ︷︷ ︸
m factors

= τs′τsτs′ . . .︸ ︷︷ ︸
m factors

. We then say that (Y, (Iy)y∈Y , (µz,y)) is a W -graph.

0.2. One of the main results of [KL1] was a construction of a W -graph with
Y = W and with Iy being the set of all s ∈ S such that the length of sy is less
than the length of y. Moreover, there is an induced W -graph structure on certain
subsets of W (the “left cells” of W ). In the case where W is finite, the W -graphs
attached to the left cells come close to realizing all irreducible representations of
the Hecke algebra. In particular, when W is a symmetric group Sn, all irreducible
representations of the Hecke algebra arise from left cells.

If W is infinite, the left cells do not come even close to realizing the irreducible
representations of the Hecke algebra. To remedy this, we give the following defini-
tion.

0.3. A W -graph is said to be periodic if the underlying set Y has a given free
action of a finitely generated free abelian group T such that T \Y is finite, Ity = Iy
for all t ∈ T , y ∈ Y and such that the µ-function is preserved by the action of
T . From such a graph we can obtain a family of finite dimensional representations
of the Hecke algebra (over a field K of characteristic 0). Namely, for any ring
homomorphism A[T ] → K, we can form the finite dimensional K-vector space
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208 G. LUSZTIG

A[Y ] ⊗A[T ] K which is a module for the Hecke algebra, and is provided with a
canonical decomposition as a direct sum of lines.

0.4. Assume that (W,S) is an affine Weyl group. The W -graphs attached to the
left cells of W are not in general periodic. An example of a periodic W -graph is
constructed, in this case, in [L1]. The associated family of finite representations of
the affine Hecke algebra (see 0.3) is a version of the principal series representations.
It is not the standard version, since in contrast with the standard version, it admits
intertwining operators that are everywhere defined, without poles. This comes from
the fact that the W -graph admits a as group of automorphisms not only T but W
itself.

0.5. The aim of this paper is to construct a family of periodic W -graphs where
(W,S) is an affine Weyl group. Namely, for any partial flag manifold of the algebraic
group corresponding to W , we are seeking a W -graph Y which is periodic with
respect to an action of T ∼= Zr (where r is the dimension of the second homology
space of the partial flag manifold) and the cardinal of T \Y is the Euler characteristic
of the partial flag manifold. This periodic W -graph should then give rise as in 0.3
to a family of representations of the affine Hecke algebra depending on r continuous
parameters, which are generically irreducible of dimension χ(G/P ) (a degenerate
principal series).

Note however that we are not entirely successful in achieving our aim; namely,
what we actually construct is a periodic W -graph in a wider sense (as defined in the
Appendix) in which the local finiteness implicit in the definition 0.1 is not assumed.
In fact, the definition of W -graph adopted in the rest of this paper is not the one
in 0.1, but the slightly wider one, in the Appendix. This is most likely a temporary
situation, since I believe that what we construct are W -graphs in the sense of 0.1;
only the proof is missing for the time being. In the case of the full flag manifold,
our W -graph reduces to the one in [L1]; in particular, in that case it is a W -graph
in the sense of 0.1.

0.6. The set Y of vertices of our graph is the set of alcoves contained in a certain
region Ξ of an euclidean space Rn (n = rank(W )) which is homeomorphic to Rr

times a compact space.
Let MK be the set of formal A-linear combinations of elements in Y . In 4.6

we show that MK is naturally a module over the affine Hecke algebra. In 4.13 we
define two submodules MK

≤ ,M
K
≥ of MK by the requirement that the support of an

element be bounded above (or below) with respect to a certain natural partial order
on Y . In 4.14 we construct an involution b of MK

≤ which is antilinear with respect to
the Hecke algebra structure. This is obtained by composing several simpler maps
which may go out of MK

≤ . Then in 11.2 we define, for each element A ∈ Y , a

canonical b-invariant element A[ ∈ MK
≤ which is of the form A plus a (possibly

infinite) linear combination of elements strictly smaller than A with coefficients of
the form c−1v

−1 + c−2v
−2 + . . . . The integers c−1 then provide the main ingredient

(the µ-function) in the definition of a W -graph and in 11.14 we do indeed show that
a W -graph is obtained in this way. We expect, but cannot prove, that in fact the
elements A[ have finite support (they do, in the case K = ∅, studied in [L1], and in
the case where G has rank 2). (This would imply that the W -graph we construct
is locally finite.)
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Much of the effort in §6-§10 is concerned with developing methods to prove a
result (11.17) which, while doesn’t show that A[ has finite support, it points in that
direction. Namely, we show that the polynomials c−1v

−1 + c−2v
−2 + . . . above (in

v−1) have a universally bounded degree. The proof involves among other things,
the use of the K-theoretic methods in [KL2] of a study of representations of affine
Hecke algebras (there was no need for such methods in the case K = ∅ in [L1]).

0.7. Apart from the matters mentioned in the last paragraph, the methods used
in this paper are completely elementary. Our results suggest a connection with
geometry, namely it appears that our construction can be interpreted as providing
a canonical basis of a certain equivariant K-homology group (see 13.15).

0.8. I am indebted to David Vogan for some valuable information on intertwining
operators and also for his help with typesetting the figures.
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1. Preliminaries

1.1. The basic reference for the results in this section is [B, Ch.5]; see also [L1,
§1].

Let E be an affine euclidean space of finite dimension with a given set F of
hyperplanes. Let T be the vector space of translations of E. The natural action
E × T → E is denoted by (e, x) 7→ e + x. Let G be the group of isometries of E;
we regard G as acting on E on the right. Then T is naturally a subgroup of G. For
each H ∈ F, let σH ∈ G be the orthogonal reflection with fixed point set H . Let Ω
be the subgroup of G generated by the σH(H ∈ F).

We assume that Ω is a discrete cocompact subgroup of G, leaving stable the set F.
(In [L1] we assumed also that the action of Ω on T is irreducible; that assumption
was not essential. Therefore we feel free to quote results from [L1].)

Let T ′ be the set of all x ∈ T such that the following holds: for any H ∈ F we
have H + x ∈ F. This is a lattice in T . Let T = T ∩Ω (intersection in G); this is a
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subgroup of finite index of T ′. For H ∈ F,

dir(H) = {x ∈ T |H + x = H}

is a linear hyperplane in T . The set F̄ of linear hyperplanes in T of the form
dir(H) for some H ∈ F is finite with, say ν elements. A connected component of
T −

⋃
h∈F̄ h is called a chamber.

We assume that a chamber C+ has been chosen.
Let C− = −C+. Let I be the subset of F̄ consisting of the walls of C+. For

h ∈ F̄ , let rh : T → T be the orthogonal reflection with fixed point set h. The
subgroup of the orthogonal group of T generated by the ri is a finite Coxeter group
(a Weyl group) W I with standard generators {ri|i ∈ I}. We shall regard W I as
acting on T on the right. For any subset K of I we denote by WK the parabolic
subgroup of W I generated by {ri|i ∈ K}; let wK

0 be the longest element of WK .
We have a natural homomorphism Ω → W I (with kernel T ) which for any H ∈ F

takes σH to rh, where h = dir(H). If ω ∈ Ω is mapped by this homomorphism to
w ∈ W I , then (e+ x)ω = eω + xw for e ∈ E, x ∈ T .

The set of points of E that are not contained in any hyperplane in F is a union of
connected components called alcoves. The set of points of E that belong to exactly
one hyperplane in F is a union of connected components called faces.

Let X be the set of alcoves. It is known that Ω acts simply transitively on X .
Let S be the set of Ω-orbits in the set of faces. Then S is finite. For any alcove A
and any s ∈ S, there is a unique face δs(A) in the Ω-orbit s such that δs(A) ⊂ cl(A).
(For any subset Y of E we denote by cl(Y ) the closure of Y in E.) If A is an alcove,
we say that H ∈ F is a wall of A if there exists s ∈ S such that the face δs(A) is an
open subset of H .

For s ∈ S, we define an involution A → sA of X as follows. Given an alcove
A, we denote by sA the unique alcove 6= A such that δs(A) = δs(sA). The maps
A→ sA generate a group of permutations of X which is a Coxeter group (W,S) (an
affine Weyl group). It acts simply transitively (on the left) on X and it commutes
with the action of Ω on X .

A point ε ∈ E is said to be special of E if for any H ∈ F, there exists H ′ ∈ F
such that H ′ is parallel to H and ε ∈ H ′. It is known that there exist special points
in E. If ε is a special point, let A+

ε (resp. A−ε ) be the unique alcove contained in
ε+ C+ (resp. in ε+ C−) and having ε in its closure. Let Ωε = {ω ∈ Ω|εω = ε}. Let
Wε be the (parabolic) subgroup of W consisting of all w ∈W such that the closure

of wA+
ε contains ε. There is a unique group isomorphism jε : Ω

∼−→ W such that

jε(ω)A+
ε = A+

ε ω for all ω ∈ Ω. This restricts to an isomorphism Ωε
∼−→ Wε. The

restriction of Ω →W I to Ωε is an isomorphism Ωε
∼−→W I .

For any subset K of I we denote by ωε,K the element of Ωε corresponding to
wK

0 ∈ W I . We write ωε instead of ωε,I .
Note that T ′ acts (by translation) simply transitively on the set of special points

in E. Moreover, if x ∈ T ′ and A is an alcove, then A+ x is an alcove.
For a special point ε ∈ E we define D(ε) to be the set of all alcoves A ∈ X

that contain ε in their closure. For w ∈ W I we set Aε,w = A−ε ω where ω ∈ Ωε

corresponds to w under the canonical isomorphism Ωε
∼−→ W I . Then w 7→ Aε,w is

a bijection W I ∼−→ D(ε).
If E has dimension 0, then F = ∅, Ω = W = W I = {1}, X has exactly one

element and S, I are empty.
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1.2. If H ∈ F, then E − H has two connected components E+
H , E

−
H ; E+

H meets

ε+C+ for any special point ε, and E−H is disjoint from ε+C+ for some special point
ε.

Let A ∈ X . Let L(A) be the subset of S consisting of those s ∈ S such that
A ⊂ E+

L , sA ⊂ E−L , where L is the hyperplane in F that supports the common face
of A, sA.

For A,B ∈ X and H ∈ F we set

τH(A,B) =


1 if A ⊂ E−H , B ⊂ E+

H ,

−1 if A ⊂ E+
H , B ⊂ E−H ,

0, otherwise .

(For fixed A,B, the third alternative occurs for all but finitely many H .)
Following [L1, 1.4] we define a function d : X ×X → Z by

d(A,B) =
∑
H∈F

τH(A,B).

We have d(A,B) =
∑

h∈F̄ dh(A,B) where, for h ∈ F̄ , we set

dh(A,B) =
∑
H∈F

dir(H)=h

τH(A,B).

We have dh(A,A) = 0; moreover, for A,B,C ∈ X , we have the additivity property

dh(A,B) + dh(B,C) + dh(C,A) = 0.

Hence, d(A,A) = 0 and, for A,B,C ∈ X , we have the additivity property

d(A,B) + d(B,C) + d(C,A) = 0.

1.3. Roots, coroots. For any h ∈ F̄ there is a unique element αh ∈ T such that,
for any H ∈ F with dir(H) = h, properties (a)-(d) below hold:

(a) αh is orthogonal to H ;
(b) H + αh ⊂ E+

H ;
(c) H + 1

2αh ∈ F;

(d) if x ∈ R satisfies 0 < x < 1
2 , then H + xαh /∈ F.

Then αh ∈ T and {±αh|h ∈ F̄} is a root system in T with a set of simple roots
{αi|i ∈ I} (which is a Z-basis of T ).

For h ∈ F̄ , the coroot α̌h : T → Z corresponding to αh satisfies the equality

(e) α̌h(t) = dh(A,A+ t).

Let T + =
∑

i∈I Nαi, Tdom = {x ∈ T |α̌i(x) ∈ N ∀i ∈ I}. Clearly, if ε ∈ E is
special and x ∈ T then the following three conditions are equivalent: x ∈ Tdom;
ε+ x ∈ cl(ε+ C+); A+

ε x ⊂ ε+ C+.

1.4. Let A,B ∈ X . Following [L1, 1.5], we say that A ≤ B if there exists a
sequence of alcoves A = A0, A1, . . . , An = B such that for any j ∈ [1, n] we have
d(Aj−1, Aj) = 1 and Aj = Aj−1σHj for some Hj ∈ F. Then A ≤ B is a partial
order in X . We write A < B instead of A ≤ B,A 6= B. Note that A < B implies
d(A,B) > 0.

1.5. For any subset K ⊂ I we set T K =
∑

i∈K Zαi ⊂ T .
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2. Study of a K-alcove

2.1. Let K be a subset of I. Let TK ⊂ T be the intersection of the hyperplanes i
where i runs through K; then TK is a vector space of dimension dim(E)− |K|. Let
EK = E/TK , that is, the quotient space of E by the action of TK (by translation);
let ρ : E → EK be the canonical map. We may regard EK naturally as an affine
euclidean space of dimension |K|; the distance between two points p, p′ of EK is the
minimum distance (in E) between a point of ρ−1(p) and a point of ρ−1(p′). The
space of translations of EK is T/TK . Let FK be the subset of F consisting of those
H such that H + TK = H . Let F̄K be the subset of F̄ consisting of hyperplanes
of the form dir(H) with H ∈ FK . Let ΩK be the subgroup of Ω generated by the
reflections σH with H ∈ FK . Then (EK , T/TK ,F

K ,ΩK) is like (E, T,F,Ω) in 1.1.
In particular, we can define as in 1.1 (relative to EK) special points, alcoves, faces,
walls of alcoves in EK . (In the case where K = {i}, i ∈ I, we write Fi,Ωi instead
of F{i},Ω{i}.)

Note that a point of EK is special precisely when it is the image under ρ of a
special point of E. The inverse image of an alcove of EK under ρ is said to be
a K-alcove. This is the same as a connected component of E −

⋃
H∈FK H . The

walls of a K-alcove are by definition the inverse images under ρ of the walls of the
corresponding alcove in EK . Thus the walls of a K-alcove are hyperplanes in FK .
Clearly, the natural action of ΩK on the set of K-alcoves is simply transitive.

2.2. In the remainder of this section we assume that a special point ε̃ of EK has
been fixed.

For each i ∈ K there is a unique hyperplane Hi ∈ Fi such that ρ−1(ε̃) ⊂ Hi. We
have automatically ρ−1(ε̃) =

⋂
i∈K Hi.

There is a unique K-alcove Ξ such that Ξ ⊂
⋂
i∈K E+

Hi
and such that ρ−1(ε̃) ⊂

cl(Ξ). Then Hi(i ∈ K) are among the walls of Ξ.
Let XΞ be the set of alcoves in X that are contained in Ξ.

2.3. Let S be the set of all special points ε ∈ E such that ε ∈ cl(Ξ). Let Sε̃ be the
set of all special points ε ∈ E such that ρ(ε) = ε̃. This set is non-empty since ε̃ is a
special point of EK . We have Sε̃ ⊂ S.

Let ε ∈ Sε̃. We define an isometry κε : E → E by

κε(ε + x) = (ε− x)ωε,K = ε− xwK
0

for all x ∈ T . The computation κε(κε(ε+ x)) = κε(ε− xwK
0 ) = ε+ xwK

0 w
K
0 = ε+ x

for x ∈ T shows that κε is an involution.
Here are some simple properties of κε.

(a) κε maps the set F into itself; hence it maps any alcove onto an alcove.
(b) κε maps the set FK into itself; hence it maps any K-alcove onto a K-alcove.
(c) κε(Ξ) = Ξ. Hence κε maps any alcove contained in Ξ onto an alcove contained

in Ξ.
(d) If H ∈ F− FK and H ′ = κε(H), then κε(E

−
H) = E+

H′ , κε(E
+
H) = E−H′ .

Since ωε,K clearly maps F into itself and FK into itself, to verify (a) and (b) it
suffices to check that the involution of E given by ε + x 7→ ε − x (with x ∈ T )
maps F into itself and FK into itself. This follows from the fact that this involution
maps H ∈ F to HσH′ where H ′ is the unique hyperplane in F that contains ε and
is parallel to H .
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We verify (c). From the definition we see that κε permutes among themselves
the open half spaces E+

Hi
with i ∈ K (notation of 2.2). Hence κε(

⋂
i∈K E+

Hi
) =⋂

i∈K E+
Hi

. It is clear that κε maps Sε̃ into itself. From the definition, Ξ is the

unique K-alcove contained in
⋂
i∈K E+

Hi
and whose closure contains Sε̃. By the

previous argument κε(Ξ) is again a K-alcove contained in
⋂
i∈K E+

Hi
and whose

closure contains Sε̃. By uniqueness, we have Ξ = κε(Ξ). Thus (c) is verified. Now
(d) follows easily from the definitions.

More generally, we can define the map κε : E → E for any ε ∈ S (not necessarily
in Sε̃). Let Ξ′ the K-alcove which is the image of Ξ under the involution ε+x 7→ ε−x
with x ∈ T and let ω be the unique element of ΩK such that Ξ′ω = Ξ. We then set
κε(ε+ x) = (ε− x)ω = ε− xω. (We have necessarily εω = ε.) Properties (a),(b),(c)
above continue to hold in this more general case.

2.4. For any ε ∈ S we set DΞ(ε) = {A ∈ D(ε)|A ⊂ Ξ}. For example, if ε ∈ Sε̃,
then A+

ε ∈ DΞ(ε). Let A!
ε = κε(A

+
ε ) = A−ε ωε,K . By the results in 2.3, A!

ε is an
alcove contained in Ξ. Since κε(ε) = ε, we see that A!

ε ∈ DΞ(ε).

Lemma 2.5. Let ε ∈ Sε̃.
(a) Let A be an alcove contained in Ξ such that A ⊂ ε + C+. Then there exists

a sequence A0, A1, . . . , Ap of alcoves contained in Ξ such that A0 = A+
ε , Ap = A

and such that the following holds. For any n ∈ [1, p], there exists sn ∈ S such that
sn ∈ L(An) and An−1 = snAn. In particular, A+

ε ≤ A.
(b) Let B be an alcove contained in Ξ such that B ⊂ ε+C−wK

0 . Then there exists
a sequence B0, B1, . . . , Bp of alcoves contained in Ξ such that B0 = A!

ε, Bp = B
and such that the following holds. For any n ∈ [1, p], there exists s′n ∈ S such that
s′n /∈ L(Bn) and Bn−1 = s′nBn. In particular, B ≤ A!

ε.

We prove (a). Since A ⊂ ε+ C+, we have

A+
ε ⊂ E−H , A ⊂ E+

H(c)

for any hyperplane H that separates A+
ε from A. It follows that d(A+

ε , A) is equal to
the number of hyperplanes in F that separate A+

ε from A. In particular, d(A+
ε , A) ≥

0 and we have d(A+
ε , A) = 0 if and only if A+

ε = A.
We prove (a) by induction on d = d(A+

ε , A). The case where d = 0 is trivial
since in that case, A+

ε = A. Hence we may assume that d ≥ 1 and that the result
is known for d − 1 instead of d. Since A+

ε 6= A, there exists a wall H of A such
that A,A+

ε are on different sides of H . By (c), we have A+
ε ⊂ E−H , A ⊂ E+

H . Let

A′ = AσH . We have A′ = sA for a well defined s ∈ S and A′ ⊂ E−H . In particular,
s ∈ L(A) and d(A′, A) = 1. Now, for any wall H ′ of Ξ, the alcoves A+

ε , A are on
the same side of H ′ (since they are both contained in Ξ, which is an intersection
of open half spaces defined by the walls of Ξ). It follows that H 6= H ′, so that
AσH is on the same side of H ′ as A. We thus see that A′ ⊂ Ξ. Similarly, for any
i ∈ I, the alcoves A+

ε , A are on the same side of ε+ i (since they are both contained
in ε + C+, which is an intersection of open half spaces defined by the hyperplanes
ε + i, with i ∈ I). It follows that H 6= ε + i, so that AσH is on the same side of
ε+ i as A. We thus see that A′ ⊂ ε+ C+. It follows that A′ ⊂ Ξ ∩ (ε+ C+). Since
d(A′, A) = 1, we have d(A+

ε , A
′) = d − 1. The induction hypothesis is applicable

to A′. Hence we can find a sequence A0, A1, . . . , Ap′ of alcoves contained in Ξ such
that A0 = A+

ε , Ap′ = A′ and such that for any n ∈ [1, p′], there exists sn ∈ S such
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that sn ∈ L(An) and An−1 = snAn. Then the sequence A0, A1, . . . , Ap′ , A is as
required for A. This proves (a).

Next, we prove (b). Let B be as in (b) and let A = κε(B). Then A is an alcove
contained in Ξ such that A ⊂ ε+ C+. Let A0, A1, . . . , Ap a sequence of alcoves in Ξ
attached to A as in (a). Let Bu = κε(Au) for u = 0, 1, . . . , p. Then B0, B1, . . . , Bp

are alcoves contained in Ξ and B0 = A!
ε, Bp = B. Let n ∈ [1, p]. Then An−1, An

have a common face and one is the mirror image of the other with respect to the
hyperplane H ∈ F containing that common face; moreover An−1 ⊂ E−H , An ⊂ E+

H .
Since An−1, An are both contained in Ξ, we must necessarily have H ∈ F − FK .
Applying κε, we see that Bn−1, Bn have a common face and one is the mirror
image of the other with respect to the hyperplane H ′ = κε(H) ∈ F containing that
common face; moreover Bn−1 ⊂ κε(E

−
H), Bn ⊂ κε(E

+
H). Since H ∈ F−FK , we have

κε(E
−
H) = E+

H′ , κε(E
+
H) = E−H′ . Thus, Bn−1 ⊂ E+

H′ , Bn ⊂ E−H′ . Denoting by s′n the
type of the common face of Bn−1, Bn, we see that s′n /∈ L(Bn) and Bn−1 = s′nBn.
This proves (b).

Lemma 2.6. (a) Let A be an alcove contained in Ξ and let H ∈ F − FK . Then
there exists ε ∈ Sε̃ such that A+

ε ⊂ E−H and A ⊂ ε+ C+.
(b) Let A1, A2, . . . , Ap be a finite collection of alcoves contained in Ξ. Then there

exists ε ∈ Sε̃ such that Au ⊂ ε+ C+ for u = 1, 2, . . . , p.

We prove (a). We set T = T ∩ TK . This is a lattice in the R-vector space TK
(since T is a lattice in T and TK is the R-subspace of E generated by a subset of
T ).

Let ε′ be a point in Sε̃. For any t ∈ T , we have ε′ + t ∈ Sε̃ and A+
ε′+t = A+

ε′ + t.

Hence it is enough to show that, for some t ∈ T , we have A+
ε′ + t ⊂ E−H and

A ⊂ ε′ + t+ C+.
For any i ∈ I, let fi : T → R be a linear form whose kernel is i and is such

that fi(C+) ⊂ (0,∞). Let h = dir(H) and let g : T → R be a linear form such
that g−1(0) = h, g(C+) ⊂ (0,∞). Using the definitions we see that g =

∑
i∈I cifi

where ci ∈ R≥0 for all i ∈ I. Let f̃i, g̃ be the restrictions of fi, g to TK . From the

definitions we see that f̃i = 0 for i ∈ K and that f̃i (for i ∈ I −K) form an R-basis

of TK . Hence g̃ =
∑

i∈I−K cif̃i. Since H ∈ F− FK , we have H + TK = E, so that

g̃ is not identically zero; thus, we have ci > 0 for some i ∈ I − K. Since A+
ε′ is a

bounded subset of E andH+TK = E, there exists y0 ∈ TK such that A+
ε′+y0 ⊂ E−H .

Clearly, if x ∈ T satisfies g(x) < 0, then E−H + x ⊂ E−H , hence A+
ε′ + y0 + x ⊂ E−H .

We deduce that for z ∈ TK such that g̃(z) < g̃(y0) we have A+
ε′ +z ⊂ E−H . Similarly,

since A is a bounded subset of E and i + TK = T (for i ∈ I − K), there exists
xi ∈ TK such that A−xi ⊂ ε′+f−1

i (0,∞). Clearly, if x ∈ T satisfies fi(x) < 0, then

f−1
i (0,∞)−x ⊂ f−1

i (0,∞), hence A−xi−x ⊂ ε′+ f−1
i (0,∞). We deduce that for

z ∈ TK such that f̃i(z) < f̃i(xi) we have A ⊂ ε′+ z+ f−1
i (0,∞). The last inclusion

holds also for i ∈ K (for arbitrary z ∈ TK); indeed, in this case, since A ⊂ Ξ we
have A ⊂ ε′+f−1

i (0,∞). On the other hand, we have TK +f−1
i (0,∞) ⊂ f−1

i (0,∞)
since fi is zero on TK .

Since
⋂
i∈I(ε

′ + z + f−1
i (0,∞)) = ε′ + z + C+, we see that, if z ∈ TK satisfies

g̃(z) < g̃(y0) and f̃i(z) < f̃i(xi) for all i ∈ I − K, then A+
ε′ + z ⊂ E−H and A ⊂

ε′ + z + C+. It is therefore enough to prove that the set

{z ∈ TK |g̃(z) < g̃(y0), f̃i(z) < f̃i(xi) for all i ∈ I −K}
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has a non-empty intersection with T . Hence, it is enough to show that, given real
numbers di(i ∈ I −K) and d′, the set

P (d′; di) = {z ∈ TK |g̃(z) < d′, f̃i(z) < di for all i ∈ I −K}

has a non-empty intersection with T . Since P (d′; di) ⊂ P (d̃′; d̃i) if d′ ≤ d̃′ and

di ≤ d̃i for i ∈ I−K, we see that it is enough to prove the assertion in the previous
sentence assuming that d′ ≤ 0 and di ≤ 0 for i ∈ I − K. We first show that
P (d′; di) is non-empty. In terms of the coordinates zi ∈ R (with i ∈ I −K) given
by zi = fi(z), we can identify

P (d′; di) = {(zi) ∈ RI−K |
∑

i∈I−K
cizi < d′, zi < di for all i ∈ I −K}.

This is clearly non-empty, since ci ≥ 0 for all i ∈ I − K and ci > 0 for some
i ∈ I −K. Since the set P (d′; di) is non-empty and obviously open in TK , it must
have non-empty intersection with the set T ∪ (1

2T ) ∪ (1
3T ) ∪ . . . , which is dense in

TK since T is a lattice in TK . Thus, there exists z ∈ P (d′; di) and q ∈ {1, 2, 3, . . .}
such that qz ∈ T . Since d′ ≤ 0 and di ≤ 0, we have qd′ ≤ d′; qdi ≤ di hence
qP (d′; di) ⊂ P (d′; di). It follows that qz ∈ P (d′; di) ∩ T . This proves (a).

The proof of (b) is entirely similar.

2.7. Recall that XΞ is a set of representatives for the ΩK-orbits on X : for A ∈ X ,
we can find a unique ω ∈ ΩK such that Aω ∈ XΞ. Setting π(A) = Aω we get a
map π : X → XΞ whose restriction to XΞ is the identity. We have π(A + αi) =
π(A) for all A ∈ X, i ∈ K, since A+ αi is in the ΩK-orbit of A.

Lemma 2.8. Let A ∈ X and s ∈ S. Let H ∈ F be the hyperplane separating A
from sA.

(a) If H ∈ FK , then π(sA) = π(A).
(b) If H /∈ FK , then π(sA) = sπ(A).

Let ω ∈ ΩK be such that Aω ∈ XΞ. Assume first that H ∈ FK . Then σH ∈ ΩK

and sA(σHω) = Aω with σHω ∈ ΩK shows that π(sA) = π(A). Assume next that
H /∈ FK . It is then enough to show that, if B = Aω, then sB ∈ XΞ. Note that
B, sB are separated by the hyperplane H ′ = Hω. Since ω ∈ ΩK , we have H ′ /∈ FK .
Assume that sB /∈ XΞ. Then H ′ must be a wall of Ξ. But any wall of Ξ is in FK .
This contradiction proves the lemma.

The following lemma will not be used. We include it since its proof serves as a
model for the proof of 2.10.

Lemma 2.9. Let A be an alcove contained in Ξ and let H ∈ F−FK be a hyperplane
such that A ⊂ E+

H . Let A′ = AσH . Then π(A′) ≤ A.

By 2.6, we can find ε ∈ Sε̃ such that A+
ε ⊂ E−H and A ⊂ ε + C+. Using 2.5, we

can find a sequence A0, A1, . . . , Ap of alcoves contained in Ξ such that

(a) A0 = A+
ε , Ap = A;

(b) for any n ∈ [1, p], there exists sn ∈ S such that sn ∈ L(An) and An−1 = snAn.

Since A0 ⊂ E−H , Ap ⊂ E+
H , it follows that there exists n ∈ [1, p] such that An−1 ⊂

E−H , An ⊂ E+
H . Since An−1 = snAn, it follows that An−1 = AnσH . From (a),(b)

we have A = spsp−1 . . . s1A
+
ε . We deduce that

A′ = spsp−1 . . . s1A
+
ε σH = spsp−1 . . . snAn−1σH = spsp−1 . . . snAn

= spsp−1 . . . sn+1An−1 = spsp−1 . . . sn+1sn−1 . . . s1A
+
ε .



216 G. LUSZTIG

Applying π and using repeatedly 2.8, we see that π(A′) = skqskq−1 . . . sk1A
+
ε where

{k1 < k2 < . . . kq} is a subset of {1, 2, . . . , n− 1} ∪ {n+ 1, n+ 2, . . . , p}. From (b)
we see that d(An−1, An) = 1 for all n ∈ [0, p]. By the additivity property of d(, ),
we have d(A0, Ap) =

∑p
n=1 d(An−1, An) = p so that d(A+

ε , spsp−1 . . . s1A
+
ε ) = p.

From this we deduce, using [L1, 3.4] that skqskq−1 . . . sk1A
+
ε ≤ spsp−1 . . . s1A

+
ε = A

or equivalently, π(A′) ≤ A. The lemma is proved.

Lemma 2.10. Let A be an alcove contained in Ξ and let i ∈ I. We have
π(A− αi) ≤ A.

If i ∈ K, then π(A−αi) = π(A) = A (see 2.7) so the result is trivial in this case.
In the remainder of the proof we assume that i ∈ I−K. In this case, the proof will
be similar to that of 2.9.

We can find (uniquely) H ′, H ′′ ∈ Fi such that E+
H′∩E−H′′ contains A but contains

no hyperplane in Fi. Let H = H ′′σH′ ∈ Fi. Then A − αi = AσH′σH and A ⊂
E+
H′ ⊂ E+

H , AσH′ ⊂ E+
H ∩E

−
H′ . By 2.6, we can find ε ∈ Sε̃ such that A+

ε ⊂ E−H and
A ⊂ ε+ C+.

Using 2.5, we can find a sequence A0, A1, . . . , Ap of alcoves contained in Ξ such
that

(a) A0 = A+
ε , Ap = A;

(b) for any n ∈ [1, p], there exists sn ∈ S such that sn ∈ L(An) and An−1 = snAn.

Since A0 ⊂ E−H , Ap ⊂ E+
H , it follows that there exists n ∈ [1, p] such that An−1 ⊂

E−H , An ⊂ E+
H . Since An−1 = snAn, it follows that An−1 = AnσH . We have

automatically An ⊂ E−H′ . Since An ⊂ E−H′ , Ap ⊂ E+
H′ , it follows that n < p and

there exists m ∈ [n+1, p] such that Am−1 ⊂ E−H′ , Am ⊂ E+
H′ . Since Am−1 = smAm,

it follows that Am−1 = AmσH′ .
From (a),(b) we have A = spsp−1 . . . s1A

+
ε . We deduce that

AσH′σH = spsp−1 . . . s1A
+
ε σH′σH

= spsp−1 . . . smAm−1σH′σH = spsp−1 . . . smAmσH

= spsp−1 . . . sm+1Am−1σH = spsp−1 . . . sm+1sm−1sm−2 . . . snAn−1σH

= spsp−1 . . . sm+1sm−1sm−2 . . . snAn = spsp−1 . . . sm+1sm−1sm−2 . . . sn+1An−1

= spsp−1 . . . sm+1sm−1sm−2 . . . sn+1sn−1sn−2 . . . s1A
+
ε .

Applying π and using repeatedly 2.8 we see that π(AσH′σH) = skqskq−1 . . . sk1A
+
ε

where {k1 < k2 < . . . kq} is a subset of

{1, 2, . . . , n− 1} ∪ {n+ 1, n+ 2, . . . ,m− 1} ∪ {m+ 1,m+ 2, . . . , p}.

As in the proof of 2.9, we have d(A+
ε , spsp−1 . . . s1A

+
ε ) = p. From this we de-

duce, using [L1, 3.4], that skqskq−1 . . . sk1A
+
ε ≤ spsp−1 . . . s1A

+
ε = A or equivalently

π(AσH′σH) ≤ A. The lemma is proved.

Lemma 2.11. Let A ∈ X.

(a) There exist A1, A2, . . . , Ap in X such that the following holds. If B ∈ X
satisfies B ≤ A, then B = Au − t for some u ∈ [1, p] and some t ∈ T +. (See
1.3.)

(b) There exist A′1, A
′
2, . . . , A

′
p in X such that the following holds. If B ∈ X

satisfies A ≤ B, then B = A′u + t′ for some u ∈ [1, p] and some t′ ∈ T +.
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Let Z be a Ω-orbit on the set of special points of E. For any C ∈ X we can find
a unique ε ∈ Z such that B ∈ D(ε) (see 1.1); we set C̃ = A+

ε . We first verify the
following statement.

If C,C′ ∈ X satisfy C ≤ C′, then C̃ = C̃′ − t for some t ∈ T +.(c)

By the definition of ≤, we may assume that there exists H ∈ F such that C = C′σH ,
d(C,C ′) = 1. Let ε, ε′ ∈ Z be such that C ∈ D(ε), C ′ ∈ D(ε′). Then ε = ε′σH .
Hence ε = ε′− t where t ∈ T is an integer multiple of the root αh where h = dir(H)
(see 1.3). We claim that this is in fact a multiple by an integer ≥ 0. Indeed, we have
C ′ ⊂ E+

H , C ⊂ E−H (otherwise, using [L1, 3.1] we would deduce that d(C,C′) < 0);

hence ε′ is in the closure of E+
H and ε is in the closure of E−H and our claim follows.

In particular, we have t ∈ T +. We have A+
ε = A+

ε′−t = Aε′ − t and (c) is proved.
Let ε′ be a special point in Z such that A ∈ D(ε′). We enumerate the elements

of the finite set D(ε′) as A1, A2, . . . , Ap. Now let B ∈ X be such that B ≤ A. Let
ε be a special point in Z such that B ∈ D(ε). By (c) we can find t ∈ T + such that

B̃ = Ã − t. Then we also have ε = ε′ − t. We can find a sequence s1, s2, . . . , sq of

elements of S such that B̃, s1B̃, s2s1B̃, . . . , sqsq−1 . . . s1B̃ = B are all contained in
D(ε). Applying translation by t we deduce that

B̃ + t = Ã, s1B̃ + t = s1Ã, s2s1B̃ + t = s2s1Ã, . . . ,

sqsq−1 . . . s1B̃ + t = B + t = sqsq−1 . . . s1Ã

are all contained in D(ε′). Thus we have B+ t ∈ D(ε′). Hence B = Au− t for some
u ∈ [1, p]. This proves (a).

We prove (b). We choose a special point ε in E. Applying (a) to Aωε, we see
that there exist A1, A2, . . . , Ap ∈ X such that the following holds: if B ∈ X satisfies
Bωε ≤ Aωε (or equivalently, A ≤ B, see [L1, (1.5.1)]), then Bωε = Au − t for some
u ∈ [1, p] and some t ∈ T +. We set A′s = Asωε for s ∈ [1, p] and t′ = −twI

0 ∈ T +.
Then B = A′u + t′. This proves (b). The lemma is proved.

2.12. Let t ∈ T ′. Since Ξ + t is a K-alcove, there is a unique ω ∈ ΩK such that
Ξ+t = Ξω−1 hence cl(Ξ)+t = cl(Ξ)ω−1. Let γt : E → E be defined by e 7→ (e+t)ω.
By restriction to cl(Ξ) we obtain a homeomorphism cl(Ξ) → cl(Ξ) denoted again
by γt. (This is the composition of the homeomorphism x → x + t of cl(Ξ) onto
cl(Ξ)+ t with the homeomorphism x 7→ xω of cl(Ξ)+ t onto cl(Ξ).) Since x 7→ x+ t
and x 7→ xω map F into itself it follows that γt maps any alcove contained in Ξ onto
an alcove contained in Ξ. Hence we have an induced permutation γt : XΞ → XΞ.

We show that t 7→ γt is an action of the group T ′ on cl(Ξ). Let x ∈ cl(Ξ) and let
ω, ω′ ∈ ΩK be such that γt(x) = (x + t)ω, γt′γt(x) = (γt(x) + t′)ω′. Let w ∈ WK

be the image of ω under Ω → W I . We have t′w−1 = t′ + p where p ∈ T K (it is
enough to check this in the case where w is a generator ri, i ∈ K of W I). Hence
we have

γt′γt(x) = γt′((x + t)ω) = ((x + t)ω + t′)ω′ = (x+ t+ t′ω−1)ωω′

= (x + t+ t′ + p)ωω′ = γt+t′(x).

Note also that γ0(x) = x. Our assertion follows.
From the definitions we see that, if t ∈ T K , then γt : cl(Ξ) → cl(Ξ) is the identity

map. Hence t 7→ γt defines an action of T ′/T K on cl(Ξ) and on XΞ.
We have the following result.
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(a) Let A be an alcove contained in Ξ and let t ∈ T +. We have γ−t(A) ≤ A.
We argue by induction on n =

∑
i∈I−K ni where t =

∑
i∈I−K niαi mod T K . If

n = 0 then t ∈ T K and γ−tA = A so that (a) holds. We may assume that n ≥ 1.
Then there exists i ∈ I − K so that ni ≥ 1. Then t′ = t − αi ∈ T +. By the
induction hypothesis we have γ−t′(A) ≤ A. We have

γ−t(A) = γ−αi−t′(A) = γ−αiγ−t′′(A) ≤ γ−t′′(A)

where the last inequality follows from 2.10 applied to γ−t′′(A) instead of A. Using
the transitivity of ≤ it follows that γ−t(A) ≤ A and (a) is proved.

We now verify the following statement.
(b) If x ∈ S (see 2.3) and t ∈ T ′, then γt(x) ∈ S. Moreover, x → γt(x) is a

simply transitive action of T ′/T K on S.
The first assertion and the transitivity in the second assertion follow from the

fact that T ′ acts transitively on the set of special points of E. Now let x ∈ S, t ∈ T ′
be such that γt(x) = x. It remains to prove that t ∈ T K . We have x + t = xω for
some ω ∈ ΩK . We can find t′ ∈ T K such that xω = x+ t′. Then from x+ t = x+ t′

we deduce t = t′ so that t ∈ T K .
The following result relates γt with the function d : X ×X → Z.
(c) If A,B are contained in Ξ and t ∈ T ′, then d(γt(A), γt(B)) = d(A,B).

Clearly d(A + t, B + t) = d(A,B) and A + t, B + t are contained in the same
K-alcove. Hence it suffices to verify the following statement.

If A,B are contained in the same K-alcove and ω ∈ ΩK , then d(Aω,Bω) =
d(A,B).

We may assume that ω is one of the generators σH(H ∈ Fi, i ∈ K) of ΩK . The
map H ′ → H ′σH is a bijection between the set of hyperplanes in H that separate
A from B and the set of hyperplanes in H that separate AσH from BσH . It is then
enough to show that corresponding hyperplanes have the same attached sign (used
to define d(A,B) or d(AσH , BσH)). If H ′ ∈ F separates A from B, then H ′ /∈ FK

(since A,B are contained in the same K-alcove). In particular, H ′ /∈ Fi. Hence
from [L1, 1.2] it follows that E+

H′σH = E+
H′σH , E

−
H′σH = E−H′σH . Our assertion

about signs follows and (c) is proved.
The following result relates γt with the maps κε in 2.3.
(d) Let t ∈ T ′ and let ε ∈ S. Let ε′ = γt(ε) ∈ S. We have γtκε = κε′γt = κεγ−t :

E → E. Moreover, κε is an involution of E.
For e, e′ ∈ E we write e ∼ e′ instead of “e, e′ are in the same ΩK-orbit”.
Let ω, ω′ ∈ ΩK be such that γt(e) = (e + t)ω, κε(ε + x) = (ε − x)ω′ for all

e ∈ E, x ∈ T . Let w,w′ ∈ W I be the images of ω, ω′ in W I . Then κε(ε + x) =
ε− xw′, γt(ε + x) = ε′ + xw for x ∈ T .

Let ω1 ∈ ΩK be such that γ−t(e) = (e− t)ω1 for all e ∈ E; let t1 ∈ T be defined
by εω1 = ε+ t1. Let w1 be the image of ω1 in W I . For any x ∈ T , we have

γtκε(ε+ x) ∼ ε− xw′ + t ∼ ε− x+ t,

κε′γt(ε + x) = κε′(ε
′ + xw) = ε′ − xw = (ε + t)ω − xw ∼ ε+ t− x,

κεγ−t(ε + x) = κε((ε+ x− t)ω1) = κε(ε + t1 + (x − t)w1) ∼ ε− t1 − (x − t)w1

∼ εω1 − t1w1 − (x− t)w2
1 = ε+ t1 − t1w1 − (x− t)w2

1 ∼ ε− (x− t),

hence γtκε(ε + x) ∼ κε′γt(ε + x) ∼ κεγ−t(ε+ x).
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If we choose x ∈ T so that ε + x ∈ Ξ then, since γt, κε, κε′ map Ξ into itself, we
have γtκε(ε+x) ∈ Ξ, κε′γt(ε+x) ∈ Ξ, κεγ−t(ε+x) ∈ Ξ. But two points of Ξ that are
in the same ΩK-orbit must be equal; hence γtκε(ε+x) = κε′γt(ε+x) = κεγ−t(ε+x).
Now e 7→ γtκε(e), e 7→ κε′γt(e), e 7→ κεγ−t(e) are analytic on E and coincide on the
open set Ξ; hence they coincide on E. This proves the first assertion of (d). To
prove the second assertion of (d), we choose t ∈ T ′ so that γt(ε) = ε′ ∈ Sε̃ (see (b)).
Then κε′ is an involution (see 2.3) hence κε = γ−1

t κε′γt is also an involution.
The following result is a variant of 2.6(a).
(e) Let A ∈ XΞ and let ε′ ∈ Sε̃. There exists t′ ∈ T + such that A+

ε′ ≤ γt′A.
By 2.6(a) and its proof we can find ε ∈ Sε̃ such that A ⊂ ε + C+ and such that
ε′ = ε + t where t ∈ T ∩ TK . Let A0, A1, . . . , Ap be a sequence as in 2.5(a).
We set A′s = γt(As) for s ∈ [0, p]. This is a sequence of alcoves in XΞ. Since
γt is an isometry of E preserving H, for any s ∈ [1, p], A′s−1, A

′
s are symmetric

with respect to some hyperplane in H; moreover, by (c), we have d(A′s−1, A
′
s) =

d(As−1, As) = 1. It follows that A′0 ≤ A′p or equivalently γt(A
+
ε ) ≤ γtA. Since

t ∈ TK , the translation by t maps Ξ into itself; hence it coincides with γt; in
particular, γt(A

+
ε ) = A+

ε+t = A+
ε′ . Next we can find t1 ∈ T + so that t + t1 ∈ T +.

By 2.12(a) we have γtA ≤ γt1γt(A) = γt+t1(A). Thus, A+
ε′ ≤ γt+t1(A). This proves

(e).
Next we prove the following result.
(f) The action of T /T K on XΞ (restriction of the action of T ′/T K) is free and,

for any ε ∈ S, the set DΞ(ε) is a set of representatives for the orbits of T /T K on
XΞ.

Assume that t ∈ T , A ∈ XΞ satisfy γt(A) = A. Then A + t = Aω for some
ω ∈ ΩK . Since the action of Ω on X is free, it follows that t ∈ T ∩ ΩK = T K and
our first assertion is proved.

Now let us fix ε ∈ S. If B ∈ XΞ, then there exists a special point ε′ ∈ E such
that ε′ = ε + t for some t ∈ T and ε′ ∈ cl(B). Then ε′ = γt(ε). (Indeed, γt(ε) and
ε + t are in the same ΩK-orbit and are both in cl(Ξ) hence they coincide.) From
ε′ ∈ cl(B) we deduce that ε = γ−tε

′ ∈ cl(γ−tB) hence γ−tB ∈ DΞ(ε). Thus any
T /T K orbit on XΞ meets DΞ(ε).

Finally, assume that A,A′ ∈ DΞ(ε) are in the same T /T K orbit. Then A′ = γtA
for some t ∈ T . Since ε ∈ cl(A), we have γt(ε) ∈ cl(γtA) = cl(A′). We have also
ε ∈ cl(A′). Thus, both γt(ε), ε (which are special points of E in the same Ω-orbit)
belong to cl(A′). But this implies γt(ε) = ε. Now using (b) we deduce that t ∈ T K .
This completes the proof of (f).

Lemma 2.13. (a) Let A ∈ XΞ. There exist A1, A2, . . . , Ap in XΞ such that the
following holds. If B ∈ XΞ satisfies B ≤ A, then B = γ−tAu for some u ∈ [1, p]
and some t ∈ T +.

(b) Let A1, A2, . . . , Ap in XΞ. There exists A ∈ XΞ such that the following holds.
If B ∈ XΞ satisfies B = γ−tAu for some u ∈ [1, p] and some t ∈ T +, then B ≤ A.

(c) Let A ∈ XΞ. There exist A1, A2, . . . , Ap in XΞ such that the following holds.
If B ∈ XΞ satisfies A ≤ B, then B = γtAu for some u ∈ [1, p] and some t ∈ T +.

(d) Let A1, A2, . . . , Ap in XΞ. There exists A ∈ XΞ such that the following holds.
If B ∈ XΞ satisfies B = γtAu for some u ∈ [1, p] and some t ∈ T +, then A ≤ B.

We prove (a). By 2.11(a) we can find A′1, A
′
2, . . . A

′
p in X such that the following

holds. If B ∈ X satisfies B ≤ A, then B = A′u − t for some u ∈ [1, p] and some
t ∈ T +. In particular this holds if B ∈ XΞ satisfies B ≤ A. Let A1 = π(A′1), A2 =
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π(A′2), . . . , Ap = π(A′p). We can write A′u = Auω
−1 where ω ∈ ΩK . Let w ∈ WK

be the image of ω under the canonical map Ω →W I . We then have

B = π(B) = π(A′u − t) = π(Auω
−1 − t) = π(Au − tw)ω−1) = π(Au − tw)

= π(Au − t− t1) = π(Au − t) = γ−t(Au).

Here we have used tw = t + t1 for some t1 ∈ T K . This proves (a).
We prove (b). In the setup of (b) let B ∈ XΞ be such that B = γ−tAu for

some u ∈ [1, p] and some t ∈ T +. By 2.12(a) we have B ≤ Au. It remains to
show that there exists A ∈ XΞ such that Au ≤ A for u = 1, 2, . . . , p. Let ε ∈ Sε̃
and let Bu = κε(Au) for u = 1, 2, . . . , p. By 2.6(b) we can find ε′ ∈ Sε̃ such that
Bu ⊂ ε′ + C+ for u = 1, 2, . . . , p. Applying κε we deduce that Au ⊂ ε′′ + C−wK

0 for
u = 1, 2, . . . , p, where ε′′ = κε(ε

′) ∈ Sε̃. By 2.5(b) we have Au ≤ A where A = A!
ε′′ .

This proves (b).
Now (c) is deduced from 2.11(b) in the same way as (a) was deduced from 2.11(a).
We prove (d). In the setup of (d) let B ∈ XΞ be such that B = γtAu for some

u ∈ [1, p] and some t ∈ T +. By 2.12(a) we have Au ≤ B. It remains to show that
there exists A ∈ XΞ such that A ≤ Au for u = 1, 2, . . . , p. By 2.6(b) we can find
ε ∈ Sε̃ such that Au ⊂ ε + C+ for u = 1, 2, . . . , p. By 2.5(a) we have A+

ε ≤ Au for
u = 1, 2, . . . , p. Thus we can take A = A+

ε . This proves (d).
The lemma is proved.

2.14. We define dK : X × X → Z by dK(A,B) =
∑

h∈F̄K dh(A,B). We have
dK(A,A) = 0; moreover, for A,B,C ∈ X , we have dK(A,B) + dK(B,C) +
dK(C,A) = 0.

3. The module M and intertwining operators

3.1. Let A = Z[v, v−1] where v is an indeterminate. The Hecke algebra H associ-
ated to the affine Weyl groupW is the associativeA-algebra which, as anA-module,
has basis elements T̃w (one for each w ∈ W ) and multiplication defined by the rules

(T̃s + v−1)(T̃s − v) = 0, (s ∈ S),

T̃wT̃w′ = T̃ww′ if l(w) + l(w′) = l(ww′);

here, l is the standard length function on W .

3.2. Let M be the set of all functions X → A. If m ∈ M we shall generally
denote by mA ∈ A the value of m at A ∈ X and we write m =

∑
A∈X mAA. We

regard M as an A-module in the obvious way. For m ∈ M , we set supp(m) =
{A ∈ X |mA 6= 0} (the support of m).

A family (mλ)λ∈Λ of elements of M is said to be locally finite if, for any A ∈ X ,
the set {λ ∈ Λ|A ∈ supp(mλ)} is finite. In this case, the sum

∑
λ∈Λ m

λ is a well

defined element of M , namely
∑

A∈X(
∑

λ∈Λm
λ
A)A.

For any s ∈ S we define T̃s : M →M by T̃s(
∑

AmAA) =
∑

AmAT̃sA where

T̃sA =

{
sA, if s /∈ L(A),

sA+ (v − v−1)A, if s /∈ L(A).

Note that the family (mAT̃sA)A∈X is locally finite, so that the sum
∑

AmAT̃sA is
defined. One checks that this defines an H-module structure on M .
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Let i ∈ I. A function A 7→ mA from X to A is said to be i-bounded above (resp.
i-bounded below) if for any A ∈ X there exists nA ∈ Z such that mA+nαi = 0 for
all integers n ≥ nA (resp. n ≤ nA).

Let Mi,≤ (resp. Mi,≥) be the set of all elements m ∈ M such that A 7→ mA

is i-bounded above (resp. i-bounded below). It is clear that Mi,≤ and Mi,≥ are
H-submodules of M .

3.3. The map θH . Here (and until the end of 3.7) we fix i ∈ I and H ∈ Fi.
If A ∈ X , the Ωi-orbit of A is (Az)z∈Z where A0 = AσH and di(A

z , Az+1) = 1
for all z ∈ Z. (These conditions define uniquely Az for z ∈ Z.) We set

θHA = v−1(A0 − v−1A1 + v−2A2 − v−3A3 + . . . ) + (A1 − v−1A2 + v−2A3 − . . . )

= v−1A0 +

∞∑
n=1

(−1)n−1(v−n+1 − v−n−1)An ∈M.

(a)

If m ∈ Mi,≤, then the family of elements (mAθHA)A∈X in M is locally finite.
Hence the infinite sum

∑
AmAθHA makes sense as an element of M . We then set

θHm =
∑

AmAθHA. This is in fact an element of Mi,≥.
Let (mλ)λ∈Λ be a locally finite family of elements of M . We say that this family

is i-bounded above (resp. i-bounded below) if for any A ∈ X there exists nA ∈ Z
such that A+nαi /∈ supp(mλ) for all λ ∈ Λ and all integers n ≥ nA (resp. n ≤ nA).
Using the definitions, we see that the following “continuity property” of θH holds.

If (mλ)λ∈Λ is locally finite and i-bounded above, then (θH(mλ))λ∈Λ is locally
finite and i-bounded below and θH(

∑
λmλ) =

∑
λ θH(mλ). It is easy to see that

θH : Mi,≤ →Mi≥ is an isomorphism; its inverse is given by

A 7→ vA0 +

∞∑
n=1

(−1)n(vn+1 − vn−1)A−n.

Lemma 3.4. Let A ∈ X and let Ã ∈ X be the alcove in the Ωi-orbit of A such
that di(Ã, A) = 1. We have θH(A+ v−1Ã) = ÃσH + v−1AσH ,

With our earlier notation we have

θH(A) = v−1A0 +

∞∑
n=1

(−1)n−1(v−n+1 − v−n−1)An,

θH(v−1Ã) = v−2A1 +

∞∑
n=2

(−1)n(v−n+1 − v−n−1)An.

Adding, we get θH(A + v−1Ã) = v−1A0 + A1 = ÃσH + v−1AσH . The lemma is
proved.

Lemma 3.5. θH : Mi,≤ →Mi,≥ is an H-linear map.

Lemma 3.4 shows that θH , restricted to the A-submodule of M generated by the
elements (A+v−1Ã) as in 3.4, coincides with the map θH defined in [L1, 2.4]. (But
note that the basis elements A considered in [L1] differ by powers of v from those
considered here.) Then, from [L1, 2.4] we deduce that, for any s ∈ S, the maps

θH T̃s and T̃sθH from Mi,≤ to Mi,≥ coincide on all elements of the form (A+ v−1Ã)

with A ∈ X and Ã as in 3.4. Clearly, any element m ∈Mi,≤ can be written uniquely

as an infinite sum
∑

A∈X gA(A + v−1Ã) where A 7→ gA ∈ A is i-bounded above.
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Then (gA(A + v−1Ã))A∈X is a locally finite family of elements which is i-bounded
above. Using the continuity property of θH and the analogous continuity property
of T̃s we deduce that θH T̃s(m) = T̃sθH(m). The lemma is proved.

3.6. For any special point ε ∈ E, we set eε =
∑

A∈D(ε) v
−d(A,A+

ε )A ∈ M. Note

that supp(eε) is a finite set. Hence eε belongs both to Mi,≤ and to Mi,≥.

Lemma 3.7. θH(eε) = eεσH .

Let ε′ = εσH . Let H1 ∈ Fi be defined by the condition that ε ∈ H1 and let
similarly H ′1 ∈ Fi be defined by the condition that ε′ ∈ H ′1. Let Y (ε) be the set of
all A ∈ D(ε) such that di(AσH1 , A) = 1. We then have also d(AσH1 , A) = 1. (See
[L1, 2.5].) It follows that

eε =
∑

A∈Y (ε)

v−d(A,A
+
ε )(A+ v−1AσH1).

Using 3.4, we see that

θH(eε) =
∑

A∈Y (ε)

v−d(A,A
+
ε )θH(A+ v−1AσH1 )

=
∑

A∈Y (ε)

v−d(A,A
+
ε )θH(AσH1σH + v−1AσH).

Now σH1σH is a translation by an element x ∈ T , so that

AσH1σH + v−1AσH = (A+ x) + v−1(A+ x)σH′
1
.

Moreover, A 7→ A + x defines a bijection Y (ε)
∼−→ Y (ε′) and d(A,A+

ε ) =
d(A+ x,A+

ε + x) = d(A + x,A+
ε′). Hence

θH(eε) =
∑

A′∈Y (ε′)

v−d(A
′,A+

ε′ )(A′ + v−1A′σH′
1
) = eε′ .

The lemma is proved.

3.8. Let U be a subset of T . Let S(U) be the set consisting of all subsets of X
that are finite unions of subsets of form

⋃
x∈U (A+ x) for various A ∈ X .

Let M(U) be the set of all m ∈ M such that supp(m) is contained in some
subset of X which is in S(U). In other words, m ∈ M(U) means that there exist
A1, A2, . . . , An in X such that

supp(m) ⊂
⋃

k∈[1,n];x∈U
(Ak + x).

It is clear that M(U) is an H-submodule of H.
Now let U,U ′ be two subsets of T . A group homomorphism c : M(U) →M(U ′)

is said to be continuous if the following holds.
Let (Fλ)λ∈Λ be a family of elements of M(U) which is locally finite and is such

that
⋃
λ∈Λ supp(Fλ) is contained in some P ∈S(U). Then (c(Fλ))λ∈Λ is a locally

finite family of elements of M(U ′) such that
⋃
λ∈Λ supp(c(Fλ)) is contained in some

P ′ ∈ S(U ′). Moreover, c(
∑

λ Fλ) =
∑

λ c(Fλ).
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3.9. We fix a subset K of I. Let j1, j2, . . . , jq be a sequence in K such that
rjq . . . rj2rj1 is a reduced expression for wK

0 in W I . Let i1, i2, . . . , ip be a sequence

in I such that rip . . . ri2ri1rjq . . . rj2rj1 is a reduced expression in W I .

Lemma 3.10. Fix k ∈ [1, p] and H ∈ Fik . Let

U =
∑

i∈I−K
(−N)αiri1ri2 . . . rik−1

+
∑
i∈K

Zαiri1ri2 . . . rik−1
,

U ′ =
∑

i∈I−K
(−N)αiri1ri2 . . . rik +

∑
i∈K

Zαiri1ri2 . . . rik .

Then
(i) M(U) ⊂Mik,≤.
(ii) M(U ′) ⊂Mik,≥.
(iii) θH : Mik,≤ →Mik,≥ carries M(U) into M(U ′).

For any A ∈ X we denote by (Az)z∈Z the sequence defined in terms of A and H
as in 3.3 (for ik instead of i). Note that Az+2 = Az + αk for all z ∈ Z.

Let m ∈M(U). There exist A1, A2, . . . , An in X such that

mA 6= 0 =⇒ A = Au −
∑
i∈I

giαiri1ri2 . . . rik−1
(a)

for some u ∈ [1, n] and gi ∈ Z for i ∈ K, gi ∈ N for i ∈ I −K. Applying σH and
using A0 = AσH , A

0
u = AuσH we see that

mA 6= 0 =⇒ A0 = A0
u −

∑
i∈I

giαiri1ri2 . . . rik−1
rik(b)

for some u ∈ [1, n] and gi ∈ Z for i ∈ K, gi ∈ N for i ∈ I−K. From the definitions,

A0 = A0
u + x, x ∈ T =⇒ A1 = A1

u + x.

Hence

mA 6= 0 =⇒ A1 = A1
u −

∑
i∈I

giαiri1ri2 . . . rik−1
rik(c)

for some u ∈ [1, n] and gi ∈ Z for i ∈ K, gi ∈ N for i ∈ I −K. Next we note that
the assumptions of the lemma imply

αikrik−1
. . . ri2ri1 =

∑
i∈I

ciαi(d)

where ci ∈ N for all i ∈ I. Assume that ci = 0 for all i ∈ I −K. Using again the
assumptions of the lemma, we see that αikrik−1

. . . ri2ri1rjq . . . rj2rj1 ∈
∑

i∈I Nαi.

On the other hand, αikrik−1
. . . ri2ri1rjq . . . rj2rj1 = (

∑
i∈K ciαi)w

K
0 ∈ −

∑
K Nαi

since, for any i ∈ K, we have αiw
K
0 = −αi′ for some i′ ∈ K. It follows that

αikrik−1
. . . ri2ri1rjq . . . rj2rj1 = 0.

This is a contradiction. We have thus proved that ci > 0 for some i ∈ I −K.
Applying ri1ri2 . . . rik−1

to (d), we deduce that

αik =
∑
i∈I

ciαiri1ri2 . . . rik−1
, αik = −

∑
i∈I

ciαiri1ri2 . . . rik−1
rik .(d′)
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We show that m ∈Mik,≤. Let A ∈ X, y ∈ N be such that mA+yαik
6= 0. From (a),

we have A+ yαik = Au−
∑

i∈I giαiri1ri2 . . . rik−1
for some u ∈ [1, n] and gi ∈ Z for

i ∈ K, gi ∈ N for i ∈ I −K. Using (d′), we can rewrite this as

A+
∑
i∈I

yciαiri1ri2 . . . rik−1
= Au −

∑
i∈I

giαiri1ri2 . . . rik−1
.(e)

Since {αiri1ri2 . . . rik−1
|i ∈ I} is a basis of T , and A,Au are bounded subsets of E,

there exists NA,u > 0 independent of y such that yci + gi ≤ NA,u for all i ∈ I. We
can choose i ∈ I−K such that ci ≥ 1; since for that i we have gi ≥ 0, it follows that
y ≤ yci + gi hence y ≤ NA,u. Since u takes only finitely many values, we see that
y is bounded above. Thus we have proved that m ∈Mik,≤. Hence (i) is proved.

We prove (ii). Let m′ ∈M(U ′). There exist A′1, A
′
2, . . . , A

′
n in X such that

m′A 6= 0 =⇒ A = A′u −
∑
i∈I

g′iαiri1ri2 . . . rik(f)

for some u ∈ [1, n] and g′i ∈ Z for i ∈ K, g′i ∈ N for i ∈ I −K. Let A ∈ X and let
y ∈ N be such that m′A−yαik

6= 0. From (f) we have

A− yαik = A′u −
∑
i∈I

g′iαiri1ri2 . . . rik

for some u ∈ [1, n] and g′i ∈ Z for i ∈ K, g′i ∈ N for i ∈ I − K. Using (d′), we
obtain

A+
∑
i∈I

yciαiri1ri2 . . . rik = A′u −
∑
i∈I

g′iαiri1ri2 . . . rik .

Since {αiri1ri2 . . . rik |i ∈ I} is a basis of T , we see as in the earlier argument that
y must be bounded above (for fixed A). Thus, m′ ∈Mik,≥ and (ii) is proved.

We prove (iii). Assume that mA 6= 0 and that B ∈ X appears with non-zero
coefficient in θHA. Then B = Az for some z ∈ N; hence there exists y ∈ N such
that either B = A0 + yαik or B = A1 + yαik . From (b),(c) we deduce that

B = Az
u + yαik −

∑
i∈I

giαiri1ri2 . . . rik

for some u ∈ [1, n], some z ∈ {0, 1}, some y ∈ N and some gi ∈ Z (with gi ∈ N for
i ∈ I −K). Using (d′), we deduce that B = Az

u−
∑

i∈I(gi + yci)αiri1ri2 . . . rik . For
i ∈ I −K we have gi + yci ∈ N. Hence θH(m) ∈M(U ′). The lemma is proved.

Lemma 3.11. In the setup of 3.10, θH : M(U) →M(U ′) is continuous.

The proof is a refinement of the argument in the proof of 3.10(iii).
Let (Fλ)λ∈Λ be a family of elements of M(U) which is locally finite and is such

that
⋃
λ∈Λ supp(Fλ) is contained in some P ∈ S(U). Then there existA1, A2, . . . , An

in X such that
(a) if A ∈ supp(Fλ) for some λ, then A = Au−

∑
i∈I giαiri1ri2 . . . rik−1

for some
u ∈ [1, n] and gi ∈ Z for i ∈ K, gi ∈ N for i ∈ I −K.
From this we deduce, as in the proof of 3.10:

(b) if A ∈ supp(Fλ) for some λ, then for z ∈ {0, 1} we have

Az = Az
u −

∑
i∈I

giαiri1ri2 . . . rik
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for some u ∈ [1, n] and gi ∈ Z for i ∈ K, gi ∈ N for i ∈ I −K.
We fix B ∈ X such that B ∈ supp(θH(Fλ)) for some λ ∈ Λ. Then there exists
A ∈ supp(Fλ) and z ∈ N such that B = Az. Hence there exists A ∈ supp(Fλ), z ∈
{0, 1} and y ∈ N such that B = Az + yαik . From (b) we deduce that B =
Az
u + yαik −

∑
i∈I giαiri1ri2 . . . rik for some u ∈ [1, n], some z ∈ {0, 1}, some y ∈ N

and some gi ∈ Z (with gi ∈ N for i ∈ I −K). As in the proof of 3.10, we deduce

B = Az
u −

∑
i∈I

(gi + yci)αiri1ri2 . . . rik .

For i ∈ I −K we have gi + yci ∈ N. This shows that
⋃
λ supp(θH(Fλ)) ⊂ P ′ where

P ′ =
⋃

u∈[1,n],z∈{0,1},x∈U ′
(Az

u + x) ∈ S(U ′).

For any A ∈ X , let Z(A) = {λ ∈ Λ|A ∈ supp(Fλ)}. Let R be the set of all triples
(A, z, y) where A ∈ X, z ∈ {0, 1}, y ∈ N are such that Z(A) 6= ∅ and B = Az+yαik .
We show that R is a finite set. Let (A, z, y) ∈ R. Since (b) is applicable to A, we
see that

B − yαik = Az
u −

∑
i∈I

giαiri1ri2 . . . rik

for some u ∈ [1, n] and gi ∈ Z for i ∈ K, gi ∈ N for i ∈ I −K. Using 3.10(d′), we
can rewrite this as

B +
∑
i∈I

yciαiri1ri2 . . . rik = Az
u −

∑
i∈I

giαiri1ri2 . . . rik

for some u ∈ [1, n] and gi ∈ Z for i ∈ K, gi ∈ N for i ∈ I −K. From this we see
as in the proof of 3.10(i) that y is bounded above by a constant depending only
on B. Hence, when (A, z, y) runs through R, the coordinate y takes only finitely
many values. From the equation B = Az + yαik it follows that Az also takes only
finitely many values. Since z ∈ {0, 1}, it follows that A takes only finitely many
values, say A(1), A(2), . . . , A(f). In particular, R is finite.

Now let Y = {λ ∈ Λ|B ∈ supp(θH(Fλ))}. For any λ ∈ Y , we consider the set
R(λ) consisting of all triples (A, b, y) ∈ R such that λ ∈ Z(A). As we have seen
above, R(λ) 6= ∅ for any λ ∈ Y . It follows that Y ⊂ Z(A(1))∪Z(A(2))∪· · ·∪Z(A(f))
which is a finite set since each Z(A) is finite. Thus, Y is finite. We have thus proved
that (θH(Fλ))λ∈Λ is a locally finite family of elements of M(U ′).

Finally, we prove the equality

θH(
∑
λ

Fλ) =
∑
λ

θH(Fλ).(c)

We now fix B ∈ X and we use the notation relative to B in the earlier part of the
proof. We have

∑
λ∈Y

θH(Fλ)B =
∑

λ∈Z(A(1))∪···∪Z(A(f))

θH(Fλ)B = θH(
∑

λ∈Z(A(1))∪···∪Z(A(f))

Fλ)B.

It is then enough to show that θH(
∑

λ/∈Z(A(1))∪···∪Z(A(f)) Fλ)B = 0. If this were

not true there would exist λ /∈ Z(A(1)) ∪ · · · ∪ Z(A(f)) and A ∈ X such that
A ∈ supp(Fλ) and such that B appears with non-zero coefficient in θHA (that is,
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B = Az for some z ∈ N). But this contradicts the definition of A(1), . . . , A(f).
The lemma is proved.

3.12. We preserve the notation of 3.9. Let H1 ∈ Fi1 , H2 ∈ Fi2 , . . . , Hp ∈ Fip .
Applying p times 3.10, we see that the maps

M

( ∑
i∈I−K

(−N)αi +
∑
i∈K

Zαi

)
θH1−−→M

( ∑
i∈I−K

(−N)αiri1 +
∑
i∈K

Zαiri1

)
θH2−−→M

( ∑
i∈I−K

(−N)αiri1ri2 +
∑
i∈K

Zαiri1ri2

)
θH3−−→ . . .

θHp−−→M

( ∑
i∈I−K

(−N)αiri1ri2 . . . rip +
∑
i∈K

Zαiri1ri2 . . . rip

)
are well defined homomorphisms of H-modules. Their composition is a homomor-
phism of H-modules

θH1,H2,...,Hp : M

( ∑
i∈I−K

(−N)αi +
∑
i∈K

Zαi

)

→M

( ∑
i∈I−K

(−N)αiri1ri2 . . . rip +
∑
i∈K

Zαiri1ri2 . . . rip

)
.

(a)

This homomorphism is continuous (in the sense of 3.8); this follows by applying p
times 3.11. Using p times 3.7, we see that, for any special point ε ∈ E we have

θH1,H2,...,Hp(eε) = eεσH1σH2 ...σHp
.(b)

3.13. Let j1, j2, . . . , jq be as in 3.9 and let i1, i2, . . . , ip in I so that rip . . . ri2ri1
is a reduced expression for wI

0w
K
0 . Moreover, we choose a special point ε ∈ E and

take H1 = ε + i1, H2 = ε + i2, . . . , Hp = ε + ip. Then the previous discussion is
applicable. We use the notation

U−K =
∑

i∈I−K
(−N)αi +

∑
i∈K

Zαi ⊂ T , U+
K =

∑
i∈I−K

Nαi +
∑
i∈K

Zαi.

Let i 7→ i∗ be the involution of I given by αiw
I
0 = −αi∗ . Let K∗ be the image of K

under this involution. For i ∈ I −K, we have αiw
K
0 = αi +

∑
j∈K cijαj for some

integers cij . Aplying wI
0 , we obtain αiw

K
0 wI

0 = −αi∗ +
∑

j∈K cijαj∗ . On the other

hand, for i ∈ K, we have αiw
K
0 = −αi� where i 7→ i� is a well defined involution

on K. Applying wI
0 , we obtain αiw

K
0 wI

0 = αi�∗ . It follows that∑
i∈I−K

(−N)αiri1ri2 . . . rip +
∑
i∈K

Zαiri1ri2 . . . rip

=
∑

i∈I−K
(−N)αiw

K
0 wI

0 +
∑
i∈K

Zαiw
K
0 wI

0 =
∑

i∈I−K∗
Nαi +

∑
i∈K∗

Zαi = U+
K∗ .

Hence the homomorphism 3.12(a) becomes in our case a (continuous) homomor-
phism of H-modules

θH1,H2,...,Hp : M(U−K) →M(U+
K∗).(a)
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Lemma 3.14. We preserve the setup in 3.13. Let ε′ be a special point in E. We
have

θH1,H2,...,Hp(eε′) = eε′ωε,Kωε .

Using p times 3.7 we have

θH1,H2,...,Hp(eε′) = θε+ip . . . θε+i2θε+i1(eε′) = eε′σε+i1σε+i2 ...σε+ip = eε′ωε,Kωε .

The lemma is proved.

3.15. Let − : A → A be the ring involution which sends vn to v−n for any n ∈ Z.
Let − : H → H be the ring involution which sends vnT̃w to v−nT̃−1

w−1 for any n ∈ Z
and w ∈ W . If M1,M2 are H-modules, a group homomorphism χ : M1 → M2 is
said to be H-antilinear if χ(hm) = h̄χ(m) for all h ∈ H,m ∈M1.

For any special point ε ∈ E we define a map φε : M →M by

φε(
∑
A∈X

mAA) =
∑
A∈X

v−νmAAωε.

We show that

φε : M →M is H-antilinear.(a)

(Compare [L1, 2.10].) Let s ∈ S and A ∈ X . It is enough to show that φε(T̃sA) =

T̃−1
s φε(A). Using the fact that s ∈ L(A) ⇐⇒ s /∈ L(Aωε) we see that

T̃sφε(T̃sA) = T̃sφε(sA) = v−ν T̃s(sAωε) = v−νAωξ = φε(A)

if s /∈ L(A) and

T̃sφε(T̃sA) = T̃sφε(sA+ (v − v−1)A) = v−ν T̃s(sAωε + (v−1 − v)Aωε)

= v−ν(Aωε + (v − v−1)sAωε + (v−1 − v)sAωε) = v−νAωε = φε(A)

if s ∈ L(A).

Lemma 3.16. If ε, ε′ are special points in E, then φε(eε′) = eε′ωε .

Note that A 7→ A′ = Aωε is a bijection between D(ε′) and D(ε′′) where ε′′ = ε′ωε;
it carries A+

ε′ to A−ε′′ . Hence

φε(eε′) = φε(
∑

A∈D(ε′)

v−d(A,A
+

ε′)A)

= v−ν
∑

A∈D(ε′)

vd(A,A
+

ε′ )Aωε = v−ν
∑

A′∈D(ε′′)

vd(A
′ωε,A+

ε′)A′.

It remains to show that d(A′ωε, A
+
ε′)− ν = −d(A′, A+

ε′′). The left hand side equals

−d(A′, A+
ε′ωε)− ν = −d(A′, A−ε′′)− d(A−ε′′ , A

+
ε′′) = −d(A′, A+

ε′′).

The lemma is proved.

Lemma 3.17. In the setup of 3.13, φε : M → M restricts to a continuous homo-
morphism φε : M(U+

K∗) →M(U−K).

For any A ∈ X , we have (A+U+
K∗)ωε = Aωε+U−K since wI

0 maps {αi|i ∈ I−K∗}
onto {−αi|i ∈ I −K} and {αi|i ∈ K∗} onto {−αi|i ∈ K}. Thus, φε restricts to a
homomorphism as shown. The continuity is obvious.
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Proposition 3.18. In the setup of 3.13, the composition of the maps θH1,H2,...,Hp

in 3.13(a) and φε in 3.17 is a continuous H-antilinear map φεθH1,H2,...,Hp : M(U−K)

→M(U−K) which takes eε′ to eε′ωε,K for any special point ε′ ∈ E.

This follows from 3.13(a), 3.17, 3.15(a), 3.14, 3.16.

4. The antilinear involution b : MK
≤ →MK

≤

4.1. In the remainder of this paper, we fix a subset K of I, a special point ε̃ ∈ EK

and the K-alcove Ξ as in 2.2.

Lemma-Definition 4.2. M̃K is the A-submodule of M consisting of elements
m ∈M that satisfy the equivalent conditions (a),(b),(c) below.

(a) mAω = vdK(A,Aω)mA for any A ∈ X and any ω ∈ ΩK .
(b) mAω = vdK(A,Aω)mA for any A ∈ XΞ and any ω ∈ ΩK .
(c) mAω = vdK(A,Aω)mA for any A ∈ X and any ω ∈ ΩK of the form σH for

some H ∈ Fi, i ∈ K.

The equivalence of (a),(b) follows from the implication

mAω = vdK(A,Aω)mA, mAωω′ = vdK(A,Aωω′)mA =⇒ mAωω′ = vdK(Aω,Aωω′)mAω

using

vdK(A,Aωω′)v−dK(A,Aω) = vdK(Aω,Aωω′)

and the fact that XΞ is a set of representatives for the ΩK-orbits on X .
The equivalence of (a),(c), follows from the implication

mAω = vdK(A,Aω)mA, mAωω′ = vdK(Aω,Aωω′)mAω =⇒ mAωω′ = vdK(A,Aωω′)mA.

(We use the fact that the group ΩK is generated by {σH |H ∈ Fi, i ∈ K}.)

Proposition 4.3. M̃K is an H-submodule of M . Moreover, if for any A ∈ X we
set PA =

∑
ω∈ΩK vdK(A,Aω)Aω ∈ M̃K , then for any A ∈ X, s ∈ S we have

(a) T̃sPA = PsA if s /∈ L(A), L /∈ FK ,

(b) T̃sPA = PsA + (v − v−1)PA if s ∈ L(A), L /∈ FK ,

(c) T̃sPA = vPA if L ∈ FK , where L ∈ F is the hyperplane that separates A from
sA.

(d) For any A ∈ X and ω′ ∈ ΩK we have PAω′ = v−dK(A,Aω′)PA.

In the proof we shall use the following result.

Lemma 4.4. Let A ∈ X, s ∈ S and let L ∈ F be the hyperplane separating A from
sA.

(a) Let i ∈ I and H ∈ Fi be such that s ∈ L(A), s /∈ L(AσH). Then L ∈ Fi.
(b) Assume that L /∈ FK. Let ω ∈ ΩK . Then we have s ∈ L(A) if and only if

s ∈ L(Aω).

We prove (a). Assume that L /∈ Fi. Since s ∈ L(A), s /∈ L(AσH), we have
A ⊂ E+

L and AσH ⊂ E−LσH . We deduce that AσH ⊂ E+
L σH . Thus, E−LσH has

non-empty intersection with E+
L σH . The assumption L /∈ Fi implies by [L1, 1.2]

that E+
L σH = E+

LσH
. Hence E−LσH has non-empty intersection with E+

LσH
. This is

a contradiction; (a) is proved.
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We prove (b). We can write ω = σH1σH2 . . . σHn where Hk ∈ Fik where
i1, i2, . . . , in are in K. We argue by induction on n. When n = 0 there is nothing to
prove. When n = 1, the result follows from (a). Assume now that n > 1. Let ω′ =
σH1σH2 . . . σHn−1 . Note that the hyperplane separating Aω′ from sAω′ is Lω′ which

is not in FK . Hence, by (a), the conditions s ∈ L(Aω′), s ∈ L(Aω′σHn) = L(Aω)
are equivalent. By the induction hypothesis, the conditions s ∈ L(A), s ∈ L(Aω′)
are equivalent. It follows that the conditions s ∈ L(A), s ∈ L(Aω) are equivalent.
The lemma is proved.

4.5. Proof of Proposition 4.3. We first show that, if L /∈ FK , then

dK(A,Aω) = dK(sA, sAω)(a)

for any ω ∈ ΩK . Indeed, we have dK(sA, sAω) = −dK(A, sA) + dK(A,Aω) +
dK(Aω, sAω) hence it is enough to show that dK(A, sA) = dK(Aω, sAω). But
in fact dK(A, sA) = 0 since the hyperplane separating A, sA is not in FK and
dK(Aω, sAω) = 0 since the hyperplane separating Aω, sAω is not in FK .

Assume that we are in the setup of 4.3(a). Using 4.4(b), we have

T̃sPA =
∑
ω∈ΩK

vdK(A,Aω)sAω = PsA.

Assume that we are in the setup of 4.3(b). Using 4.4(b), we have

T̃sPA =
∑
ω∈ΩK

vdK(A,Aω)sAω + (v − v−1)
∑
ω∈ΩK

vdK(A,Aω)Aω = PsA + (v − v−1)PA.

In the setup of 4.3(c), we have sA = Aω1 for some involution ω1 ∈ ΩK . We can
partition ΩK into two element subsets {ω, ω1ω}. Hence it is enough to prove that

T̃s(v
dK(A,Aω)Aω + vdK(A,Aω1ω)Aω1ω) = v(vdK(A,Aω)Aω + vdK(A,Aω1ω)Aω1ω)

or, equivalently, that T̃s(Aω+vdK(Aω,sAω)sAω) = v(Aω+vdK(Aω,sAω)sAω) for any

ω ∈ ΩK . But this follows immediately from the definition of T̃s since dK(Aω, sAω)
is 1 if s /∈ L(Aω) and is −1 if s ∈ L(Aω). (Note that the hyperplane separating
Aω, sAω is in FK .) Thus, 4.3(a),(b),(c) are verified.

Next, 4.3(d) follows immediately from the definitions. It remains to verify the
first assertion of 4.3. This follows from the earlier part of the proof, since any
element of M̃K can be written uniquely in the form

∑
A fAPA where A runs over

over XΞ and fA ∈ A. Proposition 4.3 is proved.

4.6. Let MK be the set of all functions XΞ → A. If m ∈ MK we shall generally
denote by mA ∈ A the value of m at A ∈ Ξ and we write m =

∑
A∈Ξ mAA. We

regard MK as an A-module in the obvious way. Let

resK : M̃K ∼−→MK(a)

be the map given by
∑

A∈X mAA 7→
∑

A∈XΞ
mAA (or restriction of functions).

From the definition of M̃K based on 4.2(b), it follows that resK is an isomorphism
of A-modules, since XΞ is a set of representatives for the ΩK-orbits on X . It follows
that there is a unique H-module structure on MK such that resK is an isomorphism
of H-modules.
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Lemma 4.7. The following holds in the H-module MK . Let s ∈ S and let A ∈ XΞ.
Let H ∈ F be the hyperplane that separates A from sA.

(a) If s /∈ L(A) and H is not a wall of Ξ, then T̃sA = sA.

(b) If s ∈ L(A) and H is not a wall of Ξ, then T̃sA = sA+ (v − v−1)A.

(c) If H is a wall of Ξ, then T̃sA = vA.

We apply resK to the identities in 4.3(a),(b),(c) with A ∈ Ξ. Note that resK(PA)
= A for A ∈ XΞ. The lemma follows.

4.8. The support of an element m ∈MK is the subset

supp(m) = {A ∈ XΞ|mA 6= 0}

of XΞ. (Compare 3.2.)
A family (mλ)λ∈Λ of elements ofMK is said to be locally finite if, for any A ∈ XΞ,

the set {λ ∈ Λ|A ∈ supp(mλ)} is finite. In this case, the sum
∑

λ∈Λ m
λ is a well

defined element of M , namely
∑

A∈XΞ
(
∑

λ∈Λ m
λ
A)A. (Compare 3.2.)

Let MK
← be the set of allm ∈MK such that there exist A1, A2, . . . , Ap in XΞ with

supp(m) ⊂ {γ−t(Au)|u ∈ [1, p], t ∈ T +}. Let MK
→ be the set of all m ∈ MK such

that there exist A1, A2, . . . , Ap in XΞ with supp(m) ⊂ {γt(Au)|u ∈ [1, p], t ∈ T +}.
Let

M̃K
← = M̃K ∩M(U−K), M̃K

→ = M̃K ∩M(U+
K).

From 4.3 it follows that
(a) M̃K

←, M̃
K
→ are H-submodules of M .

We show that the isomorphism resK : M̃K →MK (see 4.6) restricts to isomor-
phisms

M̃K
←
∼−→MK

←, M̃K
→
∼−→MK

→.(b)

Let m̃ ∈ M̃K and let m = resK(m̃) ∈ MK . Assume first that m̃ ∈ M̃K
←. Then

there exist A1, A2, . . . , Ap in X such that any A ∈ supp(m̃) is of the form

A = Au −
∑

i∈I−K
niαi +

∑
i∈K

ziαi

where u ∈ [1, p], ni ∈ N, zi ∈ Z. Now let A ∈ supp(m). Then A ∈ supp(m̃) hence
it is of the form above. Let Bu = π(Au). Since π(A) = A, we have

A = π(Au −
∑

i∈I−K
niαi) = γ−t(Bu)

where t =
∑

i∈I−K niαi ∈ T +. This shows that m ∈MK
←.

Conversely, assume that m ∈ MK
←. Then there exist B1, B2, . . . , Bp in XΞ such

that any B ∈ supp(m) is of the form γ−t(Bu) where u ∈ [1, p] and t ∈ T +. Now
let A ∈ supp(m̃). Then there exists B ∈ supp(m) and ω ∈ ΩK such that A = Bω.
Thus A = γ−t(Bu)ω for some u ∈ [1, p], some t ∈ T + and some ω ∈ ΩK . Hence
A = (Bu − t)ω′ for some u ∈ [1, p], some t ∈ T + and some ω′ ∈ ΩK .

We can find a finite subset F of ΩK such that any element of ΩK is the product
of an element of F with a translation in T K . Hence we have A = (Bu− t)f + t′ for
some u ∈ [1, p], some t ∈ T +, some f ∈ F and some t′ ∈ T K . We have

A = (Bu − t)f + t′ = Buf − t+ t′′
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where t′′ ∈ T K . Since Buf runs through a finite subset of X we see that m ∈
M̃K
←. This establishes the first isomorphism (b). The second isomorphism (b) is

established in an entirely similar way. From (a) and (b) it follows that
(c) MK

←,M
K
→ are H-submodules of MK .

4.9. Let ε ∈ Sε̃ (see 2.3). For A ∈ D(ε) (see 1.1), the following two conditions are
equivalent:

(a) A ⊂ Ξ (that is, A ∈ DΞ(ε)),
(b) A ⊂ E+

ε+i for all i ∈ K.

Let W I
∗ be the set of all w ∈ W I such that w has maximal length among the

elements in the coset wWK . From the description (b) of DΞ(ε) we see that

DΞ(ε) = {Aε,w|w ∈W I
∗ }.(c)

(Notation of 1.1.) Note that A!
ε = Aε,wK

0
, A+

ε = Aε,wI
0
. We set

eε,K =
∑

A∈DΞ(ε)

v−d(A,A
+
ε )A ∈MK .

(For K = ∅, this specializes to eε in 3.6.)

Lemma 4.10. Recall that T K =
∑

i∈K Zαi = T ∩ ΩK .
(a) For any t ∈ T , the function A 7→ dK(A,A+ t) on X is constant. Let µK(t)

be its value. We have µK(t) =
∑

h∈F̄K α̌h(t) for all t ∈ T . The map t 7→ µK(t) is
a group homomorphism T → Z.

(b) If ε ∈ Sε̃, the sum
∑

t∈T K vµK(t)eε+t (in M) belongs to M̃K and

eε,K = resK(
∑
t∈T K

vµK(t)eε+t).

(c) For any t ∈ T we have µK(t) + µK(twK
0 ) = 0 and µK∗(t) + µK(twI

0) = 0.

(a) follows immediately from 2.14 and 1.3(e).
We prove (b). For t ∈ T K we have A ∈ D(ε) ⇔ A+ t ∈ D(ε+ t), A+

ε+t = A+
ε + t

and d(A+ t, A+
ε + t) = d(A,Aε) , hence∑
t∈T K

vµK(t)eε+t =
∑

t∈T K ;A∈D(ε)

vµK(t)v−d(A,A
+
ε )(A+ t).(d)

Let Ω′ be the stabilizer of ε̃ in ΩK or equivalently, the stabilizer of ε in ΩK . Note
that DΞ(ε) is a set of representatives for the Ω′-orbits on D(ε). Hence the expression
(d) is equal to ∑

t∈T K ;A∈DΞ(ε);ω′∈Ω′
vdK(A,A+t)−d(Aω′,A+

ε )(Aω′ + t)

We want to show that the exponent of v satisfies:

dK(A,A + t)− d(Aω′, A+
ε ) = dK(A,Aω′ + t)− d(A,A+

ε )(e)

or equivalently (by the additivity of d, dK): dK(Aω′ + t, A+ t) = d(Aω′, A). Since
dK(Aω′ + t, A+ t) = dK(Aω′, A), it suffices to show that dK(Aω′, A) = d(Aω′, A).
This follows from the fact that any hyperplane in F that separates Aω′ from A must
contain ε and is automatically in FK . (This is the known property which asserts
that for an element y in a standard parabolic subgroup of a Coxeter group, the
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length of y computed in W coincides with the length of y computed in the parabolic
subgroup.) Thus (e) is proved and we may therefore rewrite (d) as follows:∑

t∈T K ;A∈DΞ(ε);ω′∈Ω′
vdK(A,Aω′+t)−d(A,A+

ε )(Aω′ + t).

We now observe that ΩK is the semidirect product of Ω′ and T K hence the previous
expression equals ∑

A∈DΞ(ε);ω∈Ω

vdK(A,Aω)−d(A,A+
ε )Aω.

This clearly belongs to M̃K and its image under resK is
∑

A∈DΞ(ε) v
−d(A,A+

ε )A =
eε,K .

We prove the first equality (c). Let A ∈ X and let ε ∈ E be a special point. It
suffices to show that dK(A,A+ t)+dK(Aωε,K , Aωε,K + twK

0 ) = 0. This is a special
case of the equality

dK(A,B) = −dK(Aωε,K , Bωε,K)(f)

valid for any A,B ∈ X . To prove this we note that H 7→ Hωε,K is a bijection
between the set of hyperplanes in FK that separate A from B and the set of hy-
perplanes in FK that separate Aωε,K from Bωε,K). Moreover, the signs attached
to corresponding hyperplanes are opposite. The desired equality follows.

We prove the second equality (c). Let A ∈ X and let ε ∈ E be a special point.
It suffices to show that dK∗(A,A+ t) + dK(Aωε, Aωε + twI

0) = 0. This is a special
case of the equality

dK∗(A,B) = −dK(Aωε, Bωε)(g)

valid for any A,B ∈ X . To prove this we note that H 7→ Hωε is a bijection between
the set of hyperplanes in FK

∗
that separate A from B and the set of hyperplanes

in FK that separate Aωε from Bωε. Moreover, the signs attached to corresponding
hyperplanes are opposite. The desired equality follows.

The lemma is proved.

4.11. Let ε ∈ Sε̃. We set q = d(A!
ε, A

+
ε ). Let B ∈ DΞ(ε); we set r = d(A!

ε, B).
From the description 4.9(c) of DΞ(ε) we can deduce that the following holds: 0 ≤
r ≤ q and there exists s′1, s

′
2, . . . , s

′
q in S such that B = s′rs

′
r−1 . . . s

′
1A

!
ε, A

+
ε =

s′qs
′
q−1 . . . s

′
1A

!
ε. Moreover, s′n ∈ L(s′n−1s

′
n−2 . . . s

′
1A

!
ε) for n ∈ [1, q].

Lemma 4.12. Let A ∈ XΞ and let ε ∈ Sε̃ be such that A ⊂ ε + C+. By 2.5 there
exist s1, s2, . . . , sp in S such that p = d(A+

ε , A) and A = spsp−1 . . . s1A
+
ε . Then in

the H-module MK , both expressions T̃sp T̃sp−1 . . . T̃s1(eε,K), T̃−1
sp T̃−1

sp−1
. . . T̃−1

s1 (eε,K)

are of the form A+ an A-linear combination of elements A′ ∈ XΞ with A′ < A.

From the definition of eε,K we see that it is enough to prove statements (a),(b)
below.

(a) Both expressions T̃sp T̃sp−1 . . . T̃s1A
+
ε , T̃

−1
sp T̃−1

sp−1
. . . T̃−1

s1 A+
ε are of the form A

plus an A-linear combination of elements A′ ∈ XΞ with A′ < A.
(b) If B ∈ DΞ(ε), B 6= A+

ε , then both expressions T̃sp T̃sp−1 . . .

T̃s1B, T̃
−1
sp T̃−1

sp−1
. . . T̃−1

s1 B are A-linear combinations of elements A′ ∈ XΞ with

A′ < A.
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We prove (a). Using the formulas for the T̃s-action (see 4.7) and the equality

T̃−1
s = T̃s+(v−1−v), we see that both expressions in (c) are A-linear combinations

of elements A′ ∈ XΞ such that A′ = sjksjk−1
. . . sj1A

+
ε for some p ≥ jk > jk−1 >

· · · > j1 ≥ 1. These are all ≤ spsp−1 . . . s1A
+
ε = A, by [L1, 3.4]. Moreover, the

element spsp−1 . . . s1A
+
ε = A appears with coefficient 1 in thisA-linear combination.

To prove (a) it is then enough to show that, if k < p then sjksjk−1
. . . sj1A

+
ε 6= A

(so it is < A); this follows from the fact that d(A+
ε , sjksjk−1

. . . sj1A
+
ε ) ≤ k, while

d(A+
ε , A) = p > k.

We now prove (b). As above, the two expressions in (b) areA-linear combinations
of elements B′ ∈ XΞ such that B′ = sjksjk−1

. . . sj1B for some p ≥ jk > jk−1 >
· · · > j1 ≥ 1.

If s′1, s
′
2, . . . , s

′
q in S and r are as in 4.11, then r < q (since B 6= A+

ε ) and,

by [L1, 3.4], sjk . . . sj1B = sjk . . . sj1s
′
rs
′
r−1 . . . s

′
1A

!
ε ≤ sp . . . s1s

′
qs
′
q−1 . . . s

′
1A

!
ε =

sp . . . s1A
+
ε = A since

d(A!
ε, spsp−1 . . . s1s

′
qs
′
q−1 . . . s

′
1A

!
ε) = d(A!

ε, A) = d(A!
ε, A

+
ε ) + d(A+

ε , A) = q + p.

It remains to show that sjksjk−1
. . . sj1B 6= A. But

d(A!
ε, sjksjk−1

. . . sj1B) = d(A!
ε, sjksjk−1

. . . sj1s
′
rs
′
r−1 . . . s

′
1A

!
ε) ≤ k + r

while d(A!
ε, A) = p+ q > k + r (since p ≥ k and q > r). The lemma is proved.

4.13. A subset R of XΞ is said to be bounded above (resp. bounded below) if there
exists A0 ∈ XΞ such that R ⊂ {B ∈ XΞ|B ≤ A0} (resp. R ⊂ {B ∈ XΞ|A0 ≤ B}).
Let MK

≤ (resp. MK
≥ ) be the set of all elements m ∈ MK such that supp(m) is

bounded above (resp. below). Lemma 2.13 can be reformulated as follows:

MK
≤ = MK

←, MK
≥ = MK

→.(a)

Since MK
←,M

K
→ are H-submodules of MK (see 4.8(c)), it follows that

(b) MK
≤ ,M

K
≥ are H-submodules of MK .

Let c : MK
a → MK

a′ be a group homomorphism where a is one of ≤,≥; a′ is
one of ≤,≥. In analogy with a definition in 3.8, we say that c is continuous if the
following holds.

Let (Fλ)λ∈Λ be a family of elements of MK
a which is locally finite (in MK) and is

such that
⋃
λ∈Λ supp(Fλ) is bounded above (if a is ≤) and bounded below (if a is≥).

Then the family (c(Fλ))λ∈Λ in MK
a′ is locally finite in MK and

⋃
λ∈Λ supp(c(Fλ)) is

bounded above (if a′ is ≤) and bounded below (if a′ is ≥). Moreover, c(
∑

λ Fλ) =∑
λ c(Fλ).
We now come to the main result of this section.

Theorem 4.14. (a) There exists a unique H-antilinear map b : MK
≤ →MK

≤ which

is continuous (see 4.13) and satisfies b(eε′,K) = eε′,K for any ε′ ∈ Sε̃.
(b) For any A ∈ XΞ, b(A) is of the form A+ an A-linear combination of elements

A′ ∈ XΞ with A′ < A;
(c) b2 is the identity map.

To begin the proof, we consider the map a : MK
≤ →M given by the composition

MK
≤ = MK

←
a1−→ M̃K

←
a2−→M(U−K)

a3−→M(U−K)
a4−→M

where the equality is given by 4.13(a), a1 is the inverse of the isomorphism 4.8(b),
a2 is the obvious inclusion, a3 = φεθH1,H2,...,Hp is as in 3.18 (in the setup of 3.13)
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and a4 is the obvious inclusion. Here, ε is chosen in Sε̃. Note that a is H-antilinear,
since a3 is H-antilinear and ak for k 6= 3 are H-linear.

The proof will be completed in 4.23 after various preparations in 4.15-4.22.

4.15. Assume that for any A′, A ∈ XΞ such that A′ ≤ A we are given an element
pA′,A ∈ A such that pA′,A = 1 whenever A′ = A. For any A′, A ∈ XΞ such that
A′ ≤ A we set

p̃A′,A =
∑

(−1)rpA′
0,A

′
1
pA′

1,A
′
2
. . . pA′

r−1,A
′
r

where the sum is taken over all sequences A′0, A
′
1, A

′
2, . . . , A

′
r in XΞ such that A′ =

A′0 < A′1 < A′2 < · · · < A′r = A.
There are only finitely many such sequences. This is due to the obvious inequality

r ≤ d(A′, A) together with the following finiteness property:
(a) For any A′, A ∈ XΞ such that A′ ≤ A the set {B ∈ XΞ|A′ ≤ B ≤ A} is

finite.
This follows from a more general property [L1, 3.5]:
(b) for any A′, A ∈ X such that A′ ≤ A, the set {B ∈ X |A′ ≤ B ≤ A} is finite.
Note that p̃A,A = 1 for any A. We have

∑
B∈XΞ;A′≤B≤A pA′,B p̃B,A = δA′,A.

Hence, if ξB =
∑

A′∈XΞ;A′≤B pA′,BA
′ ∈MK

≤ , then A =
∑

B∈XΞ;B≤A p̃B,AξB .

(The last sum makes sense in MK since, for fixed A ∈ XΞ, the family (p̃B,AξB)
of elements of MK (indexed by {B ∈ XΞ|B ≤ A}) is locally finite: for any C ∈ XΞ,
the set of all B ∈ XΞ such that C appears with non-zero coefficient in p̃B,AξB is
contained in the finite set {B ∈ XΞ|C ≤ B ≤ A}.)

4.16. We choose a function A 7→ εA from XΞ to Sε̃ such that A ⊂ εA + C+ for all
A. (Such a function exists by 2.6.) For any A we denote by wA the element of W
such that wA(A+

εA) = A. By 4.12, for any A ∈ XΞ, we can write

ξA := T̃wAeεA,K =
∑

A′∈XΞ;A′≤A
pA′,AA

′,(a)

ξ′A := T̃−1

w−1
A

eεA,K =
∑

A′∈XΞ;A′≤A
qA′,AA

′(b)

where pA′,A ∈ A, qA′,A ∈ A are 1 whenever A′ = A and are zero for all but finitely
many A′. Let p̃A′,A ∈ A be defined in terms of pA′,A as in 4.15 and let q̃A′,A be
defined similarly in terms of qA′,A. As in 4.15, for any A ∈ XΞ, we then have

A =
∑

B∈XΞ;B≤A
p̃B,AξB , A =

∑
B∈XΞ;B≤A

q̃B,Aξ
′
B .(c)

Lemma 4.17. For any A ∈ XΞ we have a(ξA) = res−1
K (ξ′A), a(ξ′A) = res−1

K (ξA).

Using the definition of ξA, ξ
′
A and the fact that a is H-antilinear, we see that it

is enough to show that a(eεA,K) = res−1
K (eεA,K). We show more generally that, for

ε′ ∈ Sε̃ we have

a(eε′,K) = res−1
K (eε′,K).(a)

Note that ε′ωε,K = ε′ since ωε,K acts as identity on ε+TK , which contains ε′. (Here
we use our assumption that ε ∈ Sε̃.) Using 4.10(b), 3.18, we have

a(eε′,K) = a3(
∑
t∈T K

vµK(t)eε′+t) =
∑
t∈T K

v−µK(t)e(ε′+t)ωε,K =
∑
t∈T K

v−µK(t)eε′+twK
0
.
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We make the substitution t′ = twK
0 and we obtain

∑
t′∈T K v−µK(t′wK

0 )eε′+t′ . We

then use the identity −µK(t′wK
0 ) = µK(t′) (see 4.10(c)). Thus (a) follows and the

lemma is proved.

Lemma 4.18. Let A ∈ XΞ.

(a) The family of elements res−1
K (p̃B,Aξ

′
B) (where B varies through {B ∈ XΞ;B ≤

A}) is locally finite in M and we have a(A) =
∑

B∈XΞ;B≤A res−1
K (p̃B,Aξ

′
B).

(b) We have a(A) ∈ M̃K .

We prove (a). We start with the equality A =
∑

B∈XΞ;B≤A p̃B,AξB. When

B varies through {B ∈ XΞ;B ≤ A}, the elements p̃B,AξB form a locally finite
family in MK and their supports are all contained in {C ∈ XΞ|C ≤ A} and hence
are contained in some finite union of sets of the form {γ−t(Aj)|t ∈ T +} with
Aj ∈ XΞ. (See 2.13.) Then, by the argument in 4.8, we have that the elements
a2a1(p̃B,AξB) (with B as above) form a locally finite family in M and their supports
are all contained in some set in S(

∑
i∈I−K(−N)αi+

∑
i∈K Zαi), independent of B;

moreover, we clearly have a2a1(A) =
∑

B∈XΞ;B≤A a2a1(p̃B,AξB). By the continuity

of a3 (see 3.12), the elements a4a3a2a1(p̃B,AξB) (with B as above) form a locally
finite family in M and we have

a4a3a2a1(A) =
∑

B∈XΞ;B≤A
a3a2a1(p̃B,AξB).

Using 4.17, we deduce that the elements res−1
K (p̃B,Aξ

′
B) (with B as above) form a

locally finite family in M and a(A) =
∑

B∈XΞ;B≤A res−1
K (p̃B,Aξ

′
B). (a) is proved.

Now (b) follows from (a) using the following statement, whose verification is
immediate.

Let (mλ)λ∈Λ be a locally finite family of elements of M . If mλ ∈ M̃K for any

λ ∈ Λ, then
∑

λ∈Λm
λ ∈ M̃K .

The lemma is proved.

Lemma 4.19. Let m ∈MK
≤ .

(a) The family of elements mAa(A) (where A runs through XΞ) is locally finite
in M and a(m) =

∑
AmAa(A).

(b) We have a(m) ∈ M̃K .

The proof is along the same lines as that of 4.18. We can find C ∈ XΞ such that
supp(m) ⊂ {B ∈ XΞ|B ≤ C}. When A varies through XΞ, the elements mAA form
a locally finite family in MK and their supports are contained in {B ∈ XΞ|B ≤ C}
and hence are contained in some finite union of sets of the form {γ−t(Aj)|t ∈ T +}
with Aj ∈ XΞ. (See 2.13.) Then, by the argument in 4.8, we have that the
elements a2a1(mAA) (with A ∈ XΞ) form a locally finite family in M and their
support is contained in some set in S(

∑
i∈I−K(−N)αi +

∑
i∈K Zαi), independent

of A; moreover, we clearly have a2a1(m) =
∑

A∈XΞ
a2a1(mAA). By the continuity

of a3 (see 3.12), the elements a4a3a2a1(m) (with A ∈ XΞ) form a locally finite
family in M and we have a4a3a2a1(m) =

∑
A∈XΞ

a4a3a2a1(mAA). This proves (a).

Now (b) follows from (a), using 4.18(b), by the same argument as in the proof
of 4.18(b). The lemma is proved.

4.20. From 4.19 we see that the image of the homomorphism a : MK
≤ → M is

contained in M̃K . Using the isomorphism resK : M̃K →MK , we deduce that there
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is a unique map a′ : MK
≤ →MK such that res−1

K (a′(m)) = a(m) for all m ∈MK
≤ . a′

is H-antilinear since a is H-antilinear. By 4.17, we have a′(ξA) = ξ′A, a′(ξ′A) = ξA.

Lemma 4.21. Let A ∈ XΞ.

(a) The family of elements p̃B,Aξ
′
B (where B varies through {B ∈ XΞ;B ≤ A})

is locally finite in MK and we have a′(A) =
∑

B∈XΞ;B≤A p̃B,Aξ
′
B .

(b) We have supp(a′(A)) ⊂ {B ∈ XΞ|B ≤ A} and the coefficient of A in a′(A) is
1.

We prove (a). Using 4.18, we see that it is enough to verify the following state-
ment.

Let (mλ)λ∈Λ be a family of elements of MK such that (res−1
K (mλ))λ∈Λ is a locally

finite family of elements of M . Then (mλ)λ∈Λ is a locally finite family of elements
of MK and res−1

K (
∑

λmλ) =
∑

λ res−1
K (mλ).

The verification is immediate.
We prove (b). The coefficient of C in a′(A) is

∑
B∈XΞ;B≤A p̃B,AqC,B. This is

zero unless C ≤ B for some B in the sum. Hence it is zero unless C ≤ A. If now
C = A, the only contribution to the coefficient is from B = A and it gives 1 since
qA,A = p̃A,A = 1. The lemma is proved.

Lemma 4.22. Let m ∈MK
≤ .

(a) The family of elements mAa
′(A) (where A runs through XΞ) is locally finite

in MK and a′(m) =
∑

AmAa
′(A).

(b) We have a′(m) ∈MK
≤ .

The proof of (a) is entirely similar to that of 4.21(a). (We use 4.19 instead of
4.18.)

We prove (b). We can find C ∈ XΞ such that supp(m) ⊂ {B ∈ XΞ|B ≤ C}.
Now let D ∈ supp(a′(m)). Then there exists A such that mA 6= 0 (hence A ≤ C)
and D ∈ supp(a′(A)) (hence D ≤ A by 4.21(b)). Thus, we have D ≤ C and (b) is
proved.

4.23. We now prove Theorem 4.14. Lemma 4.22(b) shows that there is a unique
homomorphism b : MK

≤ →MK
≤ such that b(m) = a′(m) for all m ∈MK

≤ . Now b is

H-antilinear since a′ is H-antilinear. From 4.17(a) we see that
(a) b(eε′,K) = eε′,K for any ε′ ∈ Sε̃.
From 4.21(b) we see that
(b) for any A ∈ XΞ, b(A) is of the form A+ an A-linear combination of elements

A′ ∈ XΞ with A′ < A.
From 4.22(a) we see that
(c) for any m ∈MK

≤ , we have b(m) =
∑

AmAb(A).

We show that b is continuous in the sense of 4.13. Let (Fλ)λ∈Λ be a family of
elements of MK

≤ which is locally finite (in MK) and is such that
⋃
λ∈Λ supp(Fλ) ⊂

{A ∈ XΞ|A ≤ A0} for some A0 ∈ XΞ. From (b),(c) we see that
⋃
λ∈Λ supp(b(Fλ)) ⊂

{A ∈ XΞ|A ≤ A0}. Let B ∈ XΞ. From (b),(c) we see that

{λ ∈ Λ|B ∈ supp(b(Fλ))} ⊂
⋃

C∈XΞ;B≤C≤A0

{λ ∈ Λ|C ∈ supp(Fλ)}

so that {λ ∈ Λ|B ∈ supp(b(Fλ))} is finite. Thus, (c(Fλ))λ∈Λ is locally finite in
MK . Finally, from (c) we see that c(

∑
λ Fλ) =

∑
λ c(Fλ). Thus, the continuity of

b is established. The existence part of 4.14(a) is proved.
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To establish the uniqueness part of 4.14(a), it suffices to verify the following
statement.

(d) Let c : MK
≤ →MK

≤ be a H-antilinear continuous map such that c(eε′,K) = 0

for any ε′ ∈ Sε̃. Then c = 0.
From the definition of ξB and the assumptions on c it follows that c(ξB) = 0 for

all B ∈ XΞ. For a fixed B ∈ XΞ, we consider the family mA = p̃A,BξA (see 4.16)
in MK

≤ indexed by {A ∈ XΞ|A ≤ B}. This family is locally finite in MK and the

union of supports of the elements in the family is bounded above (by B). By the
continuity of c we have

c(B) = c(
∑

A∈XΞ;A≤B
p̃A,BξA) =

∑
A∈XΞ;A≤B

c(p̃A,BξA) = 0.

Thus, c(B) = 0 for any B ∈ XΞ.
Let m ∈ MK

≤ . The family (mBB)B∈Ξ in MK
≤ is locally finite in MK and the

union of supports of the elements in the family is bounded above. By the continuity
of c we have c(m) =

∑
B∈XΞ

c(mBB) = 0. Thus, c = 0 and (d) is proved. Hence,
4.14(a) is proved.

Now 4.14(b) is just (b) above. It remains to prove 4.14(c). The H-linear map
c = b2−1 : MK

≤ →MK
≤ satisfies the hypotheses of (d). Hence it is 0. Thus, b2 = 1.

Theorem 4.14 is proved.

4.24. For any A,B ∈ XΞ we define RA,B ∈ A by b(B) =
∑

A∈XΞ
RA,BA.

5. A[T ′]-module structure on MK

5.1. Let A[T ′] (resp. A[T ]) be the group algebra of T ′ (resp. T ) with coefficients
in A. The basis element of A[T ′] corresponding to t ∈ T ′ is denoted by btc. The
A-module structure on M extends to a A[T ′]-module structure by

btcm =
∑
A∈X

mA−tA =
∑
A∈X

mA(A+ t)

for m ∈ M, t ∈ T ′. It is easy to check that, if t ∈ T , then the action of t on M is
H-linear.

If i ∈ I and H ∈ Fi, then Mi,≤ and Mi,≥ are A[T ′]-submodules of M ; using the
definitions we see that

θH(btcm) = btricθH(m)(a)

for all m ∈ Mi,≤, t ∈ T ′. For any U ⊂ T , M(U) (see 3.8) is a A[T ′]-submodule of
M ; using (a), we see that, for any m ∈M(U−K), we have

θH1,H2,...,Hp(btcm) = bt′cθH1,H2,...,Hp(m)(b)

where t′ = tri1ri2 . . . rip = twK
0 wI

0 . (Notation of 3.14.) If ε ∈ E is a special point
and t ∈ T ′, we see, using the definitions, that, for any m ∈M we have

φε(btcm) = btwI
0cφε(m).(c)

(Notation of 3.15.) Using (b),(c), we see that, in the setup of 3.18, we have

φεθH1,H2,...,Hp(btcm) = btwK
0 cφεθH1,H2,...,Hp(m)(d)

for any t ∈ T ′ and any m ∈M(U−K).
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5.2. We show that M̃K is a A[T ′]-submodule of M . Indeed, let m ∈ M̃K and
t ∈ T ′. Then btcm =

∑
A∈X m′AA where m′A = mA−t. Let ω ∈ ΩK , let w be the

corresponding element of W I and let A ∈ X . We have tw−1 = t+ t′ where t′ ∈ T K .
We have

m′Aω = mAω−t = m(A−tw−1)ω = m(A−t−t′)ω = vdK(A−t,(A−t−t′)ω)mA−t

= vdK(A−t,Aω−t)m′A = vdK(A,Aω)m′A

and our assertion follows.

5.3. The A-module structure on MK extends to a A[T ′]-module structure by

btc ◦m =
∑
A∈XΞ

mγ−tAA =
∑
A∈XΞ

mA(γtA).

Note that m 7→ btc ◦m depends only on the coset of t modulo T K . Hence, there is
a unique A[T /T K ]-module structure a[t],m 7→ abṫc ◦m on MK where t ∈ T /T K ,
ṫ is a representative of t in T and [t] denotes the basis element of the group algebra
A[T /T K ] defined by t.

Lemma 5.4. Let t ∈ T . For m ∈ M̃K we have btc◦(resK(m)) = vµK(t) resK(btcm)
where resK is as in 4.6(a) and µK(t) is as in 4.10(a).

We have

btc ◦ resK(m) = btc ◦
( ∑
A∈XΞ

mAA

)
=
∑
A∈XΞ

mγ−tAA,

vµK(t) resK(btcm) = vµK(t) resK

(∑
A∈X

mA−tA

)
= vµK(t)

∑
A∈XΞ

mA−tA.

We must only prove that

mγ−tA = vµK(t)mA−t(a)

for any A ∈ XΞ. Let ω ∈ ΩK be such that (A− t)ω ∈ XΞ. We have

mγ−tA = m(A−t)ω = vdK(A−t,(A−t)ω)mA−t(b)

since m ∈ M̃K . We show that

dK(A− t, (A− t)ω) = µK(t).(c)

We have

dK(A− t, (A− t)ω) = dK(A− t, A) + dK(A, (A− t)ω) = µK(t) + dK(A, (A− t)ω).

Thus, (c) would follow if we show that dK(A, (A − t)ω) = 0. More generally, we
show that dK(A,B) = 0 for any A,B ∈ XΞ. If H ∈ FK , then any K-alcove is
contained either in E+

H or in E−H . It follows that A,B lie on the same side of H .
From the definition of dK it therefore follows that dK(A,B) = 0. Thus, (c) is
proved.

We introduce (c) into (b). We obtain (a). The lemma is proved.
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5.5. Since resK : M̃K → MK is an isomorphism of H-modules, we see from 5.4
and 5.2 that, for t ∈ T , the map m 7→ btc ◦m from MK into itself is H-linear.

Lemma 5.6. (a) MK
≤ = MK

← and MK
≥ = MK

→ are A[T ′]-submodules of MK.

(b) For any subset U ⊂ T , M(U) (see 3.8) is an A[T ′]-submodule of M .

(c) M̃K
← and M̃K

→ are A[T ′]-submodules of M .

We prove (a). Let t ∈ T ′. If m ∈ MK
← then there exist A1, A2, . . . , Ap in XΞ

with supp(m) ⊂ {γ−t′(Au)|u ∈ [1, p], t′ ∈ T +}. Let B ∈ supp(γt(m)). Then
γ−t(B) ∈ supp(m) so that γ−t(B) = γ−t′(Au) for some u ∈ [1, p], t′ ∈ T +. Then
B = γ−t′(γtAu). This shows that btc ◦m ∈MK

←. Thus, MK
← is a A[T ′]-submodule

of MK . Similarly, MK
→ is a A[T ′]-submodule of MK . This proves (a). The proof

of (b) is entirely similar.

To prove (c) it remains to note that M̃K
← and M̃K

→ are intersections of M̃K with
a subspace of the form M(U) and both these subspaces are A[T ′]-submodules of
M .

Proposition 5.7. For t ∈ T ′, the map m 7→ btc◦m from MK
≤ into itself commutes

with b : MK
≤ →MK

≤ .

With the notation in 4.14 we have a4a3a2a1 = c1 res−1
K c2b where c1 : M̃K →

M, c2 : MK
≤ →MK are the obvious inclusions. Let m ∈MK

≤ . We have

c1 res−1 c2b(btc ◦m) = a4a3a2a1(btc ◦m) = a4a3a2(v
µK(t)btca1(m))

= v−µK(t)a4a3btca2a1(m) = v−µK(t)a4btwK
0 ca3a2a1(m)

= v−µK(t)btwK
0 ca4a3a2a1(m)

= v−µK(t)btwK
0 cc1 res−1

K c2b(m) = v−µK(t)c1btwK
0 c res−1

K c2b(m)

= v−µK(t)v−µK(twK
0 )c1 res−1

K (btc ◦ (c2b(m)))

= v−µK(t)v−µK(twK
0 )c1 res−1

K c2(btc ◦ b(m)).

(The second and eighth equality follow from 5.4; the fourth equality follows from
5.1(d); the other equalities follow from the definitions. We have also used the
identity btwK

0 c ◦ (c2bm) = btc ◦ (c2bm) which follows from the fact that twK
0 = t

mod T K .)

Since c1 res−1
K c2 is injective, it follows that b(btc ◦m) = v−µK(t)v−µK(twI

0)btc ◦
(bm). It remains to use the identity µK(t) + µK(twK

0 ) = 0 (see 4.10(c)).

6. The isomorphism θε : MK
≤ →MK

≥

6.1. In this section we fix ε ∈ Sε̃. We define an involution κε : MK →MK by

κε(
∑
A∈XΞ

mAA) =
∑
A∈XΞ

mAκε(A) =
∑
A∈XΞ

mκε(A)A

(notation of 2.3).

Lemma 6.2. κε restricts to a bijection MK
→

∼−→ MK
←, or, equivalently, MK

≥
∼−→

MK
≤ , see 4.13(a), denoted again by κε.

Using the identity γtκε = κεγ−t : E → E for t ∈ T (see 2.12(d)) we see immedi-
ately that κε maps MK

→ isomorphically onto MK
←. This proves (b).
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Lemma 6.3. κε : MK
≥
∼−→ MK

≤ and its inverse κ−1
ε : MK

≤
∼−→ MK

≥ (which is just

the restriction of κε : MK →MK) are continuous in the sense of 4.13.

The proof is a refinement of the argument in the proof of 6.2. Namely, let
(Fλ)λ∈Λ be a family of elements of MK

≥ which is locally finite (in MK) and is such

that
⋃
λ∈Λ supp(Fλ) is bounded below. By 2.13(c), there exist A1, A2, . . . , Ap in

XΞ such that the following holds. If B ∈ supp(Fλ) for some λ ∈ Λ, then B = γtAu

for some u ∈ [1, p] and some t ∈ T +. Using the identity γtκε = κεγ−t : E → E for
t ∈ T (see 2.12(d)) we deduce that the following holds. If B ∈ supp(κεFλ) (that
is, κεB ∈ supp(Fλ)) for some λ ∈ Λ, then B = γ−tκεAu for some u ∈ [1, p] and
some t ∈ T +. Using now 2.13(b), we deduce that

⋃
λ∈Λ supp(κε(Fλ)) is bounded

above. The family (κε(Fλ))λ∈Λ in MK
≤ is locally finite in MK since (Fλ)λ∈Λ is

locally finite in MK and κε : XΞ → XΞ is a bijection. This also shows that
κε(
∑

λ Fλ) =
∑

λ κε(Fλ). The continuity of κε is proved. The continuity of κ−1
ε is

proved in an entirely similar way.

6.4. Let s 7→ s∗ be the involution of S defined by the following requirement: if Z
is a face of type s then the image of Z under the map ε+ x 7→ ε− x (with x ∈ T )
is a face of type s∗. (It follows that κε(Z) is a face of type s∗.)

Lemma 6.5. (a) Let m ∈MK and let s ∈ S. We have T̃s(κε(m)) = κε(T̃
−1
s∗ (m)).

(b) For any ε′ ∈ Sε̃ we have κε(eε′,K) = vνK eε′′,K where νK is the number of
elements of F̄ − F̄K and ε′′ = κε(ε

′) ∈ Sε̃.
(c) For any t ∈ T ′ we have btc ◦ (κεm

′) = κε(b−tc ◦m′).

We prove (a). Let A ∈ XΞ and let H ∈ F be the hyperplane separating A, sA.
Then H1 = κε(H) is the hyperplane in F separating κε(A) from κε(sA) = s∗κε(A).
Now H is a wall of Ξ (that is, H ∈ FK) if and only if H1 is a wall of Ξ (that is,

H1 ∈ FK); see 2.3(b). In this case we have κε(T̃
−1
s∗ (A)) = κε(v

−1A) = vκε(A) =

T̃s(κε(A)). Assume now that H,H1 /∈ FK . Using 2.3(d), we see that s∗ ∈ L(A) if

and only if s /∈ L(κε(A)). Hence, κε(T̃
−1
s∗ (A)) = κε(s

∗A) = sκε(A) = T̃s(κε(A)) if
s∗ ∈ L(A);

κε(T̃
−1
s∗ (A)) = κε(s

∗A+ (v−1 − v)A) = κε(s
∗A) + (v − v−1)κε(A)

= sκε(A) + (v − v−1)κε(A) = T̃s(κε(A)),

if s∗ /∈ L(A). Thus we have κε(T̃
−1
s∗ (A)) = T̃s(κε(A)) in all cases. We now use the

continuity of κε; (a) follows.
We prove (b). Using 2.3(c), we see that it suffices to show that d(A,A+

ε′ ) =

νK − d(κε(A), A+
ε′′) for any A ∈ DΞ(ε′). We have νK = d(A!

ε′′ , A
+
ε′′) hence νK −

d(κε(A), A+
ε′′) = d(A!

ε′′ , κε(A)) = d(κε(A
+
ε′′), κε(A)). Hence it is enough to show

that
d(A,B) = −d(κε(A), κε(B)) for any A,B ∈ XΞ. The proof is similar to that of

4.10(f). We note that H 7→ κε(H) is a bijection between the set of hyperplanes in
F that separate A from B and the set of hyperplanes in F that separate κε(A) from
κε(B) (these hyperplanes are automatically in FK). Moreover, the signs attached
to corresponding hyperplanes are opposite. The desired equality follows; (b) is
proved.

(c) follows from 2.12(d).
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6.6. Let θε : MK
≤
∼−→MK

≥ be the bijection defined by the equality

b = v−νKκεθε : MK
≤
∼−→MK

≤

where κε : MK
≥
∼−→MK

≤ is as in 6.2.

Proposition 6.7. (a) For any s ∈ S and m ∈ MK
≤ , we have θε(T̃s∗(m)) =

T̃s(θε(m)).
(b) For any ε′ ∈ Sε̃ we have θε(eε′,K) = eε′′,K where ε′′ = κε(ε

′).
(c) For any t ∈ T ′ and any m′ ∈MK

≤ we have btc ◦ (θεm
′) = θε(b−tc ◦m′).

(a) follows from the H-antilinearity of (b) and 6.5(a); (b) follows from the defi-
nition of b (see 4.14(a)) and 6.5(b); (c) follows from 5.7 and 6.5(c).

Proposition 6.8. (a) The map θε : MK
≤

∼−→ MK
≥ is continuous in the sense of

4.13.
(b) The map θ−1

ε : MK
≥
∼−→MK

≤ is continuous in the sense of 4.13.

This follows from the continuity of κε, κ
−1
ε (see 6.3) and the continuity of b = b−1.

The following characterization of θε (similar to that of b) follows from 4.14(a).

Proposition 6.9. θε is the unique continuous map MK
≤ → MK

≥ that satisfies

6.7(a),(b).

6.10. LetMK
c be the A-submodule ofMK consisting of all elements m ∈MK such

that supp(m) is a finite set. Then MK
c is a A[T ]-submodule and a H-submodule

of MK .

Lemma 6.11. Let % =
∏

h∈F̄−F̄K (1− v−2−µK(αh)bαhc) ∈ A[T ]. For any B ∈ XΞ

we have % ◦ θε(B) ∈MK
c .

For i ∈ I and H ∈ Fi, we define a A-linear map θ̂H : M →M by

(a) θ̂H(
∑

A∈X mAA) =
∑

A∈X mA((v−1A0 +A1)− v−1(v−1A1 +A2))

where Az are as in 3.3. From 3.3(a) we see that θH(A) − v−2bαicθH(A) = θ̂H(A)

for any A ∈ X . Hence θH(m)− v−2bαicθH(m) = θ̂H(m) for any m ∈Mi,≤.

Let PB =
∑

ω∈ΩK vdK(B,Bω)Bω ∈ M̃K (see 4.7); then resK(PB) = B. The

ΩK-orbit of B decomposes into finitely many T K-orbits and we fix a set of repre-
sentatives B1, B2, . . . , BN for these T K-orbits. We have

PB =

N∑
j=1

vdK(A,Bj)
∑
t∈T K

vµK(t)(Bj + t).

In the setup of 3.13, we have b(B) = resK(φεθε+ip . . . θε+i2θε+i1(PB). Let %′1 =∏
h∈F̄−F̄K∗ (1 − v−2bαhc) and let %′2 =

∏
h∈F̄−F̄K∗ (1− v2b−αhc).

Using several times 5.1(a), we have

%′1θε+ip . . . θε+i1PB

= (1 − v−2bαipc)(1 − v−2bαip−1ripc) . . . (1− v−2bαi1ri2ri3 . . . ripc)θε+ip . . . θε+i1PB
= (1 − v−2bαipc)θε+ip(1− v−2bαi2c)θε+i2(1− v−2bαi1c)θε+i1PB

= θ̂ε+ip . . . θ̂ε+i2 θ̂ε+i1PB =

N∑
j=1

vdK(A,Bj)
∑
t∈T K

vµK(t)θ̂ε+ip . . . θ̂ε+i2 θ̂ε+i1(Bj + t),
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hence, using 5.1(c):

%′2φεθε+ip . . . θε+i1PB = φε%
′
1θε+ip . . . θε+i1PB

= φε

N∑
j=1

vdK(A,Bj)
∑
t∈T K

vµK(t)θ̂ε+ip . . . θ̂ε+i2 θ̂ε+i1(Bj + t).

Using (a) and the definition of φε, we see that there exist Bj,j′ ∈ X and aj,j′ ∈ A
for j ∈ [1, N ], j′ ∈ [1, N ′] such that φεθ̂ε+ip . . . θ̂ε+i2 θ̂ε+i1(Bj) =

∑
j′∈[1,N ′] aj,j′Bj,j′ .

It follows that

φεθ̂ε+ip . . . θ̂ε+i2 θ̂ε+i1(Bj + t) =
∑

j′∈[1,N ′]

aj,j′(Bj,j′ + twK
0 )

for any t ∈ T K (see 5.1). Thus we have

%′2φεθε+ip . . . θε+i1PB =
∑

j∈[1,N ]
j′∈[1,N ′]

v−dK(A,Bj)
∑
t∈T K

v−µK(t)
∑

j′∈[1,N ′]

aj,j′(Bj,j′ + twK
0 ).

If we apply resK to the right hand side of the last equality, we obtain an A-
linear combination of at most NN ′ alcoves in XΞ since for any C ∈ XΞ and any
j, j′ there is at most one t ∈ T K such that C = Bj,j′ + twK

0 . It follows that

resK(%′2φεθε+ip . . . θε+i1PB) ∈ MK
c . Let %′3 =

∏
h∈F̄−F̄K∗ (1 − v2vµK(αh)b−αhc).

Using 5.4, we have

%′3 ◦ b(B) = %′3 resK(φεθε+ip . . . θε+i1PB) = resK(%′2φεθε+ip . . . θε+i1PB) ∈MK
c .

Applying κ−1
ε to %′3 ◦ b(B) ∈ MK

c , we deduce that ρ ◦ θε(B) ∈ MK
c . The lemma is

proved.

7. MK
c as an induced H-module

7.1. Let M̃K
c be the A-submodule of M̃K which corresponds to MK

c under the

isomorphism resK : M̃K ∼−→ MK . This is then an H-submodule of M̃K . The
elements PA (see 4.3), where A runs over a set of representatives for the ΩK-orbits

in X form an A-basis of M̃K
c . (This follows from 4.3(d).)

7.2. In this section we fix ε ∈ Sε̃. This allows us to identify I with a subset of S:
to i ∈ I corresponds the element si ∈ S such that the face δsi(A

+
ε ) is supported by

ε+ i.
Let W (I) be the (parabolic) subgroup of W generated by {si|i ∈ I} and let W (K)

be the (parabolic) subgroup of W generated by {si|i ∈ K}. We have W (I) = Wε

with the notation of 1.1. We denote by WK the set of elements w ∈W which have
minimal length in the coset W (K)w.

Lemma 7.3. The alcoves w−1A+
ε+x = w−1(A+

ε + x) (for various w ∈ WK and

various x ∈ T I−K) form a set of representatives for the ΩK-orbits on X. Hence

the elements Pw−1A+
ε+x

(with w, x as above) form an A-basis of M̃K
c .

For A,B in X we write A ∼ B instead of “A,B are in the same ΩK-orbit”.
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If A ∈ X , then A = w−1
1 A+

ε+x1
for a unique w1 ∈ W (I) and a unique x1 ∈ T .

We can write uniquely w1 = w′w where w ∈ WK , w
′ ∈ W (K). Let ω′ ∈ Ω be the

element corresponding to w′ under jε; then ω′ ∈ ΩK . We have

A = w−1w′−1(A+
ε + x) = w−1((w′−1A+

ε ) + x)

= w−1(A+
ε ω
−1 + x) = w−1(A+

ε + x1)ω
−1

for some x1 ∈ T . Writing x1 = x′ + x′′ where x′ ∈ T I−K , x′′ ∈ T K we see that

A ∼ w−1(A+
ε + x1) = w−1A+

ε + x′ + x′′ ∼ w−1A+
ε + x′.

Thus, A ∼ w−1A+
ε + x′. It remains to verify the following statement:

Let w,w′ ∈ WK and x, x′ ∈ T I−K be such that w−1(A+
ε + x) ∼ w′−1(A+

ε + x′).
Then w = w′ and x = x′. Our assumption implies A+

ε + x ∼ ww′−1(A+
ε + x′)

and A+
ε ∼ ww′−1(A+

ε + x′) − x. But the ΩK-orbit of A+
ε consists of the alcoves

w1A
+
ε +x1 with w1 ∈ W (K), x1 ∈ T K . Thus, there exist w1 ∈W (K), x1 ∈ T K such

that ww′−1(A+
ε +x′)−x = w1A

+
ε +x1. It follows that ww′−1 = w1 and x′−x = x1.

This forces w = w′, x′ = x. The lemma is proved.

7.4. The restriction of jε : Ω
∼−→ W (see 1.1) gives an isomorphism x → ax of

T onto a normal subgroup of W . For x ∈ T we set ϑx = T̃−1
ax2 T̃ax1 ∈ H where

x1, x2 ∈ Tdom are such that x = x1 − x2. Then ϑx is a well defined element of H.
(See [L2, 2.6].)

Lemma 7.5. Let ε′ ∈ ε + T . For x ∈ T we have ϑx(PA+

ε′
) = v2µK(x)PA+

ε′+x
=

vµK(x)PγxA+
ε′
.

We prove the first equality in the lemma. Using the definition of ϑx and
the linearity of the function x 7→ µK(x) we see that it is enough to do that
under the additional assumption that x ∈ Tdom. From [L1, 3.6] we see that
d(A+

ε′ , a
x(A+

ε′ ) = l(ax). Hence there exists a sequence s(1), s(2), . . . , s(n) in S such
that ax = s(n)s(n−1) . . . s(1), n = l(ax) and

Aε′ < s(1)Aε′ < s(2)s(1)Aε′ < · · · < s(n)s(n−1) . . . s(1)Aε′ = axAε′ .

For A ∈ X and s ∈ S such that s /∈ L(A) we have

(a) T̃sPA = PsA if L /∈ FK ; T̃sPA = v2PsA if L ∈ FK .
Here L is the hyperplane separating A, sA. (The first equality is just 4.3(a);

the second equality follows from 4.3(c), since we now have PA = vPsA by 4.3(d).)
Using this repeatedly we see that

T̃axPA+

ε′
= T̃s(n)

. . . T̃s(1)PA+

ε′
= v2NPs(n)...s(1)A

+

ε′
= v2NPaxA+

ε′

= v2NPA+
ε′+x

= v2NPA+
ε′+x

where N is the number of consecutive pairs of alcoves in the sequence

A+
ε′ , s(1)A

+
ε′ , s(2)s(1)A

+
ε′ , . . . , s(n)s(n−1) . . . s(1)A

+
ε′

such that the hyperplane separating them is in FK . In other words, we have

N = dK(A+
ε′ , s(n)s(n−1) . . . s(1)A

+
ε′ ) = dK(A+

ε′ , A
+
ε′+x) = µK(x).

The first equality in the lemma follows. We prove the second equality in the lemma.
Let A = A+

ε′ . Let ω ∈ ΩK be such that (A+ x)ω ∈ XΞ; then

PγxA = P(A+x)ω = v−dK(A+x,(A+x)ω)PA+x
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and it remains to use −dK(A+ x, (A+ x)ω) = µK(x) which follows from 5.4(c).

Lemma 7.6. Let ε′ ∈ ε+ T .
(a) If x ∈ T K , then ϑxPA+

ε′
= vµK(x)PA+

ε′
.

(b) If w ∈W (K), then T−1
w PA+

ε′
= v−l(w)PA+

ε′
.

(c) If w ∈ W (I), then T−1
w PA+

ε′
= v2nPw−1A+

ε′
for some n ∈ Z.

(a) follows from 7.5; (b) follows by repeated application of 4.3(c); finally, (c)
follows by repeated application of 7.5(a), using the equality d(w−1A+

ε′ , A
+
ε′ ) = l(w).

The lemma is proved.

Lemma 7.7. T̃siϑx − ϑxri T̃si = (v − v−1)
ϑx−ϑxri
1−ϑ−αi

for i ∈ I and x ∈ T .

(The last fraction is a well defined element of the A-submodule of H spanned by
{ϑy|y ∈ T }.) See [L2]. There is a slight difference between the equality in the
lemma and that in [L2]; this is due to the fact that what was a left action in [L2]
is now a right action, hence we have to adjust formulas accordingly.

Lemma 7.8. Let w′ ∈W (K) and let x ∈ T I−K. We have T̃−1
w′ ϑx = ϑxT̃

−1
w′ ϑx−xw̃′−1

plus an A-linear combination of elements of the form ϑzT̃w′′ϑu with z ∈ T I−K , u ∈
T K and w′′ ∈ W (K), l(w′′) < l(w). Here w̃′ is the image of ω = j−1

ε (w′) ∈ Ω in
W (I). (Note also that x− xw̃′−1 ∈ T K .)

The proof (by induction on l(w′)) is based on [L2]. We omit the details.

Lemma 7.9. The elements T̃−1
w ϑx (with w ∈ W (I) and x ∈ T ) form an A-basis

of H.

The arguments in [L2] show that the elements T̃w−1ϑx (with w ∈ W (I) and
x ∈ T ) form an A-basis of H. But this basis is related to the family of elements
in the lemma by an “upper triangular matrix with 1 on diagonal”. The lemma
follows.

Lemma 7.10. (a) The elements T̃−1
w ϑxT̃

−1
w′ ϑx′ , w ∈ WK , w

′ ∈ W (K), x ∈ T I−K ,
x′ ∈ T K , form an A-basis of H.

(b) The elements

(∗) T̃−1
w ϑx(T̃

−1
w′ ϑx′ − v−l(w

′)+µK(x′)), w ∈ WK , x ∈ T I−K , w′ ∈ W (K), x′

∈ T K , (w′, x) 6= (1, 0), and

(∗∗) T̃−1
w ϑx, w ∈WK , x ∈ T I−K form an A-basis of H.

From the definition of WK ,W
(K) we have T̃w′T̃w = T̃w′w for w′ ∈ W (K), w ∈

WK . We see that 7.9 can be restated as follows.
The elements T̃−1

w T̃−1
w′ ϑxϑx′ , w ∈ WK , w

′ ∈ W (K), x ∈ T I−K , x′ ∈ T K form
an A-basis of H. Using 7.8, we see that this last basis is related to the family
T̃−1
w ϑxT̃

−1
w′ ϑx′+x−xw̃′−1 , w ∈ WK , w

′ ∈ W (K), x ∈ T I−K , x′ ∈ T K , w̃′ as in 7.8
by an “upper triangular matrix with 1 on diagonal”. Hence the last family is an
A-basis of H. By a change of indexing, we see that the elements in (a) form an
A-basis of H. Now the family of elements in (b) is related to the previous basis by
an “upper triangular matrix with 1 on diagonal”. The lemma follows.

7.11. Let HK be the A-submodule of H spanned by the elements

T̃−1
w′ ϑx′ (w′ ∈W (K), x′ ∈ T K);
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these elements form a A-basis of HK . Let H′K be the A-submodule of H spanned
by the elements T̃−1

w′ ϑx′ (w′ ∈ W (K), x′ ∈ T ); these elements form a A-basis of
H′K . Note that HK ⊂ H′K . From 7.7 we see that HK ,H′K are A-subalgebras of
H.

Lemma 7.12. (a) The elements ϑxT̃
−1
w′ ϑx′ , w

′ ∈ W (K), x ∈ T I−K , x′ ∈ T K , form

an A-basis of H′K . The elements T̃−1
w′ ϑx′ , w

′ ∈ W (K), x′ ∈ T K , form an A-basis
of HK .

(b) The elements

(∗) ϑx(T̃
−1
w′ ϑx′−v−l(w

′)+µK(x′)), x ∈ T I−K , w′ ∈ W (K), x′ ∈ T K , (w′, x) 6= (1, 0),
and

(∗∗) ϑx, x ∈ T I−K form an A-basis of H.

The proof is the same as that of 7.10.

7.13. From 7.6(a),(b), we see that there is a well defined A-algebra homomorphism
χ : HK → A such that HPA+

ε
= χ(H)PA+

ε
for all H ∈ HK . In fact, we have

χ(T̃−1
w′ ϑx′) = v−l(w

′)+µK(x′) for w′ ∈ W (K), x′ ∈ T K . Consider the left ideal J of
H generated by the elements H − χ(H) for various H ∈ HK . From 7.10, it follows
easily that J is exactly the A-submodule of H spanned by the elements (∗) in that
lemma. Hence the images of the elements (∗∗) in 7.10 in H/J form an A-basis of
H/J .

Similarly, let J ′ be the left ideal of H′K generated by the elements H−χ(H) for
various H ∈ HK . From 7.12, it follows easily that J ′ is exactly the A-submodule
of H′K spanned by the elements (∗) in that lemma. Hence the images in H′K/J ′ of
the elements (∗∗) in 7.12 form an A-basis ofH′K/J ′. Thus we have an isomorphism

of A-modules A[T I−K ]
∼−→ H′K/J ′ (the first of which is a group algebra) given

by x 7→ v−µK(x)ϑx; we use this to identify these two A-modules. In particular,
A[T I−K ] becomes an H′K-module (a quotient of H′K).

Let us consider the tensor products H⊗HK A, H′K ⊗HK A, where H,H′K are
regarded as a right HK-module using the algebra imbeddings HK ⊂ H′K ⊂ H and
A is regarded as a left HK-module via χ. Then H⊗HK A is naturally a H-module
and H′K ⊗HK A is naturally a H′K-module. From the definition of tensor product,
we have

(a) H/J = H ⊗HK A = H ⊗H′K (H′K ⊗HK A) = H ⊗H′K (H′K/J ′) =
H⊗H′K A[T I−K ].

Proposition 7.14. (a) The A-linear map H ⊗HK A → M̃K
c given by H ⊗ 1 7→

HPA+
ε

is a well defined isomorphism of H-modules.

(b) The A-linear map H⊗HKA →MK
c given by H⊗1 7→ HA+

ε is a well defined
isomorphism of H-modules.

(c) The A-linear map H⊗H′KA[T I−K ] →MK
c given by H⊗x 7→ v−µK(x)HϑxA

+
ε

= H(γxA
+
ε ) = γx(HA+

ε ) (with x ∈ T I−K) is a well defined isomorphism of H-
modules.

We prove (a). The map H → M̃K
c given by H 7→ HPA+

ε
is clearly zero on J (as

in 7.13) hence it induces an A-linear map H/J → M̃K
c . The image under this map

of the basis element T−1
w ϑx (with w ∈ WK , x ∈ T I−K) is, by 7.5 and 7.6(c), the

element Pw−1A+
ε+x

times a power of v; and these elements form an A-basis of M̃K
c
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(by 7.3). Thus our map takes an A-basis of H/J onto an A-basis of M̃K
c ; hence it

is an isomorphism. This proves (a), since H/J = H⊗HK A.

Since resK : M̃K
c → MK

c is an isomorphism of H-modules carrying PA+
ε

to A+
ε ,

we see that (b) follows from (a). Finally, (c) follows from (b) via the isomorphism
7.13(a). The proposition is proved.

8. The element ∆ ∈ A[T /T K ]

8.1. Throughout this section we use the following notation. An underlined symbol
denotes C⊗Z(that symbol). For example, A = C⊗Z A,H = C⊗Z H.

8.2. Let G be a reductive connected adjoint algebraic group over C with a fixed
maximal torus T such that the group of characters T → C∗ is the group T in
1.1 and such that {αi|i ∈ I} (in 1.3) are the simple roots of G with respect to
T and to a Borel subgroup containing T. Let g, t be the Lie algebras of G, T.
We fix standard Chevalley generators ei, fi,hi(i ∈ I) for g so that hi span T and
ei, fi corresponds to αi,−αi in the usual way. Let $ : G → G be the involutive
automorphism of G whose tangent map satisfies ei 7→ fi, fi 7→ ei,hi 7→ −hi for all
i. Note that $(t) = t−1 for all t ∈ T.

8.3. Let TK = {t ∈ T|αi(t) = 1 ∀i ∈ K}; this is a torus in T. Let GK

be the centralizer of TK in G. Let gK be the Lie algebra of GK . Clearly,
$(TK) = TK , $(GK) = GK . We can find uniquely strictly positive real num-
bers ci(i ∈ K) such that e =

∑
i∈K ciei, f =

∑
i∈K cifi,h =

∑
i∈K c2ihi satisfy

the sl2-relations [e, f ] = h, [h, e] = 2e, [h, f ] = −2f . (In fact, c2i ∈ N.) Then ẽ =

(e−f+h)/2, f̃ = (−e+f+h)/2, h̃ = −e−f again satisfy the sl2-relations and in addi-

tion, the tangent map of $ takes ẽ, f̃ , h̃ to −ẽ,−f̃ , h̃ respectively. There is a unique
homomorphism of algebraic groups p : SL2(C) → GK whose tangent map satisfies

( 0 1
0 0 ) 7→ ẽ, ( 0 0

1 0 ) 7→ f̃ ,
(

1 0
0 −1

)
7→ h̃. Then u = p ( 1 1

0 1 ) is a regular unipotent element

of GK such that $(u) = u−1. For any λ ∈ C∗ we set p′(λ) = p
(
λ 0
0 λ−1

)
∈ GK .

Then p′(λ)up′(λ)−1 = uλ
2

and $(p′(λ)) = p′(λ) for all λ ∈ C∗.
Let Bu be the variety of Borel subgroups of G that contain u. The torus TK×C∗

acts on Bu by (g, λ) : B → (g,λ)B = gp′(λ)B(gp′(λ))−1.

8.4. In this section we will use for G some results which appear in [KL2] in the
case of simply connected groups; however, the results we need can be deduced from
the corresponding results for the simply connected covering of G.

We consider the (complexified) equivariant K-homology space KTK×C∗
0 (Bu). We

regard this space as a H-module by composing the H-module structure in [KL2]

with the algebra involution • : H → H given by T̃s 7→ −T̃−1
s for all s ∈ S or,

equivalently, by T̃si 7→ −T̃−1
si for all i ∈ I and ϑx 7→ ϑ−x for all x ∈ T .

This K-homology space is naturally a module over the (complexified) represen-
tation ring RTK×C∗ which is just the algebra of all regular functions TK ×C∗ →
C and this module structure commutes with the H-module structure. In fact,

KTK×C∗
0 (Bu) may be regarded as a space of sections of an algebraic vector bundle

V → TK ×C∗ and the action of H may be regarded as an algebraic family of finite
dimensional representations of H on the various fibres of V; moreover, these finite
dimensional representations of H are irreducible for almost all fibres.

Since $(u) = u−1, we have B ∈ Bu =⇒ $(B) ∈ Bu; thus, we obtain an
involution $ : Bu → Bu. Note also that this involution is related to the action of
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TK ×C∗ on Bu by $((g,λ)B) = π(g,λ)($(B)) for all B ∈ Bu and (g, λ) ∈ TK ×C∗;
here π is the involution (g, λ) 7→ (g−1, λ) of TK ×C∗. Then $ induces, as in [KL2,

1.3(j)], an involution $† : KTK×C∗
0 (Bu) → KTK×C∗

0 (Bu). From the definitions

we see that $† is a semilinear automorphism of the H-module KTK×C∗
0 (Bu) with

respect to the A-algebra involution of H such that T̃s 7→ T̃s∗ (where s ∈ S and s∗ is
as in 6.4). Also from the definitions we see that $† is a semilinear automorphism

of the RTK×C∗ -module KTK×C∗
0 (Bu) with respect to the C-algebra involution of

RTK×C∗ induced by π. Equivalently, there exists an involution $† : V → V (as a
vector bundle) inducing π on the base TK ×C∗.

8.5. There exists a unique parabolic subgroup P of G with Lie algebra p such
that

(a) GK is a Levi subgroup of P;
(b) the TK-module G/P is a direct sum of one dimensional modules correspond-

ing to characters of the form αh : TK → C∗ where h ∈ F̄ − F̄K .

(Note that P is not stable under $, in general.) Let (g/p)u = ker(1 − Ad(u) :
g/p → g/p).

8.6. Let B̂u be the variety of Borel subgroups of GK that contain u. We may
identify B̂u with a point of Bu, namely the unique Borel subgroup of G that is
contained in P and contains u.

We regard the (complexified) equivariant K-homology space KTK×C∗
0 (B̂u) as a

H′K-module obtained by composing the H′K-module structure in [KL2] with the
algebra involution of H obtained by restricting • : H → H. The K-homology space
above may be naturally identified with RTK×C∗ and the obvious RTK×C∗ -module
structure commutes with the H′K-module structure. Let R′ be the ring obtained
by adjoining ∆′−1 to RTK×C∗ where ∆′ : TK ×C∗ → C is given by

∆′(g, λ) = det(1− λ2 Ad(gp′(λ)), (g/p)u).

By [KL2, 6.2] the natural H-module homomorphism

(a) H⊗H′K KTK×C∗
0 (B̂u) → KTK×C∗

0 (Bu)
induced by the inclusion B̂u ⊂ Bu is an isomorphism after tensoring over RTK×C∗

by the ring of fractions R′.

8.7. We may identify

(a) H⊗H′K KTK×C∗
0 (B̂u) = H⊗H′K RTK×C∗ = H⊗H′K A[T I−K ] = MK

c

where the third equality is deduced from 7.14(c) by tensoring with C. Hence we
may regard 8.6(a) as a homomorphism of (H,RTK×C∗)-bimodules

(b) MK
c → KTK×C∗

0 (Bu)
which becomes an isomorphism after tensoring over RTK×C∗ by the ring of fractions

R′. (We regard MK
c as an A[T /T K ]-submodule of MK , see 5.3, and we identify

(c) A[T /T K ] = RTK×C∗

by attaching to vnx , where n ∈ Z, x ∈ T /T K , the function (g, λ) 7→ λnẋ(g−1)

where ẋ ∈ T is a representative of x.) We may regard MK
c as the space of sections

of an algebraic vector bundle V′ → TK ×C∗ and the action of H on MK
c may be

regarded as an algebraic family of finite dimensional representations of H on the
various fibres of V′. The map (b) can then be interpreted as a morphism of vector
bundles
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(d) ζ : V′ → V
(inducing the identity on the base TK × C∗) such that this morphism is an iso-
morphism over the open dense subset U of TK × C∗ defined by the condition
that ∆′ 6= 0. This morphism is compatible with the H-actions. In particular, the
representations of H on the fibres of V ′ are irreducible for almost all fibres.

8.8. Now from 6.11 and 6.7(c) we see that θε defines a meromorphic map of vector
bundles V′ → V′ inducing π on the base TK ×C∗.

Proposition 8.9. There exists an integer N ≥ 1 such that, for any (regular) sec-
tion σ of V′, ∆′Nθε(σ) is a (regular) section of V′.

The square of θε induces the identity on the base and (by 6.7(a)) it commutes
with the H-action. Since H acts irreducibly on almost all fibres, it follows that this
square is given by multiplication by some (meromorphic) function TK ×C∗ → C.
On the other hand, from 6.7(b) we see that, if ε′ ∈ Sε̃, then eε′,K (regarded as
a section of V′) is mapped to itself by the square above. Hence the meromorphic
function just considered must be identically 1 so that the square of θε is the identity
map of V′.

Consider the meromorphic vector bundle map θεζ
−1$†ζ of V′ into itself (recall

that ζ : V′ → V is regular map but its inverse ζ−1 is only a meromorphic map).
This induces the identity on the base TK ×C∗. It commutes with the action of H
(since both $† and θε are H-semilinear with respect to T̃s 7→ T̃s∗ , see 6.4, 6.7(a),
and ζ is H-linear). Since H acts irreducibly on almost all fibres of V′, it follows that
θεζ
−1$†ζ is multiplication by some (meromorphic) function f : TK × C∗ → C.

Hence θε = fζ−1$†ζ. Since both θε and ζ−1$†ζ have square 1, it follows that
f2 = 1 so that θε = ±ζ−1$†ζ.

Let σ be a (regular) section of V′ and let σ1 = θε(σ) = ±ζ−1$†ζ(σ) (a mero-
morphic section on V′). Since ζ−1 is regular over the open set U and $†, ζ are
regular everywhere, it follows that σ1 is regular over the open set U . Hence there
exists a regular section σ2 of V′ and an integer N ≥ 1 such that ∆′Nσ1 = σ2. In
other words, ∆′Nθε(σ) is a regular section of V′. Note that the integer N ≥ 1 can
be chosen independently of σ since the space of sections of V′ is a finitely generated
module over the algebra of regular functions on the base. The proposition is proved.

8.10. The function (g, λ) 7→ det(1 − λ−2 Ad(g−1p′(λ−1)), (g/p)u) on TK × C∗

corresponds, under the identification 8.7(c), to an element ∆ ∈ A[T /T K ].

Lemma 8.11. There exist homomorphisms ξ1, ξ2, . . . , ξn : TK → C∗ that are re-
strictions of roots αh : T → C∗ with h ∈ F̄ −F̄K, and k1, k2, . . . , kn in {2, 3, 4, . . .}
such that

(a) ∆′(g, λ) =
∏n

j=1(1− λkj ξj(g)) for all (g, λ) ∈ TK ×C∗;

(b) ∆ =
∏n

j=1(1− v−kj [ξj ]).

We prove (a). Let V be a finite dimensional C-vector space with a given algebraic
representation ρ : TK×SL2(C) → GL(V ) such that all characters of TK appearing
in the TK -module V are restrictions of roots αh : T → C∗ with h ∈ F̄ − F̄K .

Then we can define ∆′V : TK × C∗ → C as the determinant of the linear

transformation 1− λ2ρ(g,
(
λ 0
0 λ−1

)
) on ker(1− ρ(1, ( 1 1

0 1 )) : V → V ).
We will show that ∆′V has a factorization of the form stated in the lemma for

∆′. (This will imply (a) since ∆′ = ∆′V for V = g/p.) To do this, we may assume
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that V is an irreducible TK × SL2(C)-module. Then TK acts on V via a one-
dimensional character ξ and SL2(C) acts on V irreducibly. But then it is clear
that ∆′V (g, λ) = 1 − λdimV+1ξ(g). This proves (a). Now (b) follows immediately
from (a), using the definitions. The lemma is proved.

Proposition 8.12. (a) We have ∆ ∈ A[T /T K ].
(b) There exists an integer N ≥ 1 such that, for any m ∈ MK

c , the element
∆Nθε(m) (which belongs to MK

≥ , by (a)) actually belongs to MK
c .

(a) is clear from 8.11(b). To prove (b), it suffices to show that our element

in (b) belongs to MK
c . (An element of MK

≥ which is contained in MK
c is also

contained in MK
c .) Let ∆1 =

∏n
j=1(1 − vkj [−ξj ]) ∈ A[T /T K ]. Since ∆ =

(−1)nv−(k1+···+kn)bξ1 + · · · + ξnc∆1, in order to show that ∆N ◦ (θεm) ∈ MK
c

it is enough to show that ∆N
1 ◦ (θεm) ∈ MK

c . But this follows from 8.9. The
proposition is proved.

8.13. It is likely that one can take N = 1 in 8.12(b). This is true if K = ∅, as well
as in the following examples (in which I = {1, 2}, α2(α̌1) = −1):

(a) type A2, K = {1}; ∆ = 1− v−3[α2];
(b) type B2, K = {1}; ∆ = (1− v−3[α2])(1− v−2[2α2]);
(c) type B2, K = {2}; ∆ = 1− v−4[α1].

8.14. In general, the number n in 8.11 (number of factors of ∆) is equal to
dimBu. Indeed, by definition, n = dim ker(1 − Ad(u) : g/p → g/p). Moreover,
dim ker(1 − Ad(u) : gK → gK) = rankgK = rank g since u is regular unipotent
in GK . Hence dim ker(1 − Ad(u) : g → g) = 2n + rankg. On the other hand,
dim ker(1−Ad(u) : g → g) is the dimension of the centralizer of u in G and this is
known to be equal to 2 dimBu + rank g; our assertion follows.

9. Study of a pairing (, ) : MK
≤ ×MK

≥ → A

9.1. We define an A-bilinear pairing (, ) : MK
≤ × MK

≥ → A by (m,m′) =∑
A∈XΞ

mAm
′
A. The sum makes sense since supp(m) ∩ supp(m′) is a finite set

whenever m ∈MK
≤ ,m

′ ∈MK
≥ .

We shall make the following conventions (for fixed s ∈ S). For A ∈ XΞ we write
A : ♥ if (s, A) is as in 4.7(a); we write A : ♣ if (s, A) is as in 4.7(b); we write
A : ♠ if (s, A) is as in 4.7(c). Note that for any A, exactly one of the statements
A : ♥, A : ♣, A : ♠ holds. Note that A : ♥ if and only if sA : ♣. We write A : ♣♠
if either A : ♣ or A : ♠ holds.

Lemma 9.2. For m ∈ MK
≤ ,m

′ ∈ MK
≥ , w ∈ W we have (T̃w(m),m′) =

(m, T̃w−1(m′)).

We may assume that m = A,m′ = A′ where A,A′ ∈ XΞ and that w = s ∈ S.
We use the conventions of 9.1 relative to s.

(i) Assume that A : ♥ and A′ : ♥. Then sA : ♣ and sA′ : ♣, hence A 6= sA′ and
A′ 6= sA. We have

(T̃sA,A
′) = (sA,A′) = δsA,A′ = 0, (A, T̃sA

′) = (A, sA′) = δA,sA′ = 0.
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(ii) Assume that A : ♣ and A′ : ♣. Then sA : ♥ and sA′ : ♥ hence A 6= sA′ and
A′ 6= sA. We have

(T̃sA,A
′) = (sA+ (v − v−1)A,A′) = δsA,A′ + (v − v−1)δA,A′ = (v − v−1)δA,A′ ,

(A, T̃sA
′) = (A, sA′ + (v − v−1)A′) = δA,sA′ + (v − v−1)δA,A′ = (v − v−1)δA,A′ .

(iii) Assume that A : ♠ and A′ : ♠. We have

(T̃sA,A
′) = (vA,A′) = vδA,A′ , (A, T̃sA

′) = (A, vA′) = vδA,A′ .

(iv) Assume that A : ♥ and A′ : ♣. We have

(T̃sA,A
′) = (sA,A′) = δsA,A′ ,

(A, T̃sA
′) = (A, sA′ + (v − v−1)A′) = δA,sA′ + (v − v−1)δA,A′ .

It remains to use δA,sA′ = δsA,A′ and δA,A′ = 0. The case where A : ♣ and
A′ : ♥ is entirely similar.

(v) Assume that A : ♥ and A′ : ♠. Then sA : ♣ hence sA 6= A′. We have

(T̃sA,A
′) = (sA,A′) = δsA,A′ = 0, (A, T̃sA

′) = (A, vA′) = vδA,A′ = 0.

The case where A : ♠ and A′ : ♥ is entirely similar.
(vi) Assume that A : ♣ and A′ : ♠. Then sA : ♥ hence sA 6= A′. We have

(T̃sA,A
′) = (sA+ (v − v−1)A,A′) = δsA,A′ + (v − v−1)δA,A′ = 0,

(A, T̃sA
′) = (A, vA′) = vδA,A′ = 0.

The case where A : ♠ and A′ : ♣ is entirely similar. The lemma is proved.

Lemma 9.3. Let ε ∈ Sε̃ and let m ∈ M̃K. Let N =
∑

w∈WK v−2l(w), where l

denotes the length function of WK . We have∑
A∈D(ε)

mAv
−d(A,A+

ε ) = N
∑

A∈DΞ(ε)

mAv
−d(A,A+

ε ).

With notation as in the proof of 4.10(b) we have∑
A∈D(ε)

mAv
−d(A,A+

ε ) =
∑

A∈DΞ(ε)
ω′∈Ω′

mAω′v
−d(Aω′,A+

ε )

=
∑

A∈DΞ(ε)
ω′∈Ω′

mAv
dK(A,Aω′)v−d(Aω

′,A+
ε ).

Here we replace d(Aω′, A+
ε ) by d(A,A+

ε )−d(A,Aω′) and (using the definitions and
an argument in the proof of 4.10(b)) we replace d(A,Aω′) = dK(A,Aω′) by −l(w)

where w ∈ WK corresponds to ω′ under the canonical isomorphism Ω′
∼−→ WK .

Our sum becomes∑
A∈DΞ(ε);w′∈WK

mAv
−2l(w)v−d(A,A

+
ε ) = N

∑
A∈DΞ(ε)

mAv
−d(A,A+

ε ).

The lemma is proved.

Lemma 9.4. Let i ∈ I and let H ∈ Fi. Let m ∈Mi,≤ and let m′ = θH(m) ∈Mi,≥.
Let ε be a special point in E and let ε′ = εσH . We have∑

A∈D(ε)

m′Av
−d(A,A+

ε ) =
∑

A∈D(ε′)

mAv
−d(A,A+

ε′).
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Let H1, H
′
1, Y (ε), Y (ε′), x ∈ T be as in the proof of 3.7. By an argument in that

proof we have∑
A∈D(ε)

m′Av
−d(A,A+

ε ) =
∑

A∈Y (ε)

v−d(A,A
+
ε )(m′A +m′AσH1

v−1),

∑
A∈D(ε′)

mAv
−d(A,A+

ε′)

=
∑

A∈Y (ε′)

v−d(A,A
+

ε′ )(mA +mAσH′
1
v−1)

=
∑

A∈Y (ε)

v−d(A+x,A+

ε′)(mA+x +m(A+x)σH′
1
v−1)

=
∑

A∈Y (ε)

v−d(A,A
+
ε )(mA+x +m(A+x)σH′

1
v−1)

=
∑

A∈Y (ε)

v−d(A,A
+
ε )(mAσH1σH

+mAσHv
−1).

We see that it is enough to verify the equality m′A + m′AσH1
v−1 = mAσH1σH

+

mAσHv
−1 for any A ∈ Y (ε). For any B ∈ X , let (Bz)z∈Z be the sequence of alcoves

defined as in 3.3 in terms of H and B (instead of A). Note that for A,B ∈ X and
z ∈ Z, the conditions Bz = A and Az = B are equivalent.

Let A ∈ Y (ε). We set Ã = AσH1 . For z ∈ N we define

cz = (−1)z−1(v−z+1 − v−z−1)

if z > 0 and c0 = v−1. From the definitions we have

m′A =
∑

z≥0;B∈X;Bz=A

czmB =
∑
z≥0

czmAz ,

m′
Ã

=
∑

z≥0;B∈X;Bz=Ã

czmB =
∑

z≥0;B∈X;Bz+1=A

czmB =
∑
z≥0

czmAz+1.

Hence

m′A +m′AσH1
v−1 =

∑
z≥0

czmAz +
∑
z≥0

v−1czmAz+1 = v−1mA0

+
∑
z≥1

(cz + v−1cz−1)mAz = v−1mA0 +mA1 = mAσH1σH
+mAσHv

−1.

The lemma is proved.

Lemma 9.5. Let ε, ε′ ∈ Sε̃ and let ε′′ = κε(ε
′ωε,K) ∈ Sε̃. Let m ∈MK

≤ . We have∑
A∈DΞ(ε′′)

(θεm)Av
−d(A,A+

ε′′ ) =
∑

A∈DΞ(ε′)

mAv
−d(A,A+

ε′ )

or, equivalently, (m, eε′,K) = (eε′′,K , θεm).

First note that, for any m′,m′1 ∈MK
≥ we have (from the definitions)

(a) (κm′,m′1) = (κm′1,m
′). Taking m′1 = eε1,K where ε1 ∈ Sε̃ and using 6.5(b),

we obtain
(b)

∑
A∈DΞ(ε1)

(κm′)Av
−d(A,A+

ε1
) =

∑
A∈DΞ(κεε1)

m′Av
−νK+d(A,A+

κεε1
).



252 G. LUSZTIG

A similar argument (using 3.16 instead of 6.5(b)) shows that for any m′′ ∈ M
and any special point ε2 we have

(c)
∑

A∈D(ε2)
(φεm

′′)Av
−d(A,A+

ε2
) =

∑
A∈D(ε2ωε)

m′′Av
−2ν+d(A,A+

ε2ωε
).

Now let m̃ ∈ M̃K
← be defined by resK(m̃) = m. In the setup of 3.13, let

m̃′ = θε+ip . . . θε+i2θε+i1m̃ ∈ M . Let ε′1 be defined by ε′ = ε′1ωεωε,K = ε′1σε+ip . . .
σε+i2σε+i1 . Applying p times 9.4, we have

∑
A∈D(ε′1)

m̃′Av
−d(A,A+

ε′1
)
=

∑
A∈D(ε′1)

(θε+ip . . . θε+i2θε+i1m̃)Av
−d(A,A+

ε′1
)

=
∑

A∈D(ε′1σε+ip )

(θε+ip−1 . . . θε+i2θε+i1m̃)Av
−d(A,A+

ε′1σε+ip
)

= . . .

=
∑

A∈D(ε′1σε+ip ...σε+i2σε+i1 )

m̃Av
−d(A,A+

ε′1σε+ip ...σε+i2σε+i1
)

=
∑

A∈D(ε′)

m̃Av
−d(A,A+

ε′) = N
∑

A∈DΞ(ε′)

mAv
−d(A,A+

ε′ ).

(We used 9.3.) The first term of the last sequence of equalities equals (by (c)):∑
A∈D(ε′1ωε)

(φεm̃′)Av
2ν−d(A,A+

ε′1ωε
)
= N

∑
A∈DΞ(ε′1ωε)

(bm)Av
2ν−d(A,A+

ε′1ωε
)
.

(We have used 9.3 and bm = resK φεm̃
′.) Hence we have

(d) N
∑

A∈DΞ(ε′) mAv
−d(A,A+

ε′) = N̄v−2ν
∑

A∈DΞ(ε′1ωε)
(bm)Av

−d(A,A+

ε′1ωε
)
. Using

(b) and bm = v−νKκεθεm, we see that∑
A∈DΞ(ε′1ωε)

(bm)Av
−d(A,A+

ε′1ωε
)
= v−νK

∑
A∈DΞ(ε′1ωε)

(κεθεm)Av
−d(A,A+

ε′1ωε
)

= v−νK
∑

A∈DΞ(ε′′)

(θεm)Av
−νK+d(A,A+

ε′′ ).

Introducing this in (d) we obtain

N
∑

A∈DΞ(ε′)

mAv
−d(A,A+

ε′) = N̄v−2νv2νK
∑

A∈DΞ(ε′′)

(θεm)Av
−d(A,A+

ε′′).

It remains to use the equality N = N̄v−2ν+2νK . The lemma is proved.

Lemma 9.6. (a) There exists a unique H-antilinear map b̃ : MK
≥ →MK

≥ such that

(b(m),m′) = (m, b̃(m′)) for all m ∈MK
≤ ,m

′ ∈MK
≥ .

(b) We have b̃2 = 1.

(c) For any A ∈ XΞ we have b̃(A) =
∑

B∈XΞ
RA,BB where RA,B ∈ A are as in

4.24.
(d) b̃ : MK

≥ →MK
≥ is continuous in the sense of 4.13.

We prove (a). For m′ ∈MK
≥ , we set

(e) b̃(m′) =
∑

A∈XΞ
(b(A),m′)A.

Using 4.14(b), we see that the last sum belongs to MK
≥ . Thus, m′ 7→ b̃(m′) is a
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well defined group homomorphism b̃ : MK
≥ →MK

≥ . Clearly, b̃ satisfies the equation

in (a). For all p ∈ A and m′ ∈ MK
≥ we have b̃(pm′) = p̄b̃(m′). Let w ∈ W,m ∈

MK
≤ ,m

′ ∈MK
≥ . We have

(m, T̃w b̃m
′) = (T̃w−1m, b̃m′) = (bT̃w−1m,m′) = (T̃wbm,m′) = (bm, T̃w−1m′)

= (m, b̃T̃w−1m′).

Thus, (m, T̃wb̃m
′) = (m, b̃T̃w−1m′). Since this holds for any m, it follows that b̃

is H-antilinear; the existence part of (a) is proved. The uniqueness part of (a) is
obvious.

We prove (b). For any m ∈ MK
≤ ,m

′ ∈ MK
≥ we have (m, b̃2m′) = (bm, b̃m′) =

(b2m,m′) = (m,m′) so that (m, b̃2m′) = (m,m′). Since this holds for any m, it

follows that b̃2m′ = m′ and (b) is proved; (c) follows from (a), taking m = B,m′ =
A; (d) follows from (e), using 4.14(b). The lemma is proved.

Theorem 9.7. (a) For m,m′ ∈MK
≤ we have (m, θε(m

′)) = (m′, θε(m)).

(b) For m′′ ∈ MK
≥ we have b̃(m′′) = vνK θεκε(m

′′) = κ−1
ε bκε(m

′′) =

v2νK θεbθ
−1
ε (m′′).

(c) We have b̃(vνK eε′,K) = vνK eε′,K for any ε′ ∈ Sε̃.

We prove (a). By 9.6, we have (b(m′),m′′) = (m′, b̃(m′′)) for any m′ ∈ MK
≤ ,

m′′ ∈ MK
≥ or, equivalently: (v−νKκεθε(m′),m′′) = (m′, b̃(m′′)). Using 9.5(a), we

see that the left hand side of the last equality equals vνK (κε(m
′′), θε(m

′)). Thus, we

have vνK (κε(m
′′), θε(m

′)) = (m′, b̃(m′′)). We make the substitution m = κε(m
′′) ∈

MK
≤ . We obtain the equality (m, θε(m

′)) = v−νK (m′, b̃κ−1
ε (m))K for any m,m′

as in (a). Let τ be the composition MK
≤

v−νKκ−1
ε−−−−−−→ MK

≥
b̃−→ MK

≥ . Then we have

(m, θε(m
′)) = (m′, τ(m)) for any m,m′ as in (a). Now, for any s ∈ S and m ∈MK

≤ ,

we have τ(T̃s∗(m)) = τ(θε(m)) (by 9.6(a) and 6.5(a)). Moreover, τ is continuous

in the sense of 4.13 since so are κ−1
ε , b̃.

Let ε′ ∈ Sε̃ and let ε′′ = κε(ε
′ωε,K). For any m′ ∈MK

≤ we have

(m′, τ(eε′′,K)) = (eε′′,K , θε(m
′)) = (m′, eε′,K)

where the second equality follows from 9.5. Thus, (m′, τ(eε′′,K)) = (m′, eε′,K).
Since this holds for any m′ ∈ MK

≤ , it follows that τ(eε′′,K) = eε′,K . We now see

that τ satisfies the properties that characterize θε (see 6.9). Hence we have τ = θε.
This proves (a).

We prove (b). Let m′ ∈ MK
≤ ,m

′′ ∈ MK
≥ . By the arguments in the proof

of (a) we have (m′, b̃(m′′)) = (b(m′),m′′) = vνK (κε(m
′′), θε(m

′)) and, by (a),

the last expression is equal to vνK (m′, θεκε(m
′′)). Thus, we have (m′, b̃(m′′)) =

vνK (m′, θεκε(m
′′)). Since this holds for all m′ ∈ MK

≤ , it follows that b̃(m′′) =

vνK θεκε(m
′′) and the first equality in (b) is proved. The second and third equali-

ties in (b) follow from the definition 6.6 of θε.
Now (c) follows from (b) using 6.5(b) and 4.14(a). The theorem is proved.

Corollary 9.8. For any A,B ∈ XΞ we have RA,B = Rκε(B),κε(A). (Notation of
4.24.)
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Using 9.7(b) and the formula b(C) =
∑

B∈XΞ
RB,CB (see 4.24), we see that

b̃(A) = κ−1
ε bκε(A) = κ−1

ε

( ∑
B∈XΞ

RB,κε(A)B

)
=
∑
B∈XΞ

Rκε(B),κε(A)B

for any A ∈ XΞ. We compare this with the formula in 9.6(c). The corollary follows.

10. Integrability of θε(A)

10.1. Let A = Z[T /T K ]((v−1)) be the ring of all power series in v−1 with coeffi-
cients in the group algebra of T /T K over Z; a typical element of A is∑

t∈T /T K ;n∈Z an,t[t]v
n where an,t ∈ Z and there exists n0 ∈ Z such that an,t = 0

for n > n0; moreover, for any given n ∈ Z, an,t is zero for all but finitely many
t ∈ T /T K . Note that A is an integral domain since T /T K is a finitely generated
free abelian group. It contains as a subring the group algebra A[T /T K ] of T /T K

over A. Let a 7→ a‡ be the involution of the ring A given by∑
t∈T /T K ;n∈Z

an,t[t]v
n 7→

∑
t∈T /T K ;n∈Z

an,t[−t]vn.

Let MK
int be the set of formal expressions m =

∑
A∈XΞ;n∈ZmA,nv

nA (where

mA,n ∈ Z) such that there exists n0 ∈ Z with mA,n = 0 whenever n > n0 and such
that, for any n ∈ Z, the set {A|mA,n 6= 0} is finite.

For any m ∈MK and A ∈ XΞ, we write mA =
∑

n∈ZmA,nv
n where mA,n ∈ Z;

we say that m is integrable if
∑

A∈XΞ;n∈ZmA,nv
nA ∈MK

int. Note that MK
c ⊂MK

int.

We regardMK as aA[T /T K ]-module in which [t]m = btc◦m form ∈MK ; in the
right hand side, t is an element of T while in the left hand side [t] is determined by
the image of t ∈ T in T /T K . We regardMK

int as an A-module by (a,m) 7→ am = m′

where m′A,n =
∑

t,B,p,q;γt(B)=A;p+q=n ap,tmB,q. By restriction, we obtain on MK
c

(which is contained both in MK
c and in MK

int) two A[T /T K ]-module structures,
which coincide.

10.2. We define a pairing (|) : MK
int ×MK

int → A by

(m|m′) =
∑

t∈T /T K ,n∈Z

an,t[t]v
n(a)

where an,t =
∑

A∈XΞ

∑
p,q∈Z;p+q=nmA,pm

′
γtA,q

. We show that the right hand side

of (a) is a well defined element of A. Let n0, n
′
0 be integers such that, for all A,

mA,p = 0 whenever p > n0 and m′A,q = 0 whenever q > n0. Then an,t = 0 whenever
n > p0 + q0. For fixed n, we may restrict the sum over p, q to those p, q such that
p ≤ n0, q ≤ n′0, p+q = n. There are only finitely many such p, q. Hence it is enough
to show that for fixed p, q such that p+ q = n, the set

{(A, t) ∈ XΞ × (T /T K)|mA,pm
′
γtA,q 6= 0}

is finite. If (A, t) is in this set then, since mA,p 6= 0, we see that A runs over a fixed
finite set F and γtA runs over a fixed finite set F ′. But then t runs over the set of
all t′ ∈ T /T K such that γt′A = B for some A ∈ F and some B ∈ F ′. This set is
finite by 2.12(f). Our assertion is verified.
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10.3. From the definitions we see that, for any m,m′ ∈MK
int and a ∈ A, (am|m′) =

(m|a‡m′) = a(m|m′), (m|m′) = (m′|m)‡.
If m,m′ belong to MK

c , then clearly, (m, [t]m′) (notation of 9.1) is zero for all
but finitely many t ∈ T /T K , so that

(m|m′) =
∑

t∈T /T K ;A∈XΞ

mAm
′
γtA[t] =

∑
t∈T /T K

(m, [t]m′)[t] ∈ A[T /T K ].

We now fix ε ∈ Sε̃. Let N ≥ 1 be as in 8.12(b), so that m 7→ ∆Nθε(m) is a well
defined A-linear map Θε : MK

c →MK
c .

Lemma 10.4. If m,m′ ∈ MK
c , then Θεm,Θεm

′ ∈ MK
c satisfy (m|Θεm

′) =
(m′|Θεm).

By 10.3, it suffices to prove that (m, [t]Θε(m
′)) = (m′, [t]Θε(m)) for t ∈ T /T K .

We have

(m, [t]Θε(m
′)) = (m, [t]∆Nθε(m

′)) = ([−t](∆N )‡m, θε(m
′))

= (m′, θε([−t](∆N )‡m)) = (m′, [t]∆Nθε(m)) = (m′, [t]Θε(m)).

(The third equality follows from 9.7(a).) The lemma is proved.

Lemma 10.5. For any m ∈MK
c we have Θ2

ε(m) = (∆∆‡)Nm.

With notation in the proof of 8.9, the (meromorphic) map θε : V′ → V′ has
square 1. This clearly implies the lemma.

Theorem 10.6. (a) For any m ∈MK
c we have θε(m) ∈MK

int.
(b) For any m1,m2 ∈MK

c we have (θε(m1)|θε(m2)) = (m2|m1).

We prove (a). Let m′ = θε(m) ∈MK
≥ . By 8.12(b) we have ∆Nm′ ∈MK

c and in

particular, ∆Nm′ ∈ MK
int for some N ≥ 1. Multiplying with ∆−N ∈ A we obtain

m′ ∈MK
int. This proves (a).

We prove (b). Using 10.4 with m = Θε(m1),m
′ = m2, as well as 10.5, we have

(Θε(m1)|Θε(m2)) = (m2|Θ2
ε(m1)) = (m2|(∆∆‡)Nm1) = (∆∆‡)N (m2|m1).

On the other hand,

(∆∆‡)N (θε(m1)|θε(m2)) = (∆Nθε(m1)|∆Nθε(m2)) = (Θε(m1)|Θε(m2)).

It follows that (∆∆‡)N (θε(m1)|θε(m2)) = (∆∆‡)N (m2|m1). This implies (b), since
(∆∆‡)N 6= 0 and A is an integral domain. The theorem is proved.

Corollary 10.7. For A ∈ XΞ, we write θε(A) =
∑

C∈XΞ
f εC,AC where f εC,A ∈ A.

We also write f εC,A =
∑

n∈Z f
ε
C,A;nv

n where f εC,A;n ∈ Z. Then, for any A,B ∈ XΞ

we have ∑
n∈Z

(
∑

C∈XΞ;p,q∈Z;p+q=n

f εC,A;pf
ε
C,B;q)v

n = δA,B.(a)

(By the integrability of θε(A) and θε(B), the coefficient of vn is well defined for
any n, since it is given by a finite sum.)

We consider the map from A to the set Z((v−1)) of power series in v−1 with
integer coefficients, given (with the notation of 10.1) by∑

t∈T /T K ;n∈Z

an,t[t]v
n 7→

∑
n∈Z

an,0v
n.
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We apply this map to both sides of the identity in 10.6(b) with m1 = A,m2 = B.
The corollary follows.

Corollary 10.8. (a) For any A,C ∈ XΞ we have f εC,A ∈ Z[v−1].

(b) For any A ∈ XΞ there exists a unique alcove lε(A) ∈ XΞ such that f εC′,A ∈
v−1Z[v−1] for all C ′ 6= lε(A) and f εlε(A),A /∈ v−1Z[v−1]. In fact, we have f εlε(A),A ∈
sgnA +v−1Z[v−1] where sgnA = ±1.

(c) If m ∈MK
int, then m′ =

∑
C,nm

′
C,nCv

n, where

m′C,n =
∑

A,p,q;p+q=n

mA,pf
ε
C,A;q,

is a well defined element of MK
int, denoted by θε(m). (This agrees with the earlier

meaning of θε(m), when m ∈ MK
c .) Thus we have a map θε : MK

int → MK
int. For

a ∈ A,m ∈MK
int, we have θε(am) = a‡θε(m).

(d) The map m→ θε(m) of MK
int into itself has square 1.

(e) The map A 7→ lε(A) of XΞ into itself is an involution and sgnA = sgnlε(A).

The equality 10.7(a), withA = B, can be written in the form
∑

C∈XΞ
(f εC,A)2 = 1,

where the sum in the left hand side is convergent in the power series topology of

Z((v−1)). This implies immediately (a) and (b). (We use the fact that
∑N

j=1 n
2
j = 0

with nj ∈ Z implies nj = 0 for all j and that
∑N

j=1 n
2
j = 1 with nj ∈ Z implies

nj = 0 for all but one j, for which nj = ±1.)
We prove (c). We can find n0 such that mA,n = 0 whenever n > n0. Using

(a), we see that m′C,n =
∑

A,p,q;p≤n0;q≤0;p+q=nmA,pf
ε
C,A;q. Here (p, q) runs over

a finite set and then mA,p = 0 unless A is in some finite set; thus, m′C,n is a

well defined integer. Clearly, m′C,n = 0 if n > n0. We consider, for fixed n, the

set {C|m′C,n 6= 0}. If C is in this set, then there exist (A, p, q) running through

some finite set (depending on n) so that f εC,A,q 6= 0. But then C can take only

finitely many values, since
∑

C,q f
ε
C,A;q = θε(A) is integrable, by 10.6(a). Thus, m′

is integrable. The last assertion of (c) follows from the definitions, using 6.7(c).
We prove (d). The identity in (d) is equivalent to the collection of identities
(f)
∑

C,p,q;p+q=n f
ε
B,C;pf

ε
C,A;q = δA,Bδn,0 for A,B ∈ XΞ and n ∈ Z.

From 10.5 we have, for any A ∈ XΞ: (∆∆‡)N (θ2
ε (A)) = ∆Nθε(∆

Nθε(A)) =
Θ2
ε(A) = (∆∆‡)NA. Multiplying with (∆∆‡)−N ∈ A gives θ2

ε (A) = A. This
implies (f); thus, (d) is proved.

We prove (e). We write (f) for A = B and n = 0, taking (a) into account:∑
C,p,q;p≤0;q≤0;p+q=0

f εA,C;pf
ε
C,A;q = 1

or, equivalently,
∑

C f εA,C;0f
ε
C,A;0 = 1. Now using (b), we can rewrite this in the

form f εA,lε(A);0 = sgnA = ±1. Using (b) once more, we deduce that lε(lε(A)) = A

and sgnA = sgnlε(A). The corollary is proved.

Corollary 10.9. For any A,C ∈ XΞ, we have RA,C ∈ v−νKZ[v]. More precisely,
RA,C ∈ v−νK+1Z[v] if κε(A) 6= lε(C) and RA,C ∈ sgnC v−νK + v−νK+1Z[v] if
κε(A) = lε(C). The coefficient of v−νK+1 in RA,C is equal to f εκε(A),C;−1.
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By the definition of RA,C (see 4.24) we have∑
A∈XΞ

RA,CA = b(C) = v−νKκεθε(C) = v−νKκε(
∑
B∈XΞ

f εB,CB)

= v−νK
∑
B∈XΞ

f εB,Cκε(B) = v−νK
∑
A∈XΞ

f εκε(A),CA.

Hence RA,C = v−νKf εκε(A),C and the conclusion follows from 10.8.

Conjecture 10.10. sgnA = 1 for any A.

This holds for K = ∅, by [L1].

10.11. By extending the scalars of the A[T /T K ]-module MK
c to the field of frac-

tions of A[T /T K ], we obtain a vector space M̂K
c over that field. We can regard

θε, κε as isomorphisms M̂K
c
∼−→ M̂K

c which are semilinear in a suitable sense. We

then define b, b′ : M̂K
c
∼−→ M̂K

c by b = v−νKκεθε and b′ = θεbθ
−1
ε = v−2νKκ−1

ε bκε =
v−νKθεκε.

Proposition 10.12. The operators b, b′ from M̂K
c to M̂K

c coincide.

Since b2 = 1, it suffices to show that bb′ = 1. We have bb′ = κεθεθεκε. As we have
seen in the proof of 10.5, we have θ2

ε = 1, hence bb′ = κεκε = 1. The proposition is
proved.

10.13. The operator θε : M̂K
c → MK

c can be characterized (up to multiplication
by ±1) by the following three properties: it is linear over the field of fractions of
A[T /T K ]; it is H-linear; it has square 1. (This follows from the argument in the
proof of 8.9.)

11. The elements B[

11.1. We consider the Z[v−1]-submodule MK
≤ = {m ∈MK

≤ |mA ∈ Z[v−1] ∀A} of

MK
≤ .

Theorem 11.2. Let B ∈ XΞ.
(a) There exists a unique element B[ ∈ MK

≤ such that B[ − B ∈ v−1MK
≤ and

such that b(B[) = B[.
(b) We have B[ =

∑
A∈XΞ;A≤B ΠA,BA where ΠA,B ∈ v−1Z[v−1] for all A < B

and ΠB,B = 1.

The elements RA,B ∈ A (see 4.24) for A,B ∈ XΞ satisfy RA,B = 0 unless A ≤ B.
The equation b2 = 1 can be written as∑

A∈XΞ;C≤A≤B
R̄A,BRC,A = δB,C(c)

for all C ≤ B. We have
(d) RB,B = 1 for all B.
We apply [L3, 24.2.1] with (H,≤) = (XΞ,≥) and rB,A = RA,B for A ≤ B in

XΞ (that is B ≤ A in H). The assumptions of that lemma are satisfied by (c),(d).
Replacing pB,A in the conclusion of that lemma by ΠA,B we see that there exist
elements ΠA,B ∈ Z[v−1] defined for A ∈ XΞ such that A ≤ B so that

(e) ΠB,B = 1;
(f) ΠA,B ∈ v−1Z[v−1] if A < B;
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(g) ΠC,B =
∑

A∈XΞ;C≤A≤B Π̄A,BRC,A for all C ≤ B.

Setting B[ =
∑

A∈XΞ;A≤B ΠA,BA, we see that (g) implies b(B[) = B[. Thus,

the existence part of (a) is established (in the stronger form (b)).
We now prove the uniqueness part of (a). It suffices to prove the following

statement.
(h) Let G ∈ v−1MK

≤ be such that b(G) = G. Then G = 0.

Assume that G 6= 0. Since supp(G) is bounded above, we can find B ∈ supp(G)
such that A /∈ supp(G) for any A > B.

Assume that B appears with non-zero coefficient in GAb(A). Then B ∈
supp(b(A)), so that B ≤ A and GA 6= 0, so that A ∈ supp(G). Hence the in-
equality B ≤ A cannot be strict. Thus B appears with coefficient 0 in GAb(A)
except when A = B in which case the coefficient is GB. It follows that B appears in
b(G) =

∑
A∈XΞ

GAb(A) with coefficient GB . Since b(G) = G, the coefficient of B in

G is equal to the coefficient of B in b(G). Hence GB = GB . Since GB ∈ v−1Z[v−1],
it follows that GB = 0. This contradicts the assumption B ∈ supp(G). The proof
is complete.

11.3. We make the convention that ΠA,B = 0 if A � B. Thus, we have

B[ =
∑
A∈XΞ

ΠA,BA.

For any A,B in XΞ we define µA,B ∈ Z to be the coefficient of v−1 in ΠA,B ∈ Z[v−1].
Note that µA,B = 0 unless A < B.

Example 11.4. Let ε ∈ Sε̃. We have (A+
ε )[ = eε,K .

For A ∈ DΞ(ε) we have A ≤ A+
ε hence −d(A,A+

ε ) < 0 if A 6= A+
ε and

−d(A,A+
ε ) = 0 if A = A+

ε . Thus, eε,K − A+
ε ∈ v−1Z[v−1]. On the other hand, we

have b(eε,K) = eε,K by the definition of b. We see that eε,K satisfies the defining

properties 5.2(a) of (A+
ε )[. Our assertion follows.

11.5. In the remainder of this section we use the conventions of 10.1 relative to
s ∈ S.

Proposition 11.6. Let s ∈ S and let B ∈ XΞ. If B : ♥, then

(T̃s + v−1)B[ = (sB)[ +
∑

A:♣♠;A<B

µA,BA
[.

Let

G = (T̃s + v−1)B[ −
∑

A:♣♠;A<B

µA,BA
[ − (sB)[.
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We show that G satisfies the assumptions of 11.2(h). We have

G =
∑
C

ΠC,BT̃sC +
∑
C

v−1ΠC,BC −
∑

A:♣♠;C;A<B

µA,BΠC,AC −
∑
C

ΠC,sBC

=
∑
C:♥

ΠC,BsC +
∑
C:♣

ΠC,B(sC + (v − v−1)C) +
∑
C:♠

vΠC,BC

+
∑
C

v−1ΠC,BC −
∑

A:♣♠;C;A<B

µA,BΠC,AC −
∑
C

ΠC,sBC

=
∑
C:♣

ΠsC,BC +
∑
C:♥

ΠsC,BC +
∑
C:♣

ΠC,B(v − v−1)C +
∑
C:♠

vΠC,BC

+
∑
C

v−1ΠC,BC −
∑

A:♣♠;C;A<B

µA,BΠC,AC −
∑
C

ΠC,sBC.

Thus,

GC = ΠsC,B + v−1ΠC,B −ΠC,sB −
∑

A:♣♠;A<B

µA,BΠC,A

if C : ♥;

GC = ΠsC,B + ΠC,B(v − v−1) + v−1ΠC,B −ΠC,sB −
∑

A:♣♠;A<B

µA,BΠC,A

if C : ♣;

GC = (v + v−1)ΠC,B −ΠC,sB −
∑

A:♣♠;A<B

µA,BΠC,A

if C : ♠. Modulo v−1Z[v−1], we have∑
A:♣♠;A<B

µA,BΠC,A =
∑

A:♣♠;A<B

µA,BδC,A

and this is µC,B if C : ♣♠ and is 0 otherwise. Hence modulo v−1Z[v−1], we have
GC = δsC,B − δC,sB = 0 if C : ♥;
GC = δsC,B − δC,sB + µC,B − µC,B = 0 if C : ♣;
GC = µC,B − δC,sB − µC,B = 0 if C : ♠.
(If C : ♣♠, we must have C 6= B since B : ♥. If C : ♠, we must have C 6= sB

since sB : ♣.) Thus, GC = 0 mod v−1Z[v−1] for all C so that G ∈ v−1MK
≤ . On

the other hand, using the continuity and the H-antilinearity of b we have

b(G) = (T̃s + v−1)b(B[)−
∑

A:♣♠;A<B

µA,Bb(A
[)− b((sB)[)

= (T̃s + v−1)B[ −
∑

A:♣♠;A<B

µA,BA
[ − (sB)[ = G.

Thus, b(G) = G. Using 11.2(h), we see that G = 0. The proposition is proved.

Corollary 11.7. In the setup of 11.6, we have ΠB,sB = v−1. In particular,
µB,sB = 1.

By 11.6 and its proof we have GC = 0 for all C. In particular GB = 0 so that

ΠsB,B + v−1ΠB,B −ΠB,sB −
∑

A:♣♠;A<B

µA,BΠB,A = 0.(a)
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Since B < sB we have ΠsB,B = 0. For any A in the sum we have ΠA,B = 0. Hence
(a) becomes v−1ΠB,B −ΠB,sB = 0. The corollary follows.

Lemma 11.8. Let s ∈ S and let B ∈ XΞ. If B : ♣♠, then

T̃sB
[ = vB[ −

∑
A:♥;A<B;sA 6=B

µA,BA
[.

Note that the condition sA 6= B in the sum is automatic if B : ♠ (since sA : ♣).
Let

G = T̃sB
[ − vB[ +

∑
A:♥;A<B;sA 6=B

µA,BA
[.

We show that G satisfies the assumptions of 11.2(h). We have

G =
∑
C

ΠC,BT̃sC −
∑
C

vΠC,BC +
∑

A:♥;C;A<B;sA 6=B
µA,BΠC,AC

=
∑
C:♥

ΠC,BsC +
∑
C:♣

ΠC,B(sC + (v − v−1)C) +
∑
C:♠

vΠC,BC

−
∑
C

vΠC,BC +
∑

A:♥;C;A<B;sA 6=B
µA,BΠC,AC

=
∑
C:♣

ΠsC,BC +
∑
C;C:♥

ΠsC,BC +
∑
C:♣

ΠC,B(v − v−1)C +
∑
C:♠

vΠC,BC

−
∑
C

vΠC,BC +
∑

A:♥;C;A<B;sA 6=B
µA,BΠC,AC.

Thus,
GC = ΠsC,B − vΠC,B +

∑
A:♥;A<B;sA 6=B µA,BΠC,A if C : ♥;

GC = ΠsC,B − v−1ΠC,B +
∑

A:♥;A<B;sA 6=B µA,BΠC,A if C : ♣;

GC =
∑

A:♥;A<B;sA 6=B µA,BΠC,A if C : ♠.

The sum
∑

A:♥;A<B;sA 6=B µA,BΠC,A is equal modulo v−1Z[v−1] to µC,B if C :
♥, sC 6= B and to 0 otherwise. If C : ♥ we have C 6= B. Thus, if C : ♥, sC 6= B
we have (modulo v−1Z[v−1]) GC = −µC,B + µC,B = 0; if C : ♥, sC = B (so that
B : ♣) then we have (modulo v−1Z[v−1]) GC = 1 − µsB,B and this is 0 by 11.7
applied to sB instead of B. If C : ♣ we have sC 6= B since sC : ♥ and B : ♣♠.
Thus, in this case, we have GC = 0 (modulo v−1Z[v−1]). If C : ♠ we again have
GC = 0 (modulo v−1Z[v−1]).

Thus, GC = 0 mod v−1Z[v−1] for all C so that G ∈ v−1MK
≤ . On the other

hand, using the continuity and the H-antilinearity of b we have

b(G) = (T̃s − v)b(B[) +
∑
A:♥
A<B
sA 6=B

µA,Bb(A
[) = (T̃s − v)B[ +

∑
A:♥
A<B
sA 6=B

µA,BA
[.

Thus, b(G) = G. We may now use 11.2(h) and we see that G = 0. The lemma is
proved.

Lemma 11.9. We preserve the assumptions of 11.8. Let A ∈ XΞ be such that
A : ♥, sA 6= B. We have µA,B = 0.

We may assume that A ≤ B. We argue by induction on d(A,B) ≥ 0. If
d(A,B) = 0 we have A = B so that µA,B = 0. Assume now that d(A,B) ≥ 1.
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With the notation in the proof of 11.8 we have GC = 0 for any C. In particular,
GsA = 0. Note that sA : ♣ so that the equation GsA = 0 reads

ΠA,B − v−1ΠsA,B +
∑

A′:♥;A′<B;sA′ 6=B
µA′,BΠsA,A′ = 0.

Taking the coefficient of v−1 we obtain

µA,B +
∑

A′:♥;sA<A′<B;sA′ 6=B
µA′,BµsA,A′ = 0.(a)

since sA 6= B. Since A : ♥, we have A < sA hence for A′ in the sum we have
A < sA < A′ < B so that d(A′, B) < d(A,B). The induction hypothesis is
applicable to A′ and gives µA′,B = 0. Introducing this in (a), we obtain µA,B = 0.
The lemma is proved.

Proposition 11.10. Let s ∈ S and let B ∈ XΞ. If B : ♣♠, then T̃sB
[ = vB[.

This follows immediately from 11.7, 11.8.

11.11. Let p 7→ p† be the ring homomorphism A → A which takes vn to (−v)n
for any n. Let χ → χ† be the group homomorphism H → H which takes pTw to
(−1)l(w)p†Tw for any p ∈ A and any w ∈ W . It is easy to check that this is a ring
homomorphism with square 1, which commutes with¯: H → H.

Let m→ m† be the group homomorphism MK
≤ →MK

≤ defined by
∑

A∈XΞ
mAA

7→
∑

A∈XΞ
(mA)†ιAA where A 7→ ιA is a fixed function X → {1,−1} such that

ι(A)ι(B)−1 = (−1)d(A,B) for all A,B ∈ X . (Such a function exists by the additivity
property of d.) It is clear that m 7→ m† has square 1. One checks easily that
(χm)† = χ†m† for all χ ∈ H,m ∈MK

≤ .

Let b† : MK
≤ → MK

≤ be defined by b†(m) = (b(m†))†. We show that b† = b.

First, b† is continuous (in the sense of 4.13) since m→ m† is obviously continuous
and b is continuous, by definition. Next, if χ ∈ H,m ∈MK

≤ , we have

b†(hm) = (b((hm)†))† = (b(h†m†))† = (h†b(m†))† = h̄b†(m)

so that b† is H-antilinear. Finally, if ε ∈ Sε̃, we have

(eε,K)† =
∑

A∈DΞ(ε)

v−d(A,A
+
ε )(−1)−d(A,A

+
ε )ιAA = ιA+

ε
eεK

hence

b†(eε,K) = (b((eε,K)†))† = ιA+
ε
(b(eε,K))† = ιA+

ε
(eε,K)† = ιA+

ε
ιA+

ε
eε,K = eε,K .

Thus, b† satisfies the defining properties of b hence b† = b.

Proposition 11.12. For any A,B in XΞ we have (ΠA,B)† = (−1)d(A,B)ΠA,B. In
particular, µA,B = 0 if d(A,B) is even.

An equivalent statement is that

ιB(B[)† = B[(a)



262 G. LUSZTIG

for any B ∈ XΞ. It is therefore enough to show that ιB(B[)† satisfies the defining

properties 11.2(a) of B[. First, we have ιB(B[)† = ιB
∑

A∈XΞ
Π†A,BιAA and this is

clearly equal to B modulo v−1MK
≤ . Next, we have

b(ιB(B[)†) = ιB(b†(B[))† = ιB(b(B[))† = ιB(B[)†

(we have used b† = b, see 11.11). Thus, (a) is verified. The proposition is proved.

11.13. For any A ∈ XΞ let IA be the set of all s ∈ S such that either sA /∈ Ξ or
sA ∈ Ξ, s ∈ L(A) (or equivalently, A : ♣♠, relative to s, in the notation of 11.5).

For A,B ∈ XΞ such that IA 6⊂ IB , we set

µ′A,B =


µA,B if A ≤ B,

1 if B < A = sB for some s ∈ S,

0 otherwise .

We prove the following statement.
(a) Let n ≥ 1 and let (A0, A1, . . . , An) ∈ Xn+1

Ξ be such that µ′A0,A1
µ′A1,A2

. . .

µ′An−1,An
is defined and non-zero. Then there exist w1, w2, . . . , wn in W such that

l(w1) ≤ 1, l(w2) ≤ 2, . . . , l(wn) ≤ n and such that A0 ≤ w1A1 ≤ w2A2 ≤ · · · ≤
wnAn.

We argue by induction on n. For n = 1 this follows directly from the defi-
nition of µ′. Assume now that n ≥ 2. By the induction hypothesis there exist
w1, w2, . . . , wn−1 in W such that l(w1) ≤ 1, l(w2) ≤ 2, . . . , l(wn−1) ≤ n − 1 and
such that A0 ≤ w1A1 ≤ w2A2 ≤ · · · ≤ wn−1An−1. Since µ′An−1,An

6= 0 we have

either An−1 ≤ An or An−1 = sAn for some s ∈ S. In the second case, we set
wn = wn−1s and we have l(wn) ≤ n and wn−1An−1 = wnAn.

In the first case we apply the following statement with A = An−1, B = Bn, w =
wn−1 and we set wn = w′.

Let A,B ∈ Ξ be such that A ≤ B and let w ∈ W . Then there exists w′ ∈W such
that l(w′) ≤ l(w) and wA ≤ w′B. We argue by induction on l(w). The result is
trivial in the case where l(w) = 0. Assume now that l(w) ≥ 1. Then w = sw1 where
s ∈ S, l(w1) = l(w)−1. By the induction hypothesis, there exists w′1 ∈W such that
l(w′1) ≤ l(w1) and w1A ≤ w′1B. Let A′ = w1A,B

′ = w′1B so that A′ ≤ B′. From
[L1, 3.2] it follows that we have either sA′ ≤ B′ or sA′ ≤ sB′. Hence wA ≤ w′1B
or wA ≤ sw′1B. This completes the proof.

Theorem 11.14. The triple (XΞ, (IA)A∈XΞ , µ
′) is a W -graph (see A.2).

We show that the finiteness condition A.1(a) is satisfied in our case. Let A,B ∈
XΞ and let n ≥ 1. Let XΞ,n(A,B) be the set of all (A0, A1, . . . , An) ∈ Xn+1

Ξ such
that A0 = A,An = B and µ′A0,A1

µ′A1,A2
. . . µ′An−1,An

is defined and non-zero. It is

enough to show that XΞ,n(A,B) is finite. Let (A0, A1, . . . , An) ∈ XΞ,n(A,B). By
11.13(a) there exist w1, w2, . . . , wn in W such that l(w1) ≤ 1, l(w2) ≤ 2, . . . , l(wn) ≤
n and such that

(a) A0 ≤ w1A1 ≤ w2A2 ≤ · · · ≤ wnAn.
Then each of w1, w2, . . . , wn can only take finitely many values. In particular,
wnAn = wnB takes only finitely many values. Since A0 = A, we deduce from
(a) and 4.15(b) that each of w1A1, w2A2, . . . , wn−1An−1 takes only finitely many
values. Hence each of A1, A2, . . . , An−1 takes only finitely many values. Thus, the
finiteness condition A.1(a) is verified in our case.
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Next we note that any subset of Ξ that is of finite type in the sense of A.3 is
necessarily bounded above. It is enough to check that for any B ∈ XΞ and any
n ≥ 1, the set {A ∈ XΞ|XΞ,n(A,B) 6= ∅} is bounded above. Let A be an element
of this set. Using again 11.13(a), we see that A ≤ wB for some w ∈ W such that
l(w) ≤ n. Since w takes only finitely many values, we see that our set is indeed
bounded above.

As in A.3, we consider the set E consisting of all formal sums
∑

A∈XΞ
cAA

with cA ∈ A such that {A ∈ XΞ|cA 6= 0} is of finite type (and in particular,
bounded above). For any

∑
A∈XΞ

cAA ∈ E , the sum
∑

A∈XΞ
cAA

[ is a well defined

element of MK
≤ . (The family of elements (cAA

[)A∈XΞ is locally finite in MK .)

The correspondence
∑

A∈XΞ
cAA 7→

∑
A∈XΞ

cAA
[ ∈ MK

≤ identifies E with an A-

submodule of MK
≤ . From 11.6 and 11.10 we see that E is a H-submodule of MK

≤
and that the operator τ ′s on E coincides with the operator T̃s in this H-module
structure. It follows that the operators τ ′s satisfy the identity defining a W -graph
(see A.4(c)). The theorem is proved.

Proposition 11.15. Let B ∈ XΞ and let t ∈ T ′. We have btc ◦ B[ = (γtB)[.
Equivalently, ΠγtA,γtB = ΠA,B for all A,B ∈ XΞ. In particular, µγtA,γtB = µA,B
for all A,B ∈ XΞ.

We write B[ =
∑

A∈XΞ
ΠA,BA. We have btc ◦ B[ =

∑
A∈XΞ

ΠA,BγtA. Thus,

btc ◦ B[ − γtB =
∑

A∈XΞ;A 6=B ΠA,BγtA ∈ v−1MK
≤ . Using the definition 11.2(a) of

(γtB)[ we see that it remains to verify the equality b(btc ◦B[) = btc ◦B[. But this
follows from 6.7 and b(B[) = B[. The proposition is proved.

Proposition 11.16. Let ε ∈ S. (See 2.3.)

(a) There is a unique alcove B ∈ DΞ(ε) such that d(C,B) > 0 for all C ∈
DΞ(ε), C 6= B.

(b) We have B[ =
∑

A∈DΞ(ε) v
−d(A,B)A.

By 2.12(b), we can choose t ∈ T ′ so that ε+t ∈ Sε̃. Since γ−t is a homeomorphism
Ξ → Ξ carrying ε + t to ε, an alcove A ⊂ Ξ contains ε + t in its closure if and
only if γ−tA contains ε in its closure. It follows that A 7→ γ−tA is a bijection
DΞ(ε + t) → DΞ(ε). In particular, B = γ−tA

+
ε+t ∈ DΞ(ε). From 11.4 and 11.15 we

see that

B[ = b−tc ◦ eε+t,K =
∑

A∈DΞ(ε+t)

v−d(A,A
+
ε+t)γ−tA.

We make the substitution γ−tA = C and use 2.12(c); we obtain

B[ =
∑

C∈DΞ(ε)

v−d(C,B)C.

This, together with 11.2(b) shows that d(C,B) > 0 for all C ∈ DΞ(ε), C 6= B. The
proposition follows.

Theorem 11.17. Let ε ∈ Sε̃. For any A,C ∈ XΞ, we have ΠA,C ∈ v−νKZ[v].
More precisely, ΠA,C ∈ v−νK+1Z[v] if κε(A) 6= lε(C) and ΠA,C ∈ sgnC v

−νK +
v−νK+1Z[v] if κε(A) = lε(C). (Notation of 10.8.)

We have
(a) ΠA,C = RA,C +

∑
B∈XΞ;B<C;A≤B Π̄B,CRA,B.
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(For A ≤ C this follows from 11.2(g); if A 6≤ C, both sides of (a) are 0.) For any
B in the sum we have ΠB,C ∈ v−1Z[v−1] hence Π̄B,C ∈ vZ[v]; on the other hand,
by 10.9, we have RA,B ∈ v−νKZ[v]. Hence Π̄B,CRA,B ∈ v−νK+1Z[v]. Hence our
sum over B belongs to v−νK+1Z[v]. Combining this with the conclusion of 10.9, we
see from (a) that the theorem holds.

11.18. Let us write ΠA,B =
∑

n∈Z ΠA,B;nv
n with ΠA,B;n ∈ Z. Picking up the

coefficients of v−νK+1 in the two sides of 11.17(a) and using 10.9, 10.8, we obtain
(a) ΠA,B;−νK+1 −Πlεκε(A),B;−1 sgnκε(A) = f εκε(A),B;−1 where f εκε(A),B;−1 is as in

10.7. We have used that A ≤ lεκε(A), which follows from 10.9).

11.19. Let ε ∈ Sε̃. Let A,B ∈ DΞ(ε). Write A = Aε,y, B = Aε,w where y, w ∈W I
∗

(see 4.9). Then the polynomial ΠA,B is (up to a power of v) the same as the
polynomial attached to y, w ∈ W I in [KL1] (with q replaced by v2). This is proved
in the same way as in the case K = ∅ [L1, 11.15].

12. The elements B]

12.1. We consider the Z[v−1]-submodule MK
≥ = {m ∈MK

≥ |mA ∈ Z[v−1] ∀A} of

MK
≥ .

Theorem 12.2. Let B ∈ XΞ.

(a) There exists a unique element B] ∈ MK
≥ such that B] − B ∈ v−1MK

≥ and

such that b̃(B]) = B].
(b) We have B] =

∑
A∈XΞ;B≤A Π′B,AA where Π′B,A ∈ v−1Z[v−1] for all B < A

and Π′B,B = 1.

(c) For any C ∈ XΞ such that B ≤ C, we have
∑

D∈XΞ;B≤D≤C Π′B,DΠD,C =
δB,C .

(d) For any B,C ∈ XΞ we have (C[, B]) = δC,B.
(e) For any C ∈ XΞ such that B ≤ C, we have

∑
D∈XΞ;B≤D≤C ΠB,DΠ′D,C =

δB,C .

For any C such that B ≤ C we define Π′B,C ∈ Z[v−1] by induction on d(B,C)

from the formula
∑

D∈XΞ;B≤D≤C Π′B,DΠD,C = δB,C together with Π′B,B = 1. (If D

in the sum satisfies B ≤ D < C, then d(B,D) < d(B,C); the term corresponding
to D = C is Π′B,D.) From the inductive formula and 11.2(e),(f), we see that

Π′B,C ∈ v−1Z[v−1] if B < C. We show that Π′′B,C =
∑

A∈XΞ;B≤A≤C Π
′
B,ARA,C

satisfies the same inductive formula as Π′B,C . Indeed, we have Π′′B,B = Π′B,B = 1
and ∑

D;B≤D≤C
Π′′B,DΠD,C

=
∑

A,D;B≤A≤D≤C
Π′B,ARA,DΠD,C =

∑
A;B≤A≤C

Π′B,APA,C = δB,C

(the second equality follows from 11.2(g)). Our assertion is verified. It follows that
Π′′B,C = Π′B,C , that is, ∑

A∈XΞ;B≤A≤C
Π′B,ARA,C = Π′B,C(f)
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for all C such that B ≤ C. We set B] =
∑

A∈XΞ;B≤A Π′B,AA. We have

b̃(B]) =
∑

A;B≤A
Π′B,Ab̃(A) =

∑
A,C;B≤A≤C

Π′B,ARA,CC =
∑

C;B≤C
Π′B,CC = B]

where the second equality uses 9.6(c) and the third equality uses (f). Thus the
existence part of (a) is proved. The proof of the uniqueness part of (a) is entirely
analogous to the proof of the corresponding part of 11.2(a). Thus (a) is proved.
The arguments above yield at the same time (b) and (c).

We prove (d). We have

(C[, B]) = (
∑

D∈XΞ;D≤C
ΠD,CD,

∑
D∈XΞ;B≤D

Π′B′,DD)

=
∑

D∈XΞ;B≤D≤C
ΠD,CΠ′B′,D = δB,C

where the last equality uses (c). This proves (d).
We prove (e). For B ≤ C we set xB,C =

∑
D∈XΞ;B≤D≤C ΠB,DΠ′D,C . Clearly,

xB,B = 1. We now assume that B < C. Using (c) we have

xB,C =
∑

D∈XΞ;B≤D≤C
ΠB,DΠ′D,C =

∑
A,D∈XΞ;B≤A≤D≤C

ΠB,AδA,DΠ′D,C

=
∑

A,D,F∈XΞ;B≤A≤F≤D≤C
ΠB,AΠ′A,FΠF,DΠ′D,C

=
∑

F∈XΞ;B≤F≤C
xB,FxF,C = 2xB,C +

∑
F∈XΞ;B<F<C

xB,FxF,C .

Thus, xB,C = −
∑

F∈XΞ;B<F<C xB,FxF,C . This shows by induction on d(B,C)
that xB,C = 0. The theorem is proved.

12.3. The W -graph complementary (see A.6) to the W -graph (XΞ, (IA)A∈XΞ , µ
′)

in 11.14 is (XΞ, (ĨA)A∈XΞ , µ̃
′) where, for any A ∈ XΞ, ĨA is the set of all s ∈ S

such that sA ∈ Ξ, s /∈ L(A) (or equivalently, A : ♥ relative to s with the convention

of 9.1) and, for A,B ∈ XΞ such that ĨA 6⊂ ĨB, we set

µ̃′A,B =


µB,A if B ≤ A,

1 if B < A = sB for some s ∈ S,

0 otherwise .

Hence the following result holds.

Theorem 12.4. The triple (XΞ, (ĨA)A∈XΞ , µ̃
′) is a W -graph in the sense of A.2.

The theorem can also be deduced from the following result.

Proposition 12.5. Let s ∈ S and let B ∈ XΞ. We use the convention of 9.1
relative to s.

(a) If B : ♥, then T̃sB
] = −v−1B].

(b) If B : ♣, then (T̃s − v)B] = (sB)] +
∑

A:♥;B<A µB,AA
].

(c) If B : ♠, then (T̃s − v)B] =
∑

A:♥;B<A µB,AA
].

In the proof we shall use the following fact: if m ∈ MK
≥ satisfies (A[,m) = 0

for any A ∈ XΞ, then m = 0. (Indeed, if we assume that m 6= 0, we can find
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A ∈ XΞ such that mA 6= 0 and such that mA′ = 0 for any A′ < A. But then
(A[,m) = mA 6= 0, contradiction.)

A statement equivalent with that of the proposition is that

T̃sB
] = −v−1B]δs/∈IB + vB]δs∈IB +

∑
C;s/∈IC

µ′B,Cδs∈IBC
](d)

where δs∈IB is 1 if s ∈ IB and 0 if s ∈ IB while δs/∈IB is 0 if s ∈ IB and 1 if s ∈ IB.
Let G(B) be the left hand side of (d) minus the right hand side of (d). We can
rewrite 11.6 and 11.10 in the following form:

T̃sA
[ = vA[δs∈IA − v−1A[δs/∈IA +

∑
C;s∈IC

µ′C,Aδs/∈IAC
[(e)

for any A ∈ XΞ. Let G′(A) be the left hand side of (e) minus the right hand side
of (e). Thus we have G′(A) = 0. Using 12.2(d), we compute:

(A[, G(B)) = (A[, T̃sB
]) + v−1δA,Bδs/∈IB − vδA,Bδs∈IB −

∑
C;s/∈IC

µ′B,Cδs∈IBδA,C ,

0=(G′(A), B])=(T̃sA
[, B])−vδA,Bδs∈IA+v−1δA,Bδs/∈IA−

∑
C;s∈IC

µ′C,Aδs/∈IAδC,B.

Subtracting, we find (A[, G(B)) = (A[, T̃sB
]) − (T̃sA

[, B]) = 0 where the last
equality follows from 9.2. Thus we have (A[, G(B)) = 0 for all A. It follows that
G(B) = 0. The proposition is proved.

13. Conjectures, comments

13.1. To simplify the statements in this section we will assume that Conjecture
10.10 holds; without this assumption, we would have to insert appropriate signs in
the various statements that follow. We fix ε ∈ Sε̃. For B ∈ XΞ we set

B\ = θε(lε(B)[) ∈MK
≥ = v−νKκ−1

ε (lε(B)[).(a)

(The second equality holds since lε(B)[) is fixed by b.) We have
(b) B\ −B ∈ v−1MK

≥ ,

(c) θεbθ
−1
ε (B\) = B\,

where MK
≥ is as in 12.1. Indeed, from 10.8(a) and the continuity of θε we see

that θε maps MK
≤ into MK

≥ . Since lε(B)[ = lε(B) mod v−1MK
≤ , it follows that

B\ = θε(lε(B)) mod v−1MK
≥ . But θε(lε(B)) = B mod v−1MK

≥ , by the definition

of lε(B). Hence (b) holds. (c) is obvious.
In the remainder of this section we will assume that the following conjecture

holds and we will derive some consequences of it.

Conjecture 13.2. For any B ∈ XΞ we have B[ ∈MK
c .

This holds when K = ∅, by [L1], and in the examples of §14,§15.

Consequence 13.3. For any B ∈ XΞ, we have B[ = B\.

Since, by assumption, lε(B)[ ∈ MK
c , and κ−1

ε maps MK
c into MK

c we see (from
13.1(a)) that B\ ∈MK

c . Hence from 13.1(b) we have that
(a) B\ −B ∈ v−1MK

c

where MK
c =

∑
AZ[v−1]A ⊂ MK

c . By 10.12, we have b′(B\) = b(B\) (equality in
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M̂K
c ); this is in fact an equality in MK

c since b′(B\) = θεbθ
−1
ε b(B\) = B\ ∈ MK

c .
Thus,

(b) b(B\) = B\.
From (a),(b), we see that B\ satisfies the defining properties 11.2(a) of B[ hence
B\ = B[.

Remark 13.4. Conversely, if the conclusion of 13.3 holds, then 13.2 holds as well.
Indeed, in this case we would have B[ ∈ MK

≤ , B
[ = B\ ∈ MK

≥ hence B[ ∈ MK
≤ ∩

MK
≥ = MK

c .

Consequence 13.5. We have θε(C
[) = lε(C)[ for all C ∈ XΞ. In particular, θε

defines a bijection of {C[|C ∈ XΞ} onto itself.

This follows from 13.3 using 13.1(a).

Consequence 13.6. We have ΠA,B = v−νKΠκε(A),lε(B) for any A,B ∈ XΞ.

This follows from 13.3, using 13.1(a).
We take the coefficient of v−νK+1 in the two sides of the previous equality and

introduce it in 11.18(a); we then replace κε(A) by A and we obtain
(a) µA,lε(B) − µlε(A),B = f εA,B;−1.

Consequence 13.7. We use notation of 11.13.

(a) For any B ∈ XΞ, the set Ilε(B) is the image of IB under the involution s 7→ s∗

of S.
(b) Let A,B ∈ XΞ be such that IA 6⊂ IB. Then µ′A,B = µ′lε(A),lε(B).

We prove (a). If s /∈ IB, then by 11.6 and 13.5, we have

θε(T̃sB
[) = θε(−v−1B[ +

∑
C;s∈IC

µ′C,BC
[) = −v−1lε(B)[ +

∑
C;s∈IC

µ′C,Blε(C)[.(c)

In particular,
(d) θε(T̃sB

[) 6= vlε(B)[.
We show that

(e) s∗ /∈ Ilε(B).

Assume that s∗ ∈ Ilε(B). Then, by 11.10, T̃s∗ lε(B)[ = vlε(B)[. Applying θε,

we obtain vθεlε(B)[ = θεT̃s∗ lε(B)[ = T̃sθεlε(B)[ hence (using 13.5) T̃sB
[ = vB[.

This contradicts (d); (e) is proved. Thus, Ilε(B) is contained in the image of IB
under s 7→ s∗. The same argument applied to lε(B) instead of B shows that IB is
contained in the image of Ilε(B) under s 7→ s∗. This proves (a).

We prove (b). Choose s ∈ S such that s ∈ IA, s /∈ IB. Then (c) above holds.
Using (a), 13.5 and 11.6 we have

θε(T̃sB
[) = T̃s∗θεB

[ = T̃s∗ lε(B)[ = −v−1lε(B)[ +
∑

C;s∗∈IC

µ′C,lε(B)C
[

= −v−1lε(B)[ +
∑

C′;s∈IC′

µ′lε(C′),lε(B)lε(C
′)[

where the last equality is obtained by the substitution C = lε(C
′), using (a). Com-

paring with (c), we deduce

−v−1lε(B)[ +
∑

C;s∈IC

µ′C,Blε(C)[ = −v−1lε(B)[ +
∑

C;s∈IC

µ′lε(C),lε(B)lε(C)[.
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We now compare the coefficients of lε(A)[ in the two sides of the last equality; (b)
follows.

Consequence 13.8. Let A ∈ XΞ. Then the set {B ∈ XΞ|ΠA,B 6= 0} is finite.

Let C1, C2, . . . , Cn be a set of representatives for the orbits of the γt-action of
T /T K-orbits on XΞ. For j ∈ [1, n], let Fj = {D ∈ XΞ|ΠD,Cj 6= 0} (a finite set,

by 13.2). If ΠA,B 6= 0, then, by 11.15, we have ΠγtA,Cj 6= 0 where t ∈ T /T K and
j ∈ [1, n] are such that γtB = Cj . Note that t, j are uniquely determined by B.
Thus, it is enough to show that the set of all pairs (t, j) in T /T K × [1, n] such that
γtA ∈ Fj is finite. But for each j ∈ [1, n] there are only finitely many t such that
γtA ∈ Fj (since Fj is finite).

Consequence 13.9. Let MK
d′ be the A-submodule of MK

≤ spanned by {B[|B∈XΞ}
(which is then an A-basis of MK

d ). Then MK
d′ is an H-submodule of MK

c .

The fact that MK
d′ ⊂ MK

c follows directly from 13.2. The fact that MK
d′ is an

H-submodule of MK follows from 11.6, 11.10. (The sum appearing in 11.6 is finite,
by 13.2.)

Consequence 13.10. Let MK
d be the A-submodule of MK

≥ spanned by

{B]|B ∈ XΞ} (which is then an A-basis of MK
d ).

(a) MK
d is an H-submodule of MK .

(b) MK
c ⊂MK

d .

From 13.8 we see that, for fixed B ∈ XΞ, the set {A ∈ XΞ|µB,A 6= 0} is finite.
Hence (a) follows from 12.5. From 12.2(e) we see that, for any C ∈ XΞ, we have
C =

∑
B∈XΞ

ΠC,BB
]. By 13.8, only finitely many of the coefficients ΠC,B in the

sum are non-zero. It follows that C ∈MK
d . This proves (b).

Conjecture 13.11. (a) We have ∆‡MK
c ⊂MK

d′ .
(b) We have ∆MK

d ⊂Mc.

Using 12.2(d), we see that (a) and (b) are equivalent. Note that (b) implies that
B] ∈MK

int. In the case K = ∅, (b) holds by [Kt].

13.12. We want to give a conjectural relationship between the W -graph in 12.4
and the W -graphs in [KL1].

For any w ∈ W we set Aw = wA+
ε so that w → Aw is a bijection W

∼−→ X . Let
WΞ be the subset of W corresponding to XΞ ⊂ X under this bijection. For t ∈ T ,
the map γt : XΞ → XΞ corresponds under the bijection above to a map WΞ →WΞ,
denoted again by γt. An element t ∈ T is said to be large if α̌i(t) � 0 for all i ∈ I.

For w ∈ WΞ, let I′w be the set of all s ∈ S such that l(sγt(w)) = l(γt(w)) − 1
where t is a large element of T . For w,w′ in WΞ such that I′w 6⊂ I′w′ , let µ′(w,w′)
be defined as µ(γtw, γtw

′) where t ∈ T is large and µ is as in [KL1].

Conjecture 13.13. (a) (WΞ, (I
′
w)w∈WΞ , µ

′) (as in 13.12) are well defined and they

form a W -graph isomorphic to the W -graph (XΞ, (ĨA)A∈XΞ , µ̃
′) in 12.4.

(b) There is a unique left cell Γ of W such that, for any w ∈ WΞ, we have
γtw ∈ Γ for large t ∈ T .

This holds for K = ∅, by [L1].
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13.14. In the setup of §8, the homomorphism 8.7(b) comes by complexification
from a natural homomorphism of A[T /T K ]-modules and H-modules z : MK

c →
KTK×C∗

0 (Bu) where the second space is (uncomplexified) equivariant K-homology.
Here equivariant K-homology is taken in the topological sense, but in the present
case it coincides with the K-group based on coherent sheaves on Bu, equivariant
with respect to the action of TK × C∗. (This coincidence can be proved using

techniques of [DLP].) Note also that KTK×C∗
0 (Bu) is a free A[T /T K ]-module of

rank |W I/WK |. (Again, this can be proved using techniques of [DLP].)
Thus, z is a homomorphism between free A[T /T K ]-modules of the same rank.

Conjecture 13.15. There is a unique isomorphism KTK×C∗
0 (Bu) ∼−→ MK

d of
A[T /T K ]-modules such that the diagram

MK
c

=−−−−→ MK
c

z

y y
KTK×C∗

0 (Bu)
∼−−−−→ MK

d

with the right vertical map as in 13.10(b), is commutative.

This isomorphism is then automatically compatible with the H-module struc-
tures. Under this isomorphism, theA-basis {B]|B ∈ XΞ} corresponds to anA-basis

B of KTK×C∗
0 (Bu). It would be very interesting to characterize this basis geomet-

rically, in terms of equivariant coherent sheaves on Bu. Note that the elements of
this basis are fixed by the composition of two maps (corresponding to θε and κε);
the first of these maps is $† as in 8.4 and the second one is closely related to the
Serre-Grothendieck duality for coherent sheaves.

Conjecture 13.16. For any A,B ∈ XΞ, the coefficients of the polynomial ΠA,B ∈
Z[v−1] are ≥ 0.

13.17. Consider the semisimple Lie algebra g′ over an algebraically closed field k
of sufficiently large characteristic p > 0, of the same type as g in 8.2. According to
[KW] the set E of isomorphism classes of finite dimensional irreducible representa-
tions of g′ has a natural partition E =

⊔
λ Eλ where λ runs over the linear forms

g′ → k. Let us fix λ such that the element of g′ corresponding to λ via the Killing
form is a nilpotent element that is regular inside a Levi subalgebra of a parabolic
subalgebra of type K. One can hope that the integers ΠA,B(1), for A,B ∈ XΞ,
play the same role in computing the characters of the representations in Eλ as they
play in the case where K = ∅ (which corresponds to λ = 0, that is, to restricted
representations).

13.18. For any integer n ≥ 0 we define the notion of alcove of level n by induction
on n. We say that B ∈ XΞ has level 0 if for any A ∈ XΞ we have ΠA,B = 0 or

ΠA,B = v−k for some k ∈ N and if
∑

A ΠA,B =
∑

w v
−l(w) where w runs over

the set of elements of W I which have minimal length in their left WK-coset. (In
particular, supp(B[) has |W I/WK | elements.) For example, if ε ∈ Sε̃, then A+

ε has
level 0 (see 11.4); more generally, the alcoves B in 11.16 have level 0, but there
may exist alcoves of level 0 other than those just described. (See §15, Figure 2 and
4.) Assume now that n ≥ 1. We say that B ∈ XΞ has level n if it does not have
level n′ with n′ < n and if there exists A ∈ XΞ of level n− 1 and s ∈ S such that
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A < sA = B and (T̃s + v−1)A[ − B[ is a finite A-linear combination of alcoves
A′ ∈ XΞ of level < n− 1.

It seems likely that any alcove in XΞ has a level and that the levels of the various
alcoves are bounded above. This property, which would imply 13.2, holds for K = ∅
(see [L1, §10]) and for the examples in §14,§15. It would also follow that MK

d′ (see

13.9) would be generated as an H-module by the elements B[ with B of level 0.

13.19. In the case where K = ∅ the W -graph 11.14 admits a large group of
automorphisms (see [L1, 8.10]) implementing the various intertwining operators of
the principal series.

The same holds in general, for the union of the W -graphs 11.14 corresponding to
the various subsets L of I that are of the form w(K) for some w ∈ W I . Indeed, in
this case, the intertwining operators can be expressed as compositions of elementary
ones and for these elementary ones, the arguments in 13.5 can be used.

14. Examples in type A

14.1. We fix an integer n ≥ 1. Let (W,S) be the affine Weyl group of type A with
a set of simple reflections sp indexed by p ∈ Z/(n + 2)Z and such that spsp+1 has
order 3 for all p. Let H be the corresponding affine Hecke algebra over A.

14.2. Let Y = Z. Let A[Y ] be the free A-module with basis (Aa)a∈Z. For any

p ∈ Z/(n+ 2)Z we define an A-linear map T̃sp : A[Y ] → A[Y ] by

T̃sp(Aa) =


Aa+1, if p = −a mod n + 2,

Aa−1 + (v − v−1)Aa, if p = −a+ 1 mod n+ 2,
vAa,b, otherwise.

One checks that these formulas define a H-module structure on A[Y ].
We can identify the H-module A[Y ] with its A-basis (Aa), with the H-module

MK
c with its A-basis {A|A ∈ XΞ} where K corresponds to a maximal parabolic

subgroup of SLn+2 with Levi subgroup GLn+1, in such a way that the following
hold.

The polynomials ΠAa′ ,Aa of §11 are given by

ΠAa′ ,Aa =

{
va

′−a, if − n− 1 ≤ a′ − a ≤ 0,

0, otherwise .

The polynomials Π′Aa′ ,Aa
of §12 are given by

ΠAa′ ,Aa =


va

′−a, if a′ ≤ a, a− a′ = 0 mod n+ 2,

−va′−a, if a′ ≤ a, a− a′ = 1 mod n+ 2,

0, otherwise.

The W -graph structure on Y (of 11.14) is given by

Ia = {p; p 6= −a mod n+ 2}, µa′,a =

{
1, if a− a′ = ±1,

0, otherwise .
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14.3. In the remainder of this section, we take Y = {(a, b) ∈ Z2|0 ≤ b− a ≤ n}.
Let A[Y ] be the free A-module with basis (Aa,b) indexed by Y .

For any p ∈ Z/(n + 2)Z we define an A-linear map T̃sp : A[Y ] → A[Y ] by

T̃sp(Aa,b) =


Aa+1,b, if p = −a mod n+ 2 and b− a > 0,
Aa,b+1, if p = −b− 1 mod n+ 2 and b− a < n,

Aa−1,b + (v − v−1)Aa,b, if p = −a+ 1 mod n + 2 and b− a < n,

Aa,b−1 + (v − v−1)Aa,b, if p = −b mod n+ 2 and b− a > 0,
vAa,b, otherwise.

It is easy to check that this is a well defined map (that is, the five cases above are
disjoint). One checks that these formulas define an H-module structure on A[Y ].

We can identify the H-module A[Y ] with its A-basis (Aa,b), with the H-module
MK

c with its A-basis {A|A ∈ XΞ} where K corresponds to a maximal parabolic
subgroup of SLn+2 with Levi subgroup S(GL2 × GLn), in such a way that the
following hold.

The polynomials ΠAa′,b′ ,Aa,b
of §11 are given by

ΠAa′,b′ ,Aa,b
= va

′+b′−a−b, if b− a ∈ {0, n}, −n ≤ a′ − a ≤ 0, −n ≤ b′ − b ≤ 0;

(a)

ΠAa′,b′ ,Aa,b
= va

′+b′−a−bζ(a′,b′),(a,b) + va
′+b′−a−b+2ζ̃(a′,b′),(a,b),

if

0 < b− a < n, −n− 1 ≤ a′ − a ≤ 0, −n− 1 ≤ b′ − b ≤ 0,(b)

where

ζ(a′,b′),(a,b) =

{
1, if b− a′ ≤ n or 0 ≤ b′ − a,

0, otherwise ,

ζ̃(a′,b′),(a,b) =

{
1, if n+ 1 ≤ b− a′ or b′ − a ≤ −1,

0, otherwise .

Let us verify directly that in the case (b) we have
(c) P(a′,b′),(a,b) ∈ v−1Z−1 if (a′, b′) 6= (a, b). Since a′ ≤ a, b′ ≤ b it follows that

a′ + b′ − a− b < 0 hence va
′+b′−a−b ∈ v−1Z[v−1].

Assume that b′ − a ≤ −1. We have a′ − b ≤ a − b ≤ −1 (since 0 < b − a) and
b′ − a ≤ −1; adding, we obtain a′ + b′ − a − b ≤ −2. If this is an equality, then
we must have a′ − b = a − b = −1, b′ − a = −1. Hence a = a′ and b′ − a′ = −1,
contradicting 0 ≤ b′−a′. We see that a′+b′−a−b ≤ −2 must be a strict inequality
hence va

′+b′−a−b+2 ∈ v−1Z[v−1].
Assume that n + 1 ≤ b − a′. We have b′ − a ≤ b − a ≤ n − 1 (since b− a < n)

and a′ − b ≤ −n− 1; adding, we obtain a′ + b′ − a− b ≤ −2. If this is an equality,
then we must have b′ − a = b− a = n − 1 and a′ − b = −n− 1. Hence b = b′ and
a′ − b′ = −n− 1, contradicting b′ − a′ ≤ n. We see that a′ + b′ − a− b ≤ −2 must
be a strict inequality hence va

′+b′−a−b+2 ∈ v−1Z[v−1]. Thus, (c) is verified.



272 G. LUSZTIG

The W -graph structure on Y (of 11.14) is given by:

I(a,b) =


{p; p 6= −a+ 1 mod n+ 2, p 6= −b mod n + 2}, if 0 < b− a < n,

{p; p 6= −a+ 1 mod n+ 2}, if b− a = 0,

{p; p 6= −b mod n+ 2}, if b− a = n,

µ(a′,b′),(a,b) =



1, if a′ = a+ 1, b′ = b,

1, if a′ = a, b′ = b + 1,

1, if a′ = a− 1, b′ = b, b− a 6= 0,

1, if a′ = a, b′ = b− 1, b− a 6= n,

1, if a′ = a− 2, b′ = b− 1, b− a = n− 1,

1, if a′ = a− 1, b′ = b− 2, b− a = 1,
0, otherwise .

15. Examples in rank 2

The five figures below describe the elements B[ in type A2, B2, G2 with |K| = 1.
In each picture, we specify the alcoveB by inserting 1 in it; in other alcovesA ∈ XΞ,
we insert the value of ΠA,B whenever it is non-zero. We only have to describe the
situation for one B in each T -orbit on XΞ.
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1

1
v

v

-1

-1
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1v
v
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Figure 1. Type A2, K = {i}
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Figure 2. Type B2, K = {i1}
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Figure 3. Type B2, K = {i2}
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Figure 4. Type G2, K = {i1}
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Figure 5. Type G2, K = {i2}
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Appendix

A.1. We want to give a definition of a W -graph which is slightly more general
than the one given in [KL1].

Let (W,S) be a Coxeter group; here S, the set of simple reflections, is assumed
to be finite. Let Y be a set. Assume that for each y ∈ Y we are given a subset Iy
of S and that for any y, y′ in Y such that Iy 6⊂ Iy′ we are given an integer µ′y,y′ ,
so that

(a) for any y, z ∈ Y and any integer n ≥ 1, the set

Yn(y, z){(y0, y1, . . . , yn) ∈ Y n+1|y0 = y, yn = z,

n−1∏
t=0

µ′yt,yt+1
6= 0, Iyj 6⊂ Iyj+1 for j ∈ [0, n− 1]}

is finite.

A.2. Let s 6= s′ in S. For any integer n ≥ 1 and any a, b ∈ Y such that s′ ∈ Ia and
s′ /∈ Ib (if n is odd), s /∈ Ib (if n is even), we set fn;s,s′(a, b) =

∑∏n−1
t=0 µ′yt,yt+1

where

the sum runs over all (y0, y1, . . . , yn) ∈ Y n+1 such that y0 = a, Iyt ∩ {s, s′} = {s}
for t odd in [1, n−1], Iyt ∩{s, s′} = {s′} for t even in [1, n−1] and yn = b. The sum
is well defined by condition (a) above. We also set f0;s,s′ = δa,b for any a, b ∈W .

For an integer m ≥ 2 we define integers p0,m, p1,m, p2,m . . . , pm−1,m by

m−1∏
k=1

(v − 2 cos
kπ

m
) = p0,m + p1,mv + p2,mv

2 + · · ·+ pm−1,mv
m−1.

We say that Y (with the additional data (Iy)y∈Y , µ
′) is a W -graph if for any s 6= s′

in S such that ss′ has finite order m, we have
(b) fn;s,s′(a, b) = fn;s′,s(a, b) for all a, b ∈ Y such that {s, s′} ⊂ Ia, Ib∩{s, s′} = ∅

and any n ∈ [2,m]; and

(c)
∑m−1

n=0 pn,mfn;s,s′(a, b) = 0 for all a ∈ Y such that {s, s′} ∩ Ia = {s′} and all
b ∈ Y such that Ib ∩ {s, s′} = {s′} (if n is even), Ib ∩ {s, s′} = {s} (if n is odd).

A.3. We return to the setup of A.1. For any z ∈ Y and n ≥ 1 we set Pn(z) =
{y ∈ Y |Yn(y, z) 6= ∅}. For n = 0 we set P0(z) = {z}. A subset P ⊂ Y is said to
be of finite type if it is contained in a union of finitely many sets of the form Pn(z)
(for various z ∈ Y and n ≥ 0). For example, any finite subset of Y is of finite type.
Let E be the set consisting of all formal sums

∑
y∈Y cyy with cy ∈ A such that

{y ∈ Y |cy 6= 0} is of finite type. Then E is an A-module in an obvious way. From
A.1(a) it follows that

τs :
∑
y

cyy 7→ −
∑
y∈Y
s∈Iy

v−1cyy +
∑
y∈Y
s/∈Iy

vcyy +
∑
y∈Y
s∈Iy

(
∑
y′∈Y
s/∈Iy′

µ′y,y′cy′)y,

τ ′s :
∑
y

cyy 7→
∑
y∈Y
s∈Iy

vcyy −
∑
y∈Y
s/∈Iy

v−1cyy +
∑
y∈Y
s∈Iy

(
∑
y′∈Y
s/∈Iy′

µ′y,y′cy′)y

are well defined A-linear maps E → E .

Proposition A.4. The following three conditions for Y, (Iy)y∈Y , µ
′ are equivalent:

(a) Y, (Iy)y∈Y , µ
′ is a W -graph in the sense of A.2.
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(b) For any s 6= s′ in S such that ss′ has finite order m, we have

τsτs′τs . . .︸ ︷︷ ︸
m factors

= τs′τsτs′ . . .︸ ︷︷ ︸
m factors

.

(c) For any s 6= s′ in S such that ss′ has finite order m, we have

τ ′sτ
′
s′τ
′
s . . .︸ ︷︷ ︸

m factors

= τ ′s′τ
′
sτ
′
s′ . . .︸ ︷︷ ︸

m factors

.

The equivalence of (b),(c) holds since τ ′s = ζτsζ where ζ is the involution of E
given by

∑
y∈Y cyy 7→

∑
y∈Y c′yy and c′y is the image of cy under the ring involution

of A which takes v to −v−1. The equivalence of (a),(b) is proved by computation.

A.5. The definition of a W -graph given above (which is adopted in this paper)
is slightly more general than that given in [KL1] in which the finiteness property
A.1(a) is replaced by the stronger property that P1(z) is finite for any z ∈ Y (this
implies that Pn(z) is finite for any z ∈ Y and any n, so that E is just the free
A-module with basis Y .)

A.6. Assume that Y, (Iy)y∈Y , µ
′ is a W -graph in the sense of A.2. Let Ĩy = S−Iy

for y ∈ Y . For y, y′ such that Ĩy 6⊂ Ĩy′ (that is, Iy′ 6⊂ Iy) we set µ̃′(y, y′) = µ′(y′, y).

Then Y, (Ĩy)y∈Y , µ̃
′ is again a W -graph. (This is clear from the definition in A.2.)

The W -graph Y, (Ĩy)y∈Y , µ̃
′ is said to be complementary to the W -graph

Y, (Iy)y∈Y , µ
′.

Index of notation

1.1. E,F, T, σH ,Ω, T , T ′, F̄ , C+, C−, rh,W I ,WK , wK
0 , X, S, cl(),W,A+

ε , A
−
ε ,Ωε,

Wε, ωε,K , ωε, D(ε)
1.2. E+

H , E
−
H ,L(A), d(A,B), dh(A,B)

1.3. αi, T +, Tdom

1.4. ≤
1.5. T K

2.1. TK ,F
K ,ΩK

2.2. ε̃,Ξ, XΞ

2.3. S,Sε̃, κε
2.4. DΞ(ε), A!

ε

2.12. γt
2.14. dK(A,B)
3.1. A,H
3.2. M,Mi,≤,Mi,≥
3.3. θH
3.6. eε
3.8. M(U)

3.13. U+
K , U

−
K

3.15. ,̄ φε
4.2. M̃K

4.6. MK , resK
4.8. MK

←,M
K
→.

4.9. eε,K
4.10. µK(t)
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4.13. MK
≤

4.14. b
4.24. RA,B

6.5. νK
6.6. θε

6.10. MK
c

7.2. W (K),WK

8.10. ∆
9.6. b̃

10.8. lε
11.1. MK

≤
11.2. B[,ΠA,B

11.3. µA,B
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ERRATUM: PERIODIC W -GRAPHS

G. LUSZTIG

I thank Jens C. Jantzen for pointing out the following misprints.
In the second line of the display in 3.2, replace s /∈ L by s ∈ L.
In 3.8, replace the last H by M in the line: ”It is clear that M(U) is an H-

submodule of H”.
In 14.2, in the third line of the first display, replace vAa,b by vAa.
In the line 14.3(c) replace v−1Z−1 by v−1Z[v−1].
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